MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksn Structured version   Visualization version   GIF version

Theorem wwlksn 26729
Description: The set of walks (in an undirected graph) of a fixed length as words over the set of vertices. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by AV, 8-Apr-2021.)
Assertion
Ref Expression
wwlksn (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (#‘𝑤) = (𝑁 + 1)})
Distinct variable groups:   𝑤,𝐺   𝑤,𝑁

Proof of Theorem wwlksn
Dummy variables 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wwlksn 26723 . . . . 5 WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (#‘𝑤) = (𝑛 + 1)})
21a1i 11 . . . 4 ((𝑁 ∈ ℕ0𝐺 ∈ V) → WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (#‘𝑤) = (𝑛 + 1)}))
3 fveq2 6191 . . . . . . 7 (𝑔 = 𝐺 → (WWalks‘𝑔) = (WWalks‘𝐺))
43adantl 482 . . . . . 6 ((𝑛 = 𝑁𝑔 = 𝐺) → (WWalks‘𝑔) = (WWalks‘𝐺))
5 oveq1 6657 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛 + 1) = (𝑁 + 1))
65eqeq2d 2632 . . . . . . 7 (𝑛 = 𝑁 → ((#‘𝑤) = (𝑛 + 1) ↔ (#‘𝑤) = (𝑁 + 1)))
76adantr 481 . . . . . 6 ((𝑛 = 𝑁𝑔 = 𝐺) → ((#‘𝑤) = (𝑛 + 1) ↔ (#‘𝑤) = (𝑁 + 1)))
84, 7rabeqbidv 3195 . . . . 5 ((𝑛 = 𝑁𝑔 = 𝐺) → {𝑤 ∈ (WWalks‘𝑔) ∣ (#‘𝑤) = (𝑛 + 1)} = {𝑤 ∈ (WWalks‘𝐺) ∣ (#‘𝑤) = (𝑁 + 1)})
98adantl 482 . . . 4 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑛 = 𝑁𝑔 = 𝐺)) → {𝑤 ∈ (WWalks‘𝑔) ∣ (#‘𝑤) = (𝑛 + 1)} = {𝑤 ∈ (WWalks‘𝐺) ∣ (#‘𝑤) = (𝑁 + 1)})
10 simpl 473 . . . 4 ((𝑁 ∈ ℕ0𝐺 ∈ V) → 𝑁 ∈ ℕ0)
11 simpr 477 . . . 4 ((𝑁 ∈ ℕ0𝐺 ∈ V) → 𝐺 ∈ V)
12 fvex 6201 . . . . . 6 (WWalks‘𝐺) ∈ V
1312rabex 4813 . . . . 5 {𝑤 ∈ (WWalks‘𝐺) ∣ (#‘𝑤) = (𝑁 + 1)} ∈ V
1413a1i 11 . . . 4 ((𝑁 ∈ ℕ0𝐺 ∈ V) → {𝑤 ∈ (WWalks‘𝐺) ∣ (#‘𝑤) = (𝑁 + 1)} ∈ V)
152, 9, 10, 11, 14ovmpt2d 6788 . . 3 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (#‘𝑤) = (𝑁 + 1)})
1615expcom 451 . 2 (𝐺 ∈ V → (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (#‘𝑤) = (𝑁 + 1)}))
171reldmmpt2 6771 . . . . 5 Rel dom WWalksN
1817ovprc2 6685 . . . 4 𝐺 ∈ V → (𝑁 WWalksN 𝐺) = ∅)
19 fvprc 6185 . . . . . 6 𝐺 ∈ V → (WWalks‘𝐺) = ∅)
2019rabeqdv 3194 . . . . 5 𝐺 ∈ V → {𝑤 ∈ (WWalks‘𝐺) ∣ (#‘𝑤) = (𝑁 + 1)} = {𝑤 ∈ ∅ ∣ (#‘𝑤) = (𝑁 + 1)})
21 rab0 3955 . . . . 5 {𝑤 ∈ ∅ ∣ (#‘𝑤) = (𝑁 + 1)} = ∅
2220, 21syl6eq 2672 . . . 4 𝐺 ∈ V → {𝑤 ∈ (WWalks‘𝐺) ∣ (#‘𝑤) = (𝑁 + 1)} = ∅)
2318, 22eqtr4d 2659 . . 3 𝐺 ∈ V → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (#‘𝑤) = (𝑁 + 1)})
2423a1d 25 . 2 𝐺 ∈ V → (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (#‘𝑤) = (𝑁 + 1)}))
2516, 24pm2.61i 176 1 (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (#‘𝑤) = (𝑁 + 1)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  c0 3915  cfv 5888  (class class class)co 6650  cmpt2 6652  1c1 9937   + caddc 9939  0cn0 11292  #chash 13117  WWalkscwwlks 26717   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wwlksn 26723
This theorem is referenced by:  iswwlksn  26730  wwlksn0s  26746  0enwwlksnge1  26749  wwlksnfi  26801
  Copyright terms: Public domain W3C validator