MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoval Structured version   Visualization version   GIF version

Theorem xkoval 21390
Description: Value of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
xkoval.x 𝑋 = 𝑅
xkoval.k 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}
xkoval.t 𝑇 = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
Assertion
Ref Expression
xkoval ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝑅) = (topGen‘(fi‘ran 𝑇)))
Distinct variable groups:   𝑣,𝑘,𝐾   𝑓,𝑘,𝑣,𝑥,𝑅   𝑆,𝑓,𝑘,𝑣,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝑇(𝑥,𝑣,𝑓,𝑘)   𝐾(𝑥,𝑓)   𝑋(𝑣,𝑓)

Proof of Theorem xkoval
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . . . . . . . . 13 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 = 𝑅)
21unieqd 4446 . . . . . . . . . . . 12 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 = 𝑅)
3 xkoval.x . . . . . . . . . . . 12 𝑋 = 𝑅
42, 3syl6eqr 2674 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 = 𝑋)
54pweqd 4163 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝒫 𝑟 = 𝒫 𝑋)
61oveq1d 6665 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑟t 𝑥) = (𝑅t 𝑥))
76eleq1d 2686 . . . . . . . . . 10 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑟t 𝑥) ∈ Comp ↔ (𝑅t 𝑥) ∈ Comp))
85, 7rabeqbidv 3195 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp})
9 xkoval.k . . . . . . . . 9 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}
108, 9syl6eqr 2674 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp} = 𝐾)
11 simpl 473 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑠 = 𝑆)
121, 11oveq12d 6668 . . . . . . . . 9 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑟 Cn 𝑠) = (𝑅 Cn 𝑆))
13 rabeq 3192 . . . . . . . . 9 ((𝑟 Cn 𝑠) = (𝑅 Cn 𝑆) → {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
1412, 13syl 17 . . . . . . . 8 ((𝑠 = 𝑆𝑟 = 𝑅) → {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
1510, 11, 14mpt2eq123dv 6717 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣}) = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
16 xkoval.t . . . . . . 7 𝑇 = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
1715, 16syl6eqr 2674 . . . . . 6 ((𝑠 = 𝑆𝑟 = 𝑅) → (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣}) = 𝑇)
1817rneqd 5353 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣}) = ran 𝑇)
1918fveq2d 6195 . . . 4 ((𝑠 = 𝑆𝑟 = 𝑅) → (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣})) = (fi‘ran 𝑇))
2019fveq2d 6195 . . 3 ((𝑠 = 𝑆𝑟 = 𝑅) → (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣}))) = (topGen‘(fi‘ran 𝑇)))
21 df-xko 21366 . . 3 ^ko = (𝑠 ∈ Top, 𝑟 ∈ Top ↦ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣}))))
22 fvex 6201 . . 3 (topGen‘(fi‘ran 𝑇)) ∈ V
2320, 21, 22ovmpt2a 6791 . 2 ((𝑆 ∈ Top ∧ 𝑅 ∈ Top) → (𝑆 ^ko 𝑅) = (topGen‘(fi‘ran 𝑇)))
2423ancoms 469 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝑅) = (topGen‘(fi‘ran 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {crab 2916  wss 3574  𝒫 cpw 4158   cuni 4436  ran crn 5115  cima 5117  cfv 5888  (class class class)co 6650  cmpt2 6652  ficfi 8316  t crest 16081  topGenctg 16098  Topctop 20698   Cn ccn 21028  Compccmp 21189   ^ko cxko 21364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-xko 21366
This theorem is referenced by:  xkotop  21391  xkoopn  21392  xkouni  21402  xkoccn  21422  xkopt  21458  xkoco1cn  21460  xkoco2cn  21461  xkococn  21463  xkoinjcn  21490
  Copyright terms: Public domain W3C validator