Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hpet.c
Go to the documentation of this file.
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
14 
15 #include <asm/fixmap.h>
16 #include <asm/hpet.h>
17 #include <asm/time.h>
18 
19 #define HPET_MASK CLOCKSOURCE_MASK(32)
20 
21 /* FSEC = 10^-15
22  NSEC = 10^-9 */
23 #define FSEC_PER_NSEC 1000000L
24 
25 #define HPET_DEV_USED_BIT 2
26 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
27 #define HPET_DEV_VALID 0x8
28 #define HPET_DEV_FSB_CAP 0x1000
29 #define HPET_DEV_PERI_CAP 0x2000
30 
31 #define HPET_MIN_CYCLES 128
32 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
33 
34 /*
35  * HPET address is set in acpi/boot.c, when an ACPI entry exists
36  */
37 unsigned long hpet_address;
38 u8 hpet_blockid; /* OS timer block num */
40 
41 #ifdef CONFIG_PCI_MSI
42 static unsigned long hpet_num_timers;
43 #endif
44 static void __iomem *hpet_virt_address;
45 
46 struct hpet_dev {
47  struct clock_event_device evt;
48  unsigned int num;
49  int cpu;
50  unsigned int irq;
51  unsigned int flags;
52  char name[10];
53 };
54 
55 inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
56 {
57  return container_of(evtdev, struct hpet_dev, evt);
58 }
59 
60 inline unsigned int hpet_readl(unsigned int a)
61 {
62  return readl(hpet_virt_address + a);
63 }
64 
65 static inline void hpet_writel(unsigned int d, unsigned int a)
66 {
67  writel(d, hpet_virt_address + a);
68 }
69 
70 #ifdef CONFIG_X86_64
71 #include <asm/pgtable.h>
72 #endif
73 
74 static inline void hpet_set_mapping(void)
75 {
76  hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
77 #ifdef CONFIG_X86_64
79 #endif
80 }
81 
82 static inline void hpet_clear_mapping(void)
83 {
84  iounmap(hpet_virt_address);
85  hpet_virt_address = NULL;
86 }
87 
88 /*
89  * HPET command line enable / disable
90  */
91 static int boot_hpet_disable;
93 static int hpet_verbose;
94 
95 static int __init hpet_setup(char *str)
96 {
97  while (str) {
98  char *next = strchr(str, ',');
99 
100  if (next)
101  *next++ = 0;
102  if (!strncmp("disable", str, 7))
103  boot_hpet_disable = 1;
104  if (!strncmp("force", str, 5))
105  hpet_force_user = 1;
106  if (!strncmp("verbose", str, 7))
107  hpet_verbose = 1;
108  str = next;
109  }
110  return 1;
111 }
112 __setup("hpet=", hpet_setup);
113 
114 static int __init disable_hpet(char *str)
115 {
116  boot_hpet_disable = 1;
117  return 1;
118 }
119 __setup("nohpet", disable_hpet);
120 
121 static inline int is_hpet_capable(void)
122 {
123  return !boot_hpet_disable && hpet_address;
124 }
125 
126 /*
127  * HPET timer interrupt enable / disable
128  */
129 static int hpet_legacy_int_enabled;
130 
135 {
136  return is_hpet_capable() && hpet_legacy_int_enabled;
137 }
139 
140 static void _hpet_print_config(const char *function, int line)
141 {
142  u32 i, timers, l, h;
143  printk(KERN_INFO "hpet: %s(%d):\n", function, line);
144  l = hpet_readl(HPET_ID);
145  h = hpet_readl(HPET_PERIOD);
146  timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
147  printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
148  l = hpet_readl(HPET_CFG);
149  h = hpet_readl(HPET_STATUS);
150  printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
151  l = hpet_readl(HPET_COUNTER);
152  h = hpet_readl(HPET_COUNTER+4);
153  printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
154 
155  for (i = 0; i < timers; i++) {
156  l = hpet_readl(HPET_Tn_CFG(i));
157  h = hpet_readl(HPET_Tn_CFG(i)+4);
158  printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
159  i, l, h);
160  l = hpet_readl(HPET_Tn_CMP(i));
161  h = hpet_readl(HPET_Tn_CMP(i)+4);
162  printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
163  i, l, h);
164  l = hpet_readl(HPET_Tn_ROUTE(i));
165  h = hpet_readl(HPET_Tn_ROUTE(i)+4);
166  printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
167  i, l, h);
168  }
169 }
170 
171 #define hpet_print_config() \
172 do { \
173  if (hpet_verbose) \
174  _hpet_print_config(__FUNCTION__, __LINE__); \
175 } while (0)
176 
177 /*
178  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
179  * timer 0 and timer 1 in case of RTC emulation.
180  */
181 #ifdef CONFIG_HPET
182 
183 static void hpet_reserve_msi_timers(struct hpet_data *hd);
184 
185 static void hpet_reserve_platform_timers(unsigned int id)
186 {
187  struct hpet __iomem *hpet = hpet_virt_address;
188  struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
189  unsigned int nrtimers, i;
190  struct hpet_data hd;
191 
192  nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
193 
194  memset(&hd, 0, sizeof(hd));
195  hd.hd_phys_address = hpet_address;
196  hd.hd_address = hpet;
197  hd.hd_nirqs = nrtimers;
198  hpet_reserve_timer(&hd, 0);
199 
200 #ifdef CONFIG_HPET_EMULATE_RTC
201  hpet_reserve_timer(&hd, 1);
202 #endif
203 
204  /*
205  * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
206  * is wrong for i8259!) not the output IRQ. Many BIOS writers
207  * don't bother configuring *any* comparator interrupts.
208  */
209  hd.hd_irq[0] = HPET_LEGACY_8254;
210  hd.hd_irq[1] = HPET_LEGACY_RTC;
211 
212  for (i = 2; i < nrtimers; timer++, i++) {
213  hd.hd_irq[i] = (readl(&timer->hpet_config) &
215  }
216 
217  hpet_reserve_msi_timers(&hd);
218 
219  hpet_alloc(&hd);
220 
221 }
222 #else
223 static void hpet_reserve_platform_timers(unsigned int id) { }
224 #endif
225 
226 /*
227  * Common hpet info
228  */
229 static unsigned long hpet_freq;
230 
231 static void hpet_legacy_set_mode(enum clock_event_mode mode,
232  struct clock_event_device *evt);
233 static int hpet_legacy_next_event(unsigned long delta,
234  struct clock_event_device *evt);
235 
236 /*
237  * The hpet clock event device
238  */
239 static struct clock_event_device hpet_clockevent = {
240  .name = "hpet",
241  .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
242  .set_mode = hpet_legacy_set_mode,
243  .set_next_event = hpet_legacy_next_event,
244  .irq = 0,
245  .rating = 50,
246 };
247 
248 static void hpet_stop_counter(void)
249 {
250  unsigned long cfg = hpet_readl(HPET_CFG);
251  cfg &= ~HPET_CFG_ENABLE;
252  hpet_writel(cfg, HPET_CFG);
253 }
254 
255 static void hpet_reset_counter(void)
256 {
257  hpet_writel(0, HPET_COUNTER);
258  hpet_writel(0, HPET_COUNTER + 4);
259 }
260 
261 static void hpet_start_counter(void)
262 {
263  unsigned int cfg = hpet_readl(HPET_CFG);
264  cfg |= HPET_CFG_ENABLE;
265  hpet_writel(cfg, HPET_CFG);
266 }
267 
268 static void hpet_restart_counter(void)
269 {
270  hpet_stop_counter();
271  hpet_reset_counter();
272  hpet_start_counter();
273 }
274 
275 static void hpet_resume_device(void)
276 {
277  force_hpet_resume();
278 }
279 
280 static void hpet_resume_counter(struct clocksource *cs)
281 {
282  hpet_resume_device();
283  hpet_restart_counter();
284 }
285 
286 static void hpet_enable_legacy_int(void)
287 {
288  unsigned int cfg = hpet_readl(HPET_CFG);
289 
290  cfg |= HPET_CFG_LEGACY;
291  hpet_writel(cfg, HPET_CFG);
292  hpet_legacy_int_enabled = 1;
293 }
294 
295 static void hpet_legacy_clockevent_register(void)
296 {
297  /* Start HPET legacy interrupts */
298  hpet_enable_legacy_int();
299 
300  /*
301  * Start hpet with the boot cpu mask and make it
302  * global after the IO_APIC has been initialized.
303  */
304  hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
305  clockevents_config_and_register(&hpet_clockevent, hpet_freq,
306  HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
307  global_clock_event = &hpet_clockevent;
308  printk(KERN_DEBUG "hpet clockevent registered\n");
309 }
310 
311 static int hpet_setup_msi_irq(unsigned int irq);
312 
313 static void hpet_set_mode(enum clock_event_mode mode,
314  struct clock_event_device *evt, int timer)
315 {
316  unsigned int cfg, cmp, now;
317  uint64_t delta;
318 
319  switch (mode) {
320  case CLOCK_EVT_MODE_PERIODIC:
321  hpet_stop_counter();
322  delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
323  delta >>= evt->shift;
324  now = hpet_readl(HPET_COUNTER);
325  cmp = now + (unsigned int) delta;
326  cfg = hpet_readl(HPET_Tn_CFG(timer));
327  cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
328  HPET_TN_SETVAL | HPET_TN_32BIT;
329  hpet_writel(cfg, HPET_Tn_CFG(timer));
330  hpet_writel(cmp, HPET_Tn_CMP(timer));
331  udelay(1);
332  /*
333  * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
334  * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
335  * bit is automatically cleared after the first write.
336  * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
337  * Publication # 24674)
338  */
339  hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
340  hpet_start_counter();
342  break;
343 
344  case CLOCK_EVT_MODE_ONESHOT:
345  cfg = hpet_readl(HPET_Tn_CFG(timer));
346  cfg &= ~HPET_TN_PERIODIC;
347  cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
348  hpet_writel(cfg, HPET_Tn_CFG(timer));
349  break;
350 
351  case CLOCK_EVT_MODE_UNUSED:
352  case CLOCK_EVT_MODE_SHUTDOWN:
353  cfg = hpet_readl(HPET_Tn_CFG(timer));
354  cfg &= ~HPET_TN_ENABLE;
355  hpet_writel(cfg, HPET_Tn_CFG(timer));
356  break;
357 
358  case CLOCK_EVT_MODE_RESUME:
359  if (timer == 0) {
360  hpet_enable_legacy_int();
361  } else {
362  struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
363  hpet_setup_msi_irq(hdev->irq);
364  disable_irq(hdev->irq);
365  irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
366  enable_irq(hdev->irq);
367  }
369  break;
370  }
371 }
372 
373 static int hpet_next_event(unsigned long delta,
374  struct clock_event_device *evt, int timer)
375 {
376  u32 cnt;
377  s32 res;
378 
379  cnt = hpet_readl(HPET_COUNTER);
380  cnt += (u32) delta;
381  hpet_writel(cnt, HPET_Tn_CMP(timer));
382 
383  /*
384  * HPETs are a complete disaster. The compare register is
385  * based on a equal comparison and neither provides a less
386  * than or equal functionality (which would require to take
387  * the wraparound into account) nor a simple count down event
388  * mode. Further the write to the comparator register is
389  * delayed internally up to two HPET clock cycles in certain
390  * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
391  * longer delays. We worked around that by reading back the
392  * compare register, but that required another workaround for
393  * ICH9,10 chips where the first readout after write can
394  * return the old stale value. We already had a minimum
395  * programming delta of 5us enforced, but a NMI or SMI hitting
396  * between the counter readout and the comparator write can
397  * move us behind that point easily. Now instead of reading
398  * the compare register back several times, we make the ETIME
399  * decision based on the following: Return ETIME if the
400  * counter value after the write is less than HPET_MIN_CYCLES
401  * away from the event or if the counter is already ahead of
402  * the event. The minimum programming delta for the generic
403  * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
404  */
405  res = (s32)(cnt - hpet_readl(HPET_COUNTER));
406 
407  return res < HPET_MIN_CYCLES ? -ETIME : 0;
408 }
409 
410 static void hpet_legacy_set_mode(enum clock_event_mode mode,
411  struct clock_event_device *evt)
412 {
413  hpet_set_mode(mode, evt, 0);
414 }
415 
416 static int hpet_legacy_next_event(unsigned long delta,
417  struct clock_event_device *evt)
418 {
419  return hpet_next_event(delta, evt, 0);
420 }
421 
422 /*
423  * HPET MSI Support
424  */
425 #ifdef CONFIG_PCI_MSI
426 
427 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
428 static struct hpet_dev *hpet_devs;
429 
430 void hpet_msi_unmask(struct irq_data *data)
431 {
432  struct hpet_dev *hdev = data->handler_data;
433  unsigned int cfg;
434 
435  /* unmask it */
436  cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
437  cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
438  hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
439 }
440 
441 void hpet_msi_mask(struct irq_data *data)
442 {
443  struct hpet_dev *hdev = data->handler_data;
444  unsigned int cfg;
445 
446  /* mask it */
447  cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
448  cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
449  hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
450 }
451 
452 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
453 {
454  hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
455  hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
456 }
457 
458 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
459 {
460  msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
461  msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
462  msg->address_hi = 0;
463 }
464 
465 static void hpet_msi_set_mode(enum clock_event_mode mode,
466  struct clock_event_device *evt)
467 {
468  struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
469  hpet_set_mode(mode, evt, hdev->num);
470 }
471 
472 static int hpet_msi_next_event(unsigned long delta,
473  struct clock_event_device *evt)
474 {
475  struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
476  return hpet_next_event(delta, evt, hdev->num);
477 }
478 
479 static int hpet_setup_msi_irq(unsigned int irq)
480 {
481  if (arch_setup_hpet_msi(irq, hpet_blockid)) {
482  destroy_irq(irq);
483  return -EINVAL;
484  }
485  return 0;
486 }
487 
488 static int hpet_assign_irq(struct hpet_dev *dev)
489 {
490  unsigned int irq;
491 
492  irq = create_irq_nr(0, -1);
493  if (!irq)
494  return -EINVAL;
495 
496  irq_set_handler_data(irq, dev);
497 
498  if (hpet_setup_msi_irq(irq))
499  return -EINVAL;
500 
501  dev->irq = irq;
502  return 0;
503 }
504 
505 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
506 {
507  struct hpet_dev *dev = (struct hpet_dev *)data;
508  struct clock_event_device *hevt = &dev->evt;
509 
510  if (!hevt->event_handler) {
511  printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
512  dev->num);
513  return IRQ_HANDLED;
514  }
515 
516  hevt->event_handler(hevt);
517  return IRQ_HANDLED;
518 }
519 
520 static int hpet_setup_irq(struct hpet_dev *dev)
521 {
522 
523  if (request_irq(dev->irq, hpet_interrupt_handler,
525  dev->name, dev))
526  return -1;
527 
528  disable_irq(dev->irq);
529  irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
530  enable_irq(dev->irq);
531 
532  printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
533  dev->name, dev->irq);
534 
535  return 0;
536 }
537 
538 /* This should be called in specific @cpu */
539 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
540 {
541  struct clock_event_device *evt = &hdev->evt;
542 
543  WARN_ON(cpu != smp_processor_id());
544  if (!(hdev->flags & HPET_DEV_VALID))
545  return;
546 
547  if (hpet_setup_msi_irq(hdev->irq))
548  return;
549 
550  hdev->cpu = cpu;
551  per_cpu(cpu_hpet_dev, cpu) = hdev;
552  evt->name = hdev->name;
553  hpet_setup_irq(hdev);
554  evt->irq = hdev->irq;
555 
556  evt->rating = 110;
557  evt->features = CLOCK_EVT_FEAT_ONESHOT;
558  if (hdev->flags & HPET_DEV_PERI_CAP)
559  evt->features |= CLOCK_EVT_FEAT_PERIODIC;
560 
561  evt->set_mode = hpet_msi_set_mode;
562  evt->set_next_event = hpet_msi_next_event;
563  evt->cpumask = cpumask_of(hdev->cpu);
564 
566  0x7FFFFFFF);
567 }
568 
569 #ifdef CONFIG_HPET
570 /* Reserve at least one timer for userspace (/dev/hpet) */
571 #define RESERVE_TIMERS 1
572 #else
573 #define RESERVE_TIMERS 0
574 #endif
575 
576 static void hpet_msi_capability_lookup(unsigned int start_timer)
577 {
578  unsigned int id;
579  unsigned int num_timers;
580  unsigned int num_timers_used = 0;
581  int i;
582 
583  if (hpet_msi_disable)
584  return;
585 
586  if (boot_cpu_has(X86_FEATURE_ARAT))
587  return;
588  id = hpet_readl(HPET_ID);
589 
590  num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
591  num_timers++; /* Value read out starts from 0 */
593 
594  hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
595  if (!hpet_devs)
596  return;
597 
598  hpet_num_timers = num_timers;
599 
600  for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
601  struct hpet_dev *hdev = &hpet_devs[num_timers_used];
602  unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
603 
604  /* Only consider HPET timer with MSI support */
605  if (!(cfg & HPET_TN_FSB_CAP))
606  continue;
607 
608  hdev->flags = 0;
609  if (cfg & HPET_TN_PERIODIC_CAP)
610  hdev->flags |= HPET_DEV_PERI_CAP;
611  hdev->num = i;
612 
613  sprintf(hdev->name, "hpet%d", i);
614  if (hpet_assign_irq(hdev))
615  continue;
616 
617  hdev->flags |= HPET_DEV_FSB_CAP;
618  hdev->flags |= HPET_DEV_VALID;
619  num_timers_used++;
620  if (num_timers_used == num_possible_cpus())
621  break;
622  }
623 
624  printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
625  num_timers, num_timers_used);
626 }
627 
628 #ifdef CONFIG_HPET
629 static void hpet_reserve_msi_timers(struct hpet_data *hd)
630 {
631  int i;
632 
633  if (!hpet_devs)
634  return;
635 
636  for (i = 0; i < hpet_num_timers; i++) {
637  struct hpet_dev *hdev = &hpet_devs[i];
638 
639  if (!(hdev->flags & HPET_DEV_VALID))
640  continue;
641 
642  hd->hd_irq[hdev->num] = hdev->irq;
643  hpet_reserve_timer(hd, hdev->num);
644  }
645 }
646 #endif
647 
648 static struct hpet_dev *hpet_get_unused_timer(void)
649 {
650  int i;
651 
652  if (!hpet_devs)
653  return NULL;
654 
655  for (i = 0; i < hpet_num_timers; i++) {
656  struct hpet_dev *hdev = &hpet_devs[i];
657 
658  if (!(hdev->flags & HPET_DEV_VALID))
659  continue;
661  (unsigned long *)&hdev->flags))
662  continue;
663  return hdev;
664  }
665  return NULL;
666 }
667 
668 struct hpet_work_struct {
669  struct delayed_work work;
670  struct completion complete;
671 };
672 
673 static void hpet_work(struct work_struct *w)
674 {
675  struct hpet_dev *hdev;
676  int cpu = smp_processor_id();
677  struct hpet_work_struct *hpet_work;
678 
679  hpet_work = container_of(w, struct hpet_work_struct, work.work);
680 
681  hdev = hpet_get_unused_timer();
682  if (hdev)
683  init_one_hpet_msi_clockevent(hdev, cpu);
684 
685  complete(&hpet_work->complete);
686 }
687 
688 static int hpet_cpuhp_notify(struct notifier_block *n,
689  unsigned long action, void *hcpu)
690 {
691  unsigned long cpu = (unsigned long)hcpu;
692  struct hpet_work_struct work;
693  struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
694 
695  switch (action & 0xf) {
696  case CPU_ONLINE:
697  INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
698  init_completion(&work.complete);
699  /* FIXME: add schedule_work_on() */
700  schedule_delayed_work_on(cpu, &work.work, 0);
701  wait_for_completion(&work.complete);
702  destroy_timer_on_stack(&work.work.timer);
703  break;
704  case CPU_DEAD:
705  if (hdev) {
706  free_irq(hdev->irq, hdev);
707  hdev->flags &= ~HPET_DEV_USED;
708  per_cpu(cpu_hpet_dev, cpu) = NULL;
709  }
710  break;
711  }
712  return NOTIFY_OK;
713 }
714 #else
715 
716 static int hpet_setup_msi_irq(unsigned int irq)
717 {
718  return 0;
719 }
720 static void hpet_msi_capability_lookup(unsigned int start_timer)
721 {
722  return;
723 }
724 
725 #ifdef CONFIG_HPET
726 static void hpet_reserve_msi_timers(struct hpet_data *hd)
727 {
728  return;
729 }
730 #endif
731 
732 static int hpet_cpuhp_notify(struct notifier_block *n,
733  unsigned long action, void *hcpu)
734 {
735  return NOTIFY_OK;
736 }
737 
738 #endif
739 
740 /*
741  * Clock source related code
742  */
743 static cycle_t read_hpet(struct clocksource *cs)
744 {
745  return (cycle_t)hpet_readl(HPET_COUNTER);
746 }
747 
748 static struct clocksource clocksource_hpet = {
749  .name = "hpet",
750  .rating = 250,
751  .read = read_hpet,
752  .mask = HPET_MASK,
754  .resume = hpet_resume_counter,
755 #ifdef CONFIG_X86_64
756  .archdata = { .vclock_mode = VCLOCK_HPET },
757 #endif
758 };
759 
760 static int hpet_clocksource_register(void)
761 {
762  u64 start, now;
763  cycle_t t1;
764 
765  /* Start the counter */
766  hpet_restart_counter();
767 
768  /* Verify whether hpet counter works */
769  t1 = hpet_readl(HPET_COUNTER);
770  rdtscll(start);
771 
772  /*
773  * We don't know the TSC frequency yet, but waiting for
774  * 200000 TSC cycles is safe:
775  * 4 GHz == 50us
776  * 1 GHz == 200us
777  */
778  do {
779  rep_nop();
780  rdtscll(now);
781  } while ((now - start) < 200000UL);
782 
783  if (t1 == hpet_readl(HPET_COUNTER)) {
785  "HPET counter not counting. HPET disabled\n");
786  return -ENODEV;
787  }
788 
789  clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
790  return 0;
791 }
792 
793 static u32 *hpet_boot_cfg;
794 
799 {
800  u32 hpet_period, cfg, id;
801  u64 freq;
802  unsigned int i, last;
803 
804  if (!is_hpet_capable())
805  return 0;
806 
807  hpet_set_mapping();
808 
809  /*
810  * Read the period and check for a sane value:
811  */
812  hpet_period = hpet_readl(HPET_PERIOD);
813 
814  /*
815  * AMD SB700 based systems with spread spectrum enabled use a
816  * SMM based HPET emulation to provide proper frequency
817  * setting. The SMM code is initialized with the first HPET
818  * register access and takes some time to complete. During
819  * this time the config register reads 0xffffffff. We check
820  * for max. 1000 loops whether the config register reads a non
821  * 0xffffffff value to make sure that HPET is up and running
822  * before we go further. A counting loop is safe, as the HPET
823  * access takes thousands of CPU cycles. On non SB700 based
824  * machines this check is only done once and has no side
825  * effects.
826  */
827  for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
828  if (i == 1000) {
830  "HPET config register value = 0xFFFFFFFF. "
831  "Disabling HPET\n");
832  goto out_nohpet;
833  }
834  }
835 
836  if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
837  goto out_nohpet;
838 
839  /*
840  * The period is a femto seconds value. Convert it to a
841  * frequency.
842  */
843  freq = FSEC_PER_SEC;
844  do_div(freq, hpet_period);
845  hpet_freq = freq;
846 
847  /*
848  * Read the HPET ID register to retrieve the IRQ routing
849  * information and the number of channels
850  */
851  id = hpet_readl(HPET_ID);
853 
854  last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
855 
856 #ifdef CONFIG_HPET_EMULATE_RTC
857  /*
858  * The legacy routing mode needs at least two channels, tick timer
859  * and the rtc emulation channel.
860  */
861  if (!last)
862  goto out_nohpet;
863 #endif
864 
865  cfg = hpet_readl(HPET_CFG);
866  hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
867  GFP_KERNEL);
868  if (hpet_boot_cfg)
869  *hpet_boot_cfg = cfg;
870  else
871  pr_warn("HPET initial state will not be saved\n");
872  cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
873  hpet_writel(cfg, HPET_CFG);
874  if (cfg)
875  pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
876  cfg);
877 
878  for (i = 0; i <= last; ++i) {
879  cfg = hpet_readl(HPET_Tn_CFG(i));
880  if (hpet_boot_cfg)
881  hpet_boot_cfg[i + 1] = cfg;
882  cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
883  hpet_writel(cfg, HPET_Tn_CFG(i));
884  cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
885  | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
886  | HPET_TN_FSB | HPET_TN_FSB_CAP);
887  if (cfg)
888  pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
889  cfg, i);
890  }
892 
893  if (hpet_clocksource_register())
894  goto out_nohpet;
895 
896  if (id & HPET_ID_LEGSUP) {
897  hpet_legacy_clockevent_register();
898  return 1;
899  }
900  return 0;
901 
902 out_nohpet:
903  hpet_clear_mapping();
904  hpet_address = 0;
905  return 0;
906 }
907 
908 /*
909  * Needs to be late, as the reserve_timer code calls kalloc !
910  *
911  * Not a problem on i386 as hpet_enable is called from late_time_init,
912  * but on x86_64 it is necessary !
913  */
914 static __init int hpet_late_init(void)
915 {
916  int cpu;
917 
918  if (boot_hpet_disable)
919  return -ENODEV;
920 
921  if (!hpet_address) {
922  if (!force_hpet_address)
923  return -ENODEV;
924 
925  hpet_address = force_hpet_address;
926  hpet_enable();
927  }
928 
929  if (!hpet_virt_address)
930  return -ENODEV;
931 
932  if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
933  hpet_msi_capability_lookup(2);
934  else
935  hpet_msi_capability_lookup(0);
936 
937  hpet_reserve_platform_timers(hpet_readl(HPET_ID));
939 
940  if (hpet_msi_disable)
941  return 0;
942 
943  if (boot_cpu_has(X86_FEATURE_ARAT))
944  return 0;
945 
946  for_each_online_cpu(cpu) {
947  hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
948  }
949 
950  /* This notifier should be called after workqueue is ready */
951  hotcpu_notifier(hpet_cpuhp_notify, -20);
952 
953  return 0;
954 }
955 fs_initcall(hpet_late_init);
956 
957 void hpet_disable(void)
958 {
959  if (is_hpet_capable() && hpet_virt_address) {
960  unsigned int cfg = hpet_readl(HPET_CFG), id, last;
961 
962  if (hpet_boot_cfg)
963  cfg = *hpet_boot_cfg;
964  else if (hpet_legacy_int_enabled) {
965  cfg &= ~HPET_CFG_LEGACY;
966  hpet_legacy_int_enabled = 0;
967  }
968  cfg &= ~HPET_CFG_ENABLE;
969  hpet_writel(cfg, HPET_CFG);
970 
971  if (!hpet_boot_cfg)
972  return;
973 
974  id = hpet_readl(HPET_ID);
975  last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
976 
977  for (id = 0; id <= last; ++id)
978  hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
979 
980  if (*hpet_boot_cfg & HPET_CFG_ENABLE)
981  hpet_writel(*hpet_boot_cfg, HPET_CFG);
982  }
983 }
984 
985 #ifdef CONFIG_HPET_EMULATE_RTC
986 
987 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
988  * is enabled, we support RTC interrupt functionality in software.
989  * RTC has 3 kinds of interrupts:
990  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
991  * is updated
992  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
993  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
994  * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
995  * (1) and (2) above are implemented using polling at a frequency of
996  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
997  * overhead. (DEFAULT_RTC_INT_FREQ)
998  * For (3), we use interrupts at 64Hz or user specified periodic
999  * frequency, whichever is higher.
1000  */
1001 #include <linux/mc146818rtc.h>
1002 #include <linux/rtc.h>
1003 #include <asm/rtc.h>
1004 
1005 #define DEFAULT_RTC_INT_FREQ 64
1006 #define DEFAULT_RTC_SHIFT 6
1007 #define RTC_NUM_INTS 1
1008 
1009 static unsigned long hpet_rtc_flags;
1010 static int hpet_prev_update_sec;
1011 static struct rtc_time hpet_alarm_time;
1012 static unsigned long hpet_pie_count;
1013 static u32 hpet_t1_cmp;
1014 static u32 hpet_default_delta;
1015 static u32 hpet_pie_delta;
1016 static unsigned long hpet_pie_limit;
1017 
1018 static rtc_irq_handler irq_handler;
1019 
1020 /*
1021  * Check that the hpet counter c1 is ahead of the c2
1022  */
1023 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1024 {
1025  return (s32)(c2 - c1) < 0;
1026 }
1027 
1028 /*
1029  * Registers a IRQ handler.
1030  */
1031 int hpet_register_irq_handler(rtc_irq_handler handler)
1032 {
1033  if (!is_hpet_enabled())
1034  return -ENODEV;
1035  if (irq_handler)
1036  return -EBUSY;
1037 
1038  irq_handler = handler;
1039 
1040  return 0;
1041 }
1043 
1044 /*
1045  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1046  * and does cleanup.
1047  */
1048 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1049 {
1050  if (!is_hpet_enabled())
1051  return;
1052 
1053  irq_handler = NULL;
1054  hpet_rtc_flags = 0;
1055 }
1057 
1058 /*
1059  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1060  * is not supported by all HPET implementations for timer 1.
1061  *
1062  * hpet_rtc_timer_init() is called when the rtc is initialized.
1063  */
1064 int hpet_rtc_timer_init(void)
1065 {
1066  unsigned int cfg, cnt, delta;
1067  unsigned long flags;
1068 
1069  if (!is_hpet_enabled())
1070  return 0;
1071 
1072  if (!hpet_default_delta) {
1073  uint64_t clc;
1074 
1075  clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1076  clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1077  hpet_default_delta = clc;
1078  }
1079 
1080  if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1081  delta = hpet_default_delta;
1082  else
1083  delta = hpet_pie_delta;
1084 
1085  local_irq_save(flags);
1086 
1087  cnt = delta + hpet_readl(HPET_COUNTER);
1088  hpet_writel(cnt, HPET_T1_CMP);
1089  hpet_t1_cmp = cnt;
1090 
1091  cfg = hpet_readl(HPET_T1_CFG);
1092  cfg &= ~HPET_TN_PERIODIC;
1093  cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1094  hpet_writel(cfg, HPET_T1_CFG);
1095 
1096  local_irq_restore(flags);
1097 
1098  return 1;
1099 }
1101 
1102 static void hpet_disable_rtc_channel(void)
1103 {
1104  unsigned long cfg;
1105  cfg = hpet_readl(HPET_T1_CFG);
1106  cfg &= ~HPET_TN_ENABLE;
1107  hpet_writel(cfg, HPET_T1_CFG);
1108 }
1109 
1110 /*
1111  * The functions below are called from rtc driver.
1112  * Return 0 if HPET is not being used.
1113  * Otherwise do the necessary changes and return 1.
1114  */
1115 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1116 {
1117  if (!is_hpet_enabled())
1118  return 0;
1119 
1120  hpet_rtc_flags &= ~bit_mask;
1121  if (unlikely(!hpet_rtc_flags))
1122  hpet_disable_rtc_channel();
1123 
1124  return 1;
1125 }
1127 
1128 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1129 {
1130  unsigned long oldbits = hpet_rtc_flags;
1131 
1132  if (!is_hpet_enabled())
1133  return 0;
1134 
1135  hpet_rtc_flags |= bit_mask;
1136 
1137  if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1138  hpet_prev_update_sec = -1;
1139 
1140  if (!oldbits)
1142 
1143  return 1;
1144 }
1146 
1147 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1148  unsigned char sec)
1149 {
1150  if (!is_hpet_enabled())
1151  return 0;
1152 
1153  hpet_alarm_time.tm_hour = hrs;
1154  hpet_alarm_time.tm_min = min;
1155  hpet_alarm_time.tm_sec = sec;
1156 
1157  return 1;
1158 }
1160 
1161 int hpet_set_periodic_freq(unsigned long freq)
1162 {
1163  uint64_t clc;
1164 
1165  if (!is_hpet_enabled())
1166  return 0;
1167 
1168  if (freq <= DEFAULT_RTC_INT_FREQ)
1169  hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1170  else {
1171  clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1172  do_div(clc, freq);
1173  clc >>= hpet_clockevent.shift;
1174  hpet_pie_delta = clc;
1175  hpet_pie_limit = 0;
1176  }
1177  return 1;
1178 }
1180 
1181 int hpet_rtc_dropped_irq(void)
1182 {
1183  return is_hpet_enabled();
1184 }
1186 
1187 static void hpet_rtc_timer_reinit(void)
1188 {
1189  unsigned int delta;
1190  int lost_ints = -1;
1191 
1192  if (unlikely(!hpet_rtc_flags))
1193  hpet_disable_rtc_channel();
1194 
1195  if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1196  delta = hpet_default_delta;
1197  else
1198  delta = hpet_pie_delta;
1199 
1200  /*
1201  * Increment the comparator value until we are ahead of the
1202  * current count.
1203  */
1204  do {
1205  hpet_t1_cmp += delta;
1206  hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1207  lost_ints++;
1208  } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1209 
1210  if (lost_ints) {
1211  if (hpet_rtc_flags & RTC_PIE)
1212  hpet_pie_count += lost_ints;
1213  if (printk_ratelimit())
1214  printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1215  lost_ints);
1216  }
1217 }
1218 
1219 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1220 {
1221  struct rtc_time curr_time;
1222  unsigned long rtc_int_flag = 0;
1223 
1224  hpet_rtc_timer_reinit();
1225  memset(&curr_time, 0, sizeof(struct rtc_time));
1226 
1227  if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1228  get_rtc_time(&curr_time);
1229 
1230  if (hpet_rtc_flags & RTC_UIE &&
1231  curr_time.tm_sec != hpet_prev_update_sec) {
1232  if (hpet_prev_update_sec >= 0)
1233  rtc_int_flag = RTC_UF;
1234  hpet_prev_update_sec = curr_time.tm_sec;
1235  }
1236 
1237  if (hpet_rtc_flags & RTC_PIE &&
1238  ++hpet_pie_count >= hpet_pie_limit) {
1239  rtc_int_flag |= RTC_PF;
1240  hpet_pie_count = 0;
1241  }
1242 
1243  if (hpet_rtc_flags & RTC_AIE &&
1244  (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1245  (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1246  (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1247  rtc_int_flag |= RTC_AF;
1248 
1249  if (rtc_int_flag) {
1250  rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1251  if (irq_handler)
1252  irq_handler(rtc_int_flag, dev_id);
1253  }
1254  return IRQ_HANDLED;
1255 }
1256 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1257 #endif