Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
e1000_phy.c
Go to the documentation of this file.
1 /*******************************************************************************
2 
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2012 Intel Corporation.
5 
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9 
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13  more details.
14 
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21 
22  Contact Information:
23  e1000-devel Mailing List <[email protected]>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30 
31 #include "e1000_mac.h"
32 #include "e1000_phy.h"
33 
34 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw);
35 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
36  u16 *phy_ctrl);
37 static s32 igb_wait_autoneg(struct e1000_hw *hw);
38 static s32 igb_set_master_slave_mode(struct e1000_hw *hw);
39 
40 /* Cable length tables */
41 static const u16 e1000_m88_cable_length_table[] =
42  { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
43 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
44  (sizeof(e1000_m88_cable_length_table) / \
45  sizeof(e1000_m88_cable_length_table[0]))
46 
47 static const u16 e1000_igp_2_cable_length_table[] =
48  { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
49  0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
50  6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
51  21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
52  40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
53  60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
54  83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
55  104, 109, 114, 118, 121, 124};
56 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
57  (sizeof(e1000_igp_2_cable_length_table) / \
58  sizeof(e1000_igp_2_cable_length_table[0]))
59 
69 {
70  u32 manc;
71 
72  manc = rd32(E1000_MANC);
73 
74  return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
76 }
77 
86 {
87  struct e1000_phy_info *phy = &hw->phy;
88  s32 ret_val = 0;
89  u16 phy_id;
90 
91  ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
92  if (ret_val)
93  goto out;
94 
95  phy->id = (u32)(phy_id << 16);
96  udelay(20);
97  ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
98  if (ret_val)
99  goto out;
100 
101  phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
102  phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
103 
104 out:
105  return ret_val;
106 }
107 
114 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
115 {
116  s32 ret_val = 0;
117 
118  if (!(hw->phy.ops.write_reg))
119  goto out;
120 
121  ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
122  if (ret_val)
123  goto out;
124 
125  ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
126 
127 out:
128  return ret_val;
129 }
130 
141 {
142  struct e1000_phy_info *phy = &hw->phy;
143  u32 i, mdic = 0;
144  s32 ret_val = 0;
145 
146  if (offset > MAX_PHY_REG_ADDRESS) {
147  hw_dbg("PHY Address %d is out of range\n", offset);
148  ret_val = -E1000_ERR_PARAM;
149  goto out;
150  }
151 
152  /*
153  * Set up Op-code, Phy Address, and register offset in the MDI
154  * Control register. The MAC will take care of interfacing with the
155  * PHY to retrieve the desired data.
156  */
157  mdic = ((offset << E1000_MDIC_REG_SHIFT) |
158  (phy->addr << E1000_MDIC_PHY_SHIFT) |
160 
161  wr32(E1000_MDIC, mdic);
162 
163  /*
164  * Poll the ready bit to see if the MDI read completed
165  * Increasing the time out as testing showed failures with
166  * the lower time out
167  */
168  for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
169  udelay(50);
170  mdic = rd32(E1000_MDIC);
171  if (mdic & E1000_MDIC_READY)
172  break;
173  }
174  if (!(mdic & E1000_MDIC_READY)) {
175  hw_dbg("MDI Read did not complete\n");
176  ret_val = -E1000_ERR_PHY;
177  goto out;
178  }
179  if (mdic & E1000_MDIC_ERROR) {
180  hw_dbg("MDI Error\n");
181  ret_val = -E1000_ERR_PHY;
182  goto out;
183  }
184  *data = (u16) mdic;
185 
186 out:
187  return ret_val;
188 }
189 
199 {
200  struct e1000_phy_info *phy = &hw->phy;
201  u32 i, mdic = 0;
202  s32 ret_val = 0;
203 
204  if (offset > MAX_PHY_REG_ADDRESS) {
205  hw_dbg("PHY Address %d is out of range\n", offset);
206  ret_val = -E1000_ERR_PARAM;
207  goto out;
208  }
209 
210  /*
211  * Set up Op-code, Phy Address, and register offset in the MDI
212  * Control register. The MAC will take care of interfacing with the
213  * PHY to retrieve the desired data.
214  */
215  mdic = (((u32)data) |
216  (offset << E1000_MDIC_REG_SHIFT) |
217  (phy->addr << E1000_MDIC_PHY_SHIFT) |
219 
220  wr32(E1000_MDIC, mdic);
221 
222  /*
223  * Poll the ready bit to see if the MDI read completed
224  * Increasing the time out as testing showed failures with
225  * the lower time out
226  */
227  for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
228  udelay(50);
229  mdic = rd32(E1000_MDIC);
230  if (mdic & E1000_MDIC_READY)
231  break;
232  }
233  if (!(mdic & E1000_MDIC_READY)) {
234  hw_dbg("MDI Write did not complete\n");
235  ret_val = -E1000_ERR_PHY;
236  goto out;
237  }
238  if (mdic & E1000_MDIC_ERROR) {
239  hw_dbg("MDI Error\n");
240  ret_val = -E1000_ERR_PHY;
241  goto out;
242  }
243 
244 out:
245  return ret_val;
246 }
247 
258 {
259  struct e1000_phy_info *phy = &hw->phy;
260  u32 i, i2ccmd = 0;
261 
262 
263  /*
264  * Set up Op-code, Phy Address, and register address in the I2CCMD
265  * register. The MAC will take care of interfacing with the
266  * PHY to retrieve the desired data.
267  */
268  i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
271 
272  wr32(E1000_I2CCMD, i2ccmd);
273 
274  /* Poll the ready bit to see if the I2C read completed */
275  for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
276  udelay(50);
277  i2ccmd = rd32(E1000_I2CCMD);
278  if (i2ccmd & E1000_I2CCMD_READY)
279  break;
280  }
281  if (!(i2ccmd & E1000_I2CCMD_READY)) {
282  hw_dbg("I2CCMD Read did not complete\n");
283  return -E1000_ERR_PHY;
284  }
285  if (i2ccmd & E1000_I2CCMD_ERROR) {
286  hw_dbg("I2CCMD Error bit set\n");
287  return -E1000_ERR_PHY;
288  }
289 
290  /* Need to byte-swap the 16-bit value. */
291  *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
292 
293  return 0;
294 }
295 
305 {
306  struct e1000_phy_info *phy = &hw->phy;
307  u32 i, i2ccmd = 0;
308  u16 phy_data_swapped;
309 
310  /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
311  if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
312  hw_dbg("PHY I2C Address %d is out of range.\n",
313  hw->phy.addr);
314  return -E1000_ERR_CONFIG;
315  }
316 
317  /* Swap the data bytes for the I2C interface */
318  phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
319 
320  /*
321  * Set up Op-code, Phy Address, and register address in the I2CCMD
322  * register. The MAC will take care of interfacing with the
323  * PHY to retrieve the desired data.
324  */
325  i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
328  phy_data_swapped);
329 
330  wr32(E1000_I2CCMD, i2ccmd);
331 
332  /* Poll the ready bit to see if the I2C read completed */
333  for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
334  udelay(50);
335  i2ccmd = rd32(E1000_I2CCMD);
336  if (i2ccmd & E1000_I2CCMD_READY)
337  break;
338  }
339  if (!(i2ccmd & E1000_I2CCMD_READY)) {
340  hw_dbg("I2CCMD Write did not complete\n");
341  return -E1000_ERR_PHY;
342  }
343  if (i2ccmd & E1000_I2CCMD_ERROR) {
344  hw_dbg("I2CCMD Error bit set\n");
345  return -E1000_ERR_PHY;
346  }
347 
348  return 0;
349 }
350 
362 {
363  s32 ret_val = 0;
364 
365  if (!(hw->phy.ops.acquire))
366  goto out;
367 
368  ret_val = hw->phy.ops.acquire(hw);
369  if (ret_val)
370  goto out;
371 
372  if (offset > MAX_PHY_MULTI_PAGE_REG) {
373  ret_val = igb_write_phy_reg_mdic(hw,
375  (u16)offset);
376  if (ret_val) {
377  hw->phy.ops.release(hw);
378  goto out;
379  }
380  }
381 
382  ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
383  data);
384 
385  hw->phy.ops.release(hw);
386 
387 out:
388  return ret_val;
389 }
390 
401 {
402  s32 ret_val = 0;
403 
404  if (!(hw->phy.ops.acquire))
405  goto out;
406 
407  ret_val = hw->phy.ops.acquire(hw);
408  if (ret_val)
409  goto out;
410 
411  if (offset > MAX_PHY_MULTI_PAGE_REG) {
412  ret_val = igb_write_phy_reg_mdic(hw,
414  (u16)offset);
415  if (ret_val) {
416  hw->phy.ops.release(hw);
417  goto out;
418  }
419  }
420 
421  ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
422  data);
423 
424  hw->phy.ops.release(hw);
425 
426 out:
427  return ret_val;
428 }
429 
437 {
438  struct e1000_phy_info *phy = &hw->phy;
439  s32 ret_val;
440  u16 phy_data;
441 
442 
443  if (phy->reset_disable) {
444  ret_val = 0;
445  goto out;
446  }
447 
448  if (phy->type == e1000_phy_82580) {
449  ret_val = hw->phy.ops.reset(hw);
450  if (ret_val) {
451  hw_dbg("Error resetting the PHY.\n");
452  goto out;
453  }
454  }
455 
456  /* Enable CRS on TX. This must be set for half-duplex operation. */
457  ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
458  if (ret_val)
459  goto out;
460 
461  phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
462 
463  /* Enable downshift */
464  phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
465 
466  ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
467  if (ret_val)
468  goto out;
469 
470  /* Set MDI/MDIX mode */
471  ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
472  if (ret_val)
473  goto out;
474  phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
475  /*
476  * Options:
477  * 0 - Auto (default)
478  * 1 - MDI mode
479  * 2 - MDI-X mode
480  */
481  switch (hw->phy.mdix) {
482  case 1:
483  break;
484  case 2:
485  phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
486  break;
487  case 0:
488  default:
489  phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
490  break;
491  }
492  ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
493 
494 out:
495  return ret_val;
496 }
497 
506 {
507  struct e1000_phy_info *phy = &hw->phy;
508  s32 ret_val;
509  u16 phy_data;
510 
511  if (phy->reset_disable) {
512  ret_val = 0;
513  goto out;
514  }
515 
516  /* Enable CRS on TX. This must be set for half-duplex operation. */
517  ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
518  if (ret_val)
519  goto out;
520 
521  phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
522 
523  /*
524  * Options:
525  * MDI/MDI-X = 0 (default)
526  * 0 - Auto for all speeds
527  * 1 - MDI mode
528  * 2 - MDI-X mode
529  * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
530  */
531  phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
532 
533  switch (phy->mdix) {
534  case 1:
535  phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
536  break;
537  case 2:
538  phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
539  break;
540  case 3:
541  phy_data |= M88E1000_PSCR_AUTO_X_1000T;
542  break;
543  case 0:
544  default:
545  phy_data |= M88E1000_PSCR_AUTO_X_MODE;
546  break;
547  }
548 
549  /*
550  * Options:
551  * disable_polarity_correction = 0 (default)
552  * Automatic Correction for Reversed Cable Polarity
553  * 0 - Disabled
554  * 1 - Enabled
555  */
556  phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
557  if (phy->disable_polarity_correction == 1)
559 
560  ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
561  if (ret_val)
562  goto out;
563 
564  if (phy->revision < E1000_REVISION_4) {
565  /*
566  * Force TX_CLK in the Extended PHY Specific Control Register
567  * to 25MHz clock.
568  */
569  ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
570  &phy_data);
571  if (ret_val)
572  goto out;
573 
574  phy_data |= M88E1000_EPSCR_TX_CLK_25;
575 
576  if ((phy->revision == E1000_REVISION_2) &&
577  (phy->id == M88E1111_I_PHY_ID)) {
578  /* 82573L PHY - set the downshift counter to 5x. */
581  } else {
582  /* Configure Master and Slave downshift values */
587  }
588  ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
589  phy_data);
590  if (ret_val)
591  goto out;
592  }
593 
594  /* Commit the changes. */
595  ret_val = igb_phy_sw_reset(hw);
596  if (ret_val) {
597  hw_dbg("Error committing the PHY changes\n");
598  goto out;
599  }
600  if (phy->type == e1000_phy_i210) {
601  ret_val = igb_set_master_slave_mode(hw);
602  if (ret_val)
603  return ret_val;
604  }
605 
606 out:
607  return ret_val;
608 }
609 
618 {
619  struct e1000_phy_info *phy = &hw->phy;
620  s32 ret_val;
621  u16 phy_data;
622 
623  if (phy->reset_disable) {
624  ret_val = 0;
625  goto out;
626  }
627 
628  /* Enable CRS on Tx. This must be set for half-duplex operation. */
629  ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
630  if (ret_val)
631  goto out;
632 
633  /*
634  * Options:
635  * MDI/MDI-X = 0 (default)
636  * 0 - Auto for all speeds
637  * 1 - MDI mode
638  * 2 - MDI-X mode
639  * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
640  */
641  phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
642 
643  switch (phy->mdix) {
644  case 1:
645  phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
646  break;
647  case 2:
648  phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
649  break;
650  case 3:
651  /* M88E1112 does not support this mode) */
652  if (phy->id != M88E1112_E_PHY_ID) {
653  phy_data |= M88E1000_PSCR_AUTO_X_1000T;
654  break;
655  }
656  case 0:
657  default:
658  phy_data |= M88E1000_PSCR_AUTO_X_MODE;
659  break;
660  }
661 
662  /*
663  * Options:
664  * disable_polarity_correction = 0 (default)
665  * Automatic Correction for Reversed Cable Polarity
666  * 0 - Disabled
667  * 1 - Enabled
668  */
669  phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
670  if (phy->disable_polarity_correction == 1)
672 
673  /* Enable downshift and setting it to X6 */
674  phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
675  phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
676  phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
677 
678  ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
679  if (ret_val)
680  goto out;
681 
682  /* Commit the changes. */
683  ret_val = igb_phy_sw_reset(hw);
684  if (ret_val) {
685  hw_dbg("Error committing the PHY changes\n");
686  goto out;
687  }
688 
689 out:
690  return ret_val;
691 }
692 
701 {
702  struct e1000_phy_info *phy = &hw->phy;
703  s32 ret_val;
704  u16 data;
705 
706  if (phy->reset_disable) {
707  ret_val = 0;
708  goto out;
709  }
710 
711  ret_val = phy->ops.reset(hw);
712  if (ret_val) {
713  hw_dbg("Error resetting the PHY.\n");
714  goto out;
715  }
716 
717  /*
718  * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
719  * timeout issues when LFS is enabled.
720  */
721  msleep(100);
722 
723  /*
724  * The NVM settings will configure LPLU in D3 for
725  * non-IGP1 PHYs.
726  */
727  if (phy->type == e1000_phy_igp) {
728  /* disable lplu d3 during driver init */
729  if (phy->ops.set_d3_lplu_state)
730  ret_val = phy->ops.set_d3_lplu_state(hw, false);
731  if (ret_val) {
732  hw_dbg("Error Disabling LPLU D3\n");
733  goto out;
734  }
735  }
736 
737  /* disable lplu d0 during driver init */
738  ret_val = phy->ops.set_d0_lplu_state(hw, false);
739  if (ret_val) {
740  hw_dbg("Error Disabling LPLU D0\n");
741  goto out;
742  }
743  /* Configure mdi-mdix settings */
744  ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
745  if (ret_val)
746  goto out;
747 
748  data &= ~IGP01E1000_PSCR_AUTO_MDIX;
749 
750  switch (phy->mdix) {
751  case 1:
753  break;
754  case 2:
756  break;
757  case 0:
758  default:
760  break;
761  }
762  ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
763  if (ret_val)
764  goto out;
765 
766  /* set auto-master slave resolution settings */
767  if (hw->mac.autoneg) {
768  /*
769  * when autonegotiation advertisement is only 1000Mbps then we
770  * should disable SmartSpeed and enable Auto MasterSlave
771  * resolution as hardware default.
772  */
774  /* Disable SmartSpeed */
775  ret_val = phy->ops.read_reg(hw,
777  &data);
778  if (ret_val)
779  goto out;
780 
782  ret_val = phy->ops.write_reg(hw,
784  data);
785  if (ret_val)
786  goto out;
787 
788  /* Set auto Master/Slave resolution process */
789  ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
790  if (ret_val)
791  goto out;
792 
793  data &= ~CR_1000T_MS_ENABLE;
794  ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
795  if (ret_val)
796  goto out;
797  }
798 
799  ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
800  if (ret_val)
801  goto out;
802 
803  /* load defaults for future use */
804  phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
805  ((data & CR_1000T_MS_VALUE) ?
809 
810  switch (phy->ms_type) {
813  break;
815  data |= CR_1000T_MS_ENABLE;
816  data &= ~(CR_1000T_MS_VALUE);
817  break;
818  case e1000_ms_auto:
819  data &= ~CR_1000T_MS_ENABLE;
820  default:
821  break;
822  }
823  ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
824  if (ret_val)
825  goto out;
826  }
827 
828 out:
829  return ret_val;
830 }
831 
841 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
842 {
843  struct e1000_phy_info *phy = &hw->phy;
844  s32 ret_val;
845  u16 phy_ctrl;
846 
847  /*
848  * Perform some bounds checking on the autoneg advertisement
849  * parameter.
850  */
851  phy->autoneg_advertised &= phy->autoneg_mask;
852 
853  /*
854  * If autoneg_advertised is zero, we assume it was not defaulted
855  * by the calling code so we set to advertise full capability.
856  */
857  if (phy->autoneg_advertised == 0)
858  phy->autoneg_advertised = phy->autoneg_mask;
859 
860  hw_dbg("Reconfiguring auto-neg advertisement params\n");
861  ret_val = igb_phy_setup_autoneg(hw);
862  if (ret_val) {
863  hw_dbg("Error Setting up Auto-Negotiation\n");
864  goto out;
865  }
866  hw_dbg("Restarting Auto-Neg\n");
867 
868  /*
869  * Restart auto-negotiation by setting the Auto Neg Enable bit and
870  * the Auto Neg Restart bit in the PHY control register.
871  */
872  ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
873  if (ret_val)
874  goto out;
875 
877  ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
878  if (ret_val)
879  goto out;
880 
881  /*
882  * Does the user want to wait for Auto-Neg to complete here, or
883  * check at a later time (for example, callback routine).
884  */
885  if (phy->autoneg_wait_to_complete) {
886  ret_val = igb_wait_autoneg(hw);
887  if (ret_val) {
888  hw_dbg("Error while waiting for "
889  "autoneg to complete\n");
890  goto out;
891  }
892  }
893 
894  hw->mac.get_link_status = true;
895 
896 out:
897  return ret_val;
898 }
899 
909 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
910 {
911  struct e1000_phy_info *phy = &hw->phy;
912  s32 ret_val;
913  u16 mii_autoneg_adv_reg;
914  u16 mii_1000t_ctrl_reg = 0;
915 
916  phy->autoneg_advertised &= phy->autoneg_mask;
917 
918  /* Read the MII Auto-Neg Advertisement Register (Address 4). */
919  ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
920  if (ret_val)
921  goto out;
922 
923  if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
924  /* Read the MII 1000Base-T Control Register (Address 9). */
925  ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
926  &mii_1000t_ctrl_reg);
927  if (ret_val)
928  goto out;
929  }
930 
931  /*
932  * Need to parse both autoneg_advertised and fc and set up
933  * the appropriate PHY registers. First we will parse for
934  * autoneg_advertised software override. Since we can advertise
935  * a plethora of combinations, we need to check each bit
936  * individually.
937  */
938 
939  /*
940  * First we clear all the 10/100 mb speed bits in the Auto-Neg
941  * Advertisement Register (Address 4) and the 1000 mb speed bits in
942  * the 1000Base-T Control Register (Address 9).
943  */
944  mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
948  mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
949 
950  hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
951 
952  /* Do we want to advertise 10 Mb Half Duplex? */
954  hw_dbg("Advertise 10mb Half duplex\n");
955  mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
956  }
957 
958  /* Do we want to advertise 10 Mb Full Duplex? */
960  hw_dbg("Advertise 10mb Full duplex\n");
961  mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
962  }
963 
964  /* Do we want to advertise 100 Mb Half Duplex? */
966  hw_dbg("Advertise 100mb Half duplex\n");
967  mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
968  }
969 
970  /* Do we want to advertise 100 Mb Full Duplex? */
972  hw_dbg("Advertise 100mb Full duplex\n");
973  mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
974  }
975 
976  /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
978  hw_dbg("Advertise 1000mb Half duplex request denied!\n");
979 
980  /* Do we want to advertise 1000 Mb Full Duplex? */
982  hw_dbg("Advertise 1000mb Full duplex\n");
983  mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
984  }
985 
986  /*
987  * Check for a software override of the flow control settings, and
988  * setup the PHY advertisement registers accordingly. If
989  * auto-negotiation is enabled, then software will have to set the
990  * "PAUSE" bits to the correct value in the Auto-Negotiation
991  * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
992  * negotiation.
993  *
994  * The possible values of the "fc" parameter are:
995  * 0: Flow control is completely disabled
996  * 1: Rx flow control is enabled (we can receive pause frames
997  * but not send pause frames).
998  * 2: Tx flow control is enabled (we can send pause frames
999  * but we do not support receiving pause frames).
1000  * 3: Both Rx and TX flow control (symmetric) are enabled.
1001  * other: No software override. The flow control configuration
1002  * in the EEPROM is used.
1003  */
1004  switch (hw->fc.current_mode) {
1005  case e1000_fc_none:
1006  /*
1007  * Flow control (RX & TX) is completely disabled by a
1008  * software over-ride.
1009  */
1010  mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1011  break;
1012  case e1000_fc_rx_pause:
1013  /*
1014  * RX Flow control is enabled, and TX Flow control is
1015  * disabled, by a software over-ride.
1016  *
1017  * Since there really isn't a way to advertise that we are
1018  * capable of RX Pause ONLY, we will advertise that we
1019  * support both symmetric and asymmetric RX PAUSE. Later
1020  * (in e1000_config_fc_after_link_up) we will disable the
1021  * hw's ability to send PAUSE frames.
1022  */
1023  mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1024  break;
1025  case e1000_fc_tx_pause:
1026  /*
1027  * TX Flow control is enabled, and RX Flow control is
1028  * disabled, by a software over-ride.
1029  */
1030  mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1031  mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1032  break;
1033  case e1000_fc_full:
1034  /*
1035  * Flow control (both RX and TX) is enabled by a software
1036  * over-ride.
1037  */
1038  mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1039  break;
1040  default:
1041  hw_dbg("Flow control param set incorrectly\n");
1042  ret_val = -E1000_ERR_CONFIG;
1043  goto out;
1044  }
1045 
1046  ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1047  if (ret_val)
1048  goto out;
1049 
1050  hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1051 
1052  if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1053  ret_val = phy->ops.write_reg(hw,
1055  mii_1000t_ctrl_reg);
1056  if (ret_val)
1057  goto out;
1058  }
1059 
1060 out:
1061  return ret_val;
1062 }
1063 
1074 {
1075  s32 ret_val;
1076  bool link;
1077 
1078 
1079  if (hw->mac.autoneg) {
1080  /*
1081  * Setup autoneg and flow control advertisement and perform
1082  * autonegotiation.
1083  */
1084  ret_val = igb_copper_link_autoneg(hw);
1085  if (ret_val)
1086  goto out;
1087  } else {
1088  /*
1089  * PHY will be set to 10H, 10F, 100H or 100F
1090  * depending on user settings.
1091  */
1092  hw_dbg("Forcing Speed and Duplex\n");
1093  ret_val = hw->phy.ops.force_speed_duplex(hw);
1094  if (ret_val) {
1095  hw_dbg("Error Forcing Speed and Duplex\n");
1096  goto out;
1097  }
1098  }
1099 
1100  /*
1101  * Check link status. Wait up to 100 microseconds for link to become
1102  * valid.
1103  */
1104  ret_val = igb_phy_has_link(hw,
1106  10,
1107  &link);
1108  if (ret_val)
1109  goto out;
1110 
1111  if (link) {
1112  hw_dbg("Valid link established!!!\n");
1114  ret_val = igb_config_fc_after_link_up(hw);
1115  } else {
1116  hw_dbg("Unable to establish link!!!\n");
1117  }
1118 
1119 out:
1120  return ret_val;
1121 }
1122 
1132 {
1133  struct e1000_phy_info *phy = &hw->phy;
1134  s32 ret_val;
1135  u16 phy_data;
1136  bool link;
1137 
1138  ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1139  if (ret_val)
1140  goto out;
1141 
1142  igb_phy_force_speed_duplex_setup(hw, &phy_data);
1143 
1144  ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1145  if (ret_val)
1146  goto out;
1147 
1148  /*
1149  * Clear Auto-Crossover to force MDI manually. IGP requires MDI
1150  * forced whenever speed and duplex are forced.
1151  */
1152  ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1153  if (ret_val)
1154  goto out;
1155 
1156  phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1157  phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1158 
1159  ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1160  if (ret_val)
1161  goto out;
1162 
1163  hw_dbg("IGP PSCR: %X\n", phy_data);
1164 
1165  udelay(1);
1166 
1167  if (phy->autoneg_wait_to_complete) {
1168  hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1169 
1170  ret_val = igb_phy_has_link(hw,
1172  100000,
1173  &link);
1174  if (ret_val)
1175  goto out;
1176 
1177  if (!link)
1178  hw_dbg("Link taking longer than expected.\n");
1179 
1180  /* Try once more */
1181  ret_val = igb_phy_has_link(hw,
1183  100000,
1184  &link);
1185  if (ret_val)
1186  goto out;
1187  }
1188 
1189 out:
1190  return ret_val;
1191 }
1192 
1204 {
1205  struct e1000_phy_info *phy = &hw->phy;
1206  s32 ret_val;
1207  u16 phy_data;
1208  bool link;
1209 
1210  /*
1211  * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1212  * forced whenever speed and duplex are forced.
1213  */
1214  ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1215  if (ret_val)
1216  goto out;
1217 
1218  phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1219  ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1220  if (ret_val)
1221  goto out;
1222 
1223  hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1224 
1225  ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1226  if (ret_val)
1227  goto out;
1228 
1229  igb_phy_force_speed_duplex_setup(hw, &phy_data);
1230 
1231  ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1232  if (ret_val)
1233  goto out;
1234 
1235  /* Reset the phy to commit changes. */
1236  ret_val = igb_phy_sw_reset(hw);
1237  if (ret_val)
1238  goto out;
1239 
1240  if (phy->autoneg_wait_to_complete) {
1241  hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1242 
1243  ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1244  if (ret_val)
1245  goto out;
1246 
1247  if (!link) {
1248  bool reset_dsp = true;
1249 
1250  switch (hw->phy.id) {
1251  case I347AT4_E_PHY_ID:
1252  case M88E1112_E_PHY_ID:
1253  case I210_I_PHY_ID:
1254  reset_dsp = false;
1255  break;
1256  default:
1257  if (hw->phy.type != e1000_phy_m88)
1258  reset_dsp = false;
1259  break;
1260  }
1261  if (!reset_dsp)
1262  hw_dbg("Link taking longer than expected.\n");
1263  else {
1264  /*
1265  * We didn't get link.
1266  * Reset the DSP and cross our fingers.
1267  */
1268  ret_val = phy->ops.write_reg(hw,
1270  0x001d);
1271  if (ret_val)
1272  goto out;
1273  ret_val = igb_phy_reset_dsp(hw);
1274  if (ret_val)
1275  goto out;
1276  }
1277  }
1278 
1279  /* Try once more */
1280  ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1281  100000, &link);
1282  if (ret_val)
1283  goto out;
1284  }
1285 
1286  if (hw->phy.type != e1000_phy_m88 ||
1287  hw->phy.id == I347AT4_E_PHY_ID ||
1288  hw->phy.id == M88E1112_E_PHY_ID ||
1289  hw->phy.id == I210_I_PHY_ID)
1290  goto out;
1291 
1292  ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1293  if (ret_val)
1294  goto out;
1295 
1296  /*
1297  * Resetting the phy means we need to re-force TX_CLK in the
1298  * Extended PHY Specific Control Register to 25MHz clock from
1299  * the reset value of 2.5MHz.
1300  */
1301  phy_data |= M88E1000_EPSCR_TX_CLK_25;
1302  ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1303  if (ret_val)
1304  goto out;
1305 
1306  /*
1307  * In addition, we must re-enable CRS on Tx for both half and full
1308  * duplex.
1309  */
1310  ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1311  if (ret_val)
1312  goto out;
1313 
1314  phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1315  ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1316 
1317 out:
1318  return ret_val;
1319 }
1320 
1333 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1334  u16 *phy_ctrl)
1335 {
1336  struct e1000_mac_info *mac = &hw->mac;
1337  u32 ctrl;
1338 
1339  /* Turn off flow control when forcing speed/duplex */
1340  hw->fc.current_mode = e1000_fc_none;
1341 
1342  /* Force speed/duplex on the mac */
1343  ctrl = rd32(E1000_CTRL);
1345  ctrl &= ~E1000_CTRL_SPD_SEL;
1346 
1347  /* Disable Auto Speed Detection */
1348  ctrl &= ~E1000_CTRL_ASDE;
1349 
1350  /* Disable autoneg on the phy */
1351  *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1352 
1353  /* Forcing Full or Half Duplex? */
1355  ctrl &= ~E1000_CTRL_FD;
1356  *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1357  hw_dbg("Half Duplex\n");
1358  } else {
1359  ctrl |= E1000_CTRL_FD;
1360  *phy_ctrl |= MII_CR_FULL_DUPLEX;
1361  hw_dbg("Full Duplex\n");
1362  }
1363 
1364  /* Forcing 10mb or 100mb? */
1366  ctrl |= E1000_CTRL_SPD_100;
1367  *phy_ctrl |= MII_CR_SPEED_100;
1368  *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1369  hw_dbg("Forcing 100mb\n");
1370  } else {
1372  *phy_ctrl |= MII_CR_SPEED_10;
1373  *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1374  hw_dbg("Forcing 10mb\n");
1375  }
1376 
1378 
1379  wr32(E1000_CTRL, ctrl);
1380 }
1381 
1397 {
1398  struct e1000_phy_info *phy = &hw->phy;
1399  s32 ret_val = 0;
1400  u16 data;
1401 
1402  if (!(hw->phy.ops.read_reg))
1403  goto out;
1404 
1405  ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1406  if (ret_val)
1407  goto out;
1408 
1409  if (!active) {
1410  data &= ~IGP02E1000_PM_D3_LPLU;
1411  ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1412  data);
1413  if (ret_val)
1414  goto out;
1415  /*
1416  * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1417  * during Dx states where the power conservation is most
1418  * important. During driver activity we should enable
1419  * SmartSpeed, so performance is maintained.
1420  */
1421  if (phy->smart_speed == e1000_smart_speed_on) {
1422  ret_val = phy->ops.read_reg(hw,
1424  &data);
1425  if (ret_val)
1426  goto out;
1427 
1429  ret_val = phy->ops.write_reg(hw,
1431  data);
1432  if (ret_val)
1433  goto out;
1434  } else if (phy->smart_speed == e1000_smart_speed_off) {
1435  ret_val = phy->ops.read_reg(hw,
1437  &data);
1438  if (ret_val)
1439  goto out;
1440 
1442  ret_val = phy->ops.write_reg(hw,
1444  data);
1445  if (ret_val)
1446  goto out;
1447  }
1448  } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1451  data |= IGP02E1000_PM_D3_LPLU;
1452  ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1453  data);
1454  if (ret_val)
1455  goto out;
1456 
1457  /* When LPLU is enabled, we should disable SmartSpeed */
1458  ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1459  &data);
1460  if (ret_val)
1461  goto out;
1462 
1464  ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1465  data);
1466  }
1467 
1468 out:
1469  return ret_val;
1470 }
1471 
1481 {
1482  struct e1000_phy_info *phy = &hw->phy;
1483  s32 ret_val;
1484  u16 phy_data, offset, mask;
1485 
1486  switch (phy->type) {
1487  case e1000_phy_i210:
1488  case e1000_phy_m88:
1489  case e1000_phy_gg82563:
1490  offset = M88E1000_PHY_SPEC_STATUS;
1491  mask = M88E1000_PSSR_DOWNSHIFT;
1492  break;
1493  case e1000_phy_igp_2:
1494  case e1000_phy_igp:
1495  case e1000_phy_igp_3:
1496  offset = IGP01E1000_PHY_LINK_HEALTH;
1498  break;
1499  default:
1500  /* speed downshift not supported */
1501  phy->speed_downgraded = false;
1502  ret_val = 0;
1503  goto out;
1504  }
1505 
1506  ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1507 
1508  if (!ret_val)
1509  phy->speed_downgraded = (phy_data & mask) ? true : false;
1510 
1511 out:
1512  return ret_val;
1513 }
1514 
1524 {
1525  struct e1000_phy_info *phy = &hw->phy;
1526  s32 ret_val;
1527  u16 data;
1528 
1529  ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1530 
1531  if (!ret_val)
1535 
1536  return ret_val;
1537 }
1538 
1548 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1549 {
1550  struct e1000_phy_info *phy = &hw->phy;
1551  s32 ret_val;
1552  u16 data, offset, mask;
1553 
1554  /*
1555  * Polarity is determined based on the speed of
1556  * our connection.
1557  */
1558  ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1559  if (ret_val)
1560  goto out;
1561 
1562  if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1564  offset = IGP01E1000_PHY_PCS_INIT_REG;
1566  } else {
1567  /*
1568  * This really only applies to 10Mbps since
1569  * there is no polarity for 100Mbps (always 0).
1570  */
1571  offset = IGP01E1000_PHY_PORT_STATUS;
1573  }
1574 
1575  ret_val = phy->ops.read_reg(hw, offset, &data);
1576 
1577  if (!ret_val)
1578  phy->cable_polarity = (data & mask)
1581 
1582 out:
1583  return ret_val;
1584 }
1585 
1593 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1594 {
1595  s32 ret_val = 0;
1596  u16 i, phy_status;
1597 
1598  /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1599  for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1600  ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1601  if (ret_val)
1602  break;
1603  ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1604  if (ret_val)
1605  break;
1606  if (phy_status & MII_SR_AUTONEG_COMPLETE)
1607  break;
1608  msleep(100);
1609  }
1610 
1611  /*
1612  * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1613  * has completed.
1614  */
1615  return ret_val;
1616 }
1617 
1627 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1628  u32 usec_interval, bool *success)
1629 {
1630  s32 ret_val = 0;
1631  u16 i, phy_status;
1632 
1633  for (i = 0; i < iterations; i++) {
1634  /*
1635  * Some PHYs require the PHY_STATUS register to be read
1636  * twice due to the link bit being sticky. No harm doing
1637  * it across the board.
1638  */
1639  ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1640  if (ret_val) {
1641  /*
1642  * If the first read fails, another entity may have
1643  * ownership of the resources, wait and try again to
1644  * see if they have relinquished the resources yet.
1645  */
1646  udelay(usec_interval);
1647  }
1648  ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1649  if (ret_val)
1650  break;
1651  if (phy_status & MII_SR_LINK_STATUS)
1652  break;
1653  if (usec_interval >= 1000)
1654  mdelay(usec_interval/1000);
1655  else
1656  udelay(usec_interval);
1657  }
1658 
1659  *success = (i < iterations) ? true : false;
1660 
1661  return ret_val;
1662 }
1663 
1680 {
1681  struct e1000_phy_info *phy = &hw->phy;
1682  s32 ret_val;
1683  u16 phy_data, index;
1684 
1685  ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1686  if (ret_val)
1687  goto out;
1688 
1689  index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1691  if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1692  ret_val = -E1000_ERR_PHY;
1693  goto out;
1694  }
1695 
1696  phy->min_cable_length = e1000_m88_cable_length_table[index];
1697  phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1698 
1699  phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1700 
1701 out:
1702  return ret_val;
1703 }
1704 
1706 {
1707  struct e1000_phy_info *phy = &hw->phy;
1708  s32 ret_val;
1709  u16 phy_data, phy_data2, index, default_page, is_cm;
1710 
1711  switch (hw->phy.id) {
1712  case I210_I_PHY_ID:
1713  case I347AT4_E_PHY_ID:
1714  /* Remember the original page select and set it to 7 */
1715  ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1716  &default_page);
1717  if (ret_val)
1718  goto out;
1719 
1720  ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1721  if (ret_val)
1722  goto out;
1723 
1724  /* Get cable length from PHY Cable Diagnostics Control Reg */
1725  ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1726  &phy_data);
1727  if (ret_val)
1728  goto out;
1729 
1730  /* Check if the unit of cable length is meters or cm */
1731  ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1732  if (ret_val)
1733  goto out;
1734 
1735  is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1736 
1737  /* Populate the phy structure with cable length in meters */
1738  phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1739  phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1740  phy->cable_length = phy_data / (is_cm ? 100 : 1);
1741 
1742  /* Reset the page selec to its original value */
1743  ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1744  default_page);
1745  if (ret_val)
1746  goto out;
1747  break;
1748  case M88E1112_E_PHY_ID:
1749  /* Remember the original page select and set it to 5 */
1750  ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1751  &default_page);
1752  if (ret_val)
1753  goto out;
1754 
1755  ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1756  if (ret_val)
1757  goto out;
1758 
1759  ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1760  &phy_data);
1761  if (ret_val)
1762  goto out;
1763 
1764  index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1766  if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1767  ret_val = -E1000_ERR_PHY;
1768  goto out;
1769  }
1770 
1771  phy->min_cable_length = e1000_m88_cable_length_table[index];
1772  phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1773 
1774  phy->cable_length = (phy->min_cable_length +
1775  phy->max_cable_length) / 2;
1776 
1777  /* Reset the page select to its original value */
1778  ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1779  default_page);
1780  if (ret_val)
1781  goto out;
1782 
1783  break;
1784  default:
1785  ret_val = -E1000_ERR_PHY;
1786  goto out;
1787  }
1788 
1789 out:
1790  return ret_val;
1791 }
1792 
1805 {
1806  struct e1000_phy_info *phy = &hw->phy;
1807  s32 ret_val = 0;
1808  u16 phy_data, i, agc_value = 0;
1809  u16 cur_agc_index, max_agc_index = 0;
1810  u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1811  static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1816  };
1817 
1818  /* Read the AGC registers for all channels */
1819  for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1820  ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1821  if (ret_val)
1822  goto out;
1823 
1824  /*
1825  * Getting bits 15:9, which represent the combination of
1826  * coarse and fine gain values. The result is a number
1827  * that can be put into the lookup table to obtain the
1828  * approximate cable length.
1829  */
1830  cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1832 
1833  /* Array index bound check. */
1834  if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1835  (cur_agc_index == 0)) {
1836  ret_val = -E1000_ERR_PHY;
1837  goto out;
1838  }
1839 
1840  /* Remove min & max AGC values from calculation. */
1841  if (e1000_igp_2_cable_length_table[min_agc_index] >
1842  e1000_igp_2_cable_length_table[cur_agc_index])
1843  min_agc_index = cur_agc_index;
1844  if (e1000_igp_2_cable_length_table[max_agc_index] <
1845  e1000_igp_2_cable_length_table[cur_agc_index])
1846  max_agc_index = cur_agc_index;
1847 
1848  agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1849  }
1850 
1851  agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1852  e1000_igp_2_cable_length_table[max_agc_index]);
1853  agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1854 
1855  /* Calculate cable length with the error range of +/- 10 meters. */
1856  phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1857  (agc_value - IGP02E1000_AGC_RANGE) : 0;
1858  phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1859 
1860  phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1861 
1862 out:
1863  return ret_val;
1864 }
1865 
1877 {
1878  struct e1000_phy_info *phy = &hw->phy;
1879  s32 ret_val;
1880  u16 phy_data;
1881  bool link;
1882 
1883  if (phy->media_type != e1000_media_type_copper) {
1884  hw_dbg("Phy info is only valid for copper media\n");
1885  ret_val = -E1000_ERR_CONFIG;
1886  goto out;
1887  }
1888 
1889  ret_val = igb_phy_has_link(hw, 1, 0, &link);
1890  if (ret_val)
1891  goto out;
1892 
1893  if (!link) {
1894  hw_dbg("Phy info is only valid if link is up\n");
1895  ret_val = -E1000_ERR_CONFIG;
1896  goto out;
1897  }
1898 
1899  ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1900  if (ret_val)
1901  goto out;
1902 
1904  ? true : false;
1905 
1906  ret_val = igb_check_polarity_m88(hw);
1907  if (ret_val)
1908  goto out;
1909 
1910  ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1911  if (ret_val)
1912  goto out;
1913 
1914  phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1915 
1916  if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1917  ret_val = phy->ops.get_cable_length(hw);
1918  if (ret_val)
1919  goto out;
1920 
1921  ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1922  if (ret_val)
1923  goto out;
1924 
1925  phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1928 
1929  phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1932  } else {
1933  /* Set values to "undefined" */
1937  }
1938 
1939 out:
1940  return ret_val;
1941 }
1942 
1953 {
1954  struct e1000_phy_info *phy = &hw->phy;
1955  s32 ret_val;
1956  u16 data;
1957  bool link;
1958 
1959  ret_val = igb_phy_has_link(hw, 1, 0, &link);
1960  if (ret_val)
1961  goto out;
1962 
1963  if (!link) {
1964  hw_dbg("Phy info is only valid if link is up\n");
1965  ret_val = -E1000_ERR_CONFIG;
1966  goto out;
1967  }
1968 
1969  phy->polarity_correction = true;
1970 
1971  ret_val = igb_check_polarity_igp(hw);
1972  if (ret_val)
1973  goto out;
1974 
1975  ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1976  if (ret_val)
1977  goto out;
1978 
1979  phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
1980 
1981  if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1983  ret_val = phy->ops.get_cable_length(hw);
1984  if (ret_val)
1985  goto out;
1986 
1987  ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
1988  if (ret_val)
1989  goto out;
1990 
1991  phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1994 
1995  phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1998  } else {
2002  }
2003 
2004 out:
2005  return ret_val;
2006 }
2007 
2016 {
2017  s32 ret_val = 0;
2018  u16 phy_ctrl;
2019 
2020  if (!(hw->phy.ops.read_reg))
2021  goto out;
2022 
2023  ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2024  if (ret_val)
2025  goto out;
2026 
2027  phy_ctrl |= MII_CR_RESET;
2028  ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2029  if (ret_val)
2030  goto out;
2031 
2032  udelay(1);
2033 
2034 out:
2035  return ret_val;
2036 }
2037 
2048 {
2049  struct e1000_phy_info *phy = &hw->phy;
2050  s32 ret_val;
2051  u32 ctrl;
2052 
2053  ret_val = igb_check_reset_block(hw);
2054  if (ret_val) {
2055  ret_val = 0;
2056  goto out;
2057  }
2058 
2059  ret_val = phy->ops.acquire(hw);
2060  if (ret_val)
2061  goto out;
2062 
2063  ctrl = rd32(E1000_CTRL);
2065  wrfl();
2066 
2067  udelay(phy->reset_delay_us);
2068 
2069  wr32(E1000_CTRL, ctrl);
2070  wrfl();
2071 
2072  udelay(150);
2073 
2074  phy->ops.release(hw);
2075 
2076  ret_val = phy->ops.get_cfg_done(hw);
2077 
2078 out:
2079  return ret_val;
2080 }
2081 
2089 {
2090  hw_dbg("Running IGP 3 PHY init script\n");
2091 
2092  /* PHY init IGP 3 */
2093  /* Enable rise/fall, 10-mode work in class-A */
2094  hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2095  /* Remove all caps from Replica path filter */
2096  hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2097  /* Bias trimming for ADC, AFE and Driver (Default) */
2098  hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2099  /* Increase Hybrid poly bias */
2100  hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2101  /* Add 4% to TX amplitude in Giga mode */
2102  hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2103  /* Disable trimming (TTT) */
2104  hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2105  /* Poly DC correction to 94.6% + 2% for all channels */
2106  hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2107  /* ABS DC correction to 95.9% */
2108  hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2109  /* BG temp curve trim */
2110  hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2111  /* Increasing ADC OPAMP stage 1 currents to max */
2112  hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2113  /* Force 1000 ( required for enabling PHY regs configuration) */
2114  hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2115  /* Set upd_freq to 6 */
2116  hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2117  /* Disable NPDFE */
2118  hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2119  /* Disable adaptive fixed FFE (Default) */
2120  hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2121  /* Enable FFE hysteresis */
2122  hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2123  /* Fixed FFE for short cable lengths */
2124  hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2125  /* Fixed FFE for medium cable lengths */
2126  hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2127  /* Fixed FFE for long cable lengths */
2128  hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2129  /* Enable Adaptive Clip Threshold */
2130  hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2131  /* AHT reset limit to 1 */
2132  hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2133  /* Set AHT master delay to 127 msec */
2134  hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2135  /* Set scan bits for AHT */
2136  hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2137  /* Set AHT Preset bits */
2138  hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2139  /* Change integ_factor of channel A to 3 */
2140  hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2141  /* Change prop_factor of channels BCD to 8 */
2142  hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2143  /* Change cg_icount + enable integbp for channels BCD */
2144  hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2145  /*
2146  * Change cg_icount + enable integbp + change prop_factor_master
2147  * to 8 for channel A
2148  */
2149  hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2150  /* Disable AHT in Slave mode on channel A */
2151  hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2152  /*
2153  * Enable LPLU and disable AN to 1000 in non-D0a states,
2154  * Enable SPD+B2B
2155  */
2156  hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2157  /* Enable restart AN on an1000_dis change */
2158  hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2159  /* Enable wh_fifo read clock in 10/100 modes */
2160  hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2161  /* Restart AN, Speed selection is 1000 */
2162  hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2163 
2164  return 0;
2165 }
2166 
2175 {
2176  u16 mii_reg = 0;
2177  u16 power_reg = 0;
2178 
2179  /* The PHY will retain its settings across a power down/up cycle */
2180  hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2181  mii_reg &= ~MII_CR_POWER_DOWN;
2182  if (hw->phy.type == e1000_phy_i210) {
2183  hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2184  power_reg &= ~GS40G_CS_POWER_DOWN;
2185  hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2186  }
2187  hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2188 }
2189 
2198 {
2199  u16 mii_reg = 0;
2200  u16 power_reg = 0;
2201 
2202  /* The PHY will retain its settings across a power down/up cycle */
2203  hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2204  mii_reg |= MII_CR_POWER_DOWN;
2205 
2206  /* i210 Phy requires an additional bit for power up/down */
2207  if (hw->phy.type == e1000_phy_i210) {
2208  hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2209  power_reg |= GS40G_CS_POWER_DOWN;
2210  hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2211  }
2212  hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2213  msleep(1);
2214 }
2215 
2224 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2225 {
2226  struct e1000_phy_info *phy = &hw->phy;
2227  s32 ret_val;
2228  u16 data;
2229 
2230 
2231  ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2232 
2233  if (!ret_val)
2237 
2238  return ret_val;
2239 }
2240 
2250 {
2251  struct e1000_phy_info *phy = &hw->phy;
2252  s32 ret_val;
2253  u16 phy_data;
2254  bool link;
2255 
2256 
2257  ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2258  if (ret_val)
2259  goto out;
2260 
2261  igb_phy_force_speed_duplex_setup(hw, &phy_data);
2262 
2263  ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2264  if (ret_val)
2265  goto out;
2266 
2267  /*
2268  * Clear Auto-Crossover to force MDI manually. 82580 requires MDI
2269  * forced whenever speed and duplex are forced.
2270  */
2271  ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2272  if (ret_val)
2273  goto out;
2274 
2275  phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2276 
2277  ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2278  if (ret_val)
2279  goto out;
2280 
2281  hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2282 
2283  udelay(1);
2284 
2285  if (phy->autoneg_wait_to_complete) {
2286  hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2287 
2288  ret_val = igb_phy_has_link(hw,
2290  100000,
2291  &link);
2292  if (ret_val)
2293  goto out;
2294 
2295  if (!link)
2296  hw_dbg("Link taking longer than expected.\n");
2297 
2298  /* Try once more */
2299  ret_val = igb_phy_has_link(hw,
2301  100000,
2302  &link);
2303  if (ret_val)
2304  goto out;
2305  }
2306 
2307 out:
2308  return ret_val;
2309 }
2310 
2321 {
2322  struct e1000_phy_info *phy = &hw->phy;
2323  s32 ret_val;
2324  u16 data;
2325  bool link;
2326 
2327 
2328  ret_val = igb_phy_has_link(hw, 1, 0, &link);
2329  if (ret_val)
2330  goto out;
2331 
2332  if (!link) {
2333  hw_dbg("Phy info is only valid if link is up\n");
2334  ret_val = -E1000_ERR_CONFIG;
2335  goto out;
2336  }
2337 
2338  phy->polarity_correction = true;
2339 
2340  ret_val = igb_check_polarity_82580(hw);
2341  if (ret_val)
2342  goto out;
2343 
2344  ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2345  if (ret_val)
2346  goto out;
2347 
2348  phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2349 
2350  if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2352  ret_val = hw->phy.ops.get_cable_length(hw);
2353  if (ret_val)
2354  goto out;
2355 
2356  ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2357  if (ret_val)
2358  goto out;
2359 
2360  phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2363 
2364  phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2367  } else {
2371  }
2372 
2373 out:
2374  return ret_val;
2375 }
2376 
2385 {
2386  struct e1000_phy_info *phy = &hw->phy;
2387  s32 ret_val;
2388  u16 phy_data, length;
2389 
2390 
2391  ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2392  if (ret_val)
2393  goto out;
2394 
2395  length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2397 
2398  if (length == E1000_CABLE_LENGTH_UNDEFINED)
2399  ret_val = -E1000_ERR_PHY;
2400 
2401  phy->cable_length = length;
2402 
2403 out:
2404  return ret_val;
2405 }
2406 
2417 s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
2418 {
2419  s32 ret_val;
2420  u16 page = offset >> GS40G_PAGE_SHIFT;
2421 
2422  offset = offset & GS40G_OFFSET_MASK;
2423  ret_val = hw->phy.ops.acquire(hw);
2424  if (ret_val)
2425  return ret_val;
2426 
2427  ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2428  if (ret_val)
2429  goto release;
2430  ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2431 
2432 release:
2433  hw->phy.ops.release(hw);
2434  return ret_val;
2435 }
2436 
2447 s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
2448 {
2449  s32 ret_val;
2450  u16 page = offset >> GS40G_PAGE_SHIFT;
2451 
2452  offset = offset & GS40G_OFFSET_MASK;
2453  ret_val = hw->phy.ops.acquire(hw);
2454  if (ret_val)
2455  return ret_val;
2456 
2457  ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2458  if (ret_val)
2459  goto release;
2460  ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2461 
2462 release:
2463  hw->phy.ops.release(hw);
2464  return ret_val;
2465 }
2466 
2473 static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2474 {
2475  s32 ret_val;
2476  u16 phy_data;
2477 
2478  /* Resolve Master/Slave mode */
2479  ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2480  if (ret_val)
2481  return ret_val;
2482 
2483  /* load defaults for future use */
2484  hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2485  ((phy_data & CR_1000T_MS_VALUE) ?
2488 
2489  switch (hw->phy.ms_type) {
2490  case e1000_ms_force_master:
2491  phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2492  break;
2493  case e1000_ms_force_slave:
2494  phy_data |= CR_1000T_MS_ENABLE;
2495  phy_data &= ~(CR_1000T_MS_VALUE);
2496  break;
2497  case e1000_ms_auto:
2498  phy_data &= ~CR_1000T_MS_ENABLE;
2499  /* fall-through */
2500  default:
2501  break;
2502  }
2503 
2504  return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2505 }