MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vr1val Structured version   Visualization version   Unicode version

Theorem vr1val 19562
Description: The value of the generator of the power series algebra (the  X in  R [ [ X ] ]). Since all univariate polynomial rings over a fixed base ring  R are isomorphic, we don't bother to pass this in as a parameter; internally we are actually using the empty set as this generator and  1o  =  { (/) } is the index set (but for most purposes this choice should not be visible anyway). (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 12-Jun-2015.)
Hypothesis
Ref Expression
vr1val.1  |-  X  =  (var1 `  R )
Assertion
Ref Expression
vr1val  |-  X  =  ( ( 1o mVar  R
) `  (/) )

Proof of Theorem vr1val
Dummy variables  f  h  i  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vr1val.1 . . 3  |-  X  =  (var1 `  R )
2 oveq2 6658 . . . . 5  |-  ( r  =  R  ->  ( 1o mVar  r )  =  ( 1o mVar  R ) )
32fveq1d 6193 . . . 4  |-  ( r  =  R  ->  (
( 1o mVar  r ) `  (/) )  =  ( ( 1o mVar  R ) `
 (/) ) )
4 df-vr1 19551 . . . 4  |- var1  =  (
r  e.  _V  |->  ( ( 1o mVar  r ) `
 (/) ) )
5 fvex 6201 . . . 4  |-  ( ( 1o mVar  R ) `  (/) )  e.  _V
63, 4, 5fvmpt 6282 . . 3  |-  ( R  e.  _V  ->  (var1 `  R )  =  ( ( 1o mVar  R ) `
 (/) ) )
71, 6syl5eq 2668 . 2  |-  ( R  e.  _V  ->  X  =  ( ( 1o mVar  R ) `  (/) ) )
8 fvprc 6185 . . . 4  |-  ( -.  R  e.  _V  ->  (var1 `  R )  =  (/) )
9 0fv 6227 . . . 4  |-  ( (/) `  (/) )  =  (/)
108, 1, 93eqtr4g 2681 . . 3  |-  ( -.  R  e.  _V  ->  X  =  ( (/) `  (/) ) )
11 df-mvr 19357 . . . . . 6  |- mVar  =  ( i  e.  _V , 
r  e.  _V  |->  ( x  e.  i  |->  ( f  e.  { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  |->  if ( f  =  ( y  e.  i  |->  if ( y  =  x ,  1 ,  0 ) ) ,  ( 1r `  r ) ,  ( 0g `  r ) ) ) ) )
1211reldmmpt2 6771 . . . . 5  |-  Rel  dom mVar
1312ovprc2 6685 . . . 4  |-  ( -.  R  e.  _V  ->  ( 1o mVar  R )  =  (/) )
1413fveq1d 6193 . . 3  |-  ( -.  R  e.  _V  ->  ( ( 1o mVar  R ) `
 (/) )  =  (
(/) `  (/) ) )
1510, 14eqtr4d 2659 . 2  |-  ( -.  R  e.  _V  ->  X  =  ( ( 1o mVar  R ) `  (/) ) )
167, 15pm2.61i 176 1  |-  X  =  ( ( 1o mVar  R
) `  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   (/)c0 3915   ifcif 4086    |-> cmpt 4729   `'ccnv 5113   "cima 5117   ` cfv 5888  (class class class)co 6650   1oc1o 7553    ^m cmap 7857   Fincfn 7955   0cc0 9936   1c1 9937   NNcn 11020   NN0cn0 11292   0gc0g 16100   1rcur 18501   mVar cmvr 19352  var1cv1 19546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-mvr 19357  df-vr1 19551
This theorem is referenced by:  vr1cl2  19563  vr1cl  19587  subrgvr1  19631  subrgvr1cl  19632  coe1tm  19643  ply1coe  19666  evl1var  19700  evls1var  19702
  Copyright terms: Public domain W3C validator