![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzinfi | Structured version Visualization version GIF version |
Description: Extract the lower bound of an upper set of integers as its infimum. (Contributed by NM, 7-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
uzinfi.1 | ⊢ 𝑀 ∈ ℤ |
Ref | Expression |
---|---|
uzinfi | ⊢ inf((ℤ≥‘𝑀), ℝ, < ) = 𝑀 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzinfi.1 | . 2 ⊢ 𝑀 ∈ ℤ | |
2 | ltso 10118 | . . . 4 ⊢ < Or ℝ | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑀 ∈ ℤ → < Or ℝ) |
4 | zre 11381 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
5 | uzid 11702 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
6 | eluz2 11693 | . . . . 5 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) | |
7 | 4 | adantr 481 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℝ) |
8 | zre 11381 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ ℝ) | |
9 | 8 | adantl 482 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ) |
10 | 7, 9 | lenltd 10183 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀 ≤ 𝑘 ↔ ¬ 𝑘 < 𝑀)) |
11 | 10 | biimp3a 1432 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → ¬ 𝑘 < 𝑀) |
12 | 11 | a1d 25 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → (𝑀 ∈ ℤ → ¬ 𝑘 < 𝑀)) |
13 | 6, 12 | sylbi 207 | . . . 4 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝑀 ∈ ℤ → ¬ 𝑘 < 𝑀)) |
14 | 13 | impcom 446 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ¬ 𝑘 < 𝑀) |
15 | 3, 4, 5, 14 | infmin 8400 | . 2 ⊢ (𝑀 ∈ ℤ → inf((ℤ≥‘𝑀), ℝ, < ) = 𝑀) |
16 | 1, 15 | ax-mp 5 | 1 ⊢ inf((ℤ≥‘𝑀), ℝ, < ) = 𝑀 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 Or wor 5034 ‘cfv 5888 infcinf 8347 ℝcr 9935 < clt 10074 ≤ cle 10075 ℤcz 11377 ℤ≥cuz 11687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-neg 10269 df-z 11378 df-uz 11688 |
This theorem is referenced by: nninf 11769 nn0inf 11770 |
Copyright terms: Public domain | W3C validator |