| Step | Hyp | Ref
| Expression |
| 1 | | xkoco1cn.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝑅 Cn 𝑆)) |
| 2 | | cnco 21070 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 Cn 𝑆) ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) → (𝑔 ∘ 𝐹) ∈ (𝑅 Cn 𝑇)) |
| 3 | 1, 2 | sylan 488 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) → (𝑔 ∘ 𝐹) ∈ (𝑅 Cn 𝑇)) |
| 4 | | eqid 2622 |
. . 3
⊢ (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) = (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) |
| 5 | 3, 4 | fmptd 6385 |
. 2
⊢ (𝜑 → (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)):(𝑆 Cn 𝑇)⟶(𝑅 Cn 𝑇)) |
| 6 | | eqid 2622 |
. . . . . 6
⊢ ∪ 𝑅 =
∪ 𝑅 |
| 7 | | eqid 2622 |
. . . . . 6
⊢ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp} = {𝑦 ∈
𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑦) ∈ Comp} |
| 8 | | eqid 2622 |
. . . . . 6
⊢ (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) |
| 9 | 6, 7, 8 | xkobval 21389 |
. . . . 5
⊢ ran
(𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) = {𝑥 ∣ ∃𝑘 ∈ 𝒫 ∪ 𝑅∃𝑣 ∈ 𝑇 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})} |
| 10 | 9 | abeq2i 2735 |
. . . 4
⊢ (𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 ∪ 𝑅∃𝑣 ∈ 𝑇 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})) |
| 11 | 1 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝐹 ∈ (𝑅 Cn 𝑆)) |
| 12 | 11, 2 | sylan 488 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) → (𝑔 ∘ 𝐹) ∈ (𝑅 Cn 𝑇)) |
| 13 | | imaeq1 5461 |
. . . . . . . . . . . . 13
⊢ (ℎ = (𝑔 ∘ 𝐹) → (ℎ “ 𝑘) = ((𝑔 ∘ 𝐹) “ 𝑘)) |
| 14 | | imaco 5640 |
. . . . . . . . . . . . 13
⊢ ((𝑔 ∘ 𝐹) “ 𝑘) = (𝑔 “ (𝐹 “ 𝑘)) |
| 15 | 13, 14 | syl6eq 2672 |
. . . . . . . . . . . 12
⊢ (ℎ = (𝑔 ∘ 𝐹) → (ℎ “ 𝑘) = (𝑔 “ (𝐹 “ 𝑘))) |
| 16 | 15 | sseq1d 3632 |
. . . . . . . . . . 11
⊢ (ℎ = (𝑔 ∘ 𝐹) → ((ℎ “ 𝑘) ⊆ 𝑣 ↔ (𝑔 “ (𝐹 “ 𝑘)) ⊆ 𝑣)) |
| 17 | 16 | elrab3 3364 |
. . . . . . . . . 10
⊢ ((𝑔 ∘ 𝐹) ∈ (𝑅 Cn 𝑇) → ((𝑔 ∘ 𝐹) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} ↔ (𝑔 “ (𝐹 “ 𝑘)) ⊆ 𝑣)) |
| 18 | 12, 17 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑆 Cn 𝑇)) → ((𝑔 ∘ 𝐹) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} ↔ (𝑔 “ (𝐹 “ 𝑘)) ⊆ 𝑣)) |
| 19 | 18 | rabbidva 3188 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 ∘ 𝐹) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}} = {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 “ (𝐹 “ 𝑘)) ⊆ 𝑣}) |
| 20 | | eqid 2622 |
. . . . . . . . 9
⊢ ∪ 𝑆 =
∪ 𝑆 |
| 21 | | cntop2 21045 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑅 Cn 𝑆) → 𝑆 ∈ Top) |
| 22 | 1, 21 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ Top) |
| 23 | 22 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝑆 ∈ Top) |
| 24 | | xkoco1cn.t |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈ Top) |
| 25 | 24 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝑇 ∈ Top) |
| 26 | | imassrn 5477 |
. . . . . . . . . 10
⊢ (𝐹 “ 𝑘) ⊆ ran 𝐹 |
| 27 | 6, 20 | cnf 21050 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑅 Cn 𝑆) → 𝐹:∪ 𝑅⟶∪ 𝑆) |
| 28 | | frn 6053 |
. . . . . . . . . . 11
⊢ (𝐹:∪
𝑅⟶∪ 𝑆
→ ran 𝐹 ⊆ ∪ 𝑆) |
| 29 | 11, 27, 28 | 3syl 18 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → ran 𝐹 ⊆ ∪ 𝑆) |
| 30 | 26, 29 | syl5ss 3614 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → (𝐹 “ 𝑘) ⊆ ∪ 𝑆) |
| 31 | | imacmp 21200 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑅 Cn 𝑆) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → (𝑆 ↾t (𝐹 “ 𝑘)) ∈ Comp) |
| 32 | 11, 31 | sylancom 701 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → (𝑆 ↾t (𝐹 “ 𝑘)) ∈ Comp) |
| 33 | | simplrr 801 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝑣 ∈ 𝑇) |
| 34 | 20, 23, 25, 30, 32, 33 | xkoopn 21392 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 “ (𝐹 “ 𝑘)) ⊆ 𝑣} ∈ (𝑇 ^ko 𝑆)) |
| 35 | 19, 34 | eqeltrd 2701 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 ∘ 𝐹) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}} ∈ (𝑇 ^ko 𝑆)) |
| 36 | | imaeq2 5462 |
. . . . . . . . 9
⊢ (𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → (◡(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) “ 𝑥) = (◡(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})) |
| 37 | 4 | mptpreima 5628 |
. . . . . . . . 9
⊢ (◡(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) = {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 ∘ 𝐹) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}} |
| 38 | 36, 37 | syl6eq 2672 |
. . . . . . . 8
⊢ (𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → (◡(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) “ 𝑥) = {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 ∘ 𝐹) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}}) |
| 39 | 38 | eleq1d 2686 |
. . . . . . 7
⊢ (𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → ((◡(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) “ 𝑥) ∈ (𝑇 ^ko 𝑆) ↔ {𝑔 ∈ (𝑆 Cn 𝑇) ∣ (𝑔 ∘ 𝐹) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}} ∈ (𝑇 ^ko 𝑆))) |
| 40 | 35, 39 | syl5ibrcom 237 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → (𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → (◡(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) “ 𝑥) ∈ (𝑇 ^ko 𝑆))) |
| 41 | 40 | expimpd 629 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) → (((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) → (◡(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) “ 𝑥) ∈ (𝑇 ^ko 𝑆))) |
| 42 | 41 | rexlimdvva 3038 |
. . . 4
⊢ (𝜑 → (∃𝑘 ∈ 𝒫 ∪ 𝑅∃𝑣 ∈ 𝑇 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) → (◡(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) “ 𝑥) ∈ (𝑇 ^ko 𝑆))) |
| 43 | 10, 42 | syl5bi 232 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) → (◡(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) “ 𝑥) ∈ (𝑇 ^ko 𝑆))) |
| 44 | 43 | ralrimiv 2965 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})(◡(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) “ 𝑥) ∈ (𝑇 ^ko 𝑆)) |
| 45 | | eqid 2622 |
. . . . 5
⊢ (𝑇 ^ko 𝑆) = (𝑇 ^ko 𝑆) |
| 46 | 45 | xkotopon 21403 |
. . . 4
⊢ ((𝑆 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇 ^ko 𝑆) ∈ (TopOn‘(𝑆 Cn 𝑇))) |
| 47 | 22, 24, 46 | syl2anc 693 |
. . 3
⊢ (𝜑 → (𝑇 ^ko 𝑆) ∈ (TopOn‘(𝑆 Cn 𝑇))) |
| 48 | | ovex 6678 |
. . . . . 6
⊢ (𝑅 Cn 𝑇) ∈ V |
| 49 | 48 | pwex 4848 |
. . . . 5
⊢ 𝒫
(𝑅 Cn 𝑇) ∈ V |
| 50 | 6, 7, 8 | xkotf 21388 |
. . . . . 6
⊢ (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}):({𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp} × 𝑇)⟶𝒫 (𝑅 Cn 𝑇) |
| 51 | | frn 6053 |
. . . . . 6
⊢ ((𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}):({𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp} × 𝑇)⟶𝒫 (𝑅 Cn 𝑇) → ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑇)) |
| 52 | 50, 51 | ax-mp 5 |
. . . . 5
⊢ ran
(𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑇) |
| 53 | 49, 52 | ssexi 4803 |
. . . 4
⊢ ran
(𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ∈ V |
| 54 | 53 | a1i 11 |
. . 3
⊢ (𝜑 → ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ∈ V) |
| 55 | | cntop1 21044 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 Cn 𝑆) → 𝑅 ∈ Top) |
| 56 | 1, 55 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Top) |
| 57 | 6, 7, 8 | xkoval 21390 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇 ^ko 𝑅) = (topGen‘(fi‘ran
(𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})))) |
| 58 | 56, 24, 57 | syl2anc 693 |
. . 3
⊢ (𝜑 → (𝑇 ^ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})))) |
| 59 | | eqid 2622 |
. . . . 5
⊢ (𝑇 ^ko 𝑅) = (𝑇 ^ko 𝑅) |
| 60 | 59 | xkotopon 21403 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇 ^ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑇))) |
| 61 | 56, 24, 60 | syl2anc 693 |
. . 3
⊢ (𝜑 → (𝑇 ^ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑇))) |
| 62 | 47, 54, 58, 61 | subbascn 21058 |
. 2
⊢ (𝜑 → ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) ∈ ((𝑇 ^ko 𝑆) Cn (𝑇 ^ko 𝑅)) ↔ ((𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)):(𝑆 Cn 𝑇)⟶(𝑅 Cn 𝑇) ∧ ∀𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})(◡(𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) “ 𝑥) ∈ (𝑇 ^ko 𝑆)))) |
| 63 | 5, 44, 62 | mpbir2and 957 |
1
⊢ (𝜑 → (𝑔 ∈ (𝑆 Cn 𝑇) ↦ (𝑔 ∘ 𝐹)) ∈ ((𝑇 ^ko 𝑆) Cn (𝑇 ^ko 𝑅))) |