Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
acpi-cpufreq.c
Go to the documentation of this file.
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver
3  *
4  * Copyright (C) 2001, 2002 Andy Grover <[email protected]>
5  * Copyright (C) 2001, 2002 Paul Diefenbaugh <[email protected]>
6  * Copyright (C) 2002 - 2004 Dominik Brodowski <[email protected]>
7  * Copyright (C) 2006 Denis Sadykov <[email protected]>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or (at
14  * your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License along
22  * with this program; if not, write to the Free Software Foundation, Inc.,
23  * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/slab.h>
37 
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
42 
43 #include <acpi/processor.h>
44 
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
48 #include "mperf.h"
49 
50 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52 MODULE_LICENSE("GPL");
53 
54 #define PFX "acpi-cpufreq: "
55 
56 enum {
61 };
62 
63 #define INTEL_MSR_RANGE (0xffff)
64 #define AMD_MSR_RANGE (0x7)
65 
66 #define MSR_K7_HWCR_CPB_DIS (1ULL << 25)
67 
71  unsigned int resume;
72  unsigned int cpu_feature;
73 };
74 
75 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
76 
77 /* acpi_perf_data is a pointer to percpu data. */
78 static struct acpi_processor_performance __percpu *acpi_perf_data;
79 
80 static struct cpufreq_driver acpi_cpufreq_driver;
81 
82 static unsigned int acpi_pstate_strict;
83 static bool boost_enabled, boost_supported;
84 static struct msr __percpu *msrs;
85 
86 static bool boost_state(unsigned int cpu)
87 {
88  u32 lo, hi;
89  u64 msr;
90 
91  switch (boot_cpu_data.x86_vendor) {
92  case X86_VENDOR_INTEL:
93  rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
94  msr = lo | ((u64)hi << 32);
95  return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
96  case X86_VENDOR_AMD:
97  rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
98  msr = lo | ((u64)hi << 32);
99  return !(msr & MSR_K7_HWCR_CPB_DIS);
100  }
101  return false;
102 }
103 
104 static void boost_set_msrs(bool enable, const struct cpumask *cpumask)
105 {
106  u32 cpu;
107  u32 msr_addr;
108  u64 msr_mask;
109 
110  switch (boot_cpu_data.x86_vendor) {
111  case X86_VENDOR_INTEL:
112  msr_addr = MSR_IA32_MISC_ENABLE;
114  break;
115  case X86_VENDOR_AMD:
116  msr_addr = MSR_K7_HWCR;
117  msr_mask = MSR_K7_HWCR_CPB_DIS;
118  break;
119  default:
120  return;
121  }
122 
123  rdmsr_on_cpus(cpumask, msr_addr, msrs);
124 
125  for_each_cpu(cpu, cpumask) {
126  struct msr *reg = per_cpu_ptr(msrs, cpu);
127  if (enable)
128  reg->q &= ~msr_mask;
129  else
130  reg->q |= msr_mask;
131  }
132 
133  wrmsr_on_cpus(cpumask, msr_addr, msrs);
134 }
135 
136 static ssize_t _store_boost(const char *buf, size_t count)
137 {
138  int ret;
139  unsigned long val = 0;
140 
141  if (!boost_supported)
142  return -EINVAL;
143 
144  ret = kstrtoul(buf, 10, &val);
145  if (ret || (val > 1))
146  return -EINVAL;
147 
148  if ((val && boost_enabled) || (!val && !boost_enabled))
149  return count;
150 
151  get_online_cpus();
152 
153  boost_set_msrs(val, cpu_online_mask);
154 
155  put_online_cpus();
156 
157  boost_enabled = val;
158  pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
159 
160  return count;
161 }
162 
163 static ssize_t store_global_boost(struct kobject *kobj, struct attribute *attr,
164  const char *buf, size_t count)
165 {
166  return _store_boost(buf, count);
167 }
168 
169 static ssize_t show_global_boost(struct kobject *kobj,
170  struct attribute *attr, char *buf)
171 {
172  return sprintf(buf, "%u\n", boost_enabled);
173 }
174 
175 static struct global_attr global_boost = __ATTR(boost, 0644,
176  show_global_boost,
177  store_global_boost);
178 
179 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
180 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
181  size_t count)
182 {
183  return _store_boost(buf, count);
184 }
185 
186 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
187 {
188  return sprintf(buf, "%u\n", boost_enabled);
189 }
190 
191 static struct freq_attr cpb = __ATTR(cpb, 0644, show_cpb, store_cpb);
192 #endif
193 
194 static int check_est_cpu(unsigned int cpuid)
195 {
196  struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
197 
198  return cpu_has(cpu, X86_FEATURE_EST);
199 }
200 
201 static int check_amd_hwpstate_cpu(unsigned int cpuid)
202 {
203  struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
204 
205  return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
206 }
207 
208 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
209 {
210  struct acpi_processor_performance *perf;
211  int i;
212 
213  perf = data->acpi_data;
214 
215  for (i = 0; i < perf->state_count; i++) {
216  if (value == perf->states[i].status)
217  return data->freq_table[i].frequency;
218  }
219  return 0;
220 }
221 
222 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
223 {
224  int i;
225  struct acpi_processor_performance *perf;
226 
227  if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
228  msr &= AMD_MSR_RANGE;
229  else
230  msr &= INTEL_MSR_RANGE;
231 
232  perf = data->acpi_data;
233 
234  for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
235  if (msr == perf->states[data->freq_table[i].index].status)
236  return data->freq_table[i].frequency;
237  }
238  return data->freq_table[0].frequency;
239 }
240 
241 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
242 {
243  switch (data->cpu_feature) {
246  return extract_msr(val, data);
247  case SYSTEM_IO_CAPABLE:
248  return extract_io(val, data);
249  default:
250  return 0;
251  }
252 }
253 
254 struct msr_addr {
256 };
257 
258 struct io_addr {
261 };
262 
263 struct drv_cmd {
264  unsigned int type;
265  const struct cpumask *mask;
266  union {
267  struct msr_addr msr;
268  struct io_addr io;
269  } addr;
271 };
272 
273 /* Called via smp_call_function_single(), on the target CPU */
274 static void do_drv_read(void *_cmd)
275 {
276  struct drv_cmd *cmd = _cmd;
277  u32 h;
278 
279  switch (cmd->type) {
282  rdmsr(cmd->addr.msr.reg, cmd->val, h);
283  break;
284  case SYSTEM_IO_CAPABLE:
285  acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
286  &cmd->val,
287  (u32)cmd->addr.io.bit_width);
288  break;
289  default:
290  break;
291  }
292 }
293 
294 /* Called via smp_call_function_many(), on the target CPUs */
295 static void do_drv_write(void *_cmd)
296 {
297  struct drv_cmd *cmd = _cmd;
298  u32 lo, hi;
299 
300  switch (cmd->type) {
302  rdmsr(cmd->addr.msr.reg, lo, hi);
303  lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
304  wrmsr(cmd->addr.msr.reg, lo, hi);
305  break;
307  wrmsr(cmd->addr.msr.reg, cmd->val, 0);
308  break;
309  case SYSTEM_IO_CAPABLE:
310  acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
311  cmd->val,
312  (u32)cmd->addr.io.bit_width);
313  break;
314  default:
315  break;
316  }
317 }
318 
319 static void drv_read(struct drv_cmd *cmd)
320 {
321  int err;
322  cmd->val = 0;
323 
324  err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
325  WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */
326 }
327 
328 static void drv_write(struct drv_cmd *cmd)
329 {
330  int this_cpu;
331 
332  this_cpu = get_cpu();
333  if (cpumask_test_cpu(this_cpu, cmd->mask))
334  do_drv_write(cmd);
335  smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
336  put_cpu();
337 }
338 
339 static u32 get_cur_val(const struct cpumask *mask)
340 {
341  struct acpi_processor_performance *perf;
342  struct drv_cmd cmd;
343 
344  if (unlikely(cpumask_empty(mask)))
345  return 0;
346 
347  switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
350  cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
351  break;
354  cmd.addr.msr.reg = MSR_AMD_PERF_STATUS;
355  break;
356  case SYSTEM_IO_CAPABLE:
357  cmd.type = SYSTEM_IO_CAPABLE;
358  perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
359  cmd.addr.io.port = perf->control_register.address;
360  cmd.addr.io.bit_width = perf->control_register.bit_width;
361  break;
362  default:
363  return 0;
364  }
365 
366  cmd.mask = mask;
367  drv_read(&cmd);
368 
369  pr_debug("get_cur_val = %u\n", cmd.val);
370 
371  return cmd.val;
372 }
373 
374 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
375 {
376  struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
377  unsigned int freq;
378  unsigned int cached_freq;
379 
380  pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
381 
382  if (unlikely(data == NULL ||
383  data->acpi_data == NULL || data->freq_table == NULL)) {
384  return 0;
385  }
386 
387  cached_freq = data->freq_table[data->acpi_data->state].frequency;
388  freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
389  if (freq != cached_freq) {
390  /*
391  * The dreaded BIOS frequency change behind our back.
392  * Force set the frequency on next target call.
393  */
394  data->resume = 1;
395  }
396 
397  pr_debug("cur freq = %u\n", freq);
398 
399  return freq;
400 }
401 
402 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
403  struct acpi_cpufreq_data *data)
404 {
405  unsigned int cur_freq;
406  unsigned int i;
407 
408  for (i = 0; i < 100; i++) {
409  cur_freq = extract_freq(get_cur_val(mask), data);
410  if (cur_freq == freq)
411  return 1;
412  udelay(10);
413  }
414  return 0;
415 }
416 
417 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
418  unsigned int target_freq, unsigned int relation)
419 {
420  struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
421  struct acpi_processor_performance *perf;
422  struct cpufreq_freqs freqs;
423  struct drv_cmd cmd;
424  unsigned int next_state = 0; /* Index into freq_table */
425  unsigned int next_perf_state = 0; /* Index into perf table */
426  unsigned int i;
427  int result = 0;
428 
429  pr_debug("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
430 
431  if (unlikely(data == NULL ||
432  data->acpi_data == NULL || data->freq_table == NULL)) {
433  return -ENODEV;
434  }
435 
436  perf = data->acpi_data;
437  result = cpufreq_frequency_table_target(policy,
438  data->freq_table,
439  target_freq,
440  relation, &next_state);
441  if (unlikely(result)) {
442  result = -ENODEV;
443  goto out;
444  }
445 
446  next_perf_state = data->freq_table[next_state].index;
447  if (perf->state == next_perf_state) {
448  if (unlikely(data->resume)) {
449  pr_debug("Called after resume, resetting to P%d\n",
450  next_perf_state);
451  data->resume = 0;
452  } else {
453  pr_debug("Already at target state (P%d)\n",
454  next_perf_state);
455  goto out;
456  }
457  }
458 
459  switch (data->cpu_feature) {
462  cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
463  cmd.val = (u32) perf->states[next_perf_state].control;
464  break;
467  cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
468  cmd.val = (u32) perf->states[next_perf_state].control;
469  break;
470  case SYSTEM_IO_CAPABLE:
471  cmd.type = SYSTEM_IO_CAPABLE;
472  cmd.addr.io.port = perf->control_register.address;
473  cmd.addr.io.bit_width = perf->control_register.bit_width;
474  cmd.val = (u32) perf->states[next_perf_state].control;
475  break;
476  default:
477  result = -ENODEV;
478  goto out;
479  }
480 
481  /* cpufreq holds the hotplug lock, so we are safe from here on */
482  if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
483  cmd.mask = policy->cpus;
484  else
485  cmd.mask = cpumask_of(policy->cpu);
486 
487  freqs.old = perf->states[perf->state].core_frequency * 1000;
488  freqs.new = data->freq_table[next_state].frequency;
489  for_each_cpu(i, policy->cpus) {
490  freqs.cpu = i;
492  }
493 
494  drv_write(&cmd);
495 
496  if (acpi_pstate_strict) {
497  if (!check_freqs(cmd.mask, freqs.new, data)) {
498  pr_debug("acpi_cpufreq_target failed (%d)\n",
499  policy->cpu);
500  result = -EAGAIN;
501  goto out;
502  }
503  }
504 
505  for_each_cpu(i, policy->cpus) {
506  freqs.cpu = i;
508  }
509  perf->state = next_perf_state;
510 
511 out:
512  return result;
513 }
514 
515 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
516 {
517  struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
518 
519  pr_debug("acpi_cpufreq_verify\n");
520 
521  return cpufreq_frequency_table_verify(policy, data->freq_table);
522 }
523 
524 static unsigned long
525 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
526 {
527  struct acpi_processor_performance *perf = data->acpi_data;
528 
529  if (cpu_khz) {
530  /* search the closest match to cpu_khz */
531  unsigned int i;
532  unsigned long freq;
533  unsigned long freqn = perf->states[0].core_frequency * 1000;
534 
535  for (i = 0; i < (perf->state_count-1); i++) {
536  freq = freqn;
537  freqn = perf->states[i+1].core_frequency * 1000;
538  if ((2 * cpu_khz) > (freqn + freq)) {
539  perf->state = i;
540  return freq;
541  }
542  }
543  perf->state = perf->state_count-1;
544  return freqn;
545  } else {
546  /* assume CPU is at P0... */
547  perf->state = 0;
548  return perf->states[0].core_frequency * 1000;
549  }
550 }
551 
552 static void free_acpi_perf_data(void)
553 {
554  unsigned int i;
555 
556  /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
558  free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
559  ->shared_cpu_map);
560  free_percpu(acpi_perf_data);
561 }
562 
563 static int boost_notify(struct notifier_block *nb, unsigned long action,
564  void *hcpu)
565 {
566  unsigned cpu = (long)hcpu;
567  const struct cpumask *cpumask;
568 
569  cpumask = get_cpu_mask(cpu);
570 
571  /*
572  * Clear the boost-disable bit on the CPU_DOWN path so that
573  * this cpu cannot block the remaining ones from boosting. On
574  * the CPU_UP path we simply keep the boost-disable flag in
575  * sync with the current global state.
576  */
577 
578  switch (action) {
579  case CPU_UP_PREPARE:
581  boost_set_msrs(boost_enabled, cpumask);
582  break;
583 
584  case CPU_DOWN_PREPARE:
586  boost_set_msrs(1, cpumask);
587  break;
588 
589  default:
590  break;
591  }
592 
593  return NOTIFY_OK;
594 }
595 
596 
597 static struct notifier_block boost_nb = {
598  .notifier_call = boost_notify,
599 };
600 
601 /*
602  * acpi_cpufreq_early_init - initialize ACPI P-States library
603  *
604  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
605  * in order to determine correct frequency and voltage pairings. We can
606  * do _PDC and _PSD and find out the processor dependency for the
607  * actual init that will happen later...
608  */
609 static int __init acpi_cpufreq_early_init(void)
610 {
611  unsigned int i;
612  pr_debug("acpi_cpufreq_early_init\n");
613 
614  acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
615  if (!acpi_perf_data) {
616  pr_debug("Memory allocation error for acpi_perf_data.\n");
617  return -ENOMEM;
618  }
620  if (!zalloc_cpumask_var_node(
621  &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
622  GFP_KERNEL, cpu_to_node(i))) {
623 
624  /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
625  free_acpi_perf_data();
626  return -ENOMEM;
627  }
628  }
629 
630  /* Do initialization in ACPI core */
632  return 0;
633 }
634 
635 #ifdef CONFIG_SMP
636 /*
637  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
638  * or do it in BIOS firmware and won't inform about it to OS. If not
639  * detected, this has a side effect of making CPU run at a different speed
640  * than OS intended it to run at. Detect it and handle it cleanly.
641  */
642 static int bios_with_sw_any_bug;
643 
644 static int sw_any_bug_found(const struct dmi_system_id *d)
645 {
646  bios_with_sw_any_bug = 1;
647  return 0;
648 }
649 
650 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
651  {
652  .callback = sw_any_bug_found,
653  .ident = "Supermicro Server X6DLP",
654  .matches = {
655  DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
656  DMI_MATCH(DMI_BIOS_VERSION, "080010"),
657  DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
658  },
659  },
660  { }
661 };
662 
663 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
664 {
665  /* Intel Xeon Processor 7100 Series Specification Update
666  * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
667  * AL30: A Machine Check Exception (MCE) Occurring during an
668  * Enhanced Intel SpeedStep Technology Ratio Change May Cause
669  * Both Processor Cores to Lock Up. */
670  if (c->x86_vendor == X86_VENDOR_INTEL) {
671  if ((c->x86 == 15) &&
672  (c->x86_model == 6) &&
673  (c->x86_mask == 8)) {
674  printk(KERN_INFO "acpi-cpufreq: Intel(R) "
675  "Xeon(R) 7100 Errata AL30, processors may "
676  "lock up on frequency changes: disabling "
677  "acpi-cpufreq.\n");
678  return -ENODEV;
679  }
680  }
681  return 0;
682 }
683 #endif
684 
685 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
686 {
687  unsigned int i;
688  unsigned int valid_states = 0;
689  unsigned int cpu = policy->cpu;
690  struct acpi_cpufreq_data *data;
691  unsigned int result = 0;
692  struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
693  struct acpi_processor_performance *perf;
694 #ifdef CONFIG_SMP
695  static int blacklisted;
696 #endif
697 
698  pr_debug("acpi_cpufreq_cpu_init\n");
699 
700 #ifdef CONFIG_SMP
701  if (blacklisted)
702  return blacklisted;
703  blacklisted = acpi_cpufreq_blacklist(c);
704  if (blacklisted)
705  return blacklisted;
706 #endif
707 
708  data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
709  if (!data)
710  return -ENOMEM;
711 
712  data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
713  per_cpu(acfreq_data, cpu) = data;
714 
715  if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
716  acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
717 
718  result = acpi_processor_register_performance(data->acpi_data, cpu);
719  if (result)
720  goto err_free;
721 
722  perf = data->acpi_data;
723  policy->shared_type = perf->shared_type;
724 
725  /*
726  * Will let policy->cpus know about dependency only when software
727  * coordination is required.
728  */
729  if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
731  cpumask_copy(policy->cpus, perf->shared_cpu_map);
732  }
733  cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
734 
735 #ifdef CONFIG_SMP
736  dmi_check_system(sw_any_bug_dmi_table);
737  if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
739  cpumask_copy(policy->cpus, cpu_core_mask(cpu));
740  }
741 
742  if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
743  cpumask_clear(policy->cpus);
744  cpumask_set_cpu(cpu, policy->cpus);
745  cpumask_copy(policy->related_cpus, cpu_sibling_mask(cpu));
747  pr_info_once(PFX "overriding BIOS provided _PSD data\n");
748  }
749 #endif
750 
751  /* capability check */
752  if (perf->state_count <= 1) {
753  pr_debug("No P-States\n");
754  result = -ENODEV;
755  goto err_unreg;
756  }
757 
758  if (perf->control_register.space_id != perf->status_register.space_id) {
759  result = -ENODEV;
760  goto err_unreg;
761  }
762 
763  switch (perf->control_register.space_id) {
765  pr_debug("SYSTEM IO addr space\n");
767  break;
769  pr_debug("HARDWARE addr space\n");
770  if (check_est_cpu(cpu)) {
772  break;
773  }
774  if (check_amd_hwpstate_cpu(cpu)) {
776  break;
777  }
778  result = -ENODEV;
779  goto err_unreg;
780  default:
781  pr_debug("Unknown addr space %d\n",
782  (u32) (perf->control_register.space_id));
783  result = -ENODEV;
784  goto err_unreg;
785  }
786 
787  data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
788  (perf->state_count+1), GFP_KERNEL);
789  if (!data->freq_table) {
790  result = -ENOMEM;
791  goto err_unreg;
792  }
793 
794  /* detect transition latency */
795  policy->cpuinfo.transition_latency = 0;
796  for (i = 0; i < perf->state_count; i++) {
797  if ((perf->states[i].transition_latency * 1000) >
798  policy->cpuinfo.transition_latency)
799  policy->cpuinfo.transition_latency =
800  perf->states[i].transition_latency * 1000;
801  }
802 
803  /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
804  if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
805  policy->cpuinfo.transition_latency > 20 * 1000) {
806  policy->cpuinfo.transition_latency = 20 * 1000;
808  "P-state transition latency capped at 20 uS\n");
809  }
810 
811  /* table init */
812  for (i = 0; i < perf->state_count; i++) {
813  if (i > 0 && perf->states[i].core_frequency >=
814  data->freq_table[valid_states-1].frequency / 1000)
815  continue;
816 
817  data->freq_table[valid_states].index = i;
818  data->freq_table[valid_states].frequency =
819  perf->states[i].core_frequency * 1000;
820  valid_states++;
821  }
822  data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
823  perf->state = 0;
824 
825  result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
826  if (result)
827  goto err_freqfree;
828 
829  if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
830  printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
831 
832  switch (perf->control_register.space_id) {
834  /* Current speed is unknown and not detectable by IO port */
835  policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
836  break;
838  acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
839  policy->cur = get_cur_freq_on_cpu(cpu);
840  break;
841  default:
842  break;
843  }
844 
845  /* notify BIOS that we exist */
847 
848  /* Check for APERF/MPERF support in hardware */
849  if (boot_cpu_has(X86_FEATURE_APERFMPERF))
850  acpi_cpufreq_driver.getavg = cpufreq_get_measured_perf;
851 
852  pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
853  for (i = 0; i < perf->state_count; i++)
854  pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n",
855  (i == perf->state ? '*' : ' '), i,
856  (u32) perf->states[i].core_frequency,
857  (u32) perf->states[i].power,
858  (u32) perf->states[i].transition_latency);
859 
861 
862  /*
863  * the first call to ->target() should result in us actually
864  * writing something to the appropriate registers.
865  */
866  data->resume = 1;
867 
868  return result;
869 
870 err_freqfree:
871  kfree(data->freq_table);
872 err_unreg:
874 err_free:
875  kfree(data);
876  per_cpu(acfreq_data, cpu) = NULL;
877 
878  return result;
879 }
880 
881 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
882 {
883  struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
884 
885  pr_debug("acpi_cpufreq_cpu_exit\n");
886 
887  if (data) {
889  per_cpu(acfreq_data, policy->cpu) = NULL;
891  policy->cpu);
892  kfree(data->freq_table);
893  kfree(data);
894  }
895 
896  return 0;
897 }
898 
899 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
900 {
901  struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
902 
903  pr_debug("acpi_cpufreq_resume\n");
904 
905  data->resume = 1;
906 
907  return 0;
908 }
909 
910 static struct freq_attr *acpi_cpufreq_attr[] = {
912  NULL, /* this is a placeholder for cpb, do not remove */
913  NULL,
914 };
915 
916 static struct cpufreq_driver acpi_cpufreq_driver = {
917  .verify = acpi_cpufreq_verify,
918  .target = acpi_cpufreq_target,
919  .bios_limit = acpi_processor_get_bios_limit,
920  .init = acpi_cpufreq_cpu_init,
921  .exit = acpi_cpufreq_cpu_exit,
922  .resume = acpi_cpufreq_resume,
923  .name = "acpi-cpufreq",
924  .owner = THIS_MODULE,
925  .attr = acpi_cpufreq_attr,
926 };
927 
928 static void __init acpi_cpufreq_boost_init(void)
929 {
930  if (boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)) {
931  msrs = msrs_alloc();
932 
933  if (!msrs)
934  return;
935 
936  boost_supported = true;
937  boost_enabled = boost_state(0);
938 
939  get_online_cpus();
940 
941  /* Force all MSRs to the same value */
942  boost_set_msrs(boost_enabled, cpu_online_mask);
943 
944  register_cpu_notifier(&boost_nb);
945 
946  put_online_cpus();
947  } else
948  global_boost.attr.mode = 0444;
949 
950  /* We create the boost file in any case, though for systems without
951  * hardware support it will be read-only and hardwired to return 0.
952  */
953  if (sysfs_create_file(cpufreq_global_kobject, &(global_boost.attr)))
954  pr_warn(PFX "could not register global boost sysfs file\n");
955  else
956  pr_debug("registered global boost sysfs file\n");
957 }
958 
959 static void __exit acpi_cpufreq_boost_exit(void)
960 {
962 
963  if (msrs) {
964  unregister_cpu_notifier(&boost_nb);
965 
966  msrs_free(msrs);
967  msrs = NULL;
968  }
969 }
970 
971 static int __init acpi_cpufreq_init(void)
972 {
973  int ret;
974 
975  if (acpi_disabled)
976  return 0;
977 
978  pr_debug("acpi_cpufreq_init\n");
979 
980  ret = acpi_cpufreq_early_init();
981  if (ret)
982  return ret;
983 
984 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
985  /* this is a sysfs file with a strange name and an even stranger
986  * semantic - per CPU instantiation, but system global effect.
987  * Lets enable it only on AMD CPUs for compatibility reasons and
988  * only if configured. This is considered legacy code, which
989  * will probably be removed at some point in the future.
990  */
991  if (check_amd_hwpstate_cpu(0)) {
992  struct freq_attr **iter;
993 
994  pr_debug("adding sysfs entry for cpb\n");
995 
996  for (iter = acpi_cpufreq_attr; *iter != NULL; iter++)
997  ;
998 
999  /* make sure there is a terminator behind it */
1000  if (iter[1] == NULL)
1001  *iter = &cpb;
1002  }
1003 #endif
1004 
1005  ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1006  if (ret)
1007  free_acpi_perf_data();
1008  else
1009  acpi_cpufreq_boost_init();
1010 
1011  return ret;
1012 }
1013 
1014 static void __exit acpi_cpufreq_exit(void)
1015 {
1016  pr_debug("acpi_cpufreq_exit\n");
1017 
1018  acpi_cpufreq_boost_exit();
1019 
1020  cpufreq_unregister_driver(&acpi_cpufreq_driver);
1021 
1022  free_acpi_perf_data();
1023 }
1024 
1025 module_param(acpi_pstate_strict, uint, 0644);
1026 MODULE_PARM_DESC(acpi_pstate_strict,
1027  "value 0 or non-zero. non-zero -> strict ACPI checks are "
1028  "performed during frequency changes.");
1029 
1030 late_initcall(acpi_cpufreq_init);
1031 module_exit(acpi_cpufreq_exit);
1032 
1033 MODULE_ALIAS("acpi");