| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vr1val | Structured version Visualization version Unicode version | ||
| Description: The value of the
generator of the power series algebra (the |
| Ref | Expression |
|---|---|
| vr1val.1 |
|
| Ref | Expression |
|---|---|
| vr1val |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vr1val.1 |
. . 3
| |
| 2 | oveq2 6658 |
. . . . 5
| |
| 3 | 2 | fveq1d 6193 |
. . . 4
|
| 4 | df-vr1 19551 |
. . . 4
| |
| 5 | fvex 6201 |
. . . 4
| |
| 6 | 3, 4, 5 | fvmpt 6282 |
. . 3
|
| 7 | 1, 6 | syl5eq 2668 |
. 2
|
| 8 | fvprc 6185 |
. . . 4
| |
| 9 | 0fv 6227 |
. . . 4
| |
| 10 | 8, 1, 9 | 3eqtr4g 2681 |
. . 3
|
| 11 | df-mvr 19357 |
. . . . . 6
| |
| 12 | 11 | reldmmpt2 6771 |
. . . . 5
|
| 13 | 12 | ovprc2 6685 |
. . . 4
|
| 14 | 13 | fveq1d 6193 |
. . 3
|
| 15 | 10, 14 | eqtr4d 2659 |
. 2
|
| 16 | 7, 15 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-mvr 19357 df-vr1 19551 |
| This theorem is referenced by: vr1cl2 19563 vr1cl 19587 subrgvr1 19631 subrgvr1cl 19632 coe1tm 19643 ply1coe 19666 evl1var 19700 evls1var 19702 |
| Copyright terms: Public domain | W3C validator |