MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isuvtxa Structured version   Visualization version   GIF version

Theorem isuvtxa 26295
Description: The set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.)
Hypotheses
Ref Expression
uvtxael.v 𝑉 = (Vtx‘𝐺)
isuvtxa.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
isuvtxa (𝐺𝑊 → (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒})
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉   𝑒,𝐸   𝑒,𝐺,𝑘,𝑣   𝑒,𝑉,𝑘   𝑒,𝑊,𝑘,𝑣
Allowed substitution hints:   𝐸(𝑣,𝑘)

Proof of Theorem isuvtxa
StepHypRef Expression
1 uvtxael.v . . 3 𝑉 = (Vtx‘𝐺)
21uvtxaval 26287 . 2 (𝐺𝑊 → (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣)})
3 isuvtxa.e . . . . . . 7 𝐸 = (Edg‘𝐺)
41, 3nbgrel 26238 . . . . . 6 (𝐺𝑊 → (𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒)))
54ad2antrr 762 . . . . 5 (((𝐺𝑊𝑣𝑉) ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒)))
6 df-3an 1039 . . . . . 6 (((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒) ↔ (((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒))
7 prcom 4267 . . . . . . . . 9 {𝑘, 𝑣} = {𝑣, 𝑘}
87sseq1i 3629 . . . . . . . 8 ({𝑘, 𝑣} ⊆ 𝑒 ↔ {𝑣, 𝑘} ⊆ 𝑒)
98rexbii 3041 . . . . . . 7 (∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒 ↔ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒)
10 simpr 477 . . . . . . . . . 10 ((𝐺𝑊𝑣𝑉) → 𝑣𝑉)
11 eldifi 3732 . . . . . . . . . 10 (𝑘 ∈ (𝑉 ∖ {𝑣}) → 𝑘𝑉)
1210, 11anim12ci 591 . . . . . . . . 9 (((𝐺𝑊𝑣𝑉) ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (𝑘𝑉𝑣𝑉))
13 eldifsni 4320 . . . . . . . . . 10 (𝑘 ∈ (𝑉 ∖ {𝑣}) → 𝑘𝑣)
1413adantl 482 . . . . . . . . 9 (((𝐺𝑊𝑣𝑉) ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → 𝑘𝑣)
1512, 14jca 554 . . . . . . . 8 (((𝐺𝑊𝑣𝑉) ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → ((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣))
1615biantrurd 529 . . . . . . 7 (((𝐺𝑊𝑣𝑉) ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒 ↔ (((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒)))
179, 16syl5rbb 273 . . . . . 6 (((𝐺𝑊𝑣𝑉) ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → ((((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣) ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒) ↔ ∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒))
186, 17syl5bb 272 . . . . 5 (((𝐺𝑊𝑣𝑉) ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (((𝑘𝑉𝑣𝑉) ∧ 𝑘𝑣 ∧ ∃𝑒𝐸 {𝑣, 𝑘} ⊆ 𝑒) ↔ ∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒))
195, 18bitrd 268 . . . 4 (((𝐺𝑊𝑣𝑉) ∧ 𝑘 ∈ (𝑉 ∖ {𝑣})) → (𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒))
2019ralbidva 2985 . . 3 ((𝐺𝑊𝑣𝑉) → (∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒))
2120rabbidva 3188 . 2 (𝐺𝑊 → {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})𝑘 ∈ (𝐺 NeighbVtx 𝑣)} = {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒})
222, 21eqtrd 2656 1 (𝐺𝑊 → (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑘 ∈ (𝑉 ∖ {𝑣})∃𝑒𝐸 {𝑘, 𝑣} ⊆ 𝑒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  cdif 3571  wss 3574  {csn 4177  {cpr 4179  cfv 5888  (class class class)co 6650  Vtxcvtx 25874  Edgcedg 25939   NeighbVtx cnbgr 26224  UnivVtxcuvtxa 26225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-nbgr 26228  df-uvtxa 26230
This theorem is referenced by:  uvtxael1  26296
  Copyright terms: Public domain W3C validator