Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
amd5536udc.c
Go to the documentation of this file.
1 /*
2  * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
3  *
4  * Copyright (C) 2005-2007 AMD (http://www.amd.com)
5  * Author: Thomas Dahlmann
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  */
12 
13 /*
14  * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
15  * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
16  * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
17  *
18  * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
19  * be used as host port) and UOC bits PAD_EN and APU are set (should be done
20  * by BIOS init).
21  *
22  * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
23  * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
24  * can be used with gadget ether.
25  */
26 
27 /* debug control */
28 /* #define UDC_VERBOSE */
29 
30 /* Driver strings */
31 #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
32 #define UDC_DRIVER_VERSION_STRING "01.00.0206"
33 
34 /* system */
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/kernel.h>
38 #include <linux/delay.h>
39 #include <linux/ioport.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/errno.h>
43 #include <linux/init.h>
44 #include <linux/timer.h>
45 #include <linux/list.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioctl.h>
48 #include <linux/fs.h>
49 #include <linux/dmapool.h>
50 #include <linux/moduleparam.h>
51 #include <linux/device.h>
52 #include <linux/io.h>
53 #include <linux/irq.h>
54 #include <linux/prefetch.h>
55 
56 #include <asm/byteorder.h>
57 #include <asm/unaligned.h>
58 
59 /* gadget stack */
60 #include <linux/usb/ch9.h>
61 #include <linux/usb/gadget.h>
62 
63 /* udc specific */
64 #include "amd5536udc.h"
65 
66 
67 static void udc_tasklet_disconnect(unsigned long);
68 static void empty_req_queue(struct udc_ep *);
69 static int udc_probe(struct udc *dev);
70 static void udc_basic_init(struct udc *dev);
71 static void udc_setup_endpoints(struct udc *dev);
72 static void udc_soft_reset(struct udc *dev);
73 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
74 static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
75 static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
76 static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
77  unsigned long buf_len, gfp_t gfp_flags);
78 static int udc_remote_wakeup(struct udc *dev);
79 static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
80 static void udc_pci_remove(struct pci_dev *pdev);
81 
82 /* description */
83 static const char mod_desc[] = UDC_MOD_DESCRIPTION;
84 static const char name[] = "amd5536udc";
85 
86 /* structure to hold endpoint function pointers */
87 static const struct usb_ep_ops udc_ep_ops;
88 
89 /* received setup data */
90 static union udc_setup_data setup_data;
91 
92 /* pointer to device object */
93 static struct udc *udc;
94 
95 /* irq spin lock for soft reset */
96 static DEFINE_SPINLOCK(udc_irq_spinlock);
97 /* stall spin lock */
98 static DEFINE_SPINLOCK(udc_stall_spinlock);
99 
100 /*
101 * slave mode: pending bytes in rx fifo after nyet,
102 * used if EPIN irq came but no req was available
103 */
104 static unsigned int udc_rxfifo_pending;
105 
106 /* count soft resets after suspend to avoid loop */
107 static int soft_reset_occured;
108 static int soft_reset_after_usbreset_occured;
109 
110 /* timer */
111 static struct timer_list udc_timer;
112 static int stop_timer;
113 
114 /* set_rde -- Is used to control enabling of RX DMA. Problem is
115  * that UDC has only one bit (RDE) to enable/disable RX DMA for
116  * all OUT endpoints. So we have to handle race conditions like
117  * when OUT data reaches the fifo but no request was queued yet.
118  * This cannot be solved by letting the RX DMA disabled until a
119  * request gets queued because there may be other OUT packets
120  * in the FIFO (important for not blocking control traffic).
121  * The value of set_rde controls the correspondig timer.
122  *
123  * set_rde -1 == not used, means it is alloed to be set to 0 or 1
124  * set_rde 0 == do not touch RDE, do no start the RDE timer
125  * set_rde 1 == timer function will look whether FIFO has data
126  * set_rde 2 == set by timer function to enable RX DMA on next call
127  */
128 static int set_rde = -1;
129 
130 static DECLARE_COMPLETION(on_exit);
131 static struct timer_list udc_pollstall_timer;
132 static int stop_pollstall_timer;
133 static DECLARE_COMPLETION(on_pollstall_exit);
134 
135 /* tasklet for usb disconnect */
136 static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
137  (unsigned long) &udc);
138 
139 
140 /* endpoint names used for print */
141 static const char ep0_string[] = "ep0in";
142 static const char *const ep_string[] = {
143  ep0_string,
144  "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
145  "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
146  "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
147  "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
148  "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
149  "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
150  "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
151 };
152 
153 /* DMA usage flag */
154 static bool use_dma = 1;
155 /* packet per buffer dma */
156 static bool use_dma_ppb = 1;
157 /* with per descr. update */
158 static bool use_dma_ppb_du;
159 /* buffer fill mode */
160 static int use_dma_bufferfill_mode;
161 /* full speed only mode */
162 static bool use_fullspeed;
163 /* tx buffer size for high speed */
164 static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
165 
166 /* module parameters */
167 module_param(use_dma, bool, S_IRUGO);
168 MODULE_PARM_DESC(use_dma, "true for DMA");
169 module_param(use_dma_ppb, bool, S_IRUGO);
170 MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
171 module_param(use_dma_ppb_du, bool, S_IRUGO);
172 MODULE_PARM_DESC(use_dma_ppb_du,
173  "true for DMA in packet per buffer mode with descriptor update");
174 module_param(use_fullspeed, bool, S_IRUGO);
175 MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
176 
177 /*---------------------------------------------------------------------------*/
178 /* Prints UDC device registers and endpoint irq registers */
179 static void print_regs(struct udc *dev)
180 {
181  DBG(dev, "------- Device registers -------\n");
182  DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
183  DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
184  DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
185  DBG(dev, "\n");
186  DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
187  DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
188  DBG(dev, "\n");
189  DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
190  DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
191  DBG(dev, "\n");
192  DBG(dev, "USE DMA = %d\n", use_dma);
193  if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
194  DBG(dev, "DMA mode = PPBNDU (packet per buffer "
195  "WITHOUT desc. update)\n");
196  dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
197  } else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
198  DBG(dev, "DMA mode = PPBDU (packet per buffer "
199  "WITH desc. update)\n");
200  dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
201  }
202  if (use_dma && use_dma_bufferfill_mode) {
203  DBG(dev, "DMA mode = BF (buffer fill mode)\n");
204  dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
205  }
206  if (!use_dma)
207  dev_info(&dev->pdev->dev, "FIFO mode\n");
208  DBG(dev, "-------------------------------------------------------\n");
209 }
210 
211 /* Masks unused interrupts */
212 static int udc_mask_unused_interrupts(struct udc *dev)
213 {
214  u32 tmp;
215 
216  /* mask all dev interrupts */
217  tmp = AMD_BIT(UDC_DEVINT_SVC) |
225  writel(tmp, &dev->regs->irqmsk);
226 
227  /* mask all ep interrupts */
228  writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
229 
230  return 0;
231 }
232 
233 /* Enables endpoint 0 interrupts */
234 static int udc_enable_ep0_interrupts(struct udc *dev)
235 {
236  u32 tmp;
237 
238  DBG(dev, "udc_enable_ep0_interrupts()\n");
239 
240  /* read irq mask */
241  tmp = readl(&dev->regs->ep_irqmsk);
242  /* enable ep0 irq's */
245  writel(tmp, &dev->regs->ep_irqmsk);
246 
247  return 0;
248 }
249 
250 /* Enables device interrupts for SET_INTF and SET_CONFIG */
251 static int udc_enable_dev_setup_interrupts(struct udc *dev)
252 {
253  u32 tmp;
254 
255  DBG(dev, "enable device interrupts for setup data\n");
256 
257  /* read irq mask */
258  tmp = readl(&dev->regs->irqmsk);
259 
260  /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
266  writel(tmp, &dev->regs->irqmsk);
267 
268  return 0;
269 }
270 
271 /* Calculates fifo start of endpoint based on preceding endpoints */
272 static int udc_set_txfifo_addr(struct udc_ep *ep)
273 {
274  struct udc *dev;
275  u32 tmp;
276  int i;
277 
278  if (!ep || !(ep->in))
279  return -EINVAL;
280 
281  dev = ep->dev;
282  ep->txfifo = dev->txfifo;
283 
284  /* traverse ep's */
285  for (i = 0; i < ep->num; i++) {
286  if (dev->ep[i].regs) {
287  /* read fifo size */
288  tmp = readl(&dev->ep[i].regs->bufin_framenum);
289  tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
290  ep->txfifo += tmp;
291  }
292  }
293  return 0;
294 }
295 
296 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
297 static u32 cnak_pending;
298 
299 static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
300 {
301  if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
302  DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
303  cnak_pending |= 1 << (num);
304  ep->naking = 1;
305  } else
306  cnak_pending = cnak_pending & (~(1 << (num)));
307 }
308 
309 
310 /* Enables endpoint, is called by gadget driver */
311 static int
312 udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
313 {
314  struct udc_ep *ep;
315  struct udc *dev;
316  u32 tmp;
317  unsigned long iflags;
318  u8 udc_csr_epix;
319  unsigned maxpacket;
320 
321  if (!usbep
322  || usbep->name == ep0_string
323  || !desc
324  || desc->bDescriptorType != USB_DT_ENDPOINT)
325  return -EINVAL;
326 
327  ep = container_of(usbep, struct udc_ep, ep);
328  dev = ep->dev;
329 
330  DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
331 
332  if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
333  return -ESHUTDOWN;
334 
335  spin_lock_irqsave(&dev->lock, iflags);
336  ep->ep.desc = desc;
337 
338  ep->halted = 0;
339 
340  /* set traffic type */
341  tmp = readl(&dev->ep[ep->num].regs->ctl);
342  tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
343  writel(tmp, &dev->ep[ep->num].regs->ctl);
344 
345  /* set max packet size */
346  maxpacket = usb_endpoint_maxp(desc);
347  tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
348  tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
349  ep->ep.maxpacket = maxpacket;
350  writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
351 
352  /* IN ep */
353  if (ep->in) {
354 
355  /* ep ix in UDC CSR register space */
356  udc_csr_epix = ep->num;
357 
358  /* set buffer size (tx fifo entries) */
359  tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
360  /* double buffering: fifo size = 2 x max packet size */
361  tmp = AMD_ADDBITS(
362  tmp,
363  maxpacket * UDC_EPIN_BUFF_SIZE_MULT
364  / UDC_DWORD_BYTES,
366  writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
367 
368  /* calc. tx fifo base addr */
369  udc_set_txfifo_addr(ep);
370 
371  /* flush fifo */
372  tmp = readl(&ep->regs->ctl);
373  tmp |= AMD_BIT(UDC_EPCTL_F);
374  writel(tmp, &ep->regs->ctl);
375 
376  /* OUT ep */
377  } else {
378  /* ep ix in UDC CSR register space */
379  udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
380 
381  /* set max packet size UDC CSR */
382  tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
383  tmp = AMD_ADDBITS(tmp, maxpacket,
384  UDC_CSR_NE_MAX_PKT);
385  writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
386 
387  if (use_dma && !ep->in) {
388  /* alloc and init BNA dummy request */
389  ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
390  ep->bna_occurred = 0;
391  }
392 
393  if (ep->num != UDC_EP0OUT_IX)
394  dev->data_ep_enabled = 1;
395  }
396 
397  /* set ep values */
398  tmp = readl(&dev->csr->ne[udc_csr_epix]);
399  /* max packet */
400  tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
401  /* ep number */
402  tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
403  /* ep direction */
404  tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
405  /* ep type */
406  tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
407  /* ep config */
408  tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
409  /* ep interface */
410  tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
411  /* ep alt */
412  tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
413  /* write reg */
414  writel(tmp, &dev->csr->ne[udc_csr_epix]);
415 
416  /* enable ep irq */
417  tmp = readl(&dev->regs->ep_irqmsk);
418  tmp &= AMD_UNMASK_BIT(ep->num);
419  writel(tmp, &dev->regs->ep_irqmsk);
420 
421  /*
422  * clear NAK by writing CNAK
423  * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
424  */
425  if (!use_dma || ep->in) {
426  tmp = readl(&ep->regs->ctl);
427  tmp |= AMD_BIT(UDC_EPCTL_CNAK);
428  writel(tmp, &ep->regs->ctl);
429  ep->naking = 0;
430  UDC_QUEUE_CNAK(ep, ep->num);
431  }
432  tmp = desc->bEndpointAddress;
433  DBG(dev, "%s enabled\n", usbep->name);
434 
435  spin_unlock_irqrestore(&dev->lock, iflags);
436  return 0;
437 }
438 
439 /* Resets endpoint */
440 static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
441 {
442  u32 tmp;
443 
444  VDBG(ep->dev, "ep-%d reset\n", ep->num);
445  ep->ep.desc = NULL;
446  ep->ep.ops = &udc_ep_ops;
447  INIT_LIST_HEAD(&ep->queue);
448 
449  ep->ep.maxpacket = (u16) ~0;
450  /* set NAK */
451  tmp = readl(&ep->regs->ctl);
452  tmp |= AMD_BIT(UDC_EPCTL_SNAK);
453  writel(tmp, &ep->regs->ctl);
454  ep->naking = 1;
455 
456  /* disable interrupt */
457  tmp = readl(&regs->ep_irqmsk);
458  tmp |= AMD_BIT(ep->num);
459  writel(tmp, &regs->ep_irqmsk);
460 
461  if (ep->in) {
462  /* unset P and IN bit of potential former DMA */
463  tmp = readl(&ep->regs->ctl);
464  tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
465  writel(tmp, &ep->regs->ctl);
466 
467  tmp = readl(&ep->regs->sts);
468  tmp |= AMD_BIT(UDC_EPSTS_IN);
469  writel(tmp, &ep->regs->sts);
470 
471  /* flush the fifo */
472  tmp = readl(&ep->regs->ctl);
473  tmp |= AMD_BIT(UDC_EPCTL_F);
474  writel(tmp, &ep->regs->ctl);
475 
476  }
477  /* reset desc pointer */
478  writel(0, &ep->regs->desptr);
479 }
480 
481 /* Disables endpoint, is called by gadget driver */
482 static int udc_ep_disable(struct usb_ep *usbep)
483 {
484  struct udc_ep *ep = NULL;
485  unsigned long iflags;
486 
487  if (!usbep)
488  return -EINVAL;
489 
490  ep = container_of(usbep, struct udc_ep, ep);
491  if (usbep->name == ep0_string || !ep->ep.desc)
492  return -EINVAL;
493 
494  DBG(ep->dev, "Disable ep-%d\n", ep->num);
495 
496  spin_lock_irqsave(&ep->dev->lock, iflags);
497  udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
498  empty_req_queue(ep);
499  ep_init(ep->dev->regs, ep);
500  spin_unlock_irqrestore(&ep->dev->lock, iflags);
501 
502  return 0;
503 }
504 
505 /* Allocates request packet, called by gadget driver */
506 static struct usb_request *
507 udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
508 {
509  struct udc_request *req;
510  struct udc_data_dma *dma_desc;
511  struct udc_ep *ep;
512 
513  if (!usbep)
514  return NULL;
515 
516  ep = container_of(usbep, struct udc_ep, ep);
517 
518  VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
519  req = kzalloc(sizeof(struct udc_request), gfp);
520  if (!req)
521  return NULL;
522 
523  req->req.dma = DMA_DONT_USE;
524  INIT_LIST_HEAD(&req->queue);
525 
526  if (ep->dma) {
527  /* ep0 in requests are allocated from data pool here */
528  dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
529  &req->td_phys);
530  if (!dma_desc) {
531  kfree(req);
532  return NULL;
533  }
534 
535  VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
536  "td_phys = %lx\n",
537  req, dma_desc,
538  (unsigned long)req->td_phys);
539  /* prevent from using desc. - set HOST BUSY */
540  dma_desc->status = AMD_ADDBITS(dma_desc->status,
542  UDC_DMA_STP_STS_BS);
543  dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
544  req->td_data = dma_desc;
545  req->td_data_last = NULL;
546  req->chain_len = 1;
547  }
548 
549  return &req->req;
550 }
551 
552 /* Frees request packet, called by gadget driver */
553 static void
554 udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
555 {
556  struct udc_ep *ep;
557  struct udc_request *req;
558 
559  if (!usbep || !usbreq)
560  return;
561 
562  ep = container_of(usbep, struct udc_ep, ep);
563  req = container_of(usbreq, struct udc_request, req);
564  VDBG(ep->dev, "free_req req=%p\n", req);
565  BUG_ON(!list_empty(&req->queue));
566  if (req->td_data) {
567  VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
568 
569  /* free dma chain if created */
570  if (req->chain_len > 1)
571  udc_free_dma_chain(ep->dev, req);
572 
573  pci_pool_free(ep->dev->data_requests, req->td_data,
574  req->td_phys);
575  }
576  kfree(req);
577 }
578 
579 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
580 static void udc_init_bna_dummy(struct udc_request *req)
581 {
582  if (req) {
583  /* set last bit */
584  req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
585  /* set next pointer to itself */
586  req->td_data->next = req->td_phys;
587  /* set HOST BUSY */
588  req->td_data->status
589  = AMD_ADDBITS(req->td_data->status,
591  UDC_DMA_STP_STS_BS);
592 #ifdef UDC_VERBOSE
593  pr_debug("bna desc = %p, sts = %08x\n",
594  req->td_data, req->td_data->status);
595 #endif
596  }
597 }
598 
599 /* Allocate BNA dummy descriptor */
600 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
601 {
602  struct udc_request *req = NULL;
603  struct usb_request *_req = NULL;
604 
605  /* alloc the dummy request */
606  _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
607  if (_req) {
608  req = container_of(_req, struct udc_request, req);
609  ep->bna_dummy_req = req;
610  udc_init_bna_dummy(req);
611  }
612  return req;
613 }
614 
615 /* Write data to TX fifo for IN packets */
616 static void
617 udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
618 {
619  u8 *req_buf;
620  u32 *buf;
621  int i, j;
622  unsigned bytes = 0;
623  unsigned remaining = 0;
624 
625  if (!req || !ep)
626  return;
627 
628  req_buf = req->buf + req->actual;
629  prefetch(req_buf);
630  remaining = req->length - req->actual;
631 
632  buf = (u32 *) req_buf;
633 
634  bytes = ep->ep.maxpacket;
635  if (bytes > remaining)
636  bytes = remaining;
637 
638  /* dwords first */
639  for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
640  writel(*(buf + i), ep->txfifo);
641 
642  /* remaining bytes must be written by byte access */
643  for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
644  writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
645  ep->txfifo);
646  }
647 
648  /* dummy write confirm */
649  writel(0, &ep->regs->confirm);
650 }
651 
652 /* Read dwords from RX fifo for OUT transfers */
653 static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
654 {
655  int i;
656 
657  VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
658 
659  for (i = 0; i < dwords; i++)
660  *(buf + i) = readl(dev->rxfifo);
661  return 0;
662 }
663 
664 /* Read bytes from RX fifo for OUT transfers */
665 static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
666 {
667  int i, j;
668  u32 tmp;
669 
670  VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
671 
672  /* dwords first */
673  for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
674  *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
675 
676  /* remaining bytes must be read by byte access */
677  if (bytes % UDC_DWORD_BYTES) {
678  tmp = readl(dev->rxfifo);
679  for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
680  *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
681  tmp = tmp >> UDC_BITS_PER_BYTE;
682  }
683  }
684 
685  return 0;
686 }
687 
688 /* Read data from RX fifo for OUT transfers */
689 static int
690 udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
691 {
692  u8 *buf;
693  unsigned buf_space;
694  unsigned bytes = 0;
695  unsigned finished = 0;
696 
697  /* received number bytes */
698  bytes = readl(&ep->regs->sts);
699  bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
700 
701  buf_space = req->req.length - req->req.actual;
702  buf = req->req.buf + req->req.actual;
703  if (bytes > buf_space) {
704  if ((buf_space % ep->ep.maxpacket) != 0) {
705  DBG(ep->dev,
706  "%s: rx %d bytes, rx-buf space = %d bytesn\n",
707  ep->ep.name, bytes, buf_space);
708  req->req.status = -EOVERFLOW;
709  }
710  bytes = buf_space;
711  }
712  req->req.actual += bytes;
713 
714  /* last packet ? */
715  if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
716  || ((req->req.actual == req->req.length) && !req->req.zero))
717  finished = 1;
718 
719  /* read rx fifo bytes */
720  VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
721  udc_rxfifo_read_bytes(ep->dev, buf, bytes);
722 
723  return finished;
724 }
725 
726 /* create/re-init a DMA descriptor or a DMA descriptor chain */
727 static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
728 {
729  int retval = 0;
730  u32 tmp;
731 
732  VDBG(ep->dev, "prep_dma\n");
733  VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
734  ep->num, req->td_data);
735 
736  /* set buffer pointer */
737  req->td_data->bufptr = req->req.dma;
738 
739  /* set last bit */
740  req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
741 
742  /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
743  if (use_dma_ppb) {
744 
745  retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
746  if (retval != 0) {
747  if (retval == -ENOMEM)
748  DBG(ep->dev, "Out of DMA memory\n");
749  return retval;
750  }
751  if (ep->in) {
752  if (req->req.length == ep->ep.maxpacket) {
753  /* write tx bytes */
754  req->td_data->status =
755  AMD_ADDBITS(req->td_data->status,
756  ep->ep.maxpacket,
757  UDC_DMA_IN_STS_TXBYTES);
758 
759  }
760  }
761 
762  }
763 
764  if (ep->in) {
765  VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
766  "maxpacket=%d ep%d\n",
767  use_dma_ppb, req->req.length,
768  ep->ep.maxpacket, ep->num);
769  /*
770  * if bytes < max packet then tx bytes must
771  * be written in packet per buffer mode
772  */
773  if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
774  || ep->num == UDC_EP0OUT_IX
775  || ep->num == UDC_EP0IN_IX) {
776  /* write tx bytes */
777  req->td_data->status =
778  AMD_ADDBITS(req->td_data->status,
779  req->req.length,
780  UDC_DMA_IN_STS_TXBYTES);
781  /* reset frame num */
782  req->td_data->status =
783  AMD_ADDBITS(req->td_data->status,
784  0,
785  UDC_DMA_IN_STS_FRAMENUM);
786  }
787  /* set HOST BUSY */
788  req->td_data->status =
789  AMD_ADDBITS(req->td_data->status,
791  UDC_DMA_STP_STS_BS);
792  } else {
793  VDBG(ep->dev, "OUT set host ready\n");
794  /* set HOST READY */
795  req->td_data->status =
796  AMD_ADDBITS(req->td_data->status,
798  UDC_DMA_STP_STS_BS);
799 
800 
801  /* clear NAK by writing CNAK */
802  if (ep->naking) {
803  tmp = readl(&ep->regs->ctl);
804  tmp |= AMD_BIT(UDC_EPCTL_CNAK);
805  writel(tmp, &ep->regs->ctl);
806  ep->naking = 0;
807  UDC_QUEUE_CNAK(ep, ep->num);
808  }
809 
810  }
811 
812  return retval;
813 }
814 
815 /* Completes request packet ... caller MUST hold lock */
816 static void
817 complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
818 __releases(ep->dev->lock)
819 __acquires(ep->dev->lock)
820 {
821  struct udc *dev;
822  unsigned halted;
823 
824  VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
825 
826  dev = ep->dev;
827  /* unmap DMA */
828  if (ep->dma)
829  usb_gadget_unmap_request(&dev->gadget, &req->req, ep->in);
830 
831  halted = ep->halted;
832  ep->halted = 1;
833 
834  /* set new status if pending */
835  if (req->req.status == -EINPROGRESS)
836  req->req.status = sts;
837 
838  /* remove from ep queue */
839  list_del_init(&req->queue);
840 
841  VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
842  &req->req, req->req.length, ep->ep.name, sts);
843 
844  spin_unlock(&dev->lock);
845  req->req.complete(&ep->ep, &req->req);
846  spin_lock(&dev->lock);
847  ep->halted = halted;
848 }
849 
850 /* frees pci pool descriptors of a DMA chain */
851 static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
852 {
853 
854  int ret_val = 0;
855  struct udc_data_dma *td;
856  struct udc_data_dma *td_last = NULL;
857  unsigned int i;
858 
859  DBG(dev, "free chain req = %p\n", req);
860 
861  /* do not free first desc., will be done by free for request */
862  td_last = req->td_data;
863  td = phys_to_virt(td_last->next);
864 
865  for (i = 1; i < req->chain_len; i++) {
866 
867  pci_pool_free(dev->data_requests, td,
868  (dma_addr_t) td_last->next);
869  td_last = td;
870  td = phys_to_virt(td_last->next);
871  }
872 
873  return ret_val;
874 }
875 
876 /* Iterates to the end of a DMA chain and returns last descriptor */
877 static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
878 {
879  struct udc_data_dma *td;
880 
881  td = req->td_data;
882  while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L)))
883  td = phys_to_virt(td->next);
884 
885  return td;
886 
887 }
888 
889 /* Iterates to the end of a DMA chain and counts bytes received */
890 static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
891 {
892  struct udc_data_dma *td;
893  u32 count;
894 
895  td = req->td_data;
896  /* received number bytes */
897  count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
898 
899  while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
900  td = phys_to_virt(td->next);
901  /* received number bytes */
902  if (td) {
903  count += AMD_GETBITS(td->status,
904  UDC_DMA_OUT_STS_RXBYTES);
905  }
906  }
907 
908  return count;
909 
910 }
911 
912 /* Creates or re-inits a DMA chain */
913 static int udc_create_dma_chain(
914  struct udc_ep *ep,
915  struct udc_request *req,
916  unsigned long buf_len, gfp_t gfp_flags
917 )
918 {
919  unsigned long bytes = req->req.length;
920  unsigned int i;
922  struct udc_data_dma *td = NULL;
923  struct udc_data_dma *last = NULL;
924  unsigned long txbytes;
925  unsigned create_new_chain = 0;
926  unsigned len;
927 
928  VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
929  bytes, buf_len);
930  dma_addr = DMA_DONT_USE;
931 
932  /* unset L bit in first desc for OUT */
933  if (!ep->in)
934  req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
935 
936  /* alloc only new desc's if not already available */
937  len = req->req.length / ep->ep.maxpacket;
938  if (req->req.length % ep->ep.maxpacket)
939  len++;
940 
941  if (len > req->chain_len) {
942  /* shorter chain already allocated before */
943  if (req->chain_len > 1)
944  udc_free_dma_chain(ep->dev, req);
945  req->chain_len = len;
946  create_new_chain = 1;
947  }
948 
949  td = req->td_data;
950  /* gen. required number of descriptors and buffers */
951  for (i = buf_len; i < bytes; i += buf_len) {
952  /* create or determine next desc. */
953  if (create_new_chain) {
954 
955  td = pci_pool_alloc(ep->dev->data_requests,
956  gfp_flags, &dma_addr);
957  if (!td)
958  return -ENOMEM;
959 
960  td->status = 0;
961  } else if (i == buf_len) {
962  /* first td */
963  td = (struct udc_data_dma *) phys_to_virt(
964  req->td_data->next);
965  td->status = 0;
966  } else {
967  td = (struct udc_data_dma *) phys_to_virt(last->next);
968  td->status = 0;
969  }
970 
971 
972  if (td)
973  td->bufptr = req->req.dma + i; /* assign buffer */
974  else
975  break;
976 
977  /* short packet ? */
978  if ((bytes - i) >= buf_len) {
979  txbytes = buf_len;
980  } else {
981  /* short packet */
982  txbytes = bytes - i;
983  }
984 
985  /* link td and assign tx bytes */
986  if (i == buf_len) {
987  if (create_new_chain)
988  req->td_data->next = dma_addr;
989  /*
990  else
991  req->td_data->next = virt_to_phys(td);
992  */
993  /* write tx bytes */
994  if (ep->in) {
995  /* first desc */
996  req->td_data->status =
997  AMD_ADDBITS(req->td_data->status,
998  ep->ep.maxpacket,
999  UDC_DMA_IN_STS_TXBYTES);
1000  /* second desc */
1001  td->status = AMD_ADDBITS(td->status,
1002  txbytes,
1003  UDC_DMA_IN_STS_TXBYTES);
1004  }
1005  } else {
1006  if (create_new_chain)
1007  last->next = dma_addr;
1008  /*
1009  else
1010  last->next = virt_to_phys(td);
1011  */
1012  if (ep->in) {
1013  /* write tx bytes */
1014  td->status = AMD_ADDBITS(td->status,
1015  txbytes,
1016  UDC_DMA_IN_STS_TXBYTES);
1017  }
1018  }
1019  last = td;
1020  }
1021  /* set last bit */
1022  if (td) {
1024  /* last desc. points to itself */
1025  req->td_data_last = td;
1026  }
1027 
1028  return 0;
1029 }
1030 
1031 /* Enabling RX DMA */
1032 static void udc_set_rde(struct udc *dev)
1033 {
1034  u32 tmp;
1035 
1036  VDBG(dev, "udc_set_rde()\n");
1037  /* stop RDE timer */
1038  if (timer_pending(&udc_timer)) {
1039  set_rde = 0;
1040  mod_timer(&udc_timer, jiffies - 1);
1041  }
1042  /* set RDE */
1043  tmp = readl(&dev->regs->ctl);
1044  tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1045  writel(tmp, &dev->regs->ctl);
1046 }
1047 
1048 /* Queues a request packet, called by gadget driver */
1049 static int
1050 udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
1051 {
1052  int retval = 0;
1053  u8 open_rxfifo = 0;
1054  unsigned long iflags;
1055  struct udc_ep *ep;
1056  struct udc_request *req;
1057  struct udc *dev;
1058  u32 tmp;
1059 
1060  /* check the inputs */
1061  req = container_of(usbreq, struct udc_request, req);
1062 
1063  if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
1064  || !list_empty(&req->queue))
1065  return -EINVAL;
1066 
1067  ep = container_of(usbep, struct udc_ep, ep);
1068  if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1069  return -EINVAL;
1070 
1071  VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
1072  dev = ep->dev;
1073 
1074  if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
1075  return -ESHUTDOWN;
1076 
1077  /* map dma (usually done before) */
1078  if (ep->dma) {
1079  VDBG(dev, "DMA map req %p\n", req);
1080  retval = usb_gadget_map_request(&udc->gadget, usbreq, ep->in);
1081  if (retval)
1082  return retval;
1083  }
1084 
1085  VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1086  usbep->name, usbreq, usbreq->length,
1087  req->td_data, usbreq->buf);
1088 
1089  spin_lock_irqsave(&dev->lock, iflags);
1090  usbreq->actual = 0;
1091  usbreq->status = -EINPROGRESS;
1092  req->dma_done = 0;
1093 
1094  /* on empty queue just do first transfer */
1095  if (list_empty(&ep->queue)) {
1096  /* zlp */
1097  if (usbreq->length == 0) {
1098  /* IN zlp's are handled by hardware */
1099  complete_req(ep, req, 0);
1100  VDBG(dev, "%s: zlp\n", ep->ep.name);
1101  /*
1102  * if set_config or set_intf is waiting for ack by zlp
1103  * then set CSR_DONE
1104  */
1105  if (dev->set_cfg_not_acked) {
1106  tmp = readl(&dev->regs->ctl);
1107  tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
1108  writel(tmp, &dev->regs->ctl);
1109  dev->set_cfg_not_acked = 0;
1110  }
1111  /* setup command is ACK'ed now by zlp */
1112  if (dev->waiting_zlp_ack_ep0in) {
1113  /* clear NAK by writing CNAK in EP0_IN */
1114  tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1115  tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1116  writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1117  dev->ep[UDC_EP0IN_IX].naking = 0;
1118  UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
1119  UDC_EP0IN_IX);
1120  dev->waiting_zlp_ack_ep0in = 0;
1121  }
1122  goto finished;
1123  }
1124  if (ep->dma) {
1125  retval = prep_dma(ep, req, gfp);
1126  if (retval != 0)
1127  goto finished;
1128  /* write desc pointer to enable DMA */
1129  if (ep->in) {
1130  /* set HOST READY */
1131  req->td_data->status =
1132  AMD_ADDBITS(req->td_data->status,
1134  UDC_DMA_IN_STS_BS);
1135  }
1136 
1137  /* disabled rx dma while descriptor update */
1138  if (!ep->in) {
1139  /* stop RDE timer */
1140  if (timer_pending(&udc_timer)) {
1141  set_rde = 0;
1142  mod_timer(&udc_timer, jiffies - 1);
1143  }
1144  /* clear RDE */
1145  tmp = readl(&dev->regs->ctl);
1147  writel(tmp, &dev->regs->ctl);
1148  open_rxfifo = 1;
1149 
1150  /*
1151  * if BNA occurred then let BNA dummy desc.
1152  * point to current desc.
1153  */
1154  if (ep->bna_occurred) {
1155  VDBG(dev, "copy to BNA dummy desc.\n");
1156  memcpy(ep->bna_dummy_req->td_data,
1157  req->td_data,
1158  sizeof(struct udc_data_dma));
1159  }
1160  }
1161  /* write desc pointer */
1162  writel(req->td_phys, &ep->regs->desptr);
1163 
1164  /* clear NAK by writing CNAK */
1165  if (ep->naking) {
1166  tmp = readl(&ep->regs->ctl);
1167  tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1168  writel(tmp, &ep->regs->ctl);
1169  ep->naking = 0;
1170  UDC_QUEUE_CNAK(ep, ep->num);
1171  }
1172 
1173  if (ep->in) {
1174  /* enable ep irq */
1175  tmp = readl(&dev->regs->ep_irqmsk);
1176  tmp &= AMD_UNMASK_BIT(ep->num);
1177  writel(tmp, &dev->regs->ep_irqmsk);
1178  }
1179  } else if (ep->in) {
1180  /* enable ep irq */
1181  tmp = readl(&dev->regs->ep_irqmsk);
1182  tmp &= AMD_UNMASK_BIT(ep->num);
1183  writel(tmp, &dev->regs->ep_irqmsk);
1184  }
1185 
1186  } else if (ep->dma) {
1187 
1188  /*
1189  * prep_dma not used for OUT ep's, this is not possible
1190  * for PPB modes, because of chain creation reasons
1191  */
1192  if (ep->in) {
1193  retval = prep_dma(ep, req, gfp);
1194  if (retval != 0)
1195  goto finished;
1196  }
1197  }
1198  VDBG(dev, "list_add\n");
1199  /* add request to ep queue */
1200  if (req) {
1201 
1202  list_add_tail(&req->queue, &ep->queue);
1203 
1204  /* open rxfifo if out data queued */
1205  if (open_rxfifo) {
1206  /* enable DMA */
1207  req->dma_going = 1;
1208  udc_set_rde(dev);
1209  if (ep->num != UDC_EP0OUT_IX)
1210  dev->data_ep_queued = 1;
1211  }
1212  /* stop OUT naking */
1213  if (!ep->in) {
1214  if (!use_dma && udc_rxfifo_pending) {
1215  DBG(dev, "udc_queue(): pending bytes in "
1216  "rxfifo after nyet\n");
1217  /*
1218  * read pending bytes afer nyet:
1219  * referring to isr
1220  */
1221  if (udc_rxfifo_read(ep, req)) {
1222  /* finish */
1223  complete_req(ep, req, 0);
1224  }
1225  udc_rxfifo_pending = 0;
1226 
1227  }
1228  }
1229  }
1230 
1231 finished:
1232  spin_unlock_irqrestore(&dev->lock, iflags);
1233  return retval;
1234 }
1235 
1236 /* Empty request queue of an endpoint; caller holds spinlock */
1237 static void empty_req_queue(struct udc_ep *ep)
1238 {
1239  struct udc_request *req;
1240 
1241  ep->halted = 1;
1242  while (!list_empty(&ep->queue)) {
1243  req = list_entry(ep->queue.next,
1244  struct udc_request,
1245  queue);
1246  complete_req(ep, req, -ESHUTDOWN);
1247  }
1248 }
1249 
1250 /* Dequeues a request packet, called by gadget driver */
1251 static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
1252 {
1253  struct udc_ep *ep;
1254  struct udc_request *req;
1255  unsigned halted;
1256  unsigned long iflags;
1257 
1258  ep = container_of(usbep, struct udc_ep, ep);
1259  if (!usbep || !usbreq || (!ep->ep.desc && (ep->num != 0
1260  && ep->num != UDC_EP0OUT_IX)))
1261  return -EINVAL;
1262 
1263  req = container_of(usbreq, struct udc_request, req);
1264 
1265  spin_lock_irqsave(&ep->dev->lock, iflags);
1266  halted = ep->halted;
1267  ep->halted = 1;
1268  /* request in processing or next one */
1269  if (ep->queue.next == &req->queue) {
1270  if (ep->dma && req->dma_going) {
1271  if (ep->in)
1272  ep->cancel_transfer = 1;
1273  else {
1274  u32 tmp;
1275  u32 dma_sts;
1276  /* stop potential receive DMA */
1277  tmp = readl(&udc->regs->ctl);
1279  &udc->regs->ctl);
1280  /*
1281  * Cancel transfer later in ISR
1282  * if descriptor was touched.
1283  */
1284  dma_sts = AMD_GETBITS(req->td_data->status,
1285  UDC_DMA_OUT_STS_BS);
1286  if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
1287  ep->cancel_transfer = 1;
1288  else {
1289  udc_init_bna_dummy(ep->req);
1290  writel(ep->bna_dummy_req->td_phys,
1291  &ep->regs->desptr);
1292  }
1293  writel(tmp, &udc->regs->ctl);
1294  }
1295  }
1296  }
1297  complete_req(ep, req, -ECONNRESET);
1298  ep->halted = halted;
1299 
1300  spin_unlock_irqrestore(&ep->dev->lock, iflags);
1301  return 0;
1302 }
1303 
1304 /* Halt or clear halt of endpoint */
1305 static int
1306 udc_set_halt(struct usb_ep *usbep, int halt)
1307 {
1308  struct udc_ep *ep;
1309  u32 tmp;
1310  unsigned long iflags;
1311  int retval = 0;
1312 
1313  if (!usbep)
1314  return -EINVAL;
1315 
1316  pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
1317 
1318  ep = container_of(usbep, struct udc_ep, ep);
1319  if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1320  return -EINVAL;
1321  if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
1322  return -ESHUTDOWN;
1323 
1324  spin_lock_irqsave(&udc_stall_spinlock, iflags);
1325  /* halt or clear halt */
1326  if (halt) {
1327  if (ep->num == 0)
1328  ep->dev->stall_ep0in = 1;
1329  else {
1330  /*
1331  * set STALL
1332  * rxfifo empty not taken into acount
1333  */
1334  tmp = readl(&ep->regs->ctl);
1335  tmp |= AMD_BIT(UDC_EPCTL_S);
1336  writel(tmp, &ep->regs->ctl);
1337  ep->halted = 1;
1338 
1339  /* setup poll timer */
1340  if (!timer_pending(&udc_pollstall_timer)) {
1341  udc_pollstall_timer.expires = jiffies +
1343  / (1000 * 1000);
1344  if (!stop_pollstall_timer) {
1345  DBG(ep->dev, "start polltimer\n");
1346  add_timer(&udc_pollstall_timer);
1347  }
1348  }
1349  }
1350  } else {
1351  /* ep is halted by set_halt() before */
1352  if (ep->halted) {
1353  tmp = readl(&ep->regs->ctl);
1354  /* clear stall bit */
1355  tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
1356  /* clear NAK by writing CNAK */
1357  tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1358  writel(tmp, &ep->regs->ctl);
1359  ep->halted = 0;
1360  UDC_QUEUE_CNAK(ep, ep->num);
1361  }
1362  }
1363  spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1364  return retval;
1365 }
1366 
1367 /* gadget interface */
1368 static const struct usb_ep_ops udc_ep_ops = {
1369  .enable = udc_ep_enable,
1370  .disable = udc_ep_disable,
1371 
1372  .alloc_request = udc_alloc_request,
1373  .free_request = udc_free_request,
1374 
1375  .queue = udc_queue,
1376  .dequeue = udc_dequeue,
1377 
1378  .set_halt = udc_set_halt,
1379  /* fifo ops not implemented */
1380 };
1381 
1382 /*-------------------------------------------------------------------------*/
1383 
1384 /* Get frame counter (not implemented) */
1385 static int udc_get_frame(struct usb_gadget *gadget)
1386 {
1387  return -EOPNOTSUPP;
1388 }
1389 
1390 /* Remote wakeup gadget interface */
1391 static int udc_wakeup(struct usb_gadget *gadget)
1392 {
1393  struct udc *dev;
1394 
1395  if (!gadget)
1396  return -EINVAL;
1397  dev = container_of(gadget, struct udc, gadget);
1398  udc_remote_wakeup(dev);
1399 
1400  return 0;
1401 }
1402 
1403 static int amd5536_start(struct usb_gadget_driver *driver,
1404  int (*bind)(struct usb_gadget *, struct usb_gadget_driver *));
1405 static int amd5536_stop(struct usb_gadget_driver *driver);
1406 /* gadget operations */
1407 static const struct usb_gadget_ops udc_ops = {
1408  .wakeup = udc_wakeup,
1409  .get_frame = udc_get_frame,
1410  .start = amd5536_start,
1411  .stop = amd5536_stop,
1412 };
1413 
1414 /* Setups endpoint parameters, adds endpoints to linked list */
1415 static void make_ep_lists(struct udc *dev)
1416 {
1417  /* make gadget ep lists */
1418  INIT_LIST_HEAD(&dev->gadget.ep_list);
1419  list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
1420  &dev->gadget.ep_list);
1421  list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
1422  &dev->gadget.ep_list);
1423  list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
1424  &dev->gadget.ep_list);
1425 
1426  /* fifo config */
1428  if (dev->gadget.speed == USB_SPEED_FULL)
1429  dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
1430  else if (dev->gadget.speed == USB_SPEED_HIGH)
1431  dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
1432  dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
1433 }
1434 
1435 /* init registers at driver load time */
1436 static int startup_registers(struct udc *dev)
1437 {
1438  u32 tmp;
1439 
1440  /* init controller by soft reset */
1441  udc_soft_reset(dev);
1442 
1443  /* mask not needed interrupts */
1444  udc_mask_unused_interrupts(dev);
1445 
1446  /* put into initial config */
1447  udc_basic_init(dev);
1448  /* link up all endpoints */
1449  udc_setup_endpoints(dev);
1450 
1451  /* program speed */
1452  tmp = readl(&dev->regs->cfg);
1453  if (use_fullspeed)
1454  tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1455  else
1456  tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
1457  writel(tmp, &dev->regs->cfg);
1458 
1459  return 0;
1460 }
1461 
1462 /* Inits UDC context */
1463 static void udc_basic_init(struct udc *dev)
1464 {
1465  u32 tmp;
1466 
1467  DBG(dev, "udc_basic_init()\n");
1468 
1469  dev->gadget.speed = USB_SPEED_UNKNOWN;
1470 
1471  /* stop RDE timer */
1472  if (timer_pending(&udc_timer)) {
1473  set_rde = 0;
1474  mod_timer(&udc_timer, jiffies - 1);
1475  }
1476  /* stop poll stall timer */
1477  if (timer_pending(&udc_pollstall_timer))
1478  mod_timer(&udc_pollstall_timer, jiffies - 1);
1479  /* disable DMA */
1480  tmp = readl(&dev->regs->ctl);
1483  writel(tmp, &dev->regs->ctl);
1484 
1485  /* enable dynamic CSR programming */
1486  tmp = readl(&dev->regs->cfg);
1487  tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
1488  /* set self powered */
1489  tmp |= AMD_BIT(UDC_DEVCFG_SP);
1490  /* set remote wakeupable */
1491  tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
1492  writel(tmp, &dev->regs->cfg);
1493 
1494  make_ep_lists(dev);
1495 
1496  dev->data_ep_enabled = 0;
1497  dev->data_ep_queued = 0;
1498 }
1499 
1500 /* Sets initial endpoint parameters */
1501 static void udc_setup_endpoints(struct udc *dev)
1502 {
1503  struct udc_ep *ep;
1504  u32 tmp;
1505  u32 reg;
1506 
1507  DBG(dev, "udc_setup_endpoints()\n");
1508 
1509  /* read enum speed */
1510  tmp = readl(&dev->regs->sts);
1511  tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
1512  if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH)
1513  dev->gadget.speed = USB_SPEED_HIGH;
1514  else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL)
1515  dev->gadget.speed = USB_SPEED_FULL;
1516 
1517  /* set basic ep parameters */
1518  for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1519  ep = &dev->ep[tmp];
1520  ep->dev = dev;
1521  ep->ep.name = ep_string[tmp];
1522  ep->num = tmp;
1523  /* txfifo size is calculated at enable time */
1524  ep->txfifo = dev->txfifo;
1525 
1526  /* fifo size */
1527  if (tmp < UDC_EPIN_NUM) {
1529  ep->in = 1;
1530  } else {
1532  ep->in = 0;
1533 
1534  }
1535  ep->regs = &dev->ep_regs[tmp];
1536  /*
1537  * ep will be reset only if ep was not enabled before to avoid
1538  * disabling ep interrupts when ENUM interrupt occurs but ep is
1539  * not enabled by gadget driver
1540  */
1541  if (!ep->ep.desc)
1542  ep_init(dev->regs, ep);
1543 
1544  if (use_dma) {
1545  /*
1546  * ep->dma is not really used, just to indicate that
1547  * DMA is active: remove this
1548  * dma regs = dev control regs
1549  */
1550  ep->dma = &dev->regs->ctl;
1551 
1552  /* nak OUT endpoints until enable - not for ep0 */
1553  if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
1554  && tmp > UDC_EPIN_NUM) {
1555  /* set NAK */
1556  reg = readl(&dev->ep[tmp].regs->ctl);
1557  reg |= AMD_BIT(UDC_EPCTL_SNAK);
1558  writel(reg, &dev->ep[tmp].regs->ctl);
1559  dev->ep[tmp].naking = 1;
1560 
1561  }
1562  }
1563  }
1564  /* EP0 max packet */
1565  if (dev->gadget.speed == USB_SPEED_FULL) {
1566  dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE;
1567  dev->ep[UDC_EP0OUT_IX].ep.maxpacket =
1569  } else if (dev->gadget.speed == USB_SPEED_HIGH) {
1570  dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
1571  dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
1572  }
1573 
1574  /*
1575  * with suspend bug workaround, ep0 params for gadget driver
1576  * are set at gadget driver bind() call
1577  */
1578  dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
1579  dev->ep[UDC_EP0IN_IX].halted = 0;
1580  INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1581 
1582  /* init cfg/alt/int */
1583  dev->cur_config = 0;
1584  dev->cur_intf = 0;
1585  dev->cur_alt = 0;
1586 }
1587 
1588 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
1589 static void usb_connect(struct udc *dev)
1590 {
1591 
1592  dev_info(&dev->pdev->dev, "USB Connect\n");
1593 
1594  dev->connected = 1;
1595 
1596  /* put into initial config */
1597  udc_basic_init(dev);
1598 
1599  /* enable device setup interrupts */
1600  udc_enable_dev_setup_interrupts(dev);
1601 }
1602 
1603 /*
1604  * Calls gadget with disconnect event and resets the UDC and makes
1605  * initial bringup to be ready for ep0 events
1606  */
1607 static void usb_disconnect(struct udc *dev)
1608 {
1609 
1610  dev_info(&dev->pdev->dev, "USB Disconnect\n");
1611 
1612  dev->connected = 0;
1613 
1614  /* mask interrupts */
1615  udc_mask_unused_interrupts(dev);
1616 
1617  /* REVISIT there doesn't seem to be a point to having this
1618  * talk to a tasklet ... do it directly, we already hold
1619  * the spinlock needed to process the disconnect.
1620  */
1621 
1622  tasklet_schedule(&disconnect_tasklet);
1623 }
1624 
1625 /* Tasklet for disconnect to be outside of interrupt context */
1626 static void udc_tasklet_disconnect(unsigned long par)
1627 {
1628  struct udc *dev = (struct udc *)(*((struct udc **) par));
1629  u32 tmp;
1630 
1631  DBG(dev, "Tasklet disconnect\n");
1632  spin_lock_irq(&dev->lock);
1633 
1634  if (dev->driver) {
1635  spin_unlock(&dev->lock);
1636  dev->driver->disconnect(&dev->gadget);
1637  spin_lock(&dev->lock);
1638 
1639  /* empty queues */
1640  for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
1641  empty_req_queue(&dev->ep[tmp]);
1642 
1643  }
1644 
1645  /* disable ep0 */
1646  ep_init(dev->regs,
1647  &dev->ep[UDC_EP0IN_IX]);
1648 
1649 
1650  if (!soft_reset_occured) {
1651  /* init controller by soft reset */
1652  udc_soft_reset(dev);
1653  soft_reset_occured++;
1654  }
1655 
1656  /* re-enable dev interrupts */
1657  udc_enable_dev_setup_interrupts(dev);
1658  /* back to full speed ? */
1659  if (use_fullspeed) {
1660  tmp = readl(&dev->regs->cfg);
1661  tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1662  writel(tmp, &dev->regs->cfg);
1663  }
1664 
1665  spin_unlock_irq(&dev->lock);
1666 }
1667 
1668 /* Reset the UDC core */
1669 static void udc_soft_reset(struct udc *dev)
1670 {
1671  unsigned long flags;
1672 
1673  DBG(dev, "Soft reset\n");
1674  /*
1675  * reset possible waiting interrupts, because int.
1676  * status is lost after soft reset,
1677  * ep int. status reset
1678  */
1679  writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
1680  /* device int. status reset */
1681  writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
1682 
1683  spin_lock_irqsave(&udc_irq_spinlock, flags);
1684  writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
1685  readl(&dev->regs->cfg);
1686  spin_unlock_irqrestore(&udc_irq_spinlock, flags);
1687 
1688 }
1689 
1690 /* RDE timer callback to set RDE bit */
1691 static void udc_timer_function(unsigned long v)
1692 {
1693  u32 tmp;
1694 
1695  spin_lock_irq(&udc_irq_spinlock);
1696 
1697  if (set_rde > 0) {
1698  /*
1699  * open the fifo if fifo was filled on last timer call
1700  * conditionally
1701  */
1702  if (set_rde > 1) {
1703  /* set RDE to receive setup data */
1704  tmp = readl(&udc->regs->ctl);
1705  tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1706  writel(tmp, &udc->regs->ctl);
1707  set_rde = -1;
1708  } else if (readl(&udc->regs->sts)
1710  /*
1711  * if fifo empty setup polling, do not just
1712  * open the fifo
1713  */
1714  udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
1715  if (!stop_timer)
1716  add_timer(&udc_timer);
1717  } else {
1718  /*
1719  * fifo contains data now, setup timer for opening
1720  * the fifo when timer expires to be able to receive
1721  * setup packets, when data packets gets queued by
1722  * gadget layer then timer will forced to expire with
1723  * set_rde=0 (RDE is set in udc_queue())
1724  */
1725  set_rde++;
1726  /* debug: lhadmot_timer_start = 221070 */
1727  udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
1728  if (!stop_timer)
1729  add_timer(&udc_timer);
1730  }
1731 
1732  } else
1733  set_rde = -1; /* RDE was set by udc_queue() */
1734  spin_unlock_irq(&udc_irq_spinlock);
1735  if (stop_timer)
1736  complete(&on_exit);
1737 
1738 }
1739 
1740 /* Handle halt state, used in stall poll timer */
1741 static void udc_handle_halt_state(struct udc_ep *ep)
1742 {
1743  u32 tmp;
1744  /* set stall as long not halted */
1745  if (ep->halted == 1) {
1746  tmp = readl(&ep->regs->ctl);
1747  /* STALL cleared ? */
1748  if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
1749  /*
1750  * FIXME: MSC spec requires that stall remains
1751  * even on receivng of CLEAR_FEATURE HALT. So
1752  * we would set STALL again here to be compliant.
1753  * But with current mass storage drivers this does
1754  * not work (would produce endless host retries).
1755  * So we clear halt on CLEAR_FEATURE.
1756  *
1757  DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1758  tmp |= AMD_BIT(UDC_EPCTL_S);
1759  writel(tmp, &ep->regs->ctl);*/
1760 
1761  /* clear NAK by writing CNAK */
1762  tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1763  writel(tmp, &ep->regs->ctl);
1764  ep->halted = 0;
1765  UDC_QUEUE_CNAK(ep, ep->num);
1766  }
1767  }
1768 }
1769 
1770 /* Stall timer callback to poll S bit and set it again after */
1771 static void udc_pollstall_timer_function(unsigned long v)
1772 {
1773  struct udc_ep *ep;
1774  int halted = 0;
1775 
1776  spin_lock_irq(&udc_stall_spinlock);
1777  /*
1778  * only one IN and OUT endpoints are handled
1779  * IN poll stall
1780  */
1781  ep = &udc->ep[UDC_EPIN_IX];
1782  udc_handle_halt_state(ep);
1783  if (ep->halted)
1784  halted = 1;
1785  /* OUT poll stall */
1786  ep = &udc->ep[UDC_EPOUT_IX];
1787  udc_handle_halt_state(ep);
1788  if (ep->halted)
1789  halted = 1;
1790 
1791  /* setup timer again when still halted */
1792  if (!stop_pollstall_timer && halted) {
1793  udc_pollstall_timer.expires = jiffies +
1795  / (1000 * 1000);
1796  add_timer(&udc_pollstall_timer);
1797  }
1798  spin_unlock_irq(&udc_stall_spinlock);
1799 
1800  if (stop_pollstall_timer)
1801  complete(&on_pollstall_exit);
1802 }
1803 
1804 /* Inits endpoint 0 so that SETUP packets are processed */
1805 static void activate_control_endpoints(struct udc *dev)
1806 {
1807  u32 tmp;
1808 
1809  DBG(dev, "activate_control_endpoints\n");
1810 
1811  /* flush fifo */
1812  tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1813  tmp |= AMD_BIT(UDC_EPCTL_F);
1814  writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1815 
1816  /* set ep0 directions */
1817  dev->ep[UDC_EP0IN_IX].in = 1;
1818  dev->ep[UDC_EP0OUT_IX].in = 0;
1819 
1820  /* set buffer size (tx fifo entries) of EP0_IN */
1821  tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1822  if (dev->gadget.speed == USB_SPEED_FULL)
1825  else if (dev->gadget.speed == USB_SPEED_HIGH)
1826  tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
1828  writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1829 
1830  /* set max packet size of EP0_IN */
1831  tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1832  if (dev->gadget.speed == USB_SPEED_FULL)
1834  UDC_EP_MAX_PKT_SIZE);
1835  else if (dev->gadget.speed == USB_SPEED_HIGH)
1837  UDC_EP_MAX_PKT_SIZE);
1838  writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1839 
1840  /* set max packet size of EP0_OUT */
1841  tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1842  if (dev->gadget.speed == USB_SPEED_FULL)
1844  UDC_EP_MAX_PKT_SIZE);
1845  else if (dev->gadget.speed == USB_SPEED_HIGH)
1847  UDC_EP_MAX_PKT_SIZE);
1848  writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1849 
1850  /* set max packet size of EP0 in UDC CSR */
1851  tmp = readl(&dev->csr->ne[0]);
1852  if (dev->gadget.speed == USB_SPEED_FULL)
1854  UDC_CSR_NE_MAX_PKT);
1855  else if (dev->gadget.speed == USB_SPEED_HIGH)
1857  UDC_CSR_NE_MAX_PKT);
1858  writel(tmp, &dev->csr->ne[0]);
1859 
1860  if (use_dma) {
1861  dev->ep[UDC_EP0OUT_IX].td->status |=
1863  /* write dma desc address */
1864  writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
1865  &dev->ep[UDC_EP0OUT_IX].regs->subptr);
1866  writel(dev->ep[UDC_EP0OUT_IX].td_phys,
1867  &dev->ep[UDC_EP0OUT_IX].regs->desptr);
1868  /* stop RDE timer */
1869  if (timer_pending(&udc_timer)) {
1870  set_rde = 0;
1871  mod_timer(&udc_timer, jiffies - 1);
1872  }
1873  /* stop pollstall timer */
1874  if (timer_pending(&udc_pollstall_timer))
1875  mod_timer(&udc_pollstall_timer, jiffies - 1);
1876  /* enable DMA */
1877  tmp = readl(&dev->regs->ctl);
1878  tmp |= AMD_BIT(UDC_DEVCTL_MODE)
1881  if (use_dma_bufferfill_mode)
1882  tmp |= AMD_BIT(UDC_DEVCTL_BF);
1883  else if (use_dma_ppb_du)
1884  tmp |= AMD_BIT(UDC_DEVCTL_DU);
1885  writel(tmp, &dev->regs->ctl);
1886  }
1887 
1888  /* clear NAK by writing CNAK for EP0IN */
1889  tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1890  tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1891  writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1892  dev->ep[UDC_EP0IN_IX].naking = 0;
1893  UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
1894 
1895  /* clear NAK by writing CNAK for EP0OUT */
1896  tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
1897  tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1898  writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
1899  dev->ep[UDC_EP0OUT_IX].naking = 0;
1900  UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
1901 }
1902 
1903 /* Make endpoint 0 ready for control traffic */
1904 static int setup_ep0(struct udc *dev)
1905 {
1906  activate_control_endpoints(dev);
1907  /* enable ep0 interrupts */
1908  udc_enable_ep0_interrupts(dev);
1909  /* enable device setup interrupts */
1910  udc_enable_dev_setup_interrupts(dev);
1911 
1912  return 0;
1913 }
1914 
1915 /* Called by gadget driver to register itself */
1916 static int amd5536_start(struct usb_gadget_driver *driver,
1917  int (*bind)(struct usb_gadget *, struct usb_gadget_driver *))
1918 {
1919  struct udc *dev = udc;
1920  int retval;
1921  u32 tmp;
1922 
1923  if (!driver || !bind || !driver->setup
1924  || driver->max_speed < USB_SPEED_HIGH)
1925  return -EINVAL;
1926  if (!dev)
1927  return -ENODEV;
1928  if (dev->driver)
1929  return -EBUSY;
1930 
1931  driver->driver.bus = NULL;
1932  dev->driver = driver;
1933  dev->gadget.dev.driver = &driver->driver;
1934 
1935  retval = bind(&dev->gadget, driver);
1936 
1937  /* Some gadget drivers use both ep0 directions.
1938  * NOTE: to gadget driver, ep0 is just one endpoint...
1939  */
1940  dev->ep[UDC_EP0OUT_IX].ep.driver_data =
1941  dev->ep[UDC_EP0IN_IX].ep.driver_data;
1942 
1943  if (retval) {
1944  DBG(dev, "binding to %s returning %d\n",
1945  driver->driver.name, retval);
1946  dev->driver = NULL;
1947  dev->gadget.dev.driver = NULL;
1948  return retval;
1949  }
1950 
1951  /* get ready for ep0 traffic */
1952  setup_ep0(dev);
1953 
1954  /* clear SD */
1955  tmp = readl(&dev->regs->ctl);
1956  tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
1957  writel(tmp, &dev->regs->ctl);
1958 
1959  usb_connect(dev);
1960 
1961  return 0;
1962 }
1963 
1964 /* shutdown requests and disconnect from gadget */
1965 static void
1966 shutdown(struct udc *dev, struct usb_gadget_driver *driver)
1967 __releases(dev->lock)
1968 __acquires(dev->lock)
1969 {
1970  int tmp;
1971 
1972  if (dev->gadget.speed != USB_SPEED_UNKNOWN) {
1973  spin_unlock(&dev->lock);
1974  driver->disconnect(&dev->gadget);
1975  spin_lock(&dev->lock);
1976  }
1977 
1978  /* empty queues and init hardware */
1979  udc_basic_init(dev);
1980  for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
1981  empty_req_queue(&dev->ep[tmp]);
1982 
1983  udc_setup_endpoints(dev);
1984 }
1985 
1986 /* Called by gadget driver to unregister itself */
1987 static int amd5536_stop(struct usb_gadget_driver *driver)
1988 {
1989  struct udc *dev = udc;
1990  unsigned long flags;
1991  u32 tmp;
1992 
1993  if (!dev)
1994  return -ENODEV;
1995  if (!driver || driver != dev->driver || !driver->unbind)
1996  return -EINVAL;
1997 
1998  spin_lock_irqsave(&dev->lock, flags);
1999  udc_mask_unused_interrupts(dev);
2000  shutdown(dev, driver);
2001  spin_unlock_irqrestore(&dev->lock, flags);
2002 
2003  driver->unbind(&dev->gadget);
2004  dev->gadget.dev.driver = NULL;
2005  dev->driver = NULL;
2006 
2007  /* set SD */
2008  tmp = readl(&dev->regs->ctl);
2009  tmp |= AMD_BIT(UDC_DEVCTL_SD);
2010  writel(tmp, &dev->regs->ctl);
2011 
2012 
2013  DBG(dev, "%s: unregistered\n", driver->driver.name);
2014 
2015  return 0;
2016 }
2017 
2018 /* Clear pending NAK bits */
2019 static void udc_process_cnak_queue(struct udc *dev)
2020 {
2021  u32 tmp;
2022  u32 reg;
2023 
2024  /* check epin's */
2025  DBG(dev, "CNAK pending queue processing\n");
2026  for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
2027  if (cnak_pending & (1 << tmp)) {
2028  DBG(dev, "CNAK pending for ep%d\n", tmp);
2029  /* clear NAK by writing CNAK */
2030  reg = readl(&dev->ep[tmp].regs->ctl);
2031  reg |= AMD_BIT(UDC_EPCTL_CNAK);
2032  writel(reg, &dev->ep[tmp].regs->ctl);
2033  dev->ep[tmp].naking = 0;
2034  UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
2035  }
2036  }
2037  /* ... and ep0out */
2038  if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
2039  DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
2040  /* clear NAK by writing CNAK */
2041  reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2042  reg |= AMD_BIT(UDC_EPCTL_CNAK);
2043  writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2044  dev->ep[UDC_EP0OUT_IX].naking = 0;
2045  UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
2046  dev->ep[UDC_EP0OUT_IX].num);
2047  }
2048 }
2049 
2050 /* Enabling RX DMA after setup packet */
2051 static void udc_ep0_set_rde(struct udc *dev)
2052 {
2053  if (use_dma) {
2054  /*
2055  * only enable RXDMA when no data endpoint enabled
2056  * or data is queued
2057  */
2058  if (!dev->data_ep_enabled || dev->data_ep_queued) {
2059  udc_set_rde(dev);
2060  } else {
2061  /*
2062  * setup timer for enabling RDE (to not enable
2063  * RXFIFO DMA for data endpoints to early)
2064  */
2065  if (set_rde != 0 && !timer_pending(&udc_timer)) {
2066  udc_timer.expires =
2068  set_rde = 1;
2069  if (!stop_timer)
2070  add_timer(&udc_timer);
2071  }
2072  }
2073  }
2074 }
2075 
2076 
2077 /* Interrupt handler for data OUT traffic */
2078 static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
2079 {
2080  irqreturn_t ret_val = IRQ_NONE;
2081  u32 tmp;
2082  struct udc_ep *ep;
2083  struct udc_request *req;
2084  unsigned int count;
2085  struct udc_data_dma *td = NULL;
2086  unsigned dma_done;
2087 
2088  VDBG(dev, "ep%d irq\n", ep_ix);
2089  ep = &dev->ep[ep_ix];
2090 
2091  tmp = readl(&ep->regs->sts);
2092  if (use_dma) {
2093  /* BNA event ? */
2094  if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2095  DBG(dev, "BNA ep%dout occurred - DESPTR = %x\n",
2096  ep->num, readl(&ep->regs->desptr));
2097  /* clear BNA */
2098  writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
2099  if (!ep->cancel_transfer)
2100  ep->bna_occurred = 1;
2101  else
2102  ep->cancel_transfer = 0;
2103  ret_val = IRQ_HANDLED;
2104  goto finished;
2105  }
2106  }
2107  /* HE event ? */
2108  if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
2109  dev_err(&dev->pdev->dev, "HE ep%dout occurred\n", ep->num);
2110 
2111  /* clear HE */
2112  writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2113  ret_val = IRQ_HANDLED;
2114  goto finished;
2115  }
2116 
2117  if (!list_empty(&ep->queue)) {
2118 
2119  /* next request */
2120  req = list_entry(ep->queue.next,
2121  struct udc_request, queue);
2122  } else {
2123  req = NULL;
2124  udc_rxfifo_pending = 1;
2125  }
2126  VDBG(dev, "req = %p\n", req);
2127  /* fifo mode */
2128  if (!use_dma) {
2129 
2130  /* read fifo */
2131  if (req && udc_rxfifo_read(ep, req)) {
2132  ret_val = IRQ_HANDLED;
2133 
2134  /* finish */
2135  complete_req(ep, req, 0);
2136  /* next request */
2137  if (!list_empty(&ep->queue) && !ep->halted) {
2138  req = list_entry(ep->queue.next,
2139  struct udc_request, queue);
2140  } else
2141  req = NULL;
2142  }
2143 
2144  /* DMA */
2145  } else if (!ep->cancel_transfer && req != NULL) {
2146  ret_val = IRQ_HANDLED;
2147 
2148  /* check for DMA done */
2149  if (!use_dma_ppb) {
2150  dma_done = AMD_GETBITS(req->td_data->status,
2151  UDC_DMA_OUT_STS_BS);
2152  /* packet per buffer mode - rx bytes */
2153  } else {
2154  /*
2155  * if BNA occurred then recover desc. from
2156  * BNA dummy desc.
2157  */
2158  if (ep->bna_occurred) {
2159  VDBG(dev, "Recover desc. from BNA dummy\n");
2160  memcpy(req->td_data, ep->bna_dummy_req->td_data,
2161  sizeof(struct udc_data_dma));
2162  ep->bna_occurred = 0;
2163  udc_init_bna_dummy(ep->req);
2164  }
2165  td = udc_get_last_dma_desc(req);
2166  dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
2167  }
2168  if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
2169  /* buffer fill mode - rx bytes */
2170  if (!use_dma_ppb) {
2171  /* received number bytes */
2172  count = AMD_GETBITS(req->td_data->status,
2173  UDC_DMA_OUT_STS_RXBYTES);
2174  VDBG(dev, "rx bytes=%u\n", count);
2175  /* packet per buffer mode - rx bytes */
2176  } else {
2177  VDBG(dev, "req->td_data=%p\n", req->td_data);
2178  VDBG(dev, "last desc = %p\n", td);
2179  /* received number bytes */
2180  if (use_dma_ppb_du) {
2181  /* every desc. counts bytes */
2182  count = udc_get_ppbdu_rxbytes(req);
2183  } else {
2184  /* last desc. counts bytes */
2185  count = AMD_GETBITS(td->status,
2186  UDC_DMA_OUT_STS_RXBYTES);
2187  if (!count && req->req.length
2188  == UDC_DMA_MAXPACKET) {
2189  /*
2190  * on 64k packets the RXBYTES
2191  * field is zero
2192  */
2193  count = UDC_DMA_MAXPACKET;
2194  }
2195  }
2196  VDBG(dev, "last desc rx bytes=%u\n", count);
2197  }
2198 
2199  tmp = req->req.length - req->req.actual;
2200  if (count > tmp) {
2201  if ((tmp % ep->ep.maxpacket) != 0) {
2202  DBG(dev, "%s: rx %db, space=%db\n",
2203  ep->ep.name, count, tmp);
2204  req->req.status = -EOVERFLOW;
2205  }
2206  count = tmp;
2207  }
2208  req->req.actual += count;
2209  req->dma_going = 0;
2210  /* complete request */
2211  complete_req(ep, req, 0);
2212 
2213  /* next request */
2214  if (!list_empty(&ep->queue) && !ep->halted) {
2215  req = list_entry(ep->queue.next,
2216  struct udc_request,
2217  queue);
2218  /*
2219  * DMA may be already started by udc_queue()
2220  * called by gadget drivers completion
2221  * routine. This happens when queue
2222  * holds one request only.
2223  */
2224  if (req->dma_going == 0) {
2225  /* next dma */
2226  if (prep_dma(ep, req, GFP_ATOMIC) != 0)
2227  goto finished;
2228  /* write desc pointer */
2229  writel(req->td_phys,
2230  &ep->regs->desptr);
2231  req->dma_going = 1;
2232  /* enable DMA */
2233  udc_set_rde(dev);
2234  }
2235  } else {
2236  /*
2237  * implant BNA dummy descriptor to allow
2238  * RXFIFO opening by RDE
2239  */
2240  if (ep->bna_dummy_req) {
2241  /* write desc pointer */
2242  writel(ep->bna_dummy_req->td_phys,
2243  &ep->regs->desptr);
2244  ep->bna_occurred = 0;
2245  }
2246 
2247  /*
2248  * schedule timer for setting RDE if queue
2249  * remains empty to allow ep0 packets pass
2250  * through
2251  */
2252  if (set_rde != 0
2253  && !timer_pending(&udc_timer)) {
2254  udc_timer.expires =
2255  jiffies
2257  set_rde = 1;
2258  if (!stop_timer)
2259  add_timer(&udc_timer);
2260  }
2261  if (ep->num != UDC_EP0OUT_IX)
2262  dev->data_ep_queued = 0;
2263  }
2264 
2265  } else {
2266  /*
2267  * RX DMA must be reenabled for each desc in PPBDU mode
2268  * and must be enabled for PPBNDU mode in case of BNA
2269  */
2270  udc_set_rde(dev);
2271  }
2272 
2273  } else if (ep->cancel_transfer) {
2274  ret_val = IRQ_HANDLED;
2275  ep->cancel_transfer = 0;
2276  }
2277 
2278  /* check pending CNAKS */
2279  if (cnak_pending) {
2280  /* CNAk processing when rxfifo empty only */
2281  if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2282  udc_process_cnak_queue(dev);
2283  }
2284 
2285  /* clear OUT bits in ep status */
2286  writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
2287 finished:
2288  return ret_val;
2289 }
2290 
2291 /* Interrupt handler for data IN traffic */
2292 static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
2293 {
2294  irqreturn_t ret_val = IRQ_NONE;
2295  u32 tmp;
2296  u32 epsts;
2297  struct udc_ep *ep;
2298  struct udc_request *req;
2299  struct udc_data_dma *td;
2300  unsigned dma_done;
2301  unsigned len;
2302 
2303  ep = &dev->ep[ep_ix];
2304 
2305  epsts = readl(&ep->regs->sts);
2306  if (use_dma) {
2307  /* BNA ? */
2308  if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
2309  dev_err(&dev->pdev->dev,
2310  "BNA ep%din occurred - DESPTR = %08lx\n",
2311  ep->num,
2312  (unsigned long) readl(&ep->regs->desptr));
2313 
2314  /* clear BNA */
2315  writel(epsts, &ep->regs->sts);
2316  ret_val = IRQ_HANDLED;
2317  goto finished;
2318  }
2319  }
2320  /* HE event ? */
2321  if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
2322  dev_err(&dev->pdev->dev,
2323  "HE ep%dn occurred - DESPTR = %08lx\n",
2324  ep->num, (unsigned long) readl(&ep->regs->desptr));
2325 
2326  /* clear HE */
2327  writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2328  ret_val = IRQ_HANDLED;
2329  goto finished;
2330  }
2331 
2332  /* DMA completion */
2333  if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
2334  VDBG(dev, "TDC set- completion\n");
2335  ret_val = IRQ_HANDLED;
2336  if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
2337  req = list_entry(ep->queue.next,
2338  struct udc_request, queue);
2339  /*
2340  * length bytes transferred
2341  * check dma done of last desc. in PPBDU mode
2342  */
2343  if (use_dma_ppb_du) {
2344  td = udc_get_last_dma_desc(req);
2345  if (td) {
2346  dma_done =
2347  AMD_GETBITS(td->status,
2348  UDC_DMA_IN_STS_BS);
2349  /* don't care DMA done */
2350  req->req.actual = req->req.length;
2351  }
2352  } else {
2353  /* assume all bytes transferred */
2354  req->req.actual = req->req.length;
2355  }
2356 
2357  if (req->req.actual == req->req.length) {
2358  /* complete req */
2359  complete_req(ep, req, 0);
2360  req->dma_going = 0;
2361  /* further request available ? */
2362  if (list_empty(&ep->queue)) {
2363  /* disable interrupt */
2364  tmp = readl(&dev->regs->ep_irqmsk);
2365  tmp |= AMD_BIT(ep->num);
2366  writel(tmp, &dev->regs->ep_irqmsk);
2367  }
2368  }
2369  }
2370  ep->cancel_transfer = 0;
2371 
2372  }
2373  /*
2374  * status reg has IN bit set and TDC not set (if TDC was handled,
2375  * IN must not be handled (UDC defect) ?
2376  */
2377  if ((epsts & AMD_BIT(UDC_EPSTS_IN))
2378  && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
2379  ret_val = IRQ_HANDLED;
2380  if (!list_empty(&ep->queue)) {
2381  /* next request */
2382  req = list_entry(ep->queue.next,
2383  struct udc_request, queue);
2384  /* FIFO mode */
2385  if (!use_dma) {
2386  /* write fifo */
2387  udc_txfifo_write(ep, &req->req);
2388  len = req->req.length - req->req.actual;
2389  if (len > ep->ep.maxpacket)
2390  len = ep->ep.maxpacket;
2391  req->req.actual += len;
2392  if (req->req.actual == req->req.length
2393  || (len != ep->ep.maxpacket)) {
2394  /* complete req */
2395  complete_req(ep, req, 0);
2396  }
2397  /* DMA */
2398  } else if (req && !req->dma_going) {
2399  VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
2400  req, req->td_data);
2401  if (req->td_data) {
2402 
2403  req->dma_going = 1;
2404 
2405  /*
2406  * unset L bit of first desc.
2407  * for chain
2408  */
2409  if (use_dma_ppb && req->req.length >
2410  ep->ep.maxpacket) {
2411  req->td_data->status &=
2412  AMD_CLEAR_BIT(
2414  }
2415 
2416  /* write desc pointer */
2417  writel(req->td_phys, &ep->regs->desptr);
2418 
2419  /* set HOST READY */
2420  req->td_data->status =
2421  AMD_ADDBITS(
2422  req->td_data->status,
2424  UDC_DMA_IN_STS_BS);
2425 
2426  /* set poll demand bit */
2427  tmp = readl(&ep->regs->ctl);
2428  tmp |= AMD_BIT(UDC_EPCTL_P);
2429  writel(tmp, &ep->regs->ctl);
2430  }
2431  }
2432 
2433  } else if (!use_dma && ep->in) {
2434  /* disable interrupt */
2435  tmp = readl(
2436  &dev->regs->ep_irqmsk);
2437  tmp |= AMD_BIT(ep->num);
2438  writel(tmp,
2439  &dev->regs->ep_irqmsk);
2440  }
2441  }
2442  /* clear status bits */
2443  writel(epsts, &ep->regs->sts);
2444 
2445 finished:
2446  return ret_val;
2447 
2448 }
2449 
2450 /* Interrupt handler for Control OUT traffic */
2451 static irqreturn_t udc_control_out_isr(struct udc *dev)
2452 __releases(dev->lock)
2453 __acquires(dev->lock)
2454 {
2455  irqreturn_t ret_val = IRQ_NONE;
2456  u32 tmp;
2457  int setup_supported;
2458  u32 count;
2459  int set = 0;
2460  struct udc_ep *ep;
2461  struct udc_ep *ep_tmp;
2462 
2463  ep = &dev->ep[UDC_EP0OUT_IX];
2464 
2465  /* clear irq */
2466  writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
2467 
2468  tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2469  /* check BNA and clear if set */
2470  if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2471  VDBG(dev, "ep0: BNA set\n");
2473  &dev->ep[UDC_EP0OUT_IX].regs->sts);
2474  ep->bna_occurred = 1;
2475  ret_val = IRQ_HANDLED;
2476  goto finished;
2477  }
2478 
2479  /* type of data: SETUP or DATA 0 bytes */
2480  tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
2481  VDBG(dev, "data_typ = %x\n", tmp);
2482 
2483  /* setup data */
2484  if (tmp == UDC_EPSTS_OUT_SETUP) {
2485  ret_val = IRQ_HANDLED;
2486 
2487  ep->dev->stall_ep0in = 0;
2488  dev->waiting_zlp_ack_ep0in = 0;
2489 
2490  /* set NAK for EP0_IN */
2491  tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2492  tmp |= AMD_BIT(UDC_EPCTL_SNAK);
2493  writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2494  dev->ep[UDC_EP0IN_IX].naking = 1;
2495  /* get setup data */
2496  if (use_dma) {
2497 
2498  /* clear OUT bits in ep status */
2500  &dev->ep[UDC_EP0OUT_IX].regs->sts);
2501 
2502  setup_data.data[0] =
2503  dev->ep[UDC_EP0OUT_IX].td_stp->data12;
2504  setup_data.data[1] =
2505  dev->ep[UDC_EP0OUT_IX].td_stp->data34;
2506  /* set HOST READY */
2507  dev->ep[UDC_EP0OUT_IX].td_stp->status =
2509  } else {
2510  /* read fifo */
2511  udc_rxfifo_read_dwords(dev, setup_data.data, 2);
2512  }
2513 
2514  /* determine direction of control data */
2515  if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
2516  dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
2517  /* enable RDE */
2518  udc_ep0_set_rde(dev);
2519  set = 0;
2520  } else {
2521  dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
2522  /*
2523  * implant BNA dummy descriptor to allow RXFIFO opening
2524  * by RDE
2525  */
2526  if (ep->bna_dummy_req) {
2527  /* write desc pointer */
2528  writel(ep->bna_dummy_req->td_phys,
2529  &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2530  ep->bna_occurred = 0;
2531  }
2532 
2533  set = 1;
2534  dev->ep[UDC_EP0OUT_IX].naking = 1;
2535  /*
2536  * setup timer for enabling RDE (to not enable
2537  * RXFIFO DMA for data to early)
2538  */
2539  set_rde = 1;
2540  if (!timer_pending(&udc_timer)) {
2541  udc_timer.expires = jiffies +
2543  if (!stop_timer)
2544  add_timer(&udc_timer);
2545  }
2546  }
2547 
2548  /*
2549  * mass storage reset must be processed here because
2550  * next packet may be a CLEAR_FEATURE HALT which would not
2551  * clear the stall bit when no STALL handshake was received
2552  * before (autostall can cause this)
2553  */
2555  && setup_data.data[1] == UDC_MSCRES_DWORD1) {
2556  DBG(dev, "MSC Reset\n");
2557  /*
2558  * clear stall bits
2559  * only one IN and OUT endpoints are handled
2560  */
2561  ep_tmp = &udc->ep[UDC_EPIN_IX];
2562  udc_set_halt(&ep_tmp->ep, 0);
2563  ep_tmp = &udc->ep[UDC_EPOUT_IX];
2564  udc_set_halt(&ep_tmp->ep, 0);
2565  }
2566 
2567  /* call gadget with setup data received */
2568  spin_unlock(&dev->lock);
2569  setup_supported = dev->driver->setup(&dev->gadget,
2570  &setup_data.request);
2571  spin_lock(&dev->lock);
2572 
2573  tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2574  /* ep0 in returns data (not zlp) on IN phase */
2575  if (setup_supported >= 0 && setup_supported <
2577  /* clear NAK by writing CNAK in EP0_IN */
2578  tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2579  writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2580  dev->ep[UDC_EP0IN_IX].naking = 0;
2581  UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
2582 
2583  /* if unsupported request then stall */
2584  } else if (setup_supported < 0) {
2585  tmp |= AMD_BIT(UDC_EPCTL_S);
2586  writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2587  } else
2588  dev->waiting_zlp_ack_ep0in = 1;
2589 
2590 
2591  /* clear NAK by writing CNAK in EP0_OUT */
2592  if (!set) {
2593  tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2594  tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2595  writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2596  dev->ep[UDC_EP0OUT_IX].naking = 0;
2597  UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
2598  }
2599 
2600  if (!use_dma) {
2601  /* clear OUT bits in ep status */
2603  &dev->ep[UDC_EP0OUT_IX].regs->sts);
2604  }
2605 
2606  /* data packet 0 bytes */
2607  } else if (tmp == UDC_EPSTS_OUT_DATA) {
2608  /* clear OUT bits in ep status */
2609  writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
2610 
2611  /* get setup data: only 0 packet */
2612  if (use_dma) {
2613  /* no req if 0 packet, just reactivate */
2614  if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
2615  VDBG(dev, "ZLP\n");
2616 
2617  /* set HOST READY */
2618  dev->ep[UDC_EP0OUT_IX].td->status =
2619  AMD_ADDBITS(
2620  dev->ep[UDC_EP0OUT_IX].td->status,
2622  UDC_DMA_OUT_STS_BS);
2623  /* enable RDE */
2624  udc_ep0_set_rde(dev);
2625  ret_val = IRQ_HANDLED;
2626 
2627  } else {
2628  /* control write */
2629  ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2630  /* re-program desc. pointer for possible ZLPs */
2631  writel(dev->ep[UDC_EP0OUT_IX].td_phys,
2632  &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2633  /* enable RDE */
2634  udc_ep0_set_rde(dev);
2635  }
2636  } else {
2637 
2638  /* received number bytes */
2639  count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2640  count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
2641  /* out data for fifo mode not working */
2642  count = 0;
2643 
2644  /* 0 packet or real data ? */
2645  if (count != 0) {
2646  ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2647  } else {
2648  /* dummy read confirm */
2649  readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
2650  ret_val = IRQ_HANDLED;
2651  }
2652  }
2653  }
2654 
2655  /* check pending CNAKS */
2656  if (cnak_pending) {
2657  /* CNAk processing when rxfifo empty only */
2658  if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2659  udc_process_cnak_queue(dev);
2660  }
2661 
2662 finished:
2663  return ret_val;
2664 }
2665 
2666 /* Interrupt handler for Control IN traffic */
2667 static irqreturn_t udc_control_in_isr(struct udc *dev)
2668 {
2669  irqreturn_t ret_val = IRQ_NONE;
2670  u32 tmp;
2671  struct udc_ep *ep;
2672  struct udc_request *req;
2673  unsigned len;
2674 
2675  ep = &dev->ep[UDC_EP0IN_IX];
2676 
2677  /* clear irq */
2678  writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
2679 
2680  tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
2681  /* DMA completion */
2682  if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
2683  VDBG(dev, "isr: TDC clear\n");
2684  ret_val = IRQ_HANDLED;
2685 
2686  /* clear TDC bit */
2688  &dev->ep[UDC_EP0IN_IX].regs->sts);
2689 
2690  /* status reg has IN bit set ? */
2691  } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
2692  ret_val = IRQ_HANDLED;
2693 
2694  if (ep->dma) {
2695  /* clear IN bit */
2697  &dev->ep[UDC_EP0IN_IX].regs->sts);
2698  }
2699  if (dev->stall_ep0in) {
2700  DBG(dev, "stall ep0in\n");
2701  /* halt ep0in */
2702  tmp = readl(&ep->regs->ctl);
2703  tmp |= AMD_BIT(UDC_EPCTL_S);
2704  writel(tmp, &ep->regs->ctl);
2705  } else {
2706  if (!list_empty(&ep->queue)) {
2707  /* next request */
2708  req = list_entry(ep->queue.next,
2709  struct udc_request, queue);
2710 
2711  if (ep->dma) {
2712  /* write desc pointer */
2713  writel(req->td_phys, &ep->regs->desptr);
2714  /* set HOST READY */
2715  req->td_data->status =
2716  AMD_ADDBITS(
2717  req->td_data->status,
2719  UDC_DMA_STP_STS_BS);
2720 
2721  /* set poll demand bit */
2722  tmp =
2723  readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2724  tmp |= AMD_BIT(UDC_EPCTL_P);
2725  writel(tmp,
2726  &dev->ep[UDC_EP0IN_IX].regs->ctl);
2727 
2728  /* all bytes will be transferred */
2729  req->req.actual = req->req.length;
2730 
2731  /* complete req */
2732  complete_req(ep, req, 0);
2733 
2734  } else {
2735  /* write fifo */
2736  udc_txfifo_write(ep, &req->req);
2737 
2738  /* lengh bytes transferred */
2739  len = req->req.length - req->req.actual;
2740  if (len > ep->ep.maxpacket)
2741  len = ep->ep.maxpacket;
2742 
2743  req->req.actual += len;
2744  if (req->req.actual == req->req.length
2745  || (len != ep->ep.maxpacket)) {
2746  /* complete req */
2747  complete_req(ep, req, 0);
2748  }
2749  }
2750 
2751  }
2752  }
2753  ep->halted = 0;
2754  dev->stall_ep0in = 0;
2755  if (!ep->dma) {
2756  /* clear IN bit */
2758  &dev->ep[UDC_EP0IN_IX].regs->sts);
2759  }
2760  }
2761 
2762  return ret_val;
2763 }
2764 
2765 
2766 /* Interrupt handler for global device events */
2767 static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
2768 __releases(dev->lock)
2769 __acquires(dev->lock)
2770 {
2771  irqreturn_t ret_val = IRQ_NONE;
2772  u32 tmp;
2773  u32 cfg;
2774  struct udc_ep *ep;
2775  u16 i;
2776  u8 udc_csr_epix;
2777 
2778  /* SET_CONFIG irq ? */
2779  if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
2780  ret_val = IRQ_HANDLED;
2781 
2782  /* read config value */
2783  tmp = readl(&dev->regs->sts);
2784  cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
2785  DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
2786  dev->cur_config = cfg;
2787  dev->set_cfg_not_acked = 1;
2788 
2789  /* make usb request for gadget driver */
2790  memset(&setup_data, 0 , sizeof(union udc_setup_data));
2791  setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
2792  setup_data.request.wValue = cpu_to_le16(dev->cur_config);
2793 
2794  /* programm the NE registers */
2795  for (i = 0; i < UDC_EP_NUM; i++) {
2796  ep = &dev->ep[i];
2797  if (ep->in) {
2798 
2799  /* ep ix in UDC CSR register space */
2800  udc_csr_epix = ep->num;
2801 
2802 
2803  /* OUT ep */
2804  } else {
2805  /* ep ix in UDC CSR register space */
2806  udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2807  }
2808 
2809  tmp = readl(&dev->csr->ne[udc_csr_epix]);
2810  /* ep cfg */
2811  tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
2812  UDC_CSR_NE_CFG);
2813  /* write reg */
2814  writel(tmp, &dev->csr->ne[udc_csr_epix]);
2815 
2816  /* clear stall bits */
2817  ep->halted = 0;
2818  tmp = readl(&ep->regs->ctl);
2819  tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2820  writel(tmp, &ep->regs->ctl);
2821  }
2822  /* call gadget zero with setup data received */
2823  spin_unlock(&dev->lock);
2824  tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2825  spin_lock(&dev->lock);
2826 
2827  } /* SET_INTERFACE ? */
2828  if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
2829  ret_val = IRQ_HANDLED;
2830 
2831  dev->set_cfg_not_acked = 1;
2832  /* read interface and alt setting values */
2833  tmp = readl(&dev->regs->sts);
2834  dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
2835  dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
2836 
2837  /* make usb request for gadget driver */
2838  memset(&setup_data, 0 , sizeof(union udc_setup_data));
2839  setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
2840  setup_data.request.bRequestType = USB_RECIP_INTERFACE;
2841  setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
2842  setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
2843 
2844  DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2845  dev->cur_alt, dev->cur_intf);
2846 
2847  /* programm the NE registers */
2848  for (i = 0; i < UDC_EP_NUM; i++) {
2849  ep = &dev->ep[i];
2850  if (ep->in) {
2851 
2852  /* ep ix in UDC CSR register space */
2853  udc_csr_epix = ep->num;
2854 
2855 
2856  /* OUT ep */
2857  } else {
2858  /* ep ix in UDC CSR register space */
2859  udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2860  }
2861 
2862  /* UDC CSR reg */
2863  /* set ep values */
2864  tmp = readl(&dev->csr->ne[udc_csr_epix]);
2865  /* ep interface */
2866  tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
2867  UDC_CSR_NE_INTF);
2868  /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2869  /* ep alt */
2870  tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
2871  UDC_CSR_NE_ALT);
2872  /* write reg */
2873  writel(tmp, &dev->csr->ne[udc_csr_epix]);
2874 
2875  /* clear stall bits */
2876  ep->halted = 0;
2877  tmp = readl(&ep->regs->ctl);
2878  tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2879  writel(tmp, &ep->regs->ctl);
2880  }
2881 
2882  /* call gadget zero with setup data received */
2883  spin_unlock(&dev->lock);
2884  tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2885  spin_lock(&dev->lock);
2886 
2887  } /* USB reset */
2888  if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
2889  DBG(dev, "USB Reset interrupt\n");
2890  ret_val = IRQ_HANDLED;
2891 
2892  /* allow soft reset when suspend occurs */
2893  soft_reset_occured = 0;
2894 
2895  dev->waiting_zlp_ack_ep0in = 0;
2896  dev->set_cfg_not_acked = 0;
2897 
2898  /* mask not needed interrupts */
2899  udc_mask_unused_interrupts(dev);
2900 
2901  /* call gadget to resume and reset configs etc. */
2902  spin_unlock(&dev->lock);
2903  if (dev->sys_suspended && dev->driver->resume) {
2904  dev->driver->resume(&dev->gadget);
2905  dev->sys_suspended = 0;
2906  }
2907  dev->driver->disconnect(&dev->gadget);
2908  spin_lock(&dev->lock);
2909 
2910  /* disable ep0 to empty req queue */
2911  empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2912  ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2913 
2914  /* soft reset when rxfifo not empty */
2915  tmp = readl(&dev->regs->sts);
2916  if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2917  && !soft_reset_after_usbreset_occured) {
2918  udc_soft_reset(dev);
2919  soft_reset_after_usbreset_occured++;
2920  }
2921 
2922  /*
2923  * DMA reset to kill potential old DMA hw hang,
2924  * POLL bit is already reset by ep_init() through
2925  * disconnect()
2926  */
2927  DBG(dev, "DMA machine reset\n");
2928  tmp = readl(&dev->regs->cfg);
2929  writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
2930  writel(tmp, &dev->regs->cfg);
2931 
2932  /* put into initial config */
2933  udc_basic_init(dev);
2934 
2935  /* enable device setup interrupts */
2936  udc_enable_dev_setup_interrupts(dev);
2937 
2938  /* enable suspend interrupt */
2939  tmp = readl(&dev->regs->irqmsk);
2940  tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
2941  writel(tmp, &dev->regs->irqmsk);
2942 
2943  } /* USB suspend */
2944  if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
2945  DBG(dev, "USB Suspend interrupt\n");
2946  ret_val = IRQ_HANDLED;
2947  if (dev->driver->suspend) {
2948  spin_unlock(&dev->lock);
2949  dev->sys_suspended = 1;
2950  dev->driver->suspend(&dev->gadget);
2951  spin_lock(&dev->lock);
2952  }
2953  } /* new speed ? */
2954  if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
2955  DBG(dev, "ENUM interrupt\n");
2956  ret_val = IRQ_HANDLED;
2957  soft_reset_after_usbreset_occured = 0;
2958 
2959  /* disable ep0 to empty req queue */
2960  empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2961  ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2962 
2963  /* link up all endpoints */
2964  udc_setup_endpoints(dev);
2965  dev_info(&dev->pdev->dev, "Connect: %s\n",
2966  usb_speed_string(dev->gadget.speed));
2967 
2968  /* init ep 0 */
2969  activate_control_endpoints(dev);
2970 
2971  /* enable ep0 interrupts */
2972  udc_enable_ep0_interrupts(dev);
2973  }
2974  /* session valid change interrupt */
2975  if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
2976  DBG(dev, "USB SVC interrupt\n");
2977  ret_val = IRQ_HANDLED;
2978 
2979  /* check that session is not valid to detect disconnect */
2980  tmp = readl(&dev->regs->sts);
2981  if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
2982  /* disable suspend interrupt */
2983  tmp = readl(&dev->regs->irqmsk);
2984  tmp |= AMD_BIT(UDC_DEVINT_US);
2985  writel(tmp, &dev->regs->irqmsk);
2986  DBG(dev, "USB Disconnect (session valid low)\n");
2987  /* cleanup on disconnect */
2988  usb_disconnect(udc);
2989  }
2990 
2991  }
2992 
2993  return ret_val;
2994 }
2995 
2996 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
2997 static irqreturn_t udc_irq(int irq, void *pdev)
2998 {
2999  struct udc *dev = pdev;
3000  u32 reg;
3001  u16 i;
3002  u32 ep_irq;
3003  irqreturn_t ret_val = IRQ_NONE;
3004 
3005  spin_lock(&dev->lock);
3006 
3007  /* check for ep irq */
3008  reg = readl(&dev->regs->ep_irqsts);
3009  if (reg) {
3010  if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
3011  ret_val |= udc_control_out_isr(dev);
3012  if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
3013  ret_val |= udc_control_in_isr(dev);
3014 
3015  /*
3016  * data endpoint
3017  * iterate ep's
3018  */
3019  for (i = 1; i < UDC_EP_NUM; i++) {
3020  ep_irq = 1 << i;
3021  if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
3022  continue;
3023 
3024  /* clear irq status */
3025  writel(ep_irq, &dev->regs->ep_irqsts);
3026 
3027  /* irq for out ep ? */
3028  if (i > UDC_EPIN_NUM)
3029  ret_val |= udc_data_out_isr(dev, i);
3030  else
3031  ret_val |= udc_data_in_isr(dev, i);
3032  }
3033 
3034  }
3035 
3036 
3037  /* check for dev irq */
3038  reg = readl(&dev->regs->irqsts);
3039  if (reg) {
3040  /* clear irq */
3041  writel(reg, &dev->regs->irqsts);
3042  ret_val |= udc_dev_isr(dev, reg);
3043  }
3044 
3045 
3046  spin_unlock(&dev->lock);
3047  return ret_val;
3048 }
3049 
3050 /* Tears down device */
3051 static void gadget_release(struct device *pdev)
3052 {
3053  struct amd5536udc *dev = dev_get_drvdata(pdev);
3054  kfree(dev);
3055 }
3056 
3057 /* Cleanup on device remove */
3058 static void udc_remove(struct udc *dev)
3059 {
3060  /* remove timer */
3061  stop_timer++;
3062  if (timer_pending(&udc_timer))
3063  wait_for_completion(&on_exit);
3064  if (udc_timer.data)
3065  del_timer_sync(&udc_timer);
3066  /* remove pollstall timer */
3067  stop_pollstall_timer++;
3068  if (timer_pending(&udc_pollstall_timer))
3069  wait_for_completion(&on_pollstall_exit);
3070  if (udc_pollstall_timer.data)
3071  del_timer_sync(&udc_pollstall_timer);
3072  udc = NULL;
3073 }
3074 
3075 /* Reset all pci context */
3076 static void udc_pci_remove(struct pci_dev *pdev)
3077 {
3078  struct udc *dev;
3079 
3080  dev = pci_get_drvdata(pdev);
3081 
3082  usb_del_gadget_udc(&udc->gadget);
3083  /* gadget driver must not be registered */
3084  BUG_ON(dev->driver != NULL);
3085 
3086  /* dma pool cleanup */
3087  if (dev->data_requests)
3088  pci_pool_destroy(dev->data_requests);
3089 
3090  if (dev->stp_requests) {
3091  /* cleanup DMA desc's for ep0in */
3092  pci_pool_free(dev->stp_requests,
3093  dev->ep[UDC_EP0OUT_IX].td_stp,
3094  dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3095  pci_pool_free(dev->stp_requests,
3096  dev->ep[UDC_EP0OUT_IX].td,
3097  dev->ep[UDC_EP0OUT_IX].td_phys);
3098 
3099  pci_pool_destroy(dev->stp_requests);
3100  }
3101 
3102  /* reset controller */
3103  writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
3104  if (dev->irq_registered)
3105  free_irq(pdev->irq, dev);
3106  if (dev->regs)
3107  iounmap(dev->regs);
3108  if (dev->mem_region)
3110  pci_resource_len(pdev, 0));
3111  if (dev->active)
3112  pci_disable_device(pdev);
3113 
3114  device_unregister(&dev->gadget.dev);
3115  pci_set_drvdata(pdev, NULL);
3116 
3117  udc_remove(dev);
3118 }
3119 
3120 /* create dma pools on init */
3121 static int init_dma_pools(struct udc *dev)
3122 {
3123  struct udc_stp_dma *td_stp;
3124  struct udc_data_dma *td_data;
3125  int retval;
3126 
3127  /* consistent DMA mode setting ? */
3128  if (use_dma_ppb) {
3129  use_dma_bufferfill_mode = 0;
3130  } else {
3131  use_dma_ppb_du = 0;
3132  use_dma_bufferfill_mode = 1;
3133  }
3134 
3135  /* DMA setup */
3136  dev->data_requests = dma_pool_create("data_requests", NULL,
3137  sizeof(struct udc_data_dma), 0, 0);
3138  if (!dev->data_requests) {
3139  DBG(dev, "can't get request data pool\n");
3140  retval = -ENOMEM;
3141  goto finished;
3142  }
3143 
3144  /* EP0 in dma regs = dev control regs */
3145  dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
3146 
3147  /* dma desc for setup data */
3148  dev->stp_requests = dma_pool_create("setup requests", NULL,
3149  sizeof(struct udc_stp_dma), 0, 0);
3150  if (!dev->stp_requests) {
3151  DBG(dev, "can't get stp request pool\n");
3152  retval = -ENOMEM;
3153  goto finished;
3154  }
3155  /* setup */
3156  td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3157  &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3158  if (td_stp == NULL) {
3159  retval = -ENOMEM;
3160  goto finished;
3161  }
3162  dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
3163 
3164  /* data: 0 packets !? */
3165  td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3166  &dev->ep[UDC_EP0OUT_IX].td_phys);
3167  if (td_data == NULL) {
3168  retval = -ENOMEM;
3169  goto finished;
3170  }
3171  dev->ep[UDC_EP0OUT_IX].td = td_data;
3172  return 0;
3173 
3174 finished:
3175  return retval;
3176 }
3177 
3178 /* Called by pci bus driver to init pci context */
3179 static int udc_pci_probe(
3180  struct pci_dev *pdev,
3181  const struct pci_device_id *id
3182 )
3183 {
3184  struct udc *dev;
3185  unsigned long resource;
3186  unsigned long len;
3187  int retval = 0;
3188 
3189  /* one udc only */
3190  if (udc) {
3191  dev_dbg(&pdev->dev, "already probed\n");
3192  return -EBUSY;
3193  }
3194 
3195  /* init */
3196  dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
3197  if (!dev) {
3198  retval = -ENOMEM;
3199  goto finished;
3200  }
3201 
3202  /* pci setup */
3203  if (pci_enable_device(pdev) < 0) {
3204  kfree(dev);
3205  dev = NULL;
3206  retval = -ENODEV;
3207  goto finished;
3208  }
3209  dev->active = 1;
3210 
3211  /* PCI resource allocation */
3212  resource = pci_resource_start(pdev, 0);
3213  len = pci_resource_len(pdev, 0);
3214 
3215  if (!request_mem_region(resource, len, name)) {
3216  dev_dbg(&pdev->dev, "pci device used already\n");
3217  kfree(dev);
3218  dev = NULL;
3219  retval = -EBUSY;
3220  goto finished;
3221  }
3222  dev->mem_region = 1;
3223 
3224  dev->virt_addr = ioremap_nocache(resource, len);
3225  if (dev->virt_addr == NULL) {
3226  dev_dbg(&pdev->dev, "start address cannot be mapped\n");
3227  kfree(dev);
3228  dev = NULL;
3229  retval = -EFAULT;
3230  goto finished;
3231  }
3232 
3233  if (!pdev->irq) {
3234  dev_err(&dev->pdev->dev, "irq not set\n");
3235  kfree(dev);
3236  dev = NULL;
3237  retval = -ENODEV;
3238  goto finished;
3239  }
3240 
3241  spin_lock_init(&dev->lock);
3242  /* udc csr registers base */
3243  dev->csr = dev->virt_addr + UDC_CSR_ADDR;
3244  /* dev registers base */
3245  dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
3246  /* ep registers base */
3247  dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
3248  /* fifo's base */
3249  dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
3250  dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
3251 
3252  if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
3253  dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq);
3254  kfree(dev);
3255  dev = NULL;
3256  retval = -EBUSY;
3257  goto finished;
3258  }
3259  dev->irq_registered = 1;
3260 
3261  pci_set_drvdata(pdev, dev);
3262 
3263  /* chip revision for Hs AMD5536 */
3264  dev->chiprev = pdev->revision;
3265 
3266  pci_set_master(pdev);
3267  pci_try_set_mwi(pdev);
3268 
3269  /* init dma pools */
3270  if (use_dma) {
3271  retval = init_dma_pools(dev);
3272  if (retval != 0)
3273  goto finished;
3274  }
3275 
3276  dev->phys_addr = resource;
3277  dev->irq = pdev->irq;
3278  dev->pdev = pdev;
3279  dev->gadget.dev.parent = &pdev->dev;
3280  dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
3281 
3282  /* general probing */
3283  if (udc_probe(dev) == 0)
3284  return 0;
3285 
3286 finished:
3287  if (dev)
3288  udc_pci_remove(pdev);
3289  return retval;
3290 }
3291 
3292 /* general probe */
3293 static int udc_probe(struct udc *dev)
3294 {
3295  char tmp[128];
3296  u32 reg;
3297  int retval;
3298 
3299  /* mark timer as not initialized */
3300  udc_timer.data = 0;
3301  udc_pollstall_timer.data = 0;
3302 
3303  /* device struct setup */
3304  dev->gadget.ops = &udc_ops;
3305 
3306  dev_set_name(&dev->gadget.dev, "gadget");
3307  dev->gadget.dev.release = gadget_release;
3308  dev->gadget.name = name;
3309  dev->gadget.max_speed = USB_SPEED_HIGH;
3310 
3311  /* init registers, interrupts, ... */
3312  startup_registers(dev);
3313 
3314  dev_info(&dev->pdev->dev, "%s\n", mod_desc);
3315 
3316  snprintf(tmp, sizeof tmp, "%d", dev->irq);
3317  dev_info(&dev->pdev->dev,
3318  "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3319  tmp, dev->phys_addr, dev->chiprev,
3320  (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
3322  if (dev->chiprev == UDC_HSA0_REV) {
3323  dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
3324  retval = -ENODEV;
3325  goto finished;
3326  }
3327  dev_info(&dev->pdev->dev,
3328  "driver version: %s(for Geode5536 B1)\n", tmp);
3329  udc = dev;
3330 
3331  retval = usb_add_gadget_udc(&udc->pdev->dev, &dev->gadget);
3332  if (retval)
3333  goto finished;
3334 
3335  retval = device_register(&dev->gadget.dev);
3336  if (retval) {
3337  usb_del_gadget_udc(&dev->gadget);
3338  put_device(&dev->gadget.dev);
3339  goto finished;
3340  }
3341 
3342  /* timer init */
3343  init_timer(&udc_timer);
3344  udc_timer.function = udc_timer_function;
3345  udc_timer.data = 1;
3346  /* timer pollstall init */
3347  init_timer(&udc_pollstall_timer);
3348  udc_pollstall_timer.function = udc_pollstall_timer_function;
3349  udc_pollstall_timer.data = 1;
3350 
3351  /* set SD */
3352  reg = readl(&dev->regs->ctl);
3353  reg |= AMD_BIT(UDC_DEVCTL_SD);
3354  writel(reg, &dev->regs->ctl);
3355 
3356  /* print dev register info */
3357  print_regs(dev);
3358 
3359  return 0;
3360 
3361 finished:
3362  return retval;
3363 }
3364 
3365 /* Initiates a remote wakeup */
3366 static int udc_remote_wakeup(struct udc *dev)
3367 {
3368  unsigned long flags;
3369  u32 tmp;
3370 
3371  DBG(dev, "UDC initiates remote wakeup\n");
3372 
3373  spin_lock_irqsave(&dev->lock, flags);
3374 
3375  tmp = readl(&dev->regs->ctl);
3376  tmp |= AMD_BIT(UDC_DEVCTL_RES);
3377  writel(tmp, &dev->regs->ctl);
3378  tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
3379  writel(tmp, &dev->regs->ctl);
3380 
3381  spin_unlock_irqrestore(&dev->lock, flags);
3382  return 0;
3383 }
3384 
3385 /* PCI device parameters */
3386 static DEFINE_PCI_DEVICE_TABLE(pci_id) = {
3387  {
3388  PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
3389  .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3390  .class_mask = 0xffffffff,
3391  },
3392  {},
3393 };
3395 
3396 /* PCI functions */
3397 static struct pci_driver udc_pci_driver = {
3398  .name = (char *) name,
3399  .id_table = pci_id,
3400  .probe = udc_pci_probe,
3401  .remove = udc_pci_remove,
3402 };
3403 
3404 module_pci_driver(udc_pci_driver);
3405 
3407 MODULE_AUTHOR("Thomas Dahlmann");
3408 MODULE_LICENSE("GPL");
3409