Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
net.c
Go to the documentation of this file.
1 /*
2  * IPv4 over IEEE 1394, per RFC 2734
3  *
4  * Copyright (C) 2009 Jay Fenlason <[email protected]>
5  *
6  * based on eth1394 by Ben Collins et al
7  */
8 
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/ethtool.h>
14 #include <linux/firewire.h>
16 #include <linux/highmem.h>
17 #include <linux/in.h>
18 #include <linux/ip.h>
19 #include <linux/jiffies.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mutex.h>
24 #include <linux/netdevice.h>
25 #include <linux/skbuff.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 
29 #include <asm/unaligned.h>
30 #include <net/arp.h>
31 
32 /* rx limits */
33 #define FWNET_MAX_FRAGMENTS 30 /* arbitrary, > TX queue depth */
34 #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16*1024 ? 4 : 2)
35 
36 /* tx limits */
37 #define FWNET_MAX_QUEUED_DATAGRAMS 20 /* < 64 = number of tlabels */
38 #define FWNET_MIN_QUEUED_DATAGRAMS 10 /* should keep AT DMA busy enough */
39 #define FWNET_TX_QUEUE_LEN FWNET_MAX_QUEUED_DATAGRAMS /* ? */
40 
41 #define IEEE1394_BROADCAST_CHANNEL 31
42 #define IEEE1394_ALL_NODES (0xffc0 | 0x003f)
43 #define IEEE1394_MAX_PAYLOAD_S100 512
44 #define FWNET_NO_FIFO_ADDR (~0ULL)
45 
46 #define IANA_SPECIFIER_ID 0x00005eU
47 #define RFC2734_SW_VERSION 0x000001U
48 
49 #define IEEE1394_GASP_HDR_SIZE 8
50 
51 #define RFC2374_UNFRAG_HDR_SIZE 4
52 #define RFC2374_FRAG_HDR_SIZE 8
53 #define RFC2374_FRAG_OVERHEAD 4
54 
55 #define RFC2374_HDR_UNFRAG 0 /* unfragmented */
56 #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */
57 #define RFC2374_HDR_LASTFRAG 2 /* last fragment */
58 #define RFC2374_HDR_INTFRAG 3 /* interior fragment */
59 
60 #define RFC2734_HW_ADDR_LEN 16
61 
62 struct rfc2734_arp {
63  __be16 hw_type; /* 0x0018 */
64  __be16 proto_type; /* 0x0806 */
65  u8 hw_addr_len; /* 16 */
66  u8 ip_addr_len; /* 4 */
67  __be16 opcode; /* ARP Opcode */
68  /* Above is exactly the same format as struct arphdr */
69 
70  __be64 s_uniq_id; /* Sender's 64bit EUI */
71  u8 max_rec; /* Sender's max packet size */
72  u8 sspd; /* Sender's max speed */
73  __be16 fifo_hi; /* hi 16bits of sender's FIFO addr */
74  __be32 fifo_lo; /* lo 32bits of sender's FIFO addr */
75  __be32 sip; /* Sender's IP Address */
76  __be32 tip; /* IP Address of requested hw addr */
77 } __packed;
78 
79 /* This header format is specific to this driver implementation. */
80 #define FWNET_ALEN 8
81 #define FWNET_HLEN 10
82 struct fwnet_header {
83  u8 h_dest[FWNET_ALEN]; /* destination address */
84  __be16 h_proto; /* packet type ID field */
85 } __packed;
86 
87 /* IPv4 and IPv6 encapsulation header */
91 };
92 
93 #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30)
94 #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff))
95 #define fwnet_get_hdr_dg_size(h) (((h)->w0 & 0x0fff0000) >> 16)
96 #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff))
97 #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16)
98 
99 #define fwnet_set_hdr_lf(lf) ((lf) << 30)
100 #define fwnet_set_hdr_ether_type(et) (et)
101 #define fwnet_set_hdr_dg_size(dgs) ((dgs) << 16)
102 #define fwnet_set_hdr_fg_off(fgo) (fgo)
103 
104 #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16)
105 
106 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
107  unsigned ether_type)
108 {
110  | fwnet_set_hdr_ether_type(ether_type);
111 }
112 
113 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
114  unsigned ether_type, unsigned dg_size, unsigned dgl)
115 {
117  | fwnet_set_hdr_dg_size(dg_size)
118  | fwnet_set_hdr_ether_type(ether_type);
119  hdr->w1 = fwnet_set_hdr_dgl(dgl);
120 }
121 
122 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
123  unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
124 {
125  hdr->w0 = fwnet_set_hdr_lf(lf)
126  | fwnet_set_hdr_dg_size(dg_size)
127  | fwnet_set_hdr_fg_off(fg_off);
128  hdr->w1 = fwnet_set_hdr_dgl(dgl);
129 }
130 
131 /* This list keeps track of what parts of the datagram have been filled in */
136 };
137 
141  struct sk_buff *skb;
142  /* FIXME Why not use skb->data? */
143  char *pbuf;
147 };
148 
149 static DEFINE_MUTEX(fwnet_device_mutex);
150 static LIST_HEAD(fwnet_device_list);
151 
152 struct fwnet_device {
155  enum {
159  } broadcast_state;
165  unsigned rcv_buffer_size;
166  /*
167  * This value is the maximum unfragmented datagram size that can be
168  * sent by the hardware. It already has the GASP overhead and the
169  * unfragmented datagram header overhead calculated into it.
170  */
173 
174  /*
175  * The CSR address that remote nodes must send datagrams to for us to
176  * receive them.
177  */
180 
181  /* Number of tx datagrams that have been queued but not yet acked */
183 
186  struct fw_card *card;
188 };
189 
190 struct fwnet_peer {
192  struct fwnet_device *dev;
196 
197  /* guarded by dev->lock */
198  struct list_head pd_list; /* received partial datagrams */
199  unsigned pdg_size; /* pd_list size */
200 
201  u16 datagram_label; /* outgoing datagram label */
202  u16 max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */
203  int node_id;
205  unsigned speed;
206 };
207 
208 /* This is our task struct. It's used for the packet complete callback. */
212  struct sk_buff *skb;
213  struct fwnet_device *dev;
214 
222 };
223 
224 /*
225  * saddr == NULL means use device source address.
226  * daddr == NULL means leave destination address (eg unresolved arp).
227  */
228 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
229  unsigned short type, const void *daddr,
230  const void *saddr, unsigned len)
231 {
232  struct fwnet_header *h;
233 
234  h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
235  put_unaligned_be16(type, &h->h_proto);
236 
237  if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
238  memset(h->h_dest, 0, net->addr_len);
239 
240  return net->hard_header_len;
241  }
242 
243  if (daddr) {
244  memcpy(h->h_dest, daddr, net->addr_len);
245 
246  return net->hard_header_len;
247  }
248 
249  return -net->hard_header_len;
250 }
251 
252 static int fwnet_header_rebuild(struct sk_buff *skb)
253 {
254  struct fwnet_header *h = (struct fwnet_header *)skb->data;
255 
256  if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
257  return arp_find((unsigned char *)&h->h_dest, skb);
258 
259  dev_notice(&skb->dev->dev, "unable to resolve type %04x addresses\n",
260  be16_to_cpu(h->h_proto));
261  return 0;
262 }
263 
264 static int fwnet_header_cache(const struct neighbour *neigh,
265  struct hh_cache *hh, __be16 type)
266 {
267  struct net_device *net;
268  struct fwnet_header *h;
269 
270  if (type == cpu_to_be16(ETH_P_802_3))
271  return -1;
272  net = neigh->dev;
273  h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
274  h->h_proto = type;
275  memcpy(h->h_dest, neigh->ha, net->addr_len);
276  hh->hh_len = FWNET_HLEN;
277 
278  return 0;
279 }
280 
281 /* Called by Address Resolution module to notify changes in address. */
282 static void fwnet_header_cache_update(struct hh_cache *hh,
283  const struct net_device *net, const unsigned char *haddr)
284 {
285  memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
286 }
287 
288 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
289 {
290  memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
291 
292  return FWNET_ALEN;
293 }
294 
295 static const struct header_ops fwnet_header_ops = {
296  .create = fwnet_header_create,
297  .rebuild = fwnet_header_rebuild,
298  .cache = fwnet_header_cache,
299  .cache_update = fwnet_header_cache_update,
300  .parse = fwnet_header_parse,
301 };
302 
303 /* FIXME: is this correct for all cases? */
304 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
305  unsigned offset, unsigned len)
306 {
307  struct fwnet_fragment_info *fi;
308  unsigned end = offset + len;
309 
311  if (offset < fi->offset + fi->len && end > fi->offset)
312  return true;
313 
314  return false;
315 }
316 
317 /* Assumes that new fragment does not overlap any existing fragments */
318 static struct fwnet_fragment_info *fwnet_frag_new(
319  struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
320 {
321  struct fwnet_fragment_info *fi, *fi2, *new;
322  struct list_head *list;
323 
324  list = &pd->fi_list;
325  list_for_each_entry(fi, &pd->fi_list, fi_link) {
326  if (fi->offset + fi->len == offset) {
327  /* The new fragment can be tacked on to the end */
328  /* Did the new fragment plug a hole? */
329  fi2 = list_entry(fi->fi_link.next,
330  struct fwnet_fragment_info, fi_link);
331  if (fi->offset + fi->len == fi2->offset) {
332  /* glue fragments together */
333  fi->len += len + fi2->len;
334  list_del(&fi2->fi_link);
335  kfree(fi2);
336  } else {
337  fi->len += len;
338  }
339 
340  return fi;
341  }
342  if (offset + len == fi->offset) {
343  /* The new fragment can be tacked on to the beginning */
344  /* Did the new fragment plug a hole? */
345  fi2 = list_entry(fi->fi_link.prev,
346  struct fwnet_fragment_info, fi_link);
347  if (fi2->offset + fi2->len == fi->offset) {
348  /* glue fragments together */
349  fi2->len += fi->len + len;
350  list_del(&fi->fi_link);
351  kfree(fi);
352 
353  return fi2;
354  }
355  fi->offset = offset;
356  fi->len += len;
357 
358  return fi;
359  }
360  if (offset > fi->offset + fi->len) {
361  list = &fi->fi_link;
362  break;
363  }
364  if (offset + len < fi->offset) {
365  list = fi->fi_link.prev;
366  break;
367  }
368  }
369 
370  new = kmalloc(sizeof(*new), GFP_ATOMIC);
371  if (!new) {
372  dev_err(&pd->skb->dev->dev, "out of memory\n");
373  return NULL;
374  }
375 
376  new->offset = offset;
377  new->len = len;
378  list_add(&new->fi_link, list);
379 
380  return new;
381 }
382 
383 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
384  struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
385  void *frag_buf, unsigned frag_off, unsigned frag_len)
386 {
387  struct fwnet_partial_datagram *new;
388  struct fwnet_fragment_info *fi;
389 
390  new = kmalloc(sizeof(*new), GFP_ATOMIC);
391  if (!new)
392  goto fail;
393 
394  INIT_LIST_HEAD(&new->fi_list);
395  fi = fwnet_frag_new(new, frag_off, frag_len);
396  if (fi == NULL)
397  goto fail_w_new;
398 
399  new->datagram_label = datagram_label;
400  new->datagram_size = dg_size;
401  new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
402  if (new->skb == NULL)
403  goto fail_w_fi;
404 
405  skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
406  new->pbuf = skb_put(new->skb, dg_size);
407  memcpy(new->pbuf + frag_off, frag_buf, frag_len);
408  list_add_tail(&new->pd_link, &peer->pd_list);
409 
410  return new;
411 
412 fail_w_fi:
413  kfree(fi);
414 fail_w_new:
415  kfree(new);
416 fail:
417  dev_err(&net->dev, "out of memory\n");
418 
419  return NULL;
420 }
421 
422 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
423  u16 datagram_label)
424 {
425  struct fwnet_partial_datagram *pd;
426 
427  list_for_each_entry(pd, &peer->pd_list, pd_link)
428  if (pd->datagram_label == datagram_label)
429  return pd;
430 
431  return NULL;
432 }
433 
434 
435 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
436 {
437  struct fwnet_fragment_info *fi, *n;
438 
439  list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
440  kfree(fi);
441 
442  list_del(&old->pd_link);
443  dev_kfree_skb_any(old->skb);
444  kfree(old);
445 }
446 
447 static bool fwnet_pd_update(struct fwnet_peer *peer,
448  struct fwnet_partial_datagram *pd, void *frag_buf,
449  unsigned frag_off, unsigned frag_len)
450 {
451  if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
452  return false;
453 
454  memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
455 
456  /*
457  * Move list entry to beginning of list so that oldest partial
458  * datagrams percolate to the end of the list
459  */
460  list_move_tail(&pd->pd_link, &peer->pd_list);
461 
462  return true;
463 }
464 
465 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
466 {
467  struct fwnet_fragment_info *fi;
468 
469  fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
470 
471  return fi->len == pd->datagram_size;
472 }
473 
474 /* caller must hold dev->lock */
475 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
476  u64 guid)
477 {
478  struct fwnet_peer *peer;
479 
481  if (peer->guid == guid)
482  return peer;
483 
484  return NULL;
485 }
486 
487 /* caller must hold dev->lock */
488 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
489  int node_id, int generation)
490 {
491  struct fwnet_peer *peer;
492 
493  list_for_each_entry(peer, &dev->peer_list, peer_link)
494  if (peer->node_id == node_id &&
495  peer->generation == generation)
496  return peer;
497 
498  return NULL;
499 }
500 
501 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
502 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
503 {
504  max_rec = min(max_rec, speed + 8);
505  max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */
506 
507  return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
508 }
509 
510 
511 static int fwnet_finish_incoming_packet(struct net_device *net,
512  struct sk_buff *skb, u16 source_node_id,
513  bool is_broadcast, u16 ether_type)
514 {
515  struct fwnet_device *dev;
516  static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
517  int status;
518  __be64 guid;
519 
520  dev = netdev_priv(net);
521  /* Write metadata, and then pass to the receive level */
522  skb->dev = net;
523  skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
524 
525  /*
526  * Parse the encapsulation header. This actually does the job of
527  * converting to an ethernet frame header, as well as arp
528  * conversion if needed. ARP conversion is easier in this
529  * direction, since we are using ethernet as our backend.
530  */
531  /*
532  * If this is an ARP packet, convert it. First, we want to make
533  * use of some of the fields, since they tell us a little bit
534  * about the sending machine.
535  */
536  if (ether_type == ETH_P_ARP) {
537  struct rfc2734_arp *arp1394;
538  struct arphdr *arp;
539  unsigned char *arp_ptr;
540  u64 fifo_addr;
541  u64 peer_guid;
542  unsigned sspd;
544  struct fwnet_peer *peer;
545  unsigned long flags;
546 
547  arp1394 = (struct rfc2734_arp *)skb->data;
548  arp = (struct arphdr *)skb->data;
549  arp_ptr = (unsigned char *)(arp + 1);
550  peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
551  fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
552  | get_unaligned_be32(&arp1394->fifo_lo);
553 
554  sspd = arp1394->sspd;
555  /* Sanity check. OS X 10.3 PPC reportedly sends 131. */
556  if (sspd > SCODE_3200) {
557  dev_notice(&net->dev, "sspd %x out of range\n", sspd);
558  sspd = SCODE_3200;
559  }
560  max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
561 
562  spin_lock_irqsave(&dev->lock, flags);
563  peer = fwnet_peer_find_by_guid(dev, peer_guid);
564  if (peer) {
565  peer->fifo = fifo_addr;
566 
567  if (peer->speed > sspd)
568  peer->speed = sspd;
569  if (peer->max_payload > max_payload)
570  peer->max_payload = max_payload;
571 
572  peer->ip = arp1394->sip;
573  }
574  spin_unlock_irqrestore(&dev->lock, flags);
575 
576  if (!peer) {
577  dev_notice(&net->dev,
578  "no peer for ARP packet from %016llx\n",
579  (unsigned long long)peer_guid);
580  goto no_peer;
581  }
582 
583  /*
584  * Now that we're done with the 1394 specific stuff, we'll
585  * need to alter some of the data. Believe it or not, all
586  * that needs to be done is sender_IP_address needs to be
587  * moved, the destination hardware address get stuffed
588  * in and the hardware address length set to 8.
589  *
590  * IMPORTANT: The code below overwrites 1394 specific data
591  * needed above so keep the munging of the data for the
592  * higher level IP stack last.
593  */
594 
595  arp->ar_hln = 8;
596  /* skip over sender unique id */
597  arp_ptr += arp->ar_hln;
598  /* move sender IP addr */
599  put_unaligned(arp1394->sip, (u32 *)arp_ptr);
600  /* skip over sender IP addr */
601  arp_ptr += arp->ar_pln;
602 
603  if (arp->ar_op == htons(ARPOP_REQUEST))
604  memset(arp_ptr, 0, sizeof(u64));
605  else
606  memcpy(arp_ptr, net->dev_addr, sizeof(u64));
607  }
608 
609  /* Now add the ethernet header. */
610  guid = cpu_to_be64(dev->card->guid);
611  if (dev_hard_header(skb, net, ether_type,
612  is_broadcast ? &broadcast_hw : &guid,
613  NULL, skb->len) >= 0) {
614  struct fwnet_header *eth;
615  u16 *rawp;
617 
618  skb_reset_mac_header(skb);
619  skb_pull(skb, sizeof(*eth));
620  eth = (struct fwnet_header *)skb_mac_header(skb);
621  if (*eth->h_dest & 1) {
622  if (memcmp(eth->h_dest, net->broadcast,
623  net->addr_len) == 0)
624  skb->pkt_type = PACKET_BROADCAST;
625 #if 0
626  else
627  skb->pkt_type = PACKET_MULTICAST;
628 #endif
629  } else {
630  if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
631  skb->pkt_type = PACKET_OTHERHOST;
632  }
633  if (ntohs(eth->h_proto) >= 1536) {
634  protocol = eth->h_proto;
635  } else {
636  rawp = (u16 *)skb->data;
637  if (*rawp == 0xffff)
638  protocol = htons(ETH_P_802_3);
639  else
640  protocol = htons(ETH_P_802_2);
641  }
642  skb->protocol = protocol;
643  }
644  status = netif_rx(skb);
645  if (status == NET_RX_DROP) {
646  net->stats.rx_errors++;
647  net->stats.rx_dropped++;
648  } else {
649  net->stats.rx_packets++;
650  net->stats.rx_bytes += skb->len;
651  }
652 
653  return 0;
654 
655  no_peer:
656  net->stats.rx_errors++;
657  net->stats.rx_dropped++;
658 
659  dev_kfree_skb_any(skb);
660 
661  return -ENOENT;
662 }
663 
664 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
665  int source_node_id, int generation,
666  bool is_broadcast)
667 {
668  struct sk_buff *skb;
669  struct net_device *net = dev->netdev;
670  struct rfc2734_header hdr;
671  unsigned lf;
672  unsigned long flags;
673  struct fwnet_peer *peer;
674  struct fwnet_partial_datagram *pd;
675  int fg_off;
676  int dg_size;
678  int retval;
679  u16 ether_type;
680 
681  hdr.w0 = be32_to_cpu(buf[0]);
682  lf = fwnet_get_hdr_lf(&hdr);
683  if (lf == RFC2374_HDR_UNFRAG) {
684  /*
685  * An unfragmented datagram has been received by the ieee1394
686  * bus. Build an skbuff around it so we can pass it to the
687  * high level network layer.
688  */
689  ether_type = fwnet_get_hdr_ether_type(&hdr);
690  buf++;
692 
693  skb = dev_alloc_skb(len + net->hard_header_len + 15);
694  if (unlikely(!skb)) {
695  dev_err(&net->dev, "out of memory\n");
696  net->stats.rx_dropped++;
697 
698  return -ENOMEM;
699  }
700  skb_reserve(skb, (net->hard_header_len + 15) & ~15);
701  memcpy(skb_put(skb, len), buf, len);
702 
703  return fwnet_finish_incoming_packet(net, skb, source_node_id,
704  is_broadcast, ether_type);
705  }
706  /* A datagram fragment has been received, now the fun begins. */
707  hdr.w1 = ntohl(buf[1]);
708  buf += 2;
709  len -= RFC2374_FRAG_HDR_SIZE;
710  if (lf == RFC2374_HDR_FIRSTFRAG) {
711  ether_type = fwnet_get_hdr_ether_type(&hdr);
712  fg_off = 0;
713  } else {
714  ether_type = 0;
715  fg_off = fwnet_get_hdr_fg_off(&hdr);
716  }
717  datagram_label = fwnet_get_hdr_dgl(&hdr);
718  dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
719 
720  spin_lock_irqsave(&dev->lock, flags);
721 
722  peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
723  if (!peer) {
724  retval = -ENOENT;
725  goto fail;
726  }
727 
728  pd = fwnet_pd_find(peer, datagram_label);
729  if (pd == NULL) {
730  while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
731  /* remove the oldest */
732  fwnet_pd_delete(list_first_entry(&peer->pd_list,
733  struct fwnet_partial_datagram, pd_link));
734  peer->pdg_size--;
735  }
736  pd = fwnet_pd_new(net, peer, datagram_label,
737  dg_size, buf, fg_off, len);
738  if (pd == NULL) {
739  retval = -ENOMEM;
740  goto fail;
741  }
742  peer->pdg_size++;
743  } else {
744  if (fwnet_frag_overlap(pd, fg_off, len) ||
745  pd->datagram_size != dg_size) {
746  /*
747  * Differing datagram sizes or overlapping fragments,
748  * discard old datagram and start a new one.
749  */
750  fwnet_pd_delete(pd);
751  pd = fwnet_pd_new(net, peer, datagram_label,
752  dg_size, buf, fg_off, len);
753  if (pd == NULL) {
754  peer->pdg_size--;
755  retval = -ENOMEM;
756  goto fail;
757  }
758  } else {
759  if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
760  /*
761  * Couldn't save off fragment anyway
762  * so might as well obliterate the
763  * datagram now.
764  */
765  fwnet_pd_delete(pd);
766  peer->pdg_size--;
767  retval = -ENOMEM;
768  goto fail;
769  }
770  }
771  } /* new datagram or add to existing one */
772 
773  if (lf == RFC2374_HDR_FIRSTFRAG)
774  pd->ether_type = ether_type;
775 
776  if (fwnet_pd_is_complete(pd)) {
777  ether_type = pd->ether_type;
778  peer->pdg_size--;
779  skb = skb_get(pd->skb);
780  fwnet_pd_delete(pd);
781 
782  spin_unlock_irqrestore(&dev->lock, flags);
783 
784  return fwnet_finish_incoming_packet(net, skb, source_node_id,
785  false, ether_type);
786  }
787  /*
788  * Datagram is not complete, we're done for the
789  * moment.
790  */
791  retval = 0;
792  fail:
793  spin_unlock_irqrestore(&dev->lock, flags);
794 
795  return retval;
796 }
797 
798 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
799  int tcode, int destination, int source, int generation,
800  unsigned long long offset, void *payload, size_t length,
801  void *callback_data)
802 {
803  struct fwnet_device *dev = callback_data;
804  int rcode;
805 
806  if (destination == IEEE1394_ALL_NODES) {
807  kfree(r);
808 
809  return;
810  }
811 
812  if (offset != dev->handler.offset)
813  rcode = RCODE_ADDRESS_ERROR;
814  else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
815  rcode = RCODE_TYPE_ERROR;
816  else if (fwnet_incoming_packet(dev, payload, length,
817  source, generation, false) != 0) {
818  dev_err(&dev->netdev->dev, "incoming packet failure\n");
819  rcode = RCODE_CONFLICT_ERROR;
820  } else
821  rcode = RCODE_COMPLETE;
822 
823  fw_send_response(card, r, rcode);
824 }
825 
826 static void fwnet_receive_broadcast(struct fw_iso_context *context,
827  u32 cycle, size_t header_length, void *header, void *data)
828 {
829  struct fwnet_device *dev;
830  struct fw_iso_packet packet;
831  struct fw_card *card;
832  __be16 *hdr_ptr;
833  __be32 *buf_ptr;
834  int retval;
835  u32 length;
836  u16 source_node_id;
837  u32 specifier_id;
838  u32 ver;
839  unsigned long offset;
840  unsigned long flags;
841 
842  dev = data;
843  card = dev->card;
844  hdr_ptr = header;
845  length = be16_to_cpup(hdr_ptr);
846 
847  spin_lock_irqsave(&dev->lock, flags);
848 
849  offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
850  buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
852  dev->broadcast_rcv_next_ptr = 0;
853 
854  spin_unlock_irqrestore(&dev->lock, flags);
855 
856  specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
857  | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
858  ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
859  source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
860 
861  if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
862  buf_ptr += 2;
863  length -= IEEE1394_GASP_HDR_SIZE;
864  fwnet_incoming_packet(dev, buf_ptr, length,
865  source_node_id, -1, true);
866  }
867 
868  packet.payload_length = dev->rcv_buffer_size;
869  packet.interrupt = 1;
870  packet.skip = 0;
871  packet.tag = 3;
872  packet.sy = 0;
873  packet.header_length = IEEE1394_GASP_HDR_SIZE;
874 
875  spin_lock_irqsave(&dev->lock, flags);
876 
878  &dev->broadcast_rcv_buffer, offset);
879 
880  spin_unlock_irqrestore(&dev->lock, flags);
881 
882  if (retval >= 0)
884  else
885  dev_err(&dev->netdev->dev, "requeue failed\n");
886 }
887 
888 static struct kmem_cache *fwnet_packet_task_cache;
889 
890 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
891 {
892  dev_kfree_skb_any(ptask->skb);
893  kmem_cache_free(fwnet_packet_task_cache, ptask);
894 }
895 
896 /* Caller must hold dev->lock. */
897 static void dec_queued_datagrams(struct fwnet_device *dev)
898 {
900  netif_wake_queue(dev->netdev);
901 }
902 
903 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
904 
905 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
906 {
907  struct fwnet_device *dev = ptask->dev;
908  struct sk_buff *skb = ptask->skb;
909  unsigned long flags;
910  bool free;
911 
912  spin_lock_irqsave(&dev->lock, flags);
913 
914  ptask->outstanding_pkts--;
915 
916  /* Check whether we or the networking TX soft-IRQ is last user. */
917  free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
918  if (free)
919  dec_queued_datagrams(dev);
920 
921  if (ptask->outstanding_pkts == 0) {
922  dev->netdev->stats.tx_packets++;
923  dev->netdev->stats.tx_bytes += skb->len;
924  }
925 
926  spin_unlock_irqrestore(&dev->lock, flags);
927 
928  if (ptask->outstanding_pkts > 0) {
929  u16 dg_size;
930  u16 fg_off;
931  u16 datagram_label;
932  u16 lf;
933 
934  /* Update the ptask to point to the next fragment and send it */
935  lf = fwnet_get_hdr_lf(&ptask->hdr);
936  switch (lf) {
938  case RFC2374_HDR_UNFRAG:
939  default:
940  dev_err(&dev->netdev->dev,
941  "outstanding packet %x lf %x, header %x,%x\n",
942  ptask->outstanding_pkts, lf, ptask->hdr.w0,
943  ptask->hdr.w1);
944  BUG();
945 
947  /* Set frag type here for future interior fragments */
948  dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
949  fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
950  datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
951  break;
952 
953  case RFC2374_HDR_INTFRAG:
954  dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
955  fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
957  datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
958  break;
959  }
960 
961  skb_pull(skb, ptask->max_payload);
962  if (ptask->outstanding_pkts > 1) {
963  fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
964  dg_size, fg_off, datagram_label);
965  } else {
966  fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
967  dg_size, fg_off, datagram_label);
968  ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
969  }
970  fwnet_send_packet(ptask);
971  }
972 
973  if (free)
974  fwnet_free_ptask(ptask);
975 }
976 
977 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
978 {
979  struct fwnet_device *dev = ptask->dev;
980  unsigned long flags;
981  bool free;
982 
983  spin_lock_irqsave(&dev->lock, flags);
984 
985  /* One fragment failed; don't try to send remaining fragments. */
986  ptask->outstanding_pkts = 0;
987 
988  /* Check whether we or the networking TX soft-IRQ is last user. */
989  free = ptask->enqueued;
990  if (free)
991  dec_queued_datagrams(dev);
992 
993  dev->netdev->stats.tx_dropped++;
994  dev->netdev->stats.tx_errors++;
995 
996  spin_unlock_irqrestore(&dev->lock, flags);
997 
998  if (free)
999  fwnet_free_ptask(ptask);
1000 }
1001 
1002 static void fwnet_write_complete(struct fw_card *card, int rcode,
1003  void *payload, size_t length, void *data)
1004 {
1005  struct fwnet_packet_task *ptask = data;
1006  static unsigned long j;
1007  static int last_rcode, errors_skipped;
1008 
1009  if (rcode == RCODE_COMPLETE) {
1010  fwnet_transmit_packet_done(ptask);
1011  } else {
1012  fwnet_transmit_packet_failed(ptask);
1013 
1014  if (printk_timed_ratelimit(&j, 1000) || rcode != last_rcode) {
1015  dev_err(&ptask->dev->netdev->dev,
1016  "fwnet_write_complete failed: %x (skipped %d)\n",
1017  rcode, errors_skipped);
1018 
1019  errors_skipped = 0;
1020  last_rcode = rcode;
1021  } else
1022  errors_skipped++;
1023  }
1024 }
1025 
1026 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
1027 {
1028  struct fwnet_device *dev;
1029  unsigned tx_len;
1030  struct rfc2734_header *bufhdr;
1031  unsigned long flags;
1032  bool free;
1033 
1034  dev = ptask->dev;
1035  tx_len = ptask->max_payload;
1036  switch (fwnet_get_hdr_lf(&ptask->hdr)) {
1037  case RFC2374_HDR_UNFRAG:
1038  bufhdr = (struct rfc2734_header *)
1040  put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1041  break;
1042 
1043  case RFC2374_HDR_FIRSTFRAG:
1044  case RFC2374_HDR_INTFRAG:
1045  case RFC2374_HDR_LASTFRAG:
1046  bufhdr = (struct rfc2734_header *)
1048  put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1049  put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1050  break;
1051 
1052  default:
1053  BUG();
1054  }
1055  if (ptask->dest_node == IEEE1394_ALL_NODES) {
1056  u8 *p;
1057  int generation;
1058  int node_id;
1059 
1060  /* ptask->generation may not have been set yet */
1061  generation = dev->card->generation;
1062  smp_rmb();
1063  node_id = dev->card->node_id;
1064 
1065  p = skb_push(ptask->skb, 8);
1066  put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1067  put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1068  | RFC2734_SW_VERSION, &p[4]);
1069 
1070  /* We should not transmit if broadcast_channel.valid == 0. */
1071  fw_send_request(dev->card, &ptask->transaction,
1073  fw_stream_packet_destination_id(3,
1075  generation, SCODE_100, 0ULL, ptask->skb->data,
1076  tx_len + 8, fwnet_write_complete, ptask);
1077 
1078  spin_lock_irqsave(&dev->lock, flags);
1079 
1080  /* If the AT tasklet already ran, we may be last user. */
1081  free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1082  if (!free)
1083  ptask->enqueued = true;
1084  else
1085  dec_queued_datagrams(dev);
1086 
1087  spin_unlock_irqrestore(&dev->lock, flags);
1088 
1089  goto out;
1090  }
1091 
1092  fw_send_request(dev->card, &ptask->transaction,
1094  ptask->generation, ptask->speed, ptask->fifo_addr,
1095  ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1096 
1097  spin_lock_irqsave(&dev->lock, flags);
1098 
1099  /* If the AT tasklet already ran, we may be last user. */
1100  free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1101  if (!free)
1102  ptask->enqueued = true;
1103  else
1104  dec_queued_datagrams(dev);
1105 
1106  spin_unlock_irqrestore(&dev->lock, flags);
1107 
1108  dev->netdev->trans_start = jiffies;
1109  out:
1110  if (free)
1111  fwnet_free_ptask(ptask);
1112 
1113  return 0;
1114 }
1115 
1116 static int fwnet_broadcast_start(struct fwnet_device *dev)
1117 {
1118  struct fw_iso_context *context;
1119  int retval;
1120  unsigned num_packets;
1121  unsigned max_receive;
1122  struct fw_iso_packet packet;
1123  unsigned long offset;
1124  unsigned u;
1125 
1126  if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1127  dev->handler.length = 4096;
1128  dev->handler.address_callback = fwnet_receive_packet;
1129  dev->handler.callback_data = dev;
1130 
1131  retval = fw_core_add_address_handler(&dev->handler,
1133  if (retval < 0)
1134  goto failed_initial;
1135 
1136  dev->local_fifo = dev->handler.offset;
1137  }
1138 
1139  max_receive = 1U << (dev->card->max_receive + 1);
1140  num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1141 
1142  if (!dev->broadcast_rcv_context) {
1143  void **ptrptr;
1144 
1145  context = fw_iso_context_create(dev->card,
1147  dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1148  if (IS_ERR(context)) {
1149  retval = PTR_ERR(context);
1150  goto failed_context_create;
1151  }
1152 
1155  if (retval < 0)
1156  goto failed_buffer_init;
1157 
1158  ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1159  if (!ptrptr) {
1160  retval = -ENOMEM;
1161  goto failed_ptrs_alloc;
1162  }
1163 
1164  dev->broadcast_rcv_buffer_ptrs = ptrptr;
1165  for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1166  void *ptr;
1167  unsigned v;
1168 
1169  ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1170  for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1171  *ptrptr++ = (void *)
1172  ((char *)ptr + v * max_receive);
1173  }
1175  } else {
1176  context = dev->broadcast_rcv_context;
1177  }
1178 
1179  packet.payload_length = max_receive;
1180  packet.interrupt = 1;
1181  packet.skip = 0;
1182  packet.tag = 3;
1183  packet.sy = 0;
1184  packet.header_length = IEEE1394_GASP_HDR_SIZE;
1185  offset = 0;
1186 
1187  for (u = 0; u < num_packets; u++) {
1188  retval = fw_iso_context_queue(context, &packet,
1189  &dev->broadcast_rcv_buffer, offset);
1190  if (retval < 0)
1191  goto failed_rcv_queue;
1192 
1193  offset += max_receive;
1194  }
1195  dev->num_broadcast_rcv_ptrs = num_packets;
1196  dev->rcv_buffer_size = max_receive;
1197  dev->broadcast_rcv_next_ptr = 0U;
1198  retval = fw_iso_context_start(context, -1, 0,
1199  FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1200  if (retval < 0)
1201  goto failed_rcv_queue;
1202 
1203  /* FIXME: adjust it according to the min. speed of all known peers? */
1206  dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1207 
1208  return 0;
1209 
1210  failed_rcv_queue:
1213  failed_ptrs_alloc:
1215  failed_buffer_init:
1216  fw_iso_context_destroy(context);
1217  dev->broadcast_rcv_context = NULL;
1218  failed_context_create:
1220  failed_initial:
1222 
1223  return retval;
1224 }
1225 
1226 static void set_carrier_state(struct fwnet_device *dev)
1227 {
1228  if (dev->peer_count > 1)
1229  netif_carrier_on(dev->netdev);
1230  else
1231  netif_carrier_off(dev->netdev);
1232 }
1233 
1234 /* ifup */
1235 static int fwnet_open(struct net_device *net)
1236 {
1237  struct fwnet_device *dev = netdev_priv(net);
1238  int ret;
1239 
1240  if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1241  ret = fwnet_broadcast_start(dev);
1242  if (ret)
1243  return ret;
1244  }
1245  netif_start_queue(net);
1246 
1247  spin_lock_irq(&dev->lock);
1248  set_carrier_state(dev);
1249  spin_unlock_irq(&dev->lock);
1250 
1251  return 0;
1252 }
1253 
1254 /* ifdown */
1255 static int fwnet_stop(struct net_device *net)
1256 {
1257  netif_stop_queue(net);
1258 
1259  /* Deallocate iso context for use by other applications? */
1260 
1261  return 0;
1262 }
1263 
1264 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1265 {
1266  struct fwnet_header hdr_buf;
1267  struct fwnet_device *dev = netdev_priv(net);
1268  __be16 proto;
1269  u16 dest_node;
1270  unsigned max_payload;
1271  u16 dg_size;
1272  u16 *datagram_label_ptr;
1273  struct fwnet_packet_task *ptask;
1274  struct fwnet_peer *peer;
1275  unsigned long flags;
1276 
1277  spin_lock_irqsave(&dev->lock, flags);
1278 
1279  /* Can this happen? */
1280  if (netif_queue_stopped(dev->netdev)) {
1281  spin_unlock_irqrestore(&dev->lock, flags);
1282 
1283  return NETDEV_TX_BUSY;
1284  }
1285 
1286  ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1287  if (ptask == NULL)
1288  goto fail;
1289 
1290  skb = skb_share_check(skb, GFP_ATOMIC);
1291  if (!skb)
1292  goto fail;
1293 
1294  /*
1295  * Make a copy of the driver-specific header.
1296  * We might need to rebuild the header on tx failure.
1297  */
1298  memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1299  skb_pull(skb, sizeof(hdr_buf));
1300 
1301  proto = hdr_buf.h_proto;
1302  dg_size = skb->len;
1303 
1304  /*
1305  * Set the transmission type for the packet. ARP packets and IP
1306  * broadcast packets are sent via GASP.
1307  */
1308  if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1309  || proto == htons(ETH_P_ARP)
1310  || (proto == htons(ETH_P_IP)
1311  && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1312  max_payload = dev->broadcast_xmt_max_payload;
1313  datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1314 
1315  ptask->fifo_addr = FWNET_NO_FIFO_ADDR;
1316  ptask->generation = 0;
1317  ptask->dest_node = IEEE1394_ALL_NODES;
1318  ptask->speed = SCODE_100;
1319  } else {
1320  __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1321  u8 generation;
1322 
1323  peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1324  if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1325  goto fail;
1326 
1327  generation = peer->generation;
1328  dest_node = peer->node_id;
1329  max_payload = peer->max_payload;
1330  datagram_label_ptr = &peer->datagram_label;
1331 
1332  ptask->fifo_addr = peer->fifo;
1333  ptask->generation = generation;
1334  ptask->dest_node = dest_node;
1335  ptask->speed = peer->speed;
1336  }
1337 
1338  /* If this is an ARP packet, convert it */
1339  if (proto == htons(ETH_P_ARP)) {
1340  struct arphdr *arp = (struct arphdr *)skb->data;
1341  unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1342  struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1343  __be32 ipaddr;
1344 
1345  ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1346 
1347  arp1394->hw_addr_len = RFC2734_HW_ADDR_LEN;
1348  arp1394->max_rec = dev->card->max_receive;
1349  arp1394->sspd = dev->card->link_speed;
1350 
1351  put_unaligned_be16(dev->local_fifo >> 32,
1352  &arp1394->fifo_hi);
1353  put_unaligned_be32(dev->local_fifo & 0xffffffff,
1354  &arp1394->fifo_lo);
1355  put_unaligned(ipaddr, &arp1394->sip);
1356  }
1357 
1358  ptask->hdr.w0 = 0;
1359  ptask->hdr.w1 = 0;
1360  ptask->skb = skb;
1361  ptask->dev = dev;
1362 
1363  /* Does it all fit in one packet? */
1364  if (dg_size <= max_payload) {
1365  fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1366  ptask->outstanding_pkts = 1;
1367  max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1368  } else {
1369  u16 datagram_label;
1370 
1371  max_payload -= RFC2374_FRAG_OVERHEAD;
1372  datagram_label = (*datagram_label_ptr)++;
1373  fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1374  datagram_label);
1375  ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1376  max_payload += RFC2374_FRAG_HDR_SIZE;
1377  }
1378 
1380  netif_stop_queue(dev->netdev);
1381 
1382  spin_unlock_irqrestore(&dev->lock, flags);
1383 
1384  ptask->max_payload = max_payload;
1385  ptask->enqueued = 0;
1386 
1387  fwnet_send_packet(ptask);
1388 
1389  return NETDEV_TX_OK;
1390 
1391  fail:
1392  spin_unlock_irqrestore(&dev->lock, flags);
1393 
1394  if (ptask)
1395  kmem_cache_free(fwnet_packet_task_cache, ptask);
1396 
1397  if (skb != NULL)
1398  dev_kfree_skb(skb);
1399 
1400  net->stats.tx_dropped++;
1401  net->stats.tx_errors++;
1402 
1403  /*
1404  * FIXME: According to a patch from 2003-02-26, "returning non-zero
1405  * causes serious problems" here, allegedly. Before that patch,
1406  * -ERRNO was returned which is not appropriate under Linux 2.6.
1407  * Perhaps more needs to be done? Stop the queue in serious
1408  * conditions and restart it elsewhere?
1409  */
1410  return NETDEV_TX_OK;
1411 }
1412 
1413 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1414 {
1415  if (new_mtu < 68)
1416  return -EINVAL;
1417 
1418  net->mtu = new_mtu;
1419  return 0;
1420 }
1421 
1422 static const struct ethtool_ops fwnet_ethtool_ops = {
1423  .get_link = ethtool_op_get_link,
1424 };
1425 
1426 static const struct net_device_ops fwnet_netdev_ops = {
1427  .ndo_open = fwnet_open,
1428  .ndo_stop = fwnet_stop,
1429  .ndo_start_xmit = fwnet_tx,
1430  .ndo_change_mtu = fwnet_change_mtu,
1431 };
1432 
1433 static void fwnet_init_dev(struct net_device *net)
1434 {
1435  net->header_ops = &fwnet_header_ops;
1436  net->netdev_ops = &fwnet_netdev_ops;
1437  net->watchdog_timeo = 2 * HZ;
1439  net->features = NETIF_F_HIGHDMA;
1440  net->addr_len = FWNET_ALEN;
1441  net->hard_header_len = FWNET_HLEN;
1442  net->type = ARPHRD_IEEE1394;
1444  net->ethtool_ops = &fwnet_ethtool_ops;
1445 }
1446 
1447 /* caller must hold fwnet_device_mutex */
1448 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1449 {
1450  struct fwnet_device *dev;
1451 
1452  list_for_each_entry(dev, &fwnet_device_list, dev_link)
1453  if (dev->card == card)
1454  return dev;
1455 
1456  return NULL;
1457 }
1458 
1459 static int fwnet_add_peer(struct fwnet_device *dev,
1461 {
1462  struct fwnet_peer *peer;
1463 
1464  peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1465  if (!peer)
1466  return -ENOMEM;
1467 
1468  dev_set_drvdata(&unit->device, peer);
1469 
1470  peer->dev = dev;
1471  peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1472  peer->fifo = FWNET_NO_FIFO_ADDR;
1473  peer->ip = 0;
1474  INIT_LIST_HEAD(&peer->pd_list);
1475  peer->pdg_size = 0;
1476  peer->datagram_label = 0;
1477  peer->speed = device->max_speed;
1478  peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1479 
1480  peer->generation = device->generation;
1481  smp_rmb();
1482  peer->node_id = device->node_id;
1483 
1484  spin_lock_irq(&dev->lock);
1485  list_add_tail(&peer->peer_link, &dev->peer_list);
1486  dev->peer_count++;
1487  set_carrier_state(dev);
1488  spin_unlock_irq(&dev->lock);
1489 
1490  return 0;
1491 }
1492 
1493 static int fwnet_probe(struct device *_dev)
1494 {
1495  struct fw_unit *unit = fw_unit(_dev);
1496  struct fw_device *device = fw_parent_device(unit);
1497  struct fw_card *card = device->card;
1498  struct net_device *net;
1499  bool allocated_netdev = false;
1500  struct fwnet_device *dev;
1501  unsigned max_mtu;
1502  int ret;
1503 
1504  mutex_lock(&fwnet_device_mutex);
1505 
1506  dev = fwnet_dev_find(card);
1507  if (dev) {
1508  net = dev->netdev;
1509  goto have_dev;
1510  }
1511 
1512  net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1513  if (net == NULL) {
1514  ret = -ENOMEM;
1515  goto out;
1516  }
1517 
1518  allocated_netdev = true;
1519  SET_NETDEV_DEV(net, card->device);
1520  dev = netdev_priv(net);
1521 
1522  spin_lock_init(&dev->lock);
1524  dev->broadcast_rcv_context = NULL;
1525  dev->broadcast_xmt_max_payload = 0;
1526  dev->broadcast_xmt_datagramlabel = 0;
1528  dev->queued_datagrams = 0;
1529  INIT_LIST_HEAD(&dev->peer_list);
1530  dev->card = card;
1531  dev->netdev = net;
1532 
1533  /*
1534  * Use the RFC 2734 default 1500 octets or the maximum payload
1535  * as initial MTU
1536  */
1537  max_mtu = (1 << (card->max_receive + 1))
1538  - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1539  net->mtu = min(1500U, max_mtu);
1540 
1541  /* Set our hardware address while we're at it */
1542  put_unaligned_be64(card->guid, net->dev_addr);
1543  put_unaligned_be64(~0ULL, net->broadcast);
1544  ret = register_netdev(net);
1545  if (ret)
1546  goto out;
1547 
1548  list_add_tail(&dev->dev_link, &fwnet_device_list);
1549  dev_notice(&net->dev, "IPv4 over IEEE 1394 on card %s\n",
1550  dev_name(card->device));
1551  have_dev:
1552  ret = fwnet_add_peer(dev, unit, device);
1553  if (ret && allocated_netdev) {
1554  unregister_netdev(net);
1555  list_del(&dev->dev_link);
1556  }
1557  out:
1558  if (ret && allocated_netdev)
1559  free_netdev(net);
1560 
1561  mutex_unlock(&fwnet_device_mutex);
1562 
1563  return ret;
1564 }
1565 
1566 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1567 {
1568  struct fwnet_partial_datagram *pd, *pd_next;
1569 
1570  spin_lock_irq(&dev->lock);
1571  list_del(&peer->peer_link);
1572  dev->peer_count--;
1573  set_carrier_state(dev);
1574  spin_unlock_irq(&dev->lock);
1575 
1576  list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1577  fwnet_pd_delete(pd);
1578 
1579  kfree(peer);
1580 }
1581 
1582 static int fwnet_remove(struct device *_dev)
1583 {
1584  struct fwnet_peer *peer = dev_get_drvdata(_dev);
1585  struct fwnet_device *dev = peer->dev;
1586  struct net_device *net;
1587  int i;
1588 
1589  mutex_lock(&fwnet_device_mutex);
1590 
1591  net = dev->netdev;
1592  if (net && peer->ip)
1593  arp_invalidate(net, peer->ip);
1594 
1595  fwnet_remove_peer(peer, dev);
1596 
1597  if (list_empty(&dev->peer_list)) {
1598  unregister_netdev(net);
1599 
1600  if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1602  if (dev->broadcast_rcv_context) {
1605  dev->card);
1607  }
1608  for (i = 0; dev->queued_datagrams && i < 5; i++)
1609  ssleep(1);
1610  WARN_ON(dev->queued_datagrams);
1611  list_del(&dev->dev_link);
1612 
1613  free_netdev(net);
1614  }
1615 
1616  mutex_unlock(&fwnet_device_mutex);
1617 
1618  return 0;
1619 }
1620 
1621 /*
1622  * FIXME abort partially sent fragmented datagrams,
1623  * discard partially received fragmented datagrams
1624  */
1625 static void fwnet_update(struct fw_unit *unit)
1626 {
1627  struct fw_device *device = fw_parent_device(unit);
1628  struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1629  int generation;
1630 
1631  generation = device->generation;
1632 
1633  spin_lock_irq(&peer->dev->lock);
1634  peer->node_id = device->node_id;
1635  peer->generation = generation;
1636  spin_unlock_irq(&peer->dev->lock);
1637 }
1638 
1639 static const struct ieee1394_device_id fwnet_id_table[] = {
1640  {
1641  .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1643  .specifier_id = IANA_SPECIFIER_ID,
1644  .version = RFC2734_SW_VERSION,
1645  },
1646  { }
1647 };
1648 
1649 static struct fw_driver fwnet_driver = {
1650  .driver = {
1651  .owner = THIS_MODULE,
1652  .name = KBUILD_MODNAME,
1653  .bus = &fw_bus_type,
1654  .probe = fwnet_probe,
1655  .remove = fwnet_remove,
1656  },
1657  .update = fwnet_update,
1658  .id_table = fwnet_id_table,
1659 };
1660 
1661 static const u32 rfc2374_unit_directory_data[] = {
1662  0x00040000, /* directory_length */
1663  0x1200005e, /* unit_specifier_id: IANA */
1664  0x81000003, /* textual descriptor offset */
1665  0x13000001, /* unit_sw_version: RFC 2734 */
1666  0x81000005, /* textual descriptor offset */
1667  0x00030000, /* descriptor_length */
1668  0x00000000, /* text */
1669  0x00000000, /* minimal ASCII, en */
1670  0x49414e41, /* I A N A */
1671  0x00030000, /* descriptor_length */
1672  0x00000000, /* text */
1673  0x00000000, /* minimal ASCII, en */
1674  0x49507634, /* I P v 4 */
1675 };
1676 
1677 static struct fw_descriptor rfc2374_unit_directory = {
1678  .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1679  .key = (CSR_DIRECTORY | CSR_UNIT) << 24,
1680  .data = rfc2374_unit_directory_data
1681 };
1682 
1683 static int __init fwnet_init(void)
1684 {
1685  int err;
1686 
1687  err = fw_core_add_descriptor(&rfc2374_unit_directory);
1688  if (err)
1689  return err;
1690 
1691  fwnet_packet_task_cache = kmem_cache_create("packet_task",
1692  sizeof(struct fwnet_packet_task), 0, 0, NULL);
1693  if (!fwnet_packet_task_cache) {
1694  err = -ENOMEM;
1695  goto out;
1696  }
1697 
1698  err = driver_register(&fwnet_driver.driver);
1699  if (!err)
1700  return 0;
1701 
1702  kmem_cache_destroy(fwnet_packet_task_cache);
1703 out:
1704  fw_core_remove_descriptor(&rfc2374_unit_directory);
1705 
1706  return err;
1707 }
1708 module_init(fwnet_init);
1709 
1710 static void __exit fwnet_cleanup(void)
1711 {
1712  driver_unregister(&fwnet_driver.driver);
1713  kmem_cache_destroy(fwnet_packet_task_cache);
1714  fw_core_remove_descriptor(&rfc2374_unit_directory);
1715 }
1716 module_exit(fwnet_cleanup);
1717 
1718 MODULE_AUTHOR("Jay Fenlason <[email protected]>");
1719 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1720 MODULE_LICENSE("GPL");
1721 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);