Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cpm1.c
Go to the documentation of this file.
1 /*
2  * General Purpose functions for the global management of the
3  * Communication Processor Module.
4  * Copyright (c) 1997 Dan error_act ([email protected])
5  *
6  * In addition to the individual control of the communication
7  * channels, there are a few functions that globally affect the
8  * communication processor.
9  *
10  * Buffer descriptors must be allocated from the dual ported memory
11  * space. The allocator for that is here. When the communication
12  * process is reset, we reclaim the memory available. There is
13  * currently no deallocator for this memory.
14  * The amount of space available is platform dependent. On the
15  * MBX, the EPPC software loads additional microcode into the
16  * communication processor, and uses some of the DP ram for this
17  * purpose. Current, the first 512 bytes and the last 256 bytes of
18  * memory are used. Right now I am conservative and only use the
19  * memory that can never be used for microcode. If there are
20  * applications that require more DP ram, we can expand the boundaries
21  * but then we have to be careful of any downloaded microcode.
22  */
23 #include <linux/errno.h>
24 #include <linux/sched.h>
25 #include <linux/kernel.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/param.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h>
32 #include <linux/module.h>
33 #include <linux/spinlock.h>
34 #include <linux/slab.h>
35 #include <asm/page.h>
36 #include <asm/pgtable.h>
37 #include <asm/8xx_immap.h>
38 #include <asm/cpm1.h>
39 #include <asm/io.h>
40 #include <asm/tlbflush.h>
41 #include <asm/rheap.h>
42 #include <asm/prom.h>
43 #include <asm/cpm.h>
44 
45 #include <asm/fs_pd.h>
46 
47 #ifdef CONFIG_8xx_GPIO
48 #include <linux/of_gpio.h>
49 #endif
50 
51 #define CPM_MAP_SIZE (0x4000)
52 
53 cpm8xx_t __iomem *cpmp; /* Pointer to comm processor space */
55 static cpic8xx_t __iomem *cpic_reg;
56 
57 static struct irq_domain *cpm_pic_host;
58 
59 static void cpm_mask_irq(struct irq_data *d)
60 {
61  unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
62 
63  clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
64 }
65 
66 static void cpm_unmask_irq(struct irq_data *d)
67 {
68  unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
69 
70  setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
71 }
72 
73 static void cpm_end_irq(struct irq_data *d)
74 {
75  unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
76 
77  out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
78 }
79 
80 static struct irq_chip cpm_pic = {
81  .name = "CPM PIC",
82  .irq_mask = cpm_mask_irq,
83  .irq_unmask = cpm_unmask_irq,
84  .irq_eoi = cpm_end_irq,
85 };
86 
87 int cpm_get_irq(void)
88 {
89  int cpm_vec;
90 
91  /* Get the vector by setting the ACK bit and then reading
92  * the register.
93  */
94  out_be16(&cpic_reg->cpic_civr, 1);
95  cpm_vec = in_be16(&cpic_reg->cpic_civr);
96  cpm_vec >>= 11;
97 
98  return irq_linear_revmap(cpm_pic_host, cpm_vec);
99 }
100 
101 static int cpm_pic_host_map(struct irq_domain *h, unsigned int virq,
103 {
104  pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
105 
106  irq_set_status_flags(virq, IRQ_LEVEL);
107  irq_set_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
108  return 0;
109 }
110 
111 /* The CPM can generate the error interrupt when there is a race condition
112  * between generating and masking interrupts. All we have to do is ACK it
113  * and return. This is a no-op function so we don't need any special
114  * tests in the interrupt handler.
115  */
116 static irqreturn_t cpm_error_interrupt(int irq, void *dev)
117 {
118  return IRQ_HANDLED;
119 }
120 
121 static struct irqaction cpm_error_irqaction = {
122  .handler = cpm_error_interrupt,
123  .name = "error",
124 };
125 
126 static const struct irq_domain_ops cpm_pic_host_ops = {
127  .map = cpm_pic_host_map,
128 };
129 
130 unsigned int cpm_pic_init(void)
131 {
132  struct device_node *np = NULL;
133  struct resource res;
134  unsigned int sirq = NO_IRQ, hwirq, eirq;
135  int ret;
136 
137  pr_debug("cpm_pic_init\n");
138 
139  np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
140  if (np == NULL)
141  np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
142  if (np == NULL) {
143  printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
144  return sirq;
145  }
146 
147  ret = of_address_to_resource(np, 0, &res);
148  if (ret)
149  goto end;
150 
151  cpic_reg = ioremap(res.start, resource_size(&res));
152  if (cpic_reg == NULL)
153  goto end;
154 
155  sirq = irq_of_parse_and_map(np, 0);
156  if (sirq == NO_IRQ)
157  goto end;
158 
159  /* Initialize the CPM interrupt controller. */
160  hwirq = (unsigned int)virq_to_hw(sirq);
161  out_be32(&cpic_reg->cpic_cicr,
163  ((hwirq/2) << 13) | CICR_HP_MASK);
164 
165  out_be32(&cpic_reg->cpic_cimr, 0);
166 
167  cpm_pic_host = irq_domain_add_linear(np, 64, &cpm_pic_host_ops, NULL);
168  if (cpm_pic_host == NULL) {
169  printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
170  sirq = NO_IRQ;
171  goto end;
172  }
173 
174  /* Install our own error handler. */
175  np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
176  if (np == NULL)
177  np = of_find_node_by_type(NULL, "cpm");
178  if (np == NULL) {
179  printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
180  goto end;
181  }
182 
183  eirq = irq_of_parse_and_map(np, 0);
184  if (eirq == NO_IRQ)
185  goto end;
186 
187  if (setup_irq(eirq, &cpm_error_irqaction))
188  printk(KERN_ERR "Could not allocate CPM error IRQ!");
189 
190  setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
191 
192 end:
193  of_node_put(np);
194  return sirq;
195 }
196 
197 void __init cpm_reset(void)
198 {
199  sysconf8xx_t __iomem *siu_conf;
200 
201  mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
202  if (!mpc8xx_immr) {
203  printk(KERN_CRIT "Could not map IMMR\n");
204  return;
205  }
206 
207  cpmp = &mpc8xx_immr->im_cpm;
208 
209 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
210  /* Perform a reset.
211  */
212  out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
213 
214  /* Wait for it.
215  */
216  while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
217 #endif
218 
219 #ifdef CONFIG_UCODE_PATCH
221 #endif
222 
223  /* Set SDMA Bus Request priority 5.
224  * On 860T, this also enables FEC priority 6. I am not sure
225  * this is what we really want for some applications, but the
226  * manual recommends it.
227  * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
228  */
229  siu_conf = immr_map(im_siu_conf);
230  out_be32(&siu_conf->sc_sdcr, 1);
231  immr_unmap(siu_conf);
232 
233  cpm_muram_init();
234 }
235 
236 static DEFINE_SPINLOCK(cmd_lock);
237 
238 #define MAX_CR_CMD_LOOPS 10000
239 
241 {
242  int i, ret;
243  unsigned long flags;
244 
245  if (command & 0xffffff0f)
246  return -EINVAL;
247 
248  spin_lock_irqsave(&cmd_lock, flags);
249 
250  ret = 0;
251  out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
252  for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
253  if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
254  goto out;
255 
256  printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
257  ret = -EIO;
258 out:
259  spin_unlock_irqrestore(&cmd_lock, flags);
260  return ret;
261 }
262 EXPORT_SYMBOL(cpm_command);
263 
264 /* Set a baud rate generator. This needs lots of work. There are
265  * four BRGs, any of which can be wired to any channel.
266  * The internal baud rate clock is the system clock divided by 16.
267  * This assumes the baudrate is 16x oversampled by the uart.
268  */
269 #define BRG_INT_CLK (get_brgfreq())
270 #define BRG_UART_CLK (BRG_INT_CLK/16)
271 #define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16)
272 
273 void
275 {
276  u32 __iomem *bp;
277 
278  /* This is good enough to get SMCs running.....
279  */
280  bp = &cpmp->cp_brgc1;
281  bp += brg;
282  /* The BRG has a 12-bit counter. For really slow baud rates (or
283  * really fast processors), we may have to further divide by 16.
284  */
285  if (((BRG_UART_CLK / rate) - 1) < 4096)
286  out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
287  else
288  out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
290 }
291 
292 struct cpm_ioport16 {
295 };
296 
299 };
300 
303 };
304 
305 static void cpm1_set_pin32(int port, int pin, int flags)
306 {
307  struct cpm_ioport32e __iomem *iop;
308  pin = 1 << (31 - pin);
309 
310  if (port == CPM_PORTB)
311  iop = (struct cpm_ioport32e __iomem *)
312  &mpc8xx_immr->im_cpm.cp_pbdir;
313  else
314  iop = (struct cpm_ioport32e __iomem *)
315  &mpc8xx_immr->im_cpm.cp_pedir;
316 
317  if (flags & CPM_PIN_OUTPUT)
318  setbits32(&iop->dir, pin);
319  else
320  clrbits32(&iop->dir, pin);
321 
322  if (!(flags & CPM_PIN_GPIO))
323  setbits32(&iop->par, pin);
324  else
325  clrbits32(&iop->par, pin);
326 
327  if (port == CPM_PORTB) {
328  if (flags & CPM_PIN_OPENDRAIN)
329  setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
330  else
331  clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
332  }
333 
334  if (port == CPM_PORTE) {
335  if (flags & CPM_PIN_SECONDARY)
336  setbits32(&iop->sor, pin);
337  else
338  clrbits32(&iop->sor, pin);
339 
340  if (flags & CPM_PIN_OPENDRAIN)
341  setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
342  else
343  clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
344  }
345 }
346 
347 static void cpm1_set_pin16(int port, int pin, int flags)
348 {
349  struct cpm_ioport16 __iomem *iop =
350  (struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
351 
352  pin = 1 << (15 - pin);
353 
354  if (port != 0)
355  iop += port - 1;
356 
357  if (flags & CPM_PIN_OUTPUT)
358  setbits16(&iop->dir, pin);
359  else
360  clrbits16(&iop->dir, pin);
361 
362  if (!(flags & CPM_PIN_GPIO))
363  setbits16(&iop->par, pin);
364  else
365  clrbits16(&iop->par, pin);
366 
367  if (port == CPM_PORTA) {
368  if (flags & CPM_PIN_OPENDRAIN)
369  setbits16(&iop->odr_sor, pin);
370  else
371  clrbits16(&iop->odr_sor, pin);
372  }
373  if (port == CPM_PORTC) {
374  if (flags & CPM_PIN_SECONDARY)
375  setbits16(&iop->odr_sor, pin);
376  else
377  clrbits16(&iop->odr_sor, pin);
378  }
379 }
380 
381 void cpm1_set_pin(enum cpm_port port, int pin, int flags)
382 {
383  if (port == CPM_PORTB || port == CPM_PORTE)
384  cpm1_set_pin32(port, pin, flags);
385  else
386  cpm1_set_pin16(port, pin, flags);
387 }
388 
390 {
391  int shift;
392  int i, bits = 0;
393  u32 __iomem *reg;
394  u32 mask = 7;
395 
396  u8 clk_map[][3] = {
397  {CPM_CLK_SCC1, CPM_BRG1, 0},
398  {CPM_CLK_SCC1, CPM_BRG2, 1},
399  {CPM_CLK_SCC1, CPM_BRG3, 2},
400  {CPM_CLK_SCC1, CPM_BRG4, 3},
401  {CPM_CLK_SCC1, CPM_CLK1, 4},
402  {CPM_CLK_SCC1, CPM_CLK2, 5},
403  {CPM_CLK_SCC1, CPM_CLK3, 6},
404  {CPM_CLK_SCC1, CPM_CLK4, 7},
405 
406  {CPM_CLK_SCC2, CPM_BRG1, 0},
407  {CPM_CLK_SCC2, CPM_BRG2, 1},
408  {CPM_CLK_SCC2, CPM_BRG3, 2},
409  {CPM_CLK_SCC2, CPM_BRG4, 3},
410  {CPM_CLK_SCC2, CPM_CLK1, 4},
411  {CPM_CLK_SCC2, CPM_CLK2, 5},
412  {CPM_CLK_SCC2, CPM_CLK3, 6},
413  {CPM_CLK_SCC2, CPM_CLK4, 7},
414 
415  {CPM_CLK_SCC3, CPM_BRG1, 0},
416  {CPM_CLK_SCC3, CPM_BRG2, 1},
417  {CPM_CLK_SCC3, CPM_BRG3, 2},
418  {CPM_CLK_SCC3, CPM_BRG4, 3},
419  {CPM_CLK_SCC3, CPM_CLK5, 4},
420  {CPM_CLK_SCC3, CPM_CLK6, 5},
421  {CPM_CLK_SCC3, CPM_CLK7, 6},
422  {CPM_CLK_SCC3, CPM_CLK8, 7},
423 
424  {CPM_CLK_SCC4, CPM_BRG1, 0},
425  {CPM_CLK_SCC4, CPM_BRG2, 1},
426  {CPM_CLK_SCC4, CPM_BRG3, 2},
427  {CPM_CLK_SCC4, CPM_BRG4, 3},
428  {CPM_CLK_SCC4, CPM_CLK5, 4},
429  {CPM_CLK_SCC4, CPM_CLK6, 5},
430  {CPM_CLK_SCC4, CPM_CLK7, 6},
431  {CPM_CLK_SCC4, CPM_CLK8, 7},
432 
433  {CPM_CLK_SMC1, CPM_BRG1, 0},
434  {CPM_CLK_SMC1, CPM_BRG2, 1},
435  {CPM_CLK_SMC1, CPM_BRG3, 2},
436  {CPM_CLK_SMC1, CPM_BRG4, 3},
437  {CPM_CLK_SMC1, CPM_CLK1, 4},
438  {CPM_CLK_SMC1, CPM_CLK2, 5},
439  {CPM_CLK_SMC1, CPM_CLK3, 6},
440  {CPM_CLK_SMC1, CPM_CLK4, 7},
441 
442  {CPM_CLK_SMC2, CPM_BRG1, 0},
443  {CPM_CLK_SMC2, CPM_BRG2, 1},
444  {CPM_CLK_SMC2, CPM_BRG3, 2},
445  {CPM_CLK_SMC2, CPM_BRG4, 3},
446  {CPM_CLK_SMC2, CPM_CLK5, 4},
447  {CPM_CLK_SMC2, CPM_CLK6, 5},
448  {CPM_CLK_SMC2, CPM_CLK7, 6},
449  {CPM_CLK_SMC2, CPM_CLK8, 7},
450  };
451 
452  switch (target) {
453  case CPM_CLK_SCC1:
454  reg = &mpc8xx_immr->im_cpm.cp_sicr;
455  shift = 0;
456  break;
457 
458  case CPM_CLK_SCC2:
459  reg = &mpc8xx_immr->im_cpm.cp_sicr;
460  shift = 8;
461  break;
462 
463  case CPM_CLK_SCC3:
464  reg = &mpc8xx_immr->im_cpm.cp_sicr;
465  shift = 16;
466  break;
467 
468  case CPM_CLK_SCC4:
469  reg = &mpc8xx_immr->im_cpm.cp_sicr;
470  shift = 24;
471  break;
472 
473  case CPM_CLK_SMC1:
474  reg = &mpc8xx_immr->im_cpm.cp_simode;
475  shift = 12;
476  break;
477 
478  case CPM_CLK_SMC2:
479  reg = &mpc8xx_immr->im_cpm.cp_simode;
480  shift = 28;
481  break;
482 
483  default:
484  printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
485  return -EINVAL;
486  }
487 
488  for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
489  if (clk_map[i][0] == target && clk_map[i][1] == clock) {
490  bits = clk_map[i][2];
491  break;
492  }
493  }
494 
495  if (i == ARRAY_SIZE(clk_map)) {
496  printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
497  return -EINVAL;
498  }
499 
500  bits <<= shift;
501  mask <<= shift;
502 
503  if (reg == &mpc8xx_immr->im_cpm.cp_sicr) {
504  if (mode == CPM_CLK_RTX) {
505  bits |= bits << 3;
506  mask |= mask << 3;
507  } else if (mode == CPM_CLK_RX) {
508  bits <<= 3;
509  mask <<= 3;
510  }
511  }
512 
513  out_be32(reg, (in_be32(reg) & ~mask) | bits);
514 
515  return 0;
516 }
517 
518 /*
519  * GPIO LIB API implementation
520  */
521 #ifdef CONFIG_8xx_GPIO
522 
523 struct cpm1_gpio16_chip {
524  struct of_mm_gpio_chip mm_gc;
526 
527  /* shadowed data register to clear/set bits safely */
528  u16 cpdata;
529 };
530 
531 static inline struct cpm1_gpio16_chip *
532 to_cpm1_gpio16_chip(struct of_mm_gpio_chip *mm_gc)
533 {
534  return container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc);
535 }
536 
537 static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc)
538 {
539  struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
540  struct cpm_ioport16 __iomem *iop = mm_gc->regs;
541 
542  cpm1_gc->cpdata = in_be16(&iop->dat);
543 }
544 
545 static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio)
546 {
547  struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
548  struct cpm_ioport16 __iomem *iop = mm_gc->regs;
549  u16 pin_mask;
550 
551  pin_mask = 1 << (15 - gpio);
552 
553  return !!(in_be16(&iop->dat) & pin_mask);
554 }
555 
556 static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask,
557  int value)
558 {
559  struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
560  struct cpm_ioport16 __iomem *iop = mm_gc->regs;
561 
562  if (value)
563  cpm1_gc->cpdata |= pin_mask;
564  else
565  cpm1_gc->cpdata &= ~pin_mask;
566 
567  out_be16(&iop->dat, cpm1_gc->cpdata);
568 }
569 
570 static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value)
571 {
572  struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
573  struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
574  unsigned long flags;
575  u16 pin_mask = 1 << (15 - gpio);
576 
577  spin_lock_irqsave(&cpm1_gc->lock, flags);
578 
579  __cpm1_gpio16_set(mm_gc, pin_mask, value);
580 
581  spin_unlock_irqrestore(&cpm1_gc->lock, flags);
582 }
583 
584 static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
585 {
586  struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
587  struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
588  struct cpm_ioport16 __iomem *iop = mm_gc->regs;
589  unsigned long flags;
590  u16 pin_mask = 1 << (15 - gpio);
591 
592  spin_lock_irqsave(&cpm1_gc->lock, flags);
593 
594  setbits16(&iop->dir, pin_mask);
595  __cpm1_gpio16_set(mm_gc, pin_mask, val);
596 
597  spin_unlock_irqrestore(&cpm1_gc->lock, flags);
598 
599  return 0;
600 }
601 
602 static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio)
603 {
604  struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
605  struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
606  struct cpm_ioport16 __iomem *iop = mm_gc->regs;
607  unsigned long flags;
608  u16 pin_mask = 1 << (15 - gpio);
609 
610  spin_lock_irqsave(&cpm1_gc->lock, flags);
611 
612  clrbits16(&iop->dir, pin_mask);
613 
614  spin_unlock_irqrestore(&cpm1_gc->lock, flags);
615 
616  return 0;
617 }
618 
619 int cpm1_gpiochip_add16(struct device_node *np)
620 {
621  struct cpm1_gpio16_chip *cpm1_gc;
622  struct of_mm_gpio_chip *mm_gc;
623  struct gpio_chip *gc;
624 
625  cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
626  if (!cpm1_gc)
627  return -ENOMEM;
628 
629  spin_lock_init(&cpm1_gc->lock);
630 
631  mm_gc = &cpm1_gc->mm_gc;
632  gc = &mm_gc->gc;
633 
634  mm_gc->save_regs = cpm1_gpio16_save_regs;
635  gc->ngpio = 16;
636  gc->direction_input = cpm1_gpio16_dir_in;
637  gc->direction_output = cpm1_gpio16_dir_out;
638  gc->get = cpm1_gpio16_get;
639  gc->set = cpm1_gpio16_set;
640 
641  return of_mm_gpiochip_add(np, mm_gc);
642 }
643 
644 struct cpm1_gpio32_chip {
645  struct of_mm_gpio_chip mm_gc;
647 
648  /* shadowed data register to clear/set bits safely */
649  u32 cpdata;
650 };
651 
652 static inline struct cpm1_gpio32_chip *
653 to_cpm1_gpio32_chip(struct of_mm_gpio_chip *mm_gc)
654 {
655  return container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc);
656 }
657 
658 static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
659 {
660  struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
661  struct cpm_ioport32b __iomem *iop = mm_gc->regs;
662 
663  cpm1_gc->cpdata = in_be32(&iop->dat);
664 }
665 
666 static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
667 {
668  struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
669  struct cpm_ioport32b __iomem *iop = mm_gc->regs;
670  u32 pin_mask;
671 
672  pin_mask = 1 << (31 - gpio);
673 
674  return !!(in_be32(&iop->dat) & pin_mask);
675 }
676 
677 static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
678  int value)
679 {
680  struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
681  struct cpm_ioport32b __iomem *iop = mm_gc->regs;
682 
683  if (value)
684  cpm1_gc->cpdata |= pin_mask;
685  else
686  cpm1_gc->cpdata &= ~pin_mask;
687 
688  out_be32(&iop->dat, cpm1_gc->cpdata);
689 }
690 
691 static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
692 {
693  struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
694  struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
695  unsigned long flags;
696  u32 pin_mask = 1 << (31 - gpio);
697 
698  spin_lock_irqsave(&cpm1_gc->lock, flags);
699 
700  __cpm1_gpio32_set(mm_gc, pin_mask, value);
701 
702  spin_unlock_irqrestore(&cpm1_gc->lock, flags);
703 }
704 
705 static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
706 {
707  struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
708  struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
709  struct cpm_ioport32b __iomem *iop = mm_gc->regs;
710  unsigned long flags;
711  u32 pin_mask = 1 << (31 - gpio);
712 
713  spin_lock_irqsave(&cpm1_gc->lock, flags);
714 
715  setbits32(&iop->dir, pin_mask);
716  __cpm1_gpio32_set(mm_gc, pin_mask, val);
717 
718  spin_unlock_irqrestore(&cpm1_gc->lock, flags);
719 
720  return 0;
721 }
722 
723 static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
724 {
725  struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
726  struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
727  struct cpm_ioport32b __iomem *iop = mm_gc->regs;
728  unsigned long flags;
729  u32 pin_mask = 1 << (31 - gpio);
730 
731  spin_lock_irqsave(&cpm1_gc->lock, flags);
732 
733  clrbits32(&iop->dir, pin_mask);
734 
735  spin_unlock_irqrestore(&cpm1_gc->lock, flags);
736 
737  return 0;
738 }
739 
740 int cpm1_gpiochip_add32(struct device_node *np)
741 {
742  struct cpm1_gpio32_chip *cpm1_gc;
743  struct of_mm_gpio_chip *mm_gc;
744  struct gpio_chip *gc;
745 
746  cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
747  if (!cpm1_gc)
748  return -ENOMEM;
749 
750  spin_lock_init(&cpm1_gc->lock);
751 
752  mm_gc = &cpm1_gc->mm_gc;
753  gc = &mm_gc->gc;
754 
755  mm_gc->save_regs = cpm1_gpio32_save_regs;
756  gc->ngpio = 32;
757  gc->direction_input = cpm1_gpio32_dir_in;
758  gc->direction_output = cpm1_gpio32_dir_out;
759  gc->get = cpm1_gpio32_get;
760  gc->set = cpm1_gpio32_set;
761 
762  return of_mm_gpiochip_add(np, mm_gc);
763 }
764 
765 static int cpm_init_par_io(void)
766 {
767  struct device_node *np;
768 
769  for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-a")
770  cpm1_gpiochip_add16(np);
771 
772  for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-b")
773  cpm1_gpiochip_add32(np);
774 
775  for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-c")
776  cpm1_gpiochip_add16(np);
777 
778  for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-d")
779  cpm1_gpiochip_add16(np);
780 
781  /* Port E uses CPM2 layout */
782  for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-e")
784  return 0;
785 }
786 arch_initcall(cpm_init_par_io);
787 
788 #endif /* CONFIG_8xx_GPIO */