Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
eexpress.c
Go to the documentation of this file.
1 /* Intel EtherExpress 16 device driver for Linux
2  *
3  * Written by John Sullivan, 1995
4  * based on original code by Donald Becker, with changes by
5  * Alan Cox and Pauline Middelink.
6  *
7  * Support for 8-bit mode by Zoltan Szilagyi <[email protected]>
8  *
9  * Many modifications, and currently maintained, by
10  * Philip Blundell <[email protected]>
11  * Added the Compaq LTE Alan Cox <[email protected]>
12  * Added MCA support Adam Fritzler (now deleted)
13  *
14  * Note - this driver is experimental still - it has problems on faster
15  * machines. Someone needs to sit down and go through it line by line with
16  * a databook...
17  */
18 
19 /* The EtherExpress 16 is a fairly simple card, based on a shared-memory
20  * design using the i82586 Ethernet coprocessor. It bears no relationship,
21  * as far as I know, to the similarly-named "EtherExpress Pro" range.
22  *
23  * Historically, Linux support for these cards has been very bad. However,
24  * things seem to be getting better slowly.
25  */
26 
27 /* If your card is confused about what sort of interface it has (eg it
28  * persistently reports "10baseT" when none is fitted), running 'SOFTSET /BART'
29  * or 'SOFTSET /LISA' from DOS seems to help.
30  */
31 
32 /* Here's the scoop on memory mapping.
33  *
34  * There are three ways to access EtherExpress card memory: either using the
35  * shared-memory mapping, or using PIO through the dataport, or using PIO
36  * through the "shadow memory" ports.
37  *
38  * The shadow memory system works by having the card map some of its memory
39  * as follows:
40  *
41  * (the low five bits of the SMPTR are ignored)
42  *
43  * base+0x4000..400f memory at SMPTR+0..15
44  * base+0x8000..800f memory at SMPTR+16..31
45  * base+0xc000..c007 dubious stuff (memory at SMPTR+16..23 apparently)
46  * base+0xc008..c00f memory at 0x0008..0x000f
47  *
48  * This last set (the one at c008) is particularly handy because the SCB
49  * lives at 0x0008. So that set of ports gives us easy random access to data
50  * in the SCB without having to mess around setting up pointers and the like.
51  * We always use this method to access the SCB (via the scb_xx() functions).
52  *
53  * Dataport access works by aiming the appropriate (read or write) pointer
54  * at the first address you're interested in, and then reading or writing from
55  * the dataport. The pointers auto-increment after each transfer. We use
56  * this for data transfer.
57  *
58  * We don't use the shared-memory system because it allegedly doesn't work on
59  * all cards, and because it's a bit more prone to go wrong (it's one more
60  * thing to configure...).
61  */
62 
63 /* Known bugs:
64  *
65  * - The card seems to want to give us two interrupts every time something
66  * happens, where just one would be better.
67  */
68 
69 /*
70  *
71  * Note by Zoltan Szilagyi 10-12-96:
72  *
73  * I've succeeded in eliminating the "CU wedged" messages, and hence the
74  * lockups, which were only occurring with cards running in 8-bit mode ("force
75  * 8-bit operation" in Intel's SoftSet utility). This version of the driver
76  * sets the 82586 and the ASIC to 8-bit mode at startup; it also stops the
77  * CU before submitting a packet for transmission, and then restarts it as soon
78  * as the process of handing the packet is complete. This is definitely an
79  * unnecessary slowdown if the card is running in 16-bit mode; therefore one
80  * should detect 16-bit vs 8-bit mode from the EEPROM settings and act
81  * accordingly. In 8-bit mode with this bugfix I'm getting about 150 K/s for
82  * ftp's, which is significantly better than I get in DOS, so the overhead of
83  * stopping and restarting the CU with each transmit is not prohibitive in
84  * practice.
85  *
86  * Update by David Woodhouse 11/5/99:
87  *
88  * I've seen "CU wedged" messages in 16-bit mode, on the Alpha architecture.
89  * I assume that this is because 16-bit accesses are actually handled as two
90  * 8-bit accesses.
91  */
92 
93 #ifdef __alpha__
94 #define LOCKUP16 1
95 #endif
96 #ifndef LOCKUP16
97 #define LOCKUP16 0
98 #endif
99 
100 #include <linux/module.h>
101 #include <linux/kernel.h>
102 #include <linux/types.h>
103 #include <linux/fcntl.h>
104 #include <linux/interrupt.h>
105 #include <linux/ioport.h>
106 #include <linux/string.h>
107 #include <linux/in.h>
108 #include <linux/delay.h>
109 #include <linux/errno.h>
110 #include <linux/init.h>
111 #include <linux/netdevice.h>
112 #include <linux/etherdevice.h>
113 #include <linux/skbuff.h>
114 #include <linux/spinlock.h>
115 #include <linux/bitops.h>
116 #include <linux/jiffies.h>
117 
118 #include <asm/io.h>
119 #include <asm/irq.h>
120 
121 #ifndef NET_DEBUG
122 #define NET_DEBUG 4
123 #endif
124 
125 #include "eexpress.h"
126 
127 #define EEXP_IO_EXTENT 16
128 
129 /*
130  * Private data declarations
131  */
132 
133 struct net_local
134 {
135  unsigned long last_tx; /* jiffies when last transmit started */
136  unsigned long init_time; /* jiffies when eexp_hw_init586 called */
137  unsigned short rx_first; /* first rx buf, same as RX_BUF_START */
138  unsigned short rx_last; /* last rx buf */
139  unsigned short rx_ptr; /* first rx buf to look at */
140  unsigned short tx_head; /* next free tx buf */
141  unsigned short tx_reap; /* first in-use tx buf */
142  unsigned short tx_tail; /* previous tx buf to tx_head */
143  unsigned short tx_link; /* last known-executing tx buf */
144  unsigned short last_tx_restart; /* set to tx_link when we
145  restart the CU */
146  unsigned char started;
147  unsigned short rx_buf_start;
148  unsigned short rx_buf_end;
149  unsigned short num_tx_bufs;
150  unsigned short num_rx_bufs;
151  unsigned char width; /* 0 for 16bit, 1 for 8bit */
152  unsigned char was_promisc;
153  unsigned char old_mc_count;
155 };
156 
157 /* This is the code and data that is downloaded to the EtherExpress card's
158  * memory at boot time.
159  */
160 
161 static unsigned short start_code[] = {
162 /* 0x0000 */
163  0x0001, /* ISCP: busy - cleared after reset */
164  0x0008,0x0000,0x0000, /* offset,address (lo,hi) of SCB */
165 
166  0x0000,0x0000, /* SCB: status, commands */
167  0x0000,0x0000, /* links to first command block,
168  first receive descriptor */
169  0x0000,0x0000, /* CRC error, alignment error counts */
170  0x0000,0x0000, /* out of resources, overrun error counts */
171 
172  0x0000,0x0000, /* pad */
173  0x0000,0x0000,
174 
175 /* 0x20 -- start of 82586 CU program */
176 #define CONF_LINK 0x20
177  0x0000,Cmd_Config,
178  0x0032, /* link to next command */
179  0x080c, /* 12 bytes follow : fifo threshold=8 */
180  0x2e40, /* don't rx bad frames
181  * SRDY/ARDY => ext. sync. : preamble len=8
182  * take addresses from data buffers
183  * 6 bytes/address
184  */
185  0x6000, /* default backoff method & priority
186  * interframe spacing = 0x60 */
187  0xf200, /* slot time=0x200
188  * max collision retry = 0xf */
189 #define CONF_PROMISC 0x2e
190  0x0000, /* no HDLC : normal CRC : enable broadcast
191  * disable promiscuous/multicast modes */
192  0x003c, /* minimum frame length = 60 octets) */
193 
194  0x0000,Cmd_SetAddr,
195  0x003e, /* link to next command */
196 #define CONF_HWADDR 0x38
197  0x0000,0x0000,0x0000, /* hardware address placed here */
198 
199  0x0000,Cmd_MCast,
200  0x0076, /* link to next command */
201 #define CONF_NR_MULTICAST 0x44
202  0x0000, /* number of bytes in multicast address(es) */
203 #define CONF_MULTICAST 0x46
204  0x0000, 0x0000, 0x0000, /* some addresses */
205  0x0000, 0x0000, 0x0000,
206  0x0000, 0x0000, 0x0000,
207  0x0000, 0x0000, 0x0000,
208  0x0000, 0x0000, 0x0000,
209  0x0000, 0x0000, 0x0000,
210  0x0000, 0x0000, 0x0000,
211  0x0000, 0x0000, 0x0000,
212 
213 #define CONF_DIAG_RESULT 0x76
214  0x0000, Cmd_Diag,
215  0x007c, /* link to next command */
216 
217  0x0000,Cmd_TDR|Cmd_INT,
218  0x0084,
219 #define CONF_TDR_RESULT 0x82
220  0x0000,
221 
222  0x0000,Cmd_END|Cmd_Nop, /* end of configure sequence */
223  0x0084 /* dummy link */
224 };
225 
226 /* maps irq number to EtherExpress magic value */
227 static char irqrmap[] = { 0,0,1,2,3,4,0,0,0,1,5,6,0,0,0,0 };
228 
229 /*
230  * Prototypes for Linux interface
231  */
232 
233 static int eexp_open(struct net_device *dev);
234 static int eexp_close(struct net_device *dev);
235 static void eexp_timeout(struct net_device *dev);
236 static netdev_tx_t eexp_xmit(struct sk_buff *buf,
237  struct net_device *dev);
238 
239 static irqreturn_t eexp_irq(int irq, void *dev_addr);
240 static void eexp_set_multicast(struct net_device *dev);
241 
242 /*
243  * Prototypes for hardware access functions
244  */
245 
246 static void eexp_hw_rx_pio(struct net_device *dev);
247 static void eexp_hw_tx_pio(struct net_device *dev, unsigned short *buf,
248  unsigned short len);
249 static int eexp_hw_probe(struct net_device *dev,unsigned short ioaddr);
250 static unsigned short eexp_hw_readeeprom(unsigned short ioaddr,
251  unsigned char location);
252 
253 static unsigned short eexp_hw_lasttxstat(struct net_device *dev);
254 static void eexp_hw_txrestart(struct net_device *dev);
255 
256 static void eexp_hw_txinit (struct net_device *dev);
257 static void eexp_hw_rxinit (struct net_device *dev);
258 
259 static void eexp_hw_init586 (struct net_device *dev);
260 static void eexp_setup_filter (struct net_device *dev);
261 
262 static char *eexp_ifmap[]={"AUI", "BNC", "RJ45"};
263 enum eexp_iftype {AUI=0, BNC=1, TPE=2};
264 
265 #define STARTED_RU 2
266 #define STARTED_CU 1
267 
268 /*
269  * Primitive hardware access functions.
270  */
271 
272 static inline unsigned short scb_status(struct net_device *dev)
273 {
274  return inw(dev->base_addr + 0xc008);
275 }
276 
277 static inline unsigned short scb_rdcmd(struct net_device *dev)
278 {
279  return inw(dev->base_addr + 0xc00a);
280 }
281 
282 static inline void scb_command(struct net_device *dev, unsigned short cmd)
283 {
284  outw(cmd, dev->base_addr + 0xc00a);
285 }
286 
287 static inline void scb_wrcbl(struct net_device *dev, unsigned short val)
288 {
289  outw(val, dev->base_addr + 0xc00c);
290 }
291 
292 static inline void scb_wrrfa(struct net_device *dev, unsigned short val)
293 {
294  outw(val, dev->base_addr + 0xc00e);
295 }
296 
297 static inline void set_loopback(struct net_device *dev)
298 {
299  outb(inb(dev->base_addr + Config) | 2, dev->base_addr + Config);
300 }
301 
302 static inline void clear_loopback(struct net_device *dev)
303 {
304  outb(inb(dev->base_addr + Config) & ~2, dev->base_addr + Config);
305 }
306 
307 static inline unsigned short int SHADOW(short int addr)
308 {
309  addr &= 0x1f;
310  if (addr > 0xf) addr += 0x3ff0;
311  return addr + 0x4000;
312 }
313 
314 /*
315  * Linux interface
316  */
317 
318 /*
319  * checks for presence of EtherExpress card
320  */
321 
322 static int __init do_express_probe(struct net_device *dev)
323 {
324  unsigned short *port;
325  static unsigned short ports[] = { 0x240,0x300,0x310,0x270,0x320,0x340,0 };
326  unsigned short ioaddr = dev->base_addr;
327  int dev_irq = dev->irq;
328  int err;
329 
330  dev->if_port = 0xff; /* not set */
331 
332  if (ioaddr&0xfe00) {
333  if (!request_region(ioaddr, EEXP_IO_EXTENT, "EtherExpress"))
334  return -EBUSY;
335  err = eexp_hw_probe(dev,ioaddr);
337  return err;
338  } else if (ioaddr)
339  return -ENXIO;
340 
341  for (port=&ports[0] ; *port ; port++ )
342  {
343  unsigned short sum = 0;
344  int i;
345  if (!request_region(*port, EEXP_IO_EXTENT, "EtherExpress"))
346  continue;
347  for ( i=0 ; i<4 ; i++ )
348  {
349  unsigned short t;
350  t = inb(*port + ID_PORT);
351  sum |= (t>>4) << ((t & 0x03)<<2);
352  }
353  if (sum==0xbaba && !eexp_hw_probe(dev,*port)) {
355  return 0;
356  }
358  dev->irq = dev_irq;
359  }
360  return -ENODEV;
361 }
362 
363 #ifndef MODULE
365 {
366  struct net_device *dev = alloc_etherdev(sizeof(struct net_local));
367  int err;
368 
369  if (!dev)
370  return ERR_PTR(-ENOMEM);
371 
372  sprintf(dev->name, "eth%d", unit);
374 
375  err = do_express_probe(dev);
376  if (!err)
377  return dev;
378  free_netdev(dev);
379  return ERR_PTR(err);
380 }
381 #endif
382 
383 /*
384  * open and initialize the adapter, ready for use
385  */
386 
387 static int eexp_open(struct net_device *dev)
388 {
389  int ret;
390  unsigned short ioaddr = dev->base_addr;
391  struct net_local *lp = netdev_priv(dev);
392 
393 #if NET_DEBUG > 6
394  printk(KERN_DEBUG "%s: eexp_open()\n", dev->name);
395 #endif
396 
397  if (!dev->irq || !irqrmap[dev->irq])
398  return -ENXIO;
399 
400  ret = request_irq(dev->irq, eexp_irq, 0, dev->name, dev);
401  if (ret)
402  return ret;
403 
404  if (!request_region(ioaddr, EEXP_IO_EXTENT, "EtherExpress")) {
405  printk(KERN_WARNING "EtherExpress io port %x, is busy.\n"
406  , ioaddr);
407  goto err_out1;
408  }
409  if (!request_region(ioaddr+0x4000, EEXP_IO_EXTENT, "EtherExpress shadow")) {
410  printk(KERN_WARNING "EtherExpress io port %x, is busy.\n"
411  , ioaddr+0x4000);
412  goto err_out2;
413  }
414  if (!request_region(ioaddr+0x8000, EEXP_IO_EXTENT, "EtherExpress shadow")) {
415  printk(KERN_WARNING "EtherExpress io port %x, is busy.\n"
416  , ioaddr+0x8000);
417  goto err_out3;
418  }
419  if (!request_region(ioaddr+0xc000, EEXP_IO_EXTENT, "EtherExpress shadow")) {
420  printk(KERN_WARNING "EtherExpress io port %x, is busy.\n"
421  , ioaddr+0xc000);
422  goto err_out4;
423  }
424 
425  if (lp->width) {
426  printk("%s: forcing ASIC to 8-bit mode\n", dev->name);
427  outb(inb(dev->base_addr+Config)&~4, dev->base_addr+Config);
428  }
429 
430  eexp_hw_init586(dev);
431  netif_start_queue(dev);
432 #if NET_DEBUG > 6
433  printk(KERN_DEBUG "%s: leaving eexp_open()\n", dev->name);
434 #endif
435  return 0;
436 
437  err_out4:
438  release_region(ioaddr+0x8000, EEXP_IO_EXTENT);
439  err_out3:
440  release_region(ioaddr+0x4000, EEXP_IO_EXTENT);
441  err_out2:
443  err_out1:
444  free_irq(dev->irq, dev);
445  return -EBUSY;
446 }
447 
448 /*
449  * close and disable the interface, leaving the 586 in reset.
450  */
451 
452 static int eexp_close(struct net_device *dev)
453 {
454  unsigned short ioaddr = dev->base_addr;
455  struct net_local *lp = netdev_priv(dev);
456 
457  int irq = dev->irq;
458 
459  netif_stop_queue(dev);
460 
461  outb(SIRQ_dis|irqrmap[irq],ioaddr+SET_IRQ);
462  lp->started = 0;
463  scb_command(dev, SCB_CUsuspend|SCB_RUsuspend);
464  outb(0,ioaddr+SIGNAL_CA);
465  free_irq(irq,dev);
466  outb(i586_RST,ioaddr+EEPROM_Ctrl);
468  release_region(ioaddr+0x4000, 16);
469  release_region(ioaddr+0x8000, 16);
470  release_region(ioaddr+0xc000, 16);
471 
472  return 0;
473 }
474 
475 /*
476  * This gets called when a higher level thinks we are broken. Check that
477  * nothing has become jammed in the CU.
478  */
479 
480 static void unstick_cu(struct net_device *dev)
481 {
482  struct net_local *lp = netdev_priv(dev);
483  unsigned short ioaddr = dev->base_addr;
484 
485  if (lp->started)
486  {
487  if (time_after(jiffies, dev_trans_start(dev) + HZ/2))
488  {
489  if (lp->tx_link==lp->last_tx_restart)
490  {
491  unsigned short boguscount=200,rsst;
492  printk(KERN_WARNING "%s: Retransmit timed out, status %04x, resetting...\n",
493  dev->name, scb_status(dev));
494  eexp_hw_txinit(dev);
495  lp->last_tx_restart = 0;
496  scb_wrcbl(dev, lp->tx_link);
497  scb_command(dev, SCB_CUstart);
498  outb(0,ioaddr+SIGNAL_CA);
499  while (!SCB_complete(rsst=scb_status(dev)))
500  {
501  if (!--boguscount)
502  {
503  boguscount=200;
504  printk(KERN_WARNING "%s: Reset timed out status %04x, retrying...\n",
505  dev->name,rsst);
506  scb_wrcbl(dev, lp->tx_link);
507  scb_command(dev, SCB_CUstart);
508  outb(0,ioaddr+SIGNAL_CA);
509  }
510  }
511  netif_wake_queue(dev);
512  }
513  else
514  {
515  unsigned short status = scb_status(dev);
516  if (SCB_CUdead(status))
517  {
518  unsigned short txstatus = eexp_hw_lasttxstat(dev);
519  printk(KERN_WARNING "%s: Transmit timed out, CU not active status %04x %04x, restarting...\n",
520  dev->name, status, txstatus);
521  eexp_hw_txrestart(dev);
522  }
523  else
524  {
525  unsigned short txstatus = eexp_hw_lasttxstat(dev);
526  if (netif_queue_stopped(dev) && !txstatus)
527  {
528  printk(KERN_WARNING "%s: CU wedged, status %04x %04x, resetting...\n",
529  dev->name,status,txstatus);
530  eexp_hw_init586(dev);
531  netif_wake_queue(dev);
532  }
533  else
534  {
535  printk(KERN_WARNING "%s: transmit timed out\n", dev->name);
536  }
537  }
538  }
539  }
540  }
541  else
542  {
543  if (time_after(jiffies, lp->init_time + 10))
544  {
545  unsigned short status = scb_status(dev);
546  printk(KERN_WARNING "%s: i82586 startup timed out, status %04x, resetting...\n",
547  dev->name, status);
548  eexp_hw_init586(dev);
549  netif_wake_queue(dev);
550  }
551  }
552 }
553 
554 static void eexp_timeout(struct net_device *dev)
555 {
556  struct net_local *lp = netdev_priv(dev);
557 #ifdef CONFIG_SMP
558  unsigned long flags;
559 #endif
560  int status;
561 
562  disable_irq(dev->irq);
563 
564  /*
565  * Best would be to use synchronize_irq(); spin_lock() here
566  * lets make it work first..
567  */
568 
569 #ifdef CONFIG_SMP
570  spin_lock_irqsave(&lp->lock, flags);
571 #endif
572 
573  status = scb_status(dev);
574  unstick_cu(dev);
575  printk(KERN_INFO "%s: transmit timed out, %s?\n", dev->name,
576  (SCB_complete(status)?"lost interrupt":
577  "board on fire"));
578  dev->stats.tx_errors++;
579  lp->last_tx = jiffies;
580  if (!SCB_complete(status)) {
581  scb_command(dev, SCB_CUabort);
582  outb(0,dev->base_addr+SIGNAL_CA);
583  }
584  netif_wake_queue(dev);
585 #ifdef CONFIG_SMP
586  spin_unlock_irqrestore(&lp->lock, flags);
587 #endif
588 }
589 
590 /*
591  * Called to transmit a packet, or to allow us to right ourselves
592  * if the kernel thinks we've died.
593  */
594 static netdev_tx_t eexp_xmit(struct sk_buff *buf, struct net_device *dev)
595 {
596  short length = buf->len;
597 #ifdef CONFIG_SMP
598  struct net_local *lp = netdev_priv(dev);
599  unsigned long flags;
600 #endif
601 
602 #if NET_DEBUG > 6
603  printk(KERN_DEBUG "%s: eexp_xmit()\n", dev->name);
604 #endif
605 
606  if (buf->len < ETH_ZLEN) {
607  if (skb_padto(buf, ETH_ZLEN))
608  return NETDEV_TX_OK;
609  length = ETH_ZLEN;
610  }
611 
612  disable_irq(dev->irq);
613 
614  /*
615  * Best would be to use synchronize_irq(); spin_lock() here
616  * lets make it work first..
617  */
618 
619 #ifdef CONFIG_SMP
620  spin_lock_irqsave(&lp->lock, flags);
621 #endif
622 
623  {
624  unsigned short *data = (unsigned short *)buf->data;
625 
626  dev->stats.tx_bytes += length;
627 
628  eexp_hw_tx_pio(dev,data,length);
629  }
630  dev_kfree_skb(buf);
631 #ifdef CONFIG_SMP
632  spin_unlock_irqrestore(&lp->lock, flags);
633 #endif
634  enable_irq(dev->irq);
635  return NETDEV_TX_OK;
636 }
637 
638 /*
639  * Handle an EtherExpress interrupt
640  * If we've finished initializing, start the RU and CU up.
641  * If we've already started, reap tx buffers, handle any received packets,
642  * check to make sure we've not become wedged.
643  */
644 
645 static unsigned short eexp_start_irq(struct net_device *dev,
646  unsigned short status)
647 {
648  unsigned short ack_cmd = SCB_ack(status);
649  struct net_local *lp = netdev_priv(dev);
650  unsigned short ioaddr = dev->base_addr;
651  if ((dev->flags & IFF_UP) && !(lp->started & STARTED_CU)) {
652  short diag_status, tdr_status;
653  while (SCB_CUstat(status)==2)
654  status = scb_status(dev);
655 #if NET_DEBUG > 4
656  printk("%s: CU went non-active (status %04x)\n",
657  dev->name, status);
658 #endif
659 
660  outw(CONF_DIAG_RESULT & ~31, ioaddr + SM_PTR);
661  diag_status = inw(ioaddr + SHADOW(CONF_DIAG_RESULT));
662  if (diag_status & 1<<11) {
663  printk(KERN_WARNING "%s: 82586 failed self-test\n",
664  dev->name);
665  } else if (!(diag_status & 1<<13)) {
666  printk(KERN_WARNING "%s: 82586 self-test failed to complete\n", dev->name);
667  }
668 
669  outw(CONF_TDR_RESULT & ~31, ioaddr + SM_PTR);
670  tdr_status = inw(ioaddr + SHADOW(CONF_TDR_RESULT));
671  if (tdr_status & (TDR_SHORT|TDR_OPEN)) {
672  printk(KERN_WARNING "%s: TDR reports cable %s at %d tick%s\n", dev->name, (tdr_status & TDR_SHORT)?"short":"broken", tdr_status & TDR_TIME, ((tdr_status & TDR_TIME) != 1) ? "s" : "");
673  }
674  else if (tdr_status & TDR_XCVRPROBLEM) {
675  printk(KERN_WARNING "%s: TDR reports transceiver problem\n", dev->name);
676  }
677  else if (tdr_status & TDR_LINKOK) {
678 #if NET_DEBUG > 4
679  printk(KERN_DEBUG "%s: TDR reports link OK\n", dev->name);
680 #endif
681  } else {
682  printk("%s: TDR is ga-ga (status %04x)\n", dev->name,
683  tdr_status);
684  }
685 
686  lp->started |= STARTED_CU;
687  scb_wrcbl(dev, lp->tx_link);
688  /* if the RU isn't running, start it now */
689  if (!(lp->started & STARTED_RU)) {
690  ack_cmd |= SCB_RUstart;
691  scb_wrrfa(dev, lp->rx_buf_start);
692  lp->rx_ptr = lp->rx_buf_start;
693  lp->started |= STARTED_RU;
694  }
695  ack_cmd |= SCB_CUstart | 0x2000;
696  }
697 
698  if ((dev->flags & IFF_UP) && !(lp->started & STARTED_RU) && SCB_RUstat(status)==4)
699  lp->started|=STARTED_RU;
700 
701  return ack_cmd;
702 }
703 
704 static void eexp_cmd_clear(struct net_device *dev)
705 {
706  unsigned long int oldtime = jiffies;
707  while (scb_rdcmd(dev) && (time_before(jiffies, oldtime + 10)));
708  if (scb_rdcmd(dev)) {
709  printk("%s: command didn't clear\n", dev->name);
710  }
711 }
712 
713 static irqreturn_t eexp_irq(int dummy, void *dev_info)
714 {
715  struct net_device *dev = dev_info;
716  struct net_local *lp;
717  unsigned short ioaddr,status,ack_cmd;
718  unsigned short old_read_ptr, old_write_ptr;
719 
720  lp = netdev_priv(dev);
721  ioaddr = dev->base_addr;
722 
723  spin_lock(&lp->lock);
724 
725  old_read_ptr = inw(ioaddr+READ_PTR);
726  old_write_ptr = inw(ioaddr+WRITE_PTR);
727 
728  outb(SIRQ_dis|irqrmap[dev->irq], ioaddr+SET_IRQ);
729 
730  status = scb_status(dev);
731 
732 #if NET_DEBUG > 4
733  printk(KERN_DEBUG "%s: interrupt (status %x)\n", dev->name, status);
734 #endif
735 
736  if (lp->started == (STARTED_CU | STARTED_RU)) {
737 
738  do {
739  eexp_cmd_clear(dev);
740 
741  ack_cmd = SCB_ack(status);
742  scb_command(dev, ack_cmd);
743  outb(0,ioaddr+SIGNAL_CA);
744 
745  eexp_cmd_clear(dev);
746 
747  if (SCB_complete(status)) {
748  if (!eexp_hw_lasttxstat(dev)) {
749  printk("%s: tx interrupt but no status\n", dev->name);
750  }
751  }
752 
753  if (SCB_rxdframe(status))
754  eexp_hw_rx_pio(dev);
755 
756  status = scb_status(dev);
757  } while (status & 0xc000);
758 
759  if (SCB_RUdead(status))
760  {
761  printk(KERN_WARNING "%s: RU stopped: status %04x\n",
762  dev->name,status);
763 #if 0
764  printk(KERN_WARNING "%s: cur_rfd=%04x, cur_rbd=%04x\n", dev->name, lp->cur_rfd, lp->cur_rbd);
765  outw(lp->cur_rfd, ioaddr+READ_PTR);
766  printk(KERN_WARNING "%s: [%04x]\n", dev->name, inw(ioaddr+DATAPORT));
767  outw(lp->cur_rfd+6, ioaddr+READ_PTR);
768  printk(KERN_WARNING "%s: rbd is %04x\n", dev->name, rbd= inw(ioaddr+DATAPORT));
769  outw(rbd, ioaddr+READ_PTR);
770  printk(KERN_WARNING "%s: [%04x %04x] ", dev->name, inw(ioaddr+DATAPORT), inw(ioaddr+DATAPORT));
771  outw(rbd+8, ioaddr+READ_PTR);
772  printk("[%04x]\n", inw(ioaddr+DATAPORT));
773 #endif
774  dev->stats.rx_errors++;
775 #if 1
776  eexp_hw_rxinit(dev);
777 #else
778  lp->cur_rfd = lp->first_rfd;
779 #endif
780  scb_wrrfa(dev, lp->rx_buf_start);
781  scb_command(dev, SCB_RUstart);
782  outb(0,ioaddr+SIGNAL_CA);
783  }
784  } else {
785  if (status & 0x8000)
786  ack_cmd = eexp_start_irq(dev, status);
787  else
788  ack_cmd = SCB_ack(status);
789  scb_command(dev, ack_cmd);
790  outb(0,ioaddr+SIGNAL_CA);
791  }
792 
793  eexp_cmd_clear(dev);
794 
795  outb(SIRQ_en|irqrmap[dev->irq], ioaddr+SET_IRQ);
796 
797 #if NET_DEBUG > 6
798  printk("%s: leaving eexp_irq()\n", dev->name);
799 #endif
800  outw(old_read_ptr, ioaddr+READ_PTR);
801  outw(old_write_ptr, ioaddr+WRITE_PTR);
802 
803  spin_unlock(&lp->lock);
804  return IRQ_HANDLED;
805 }
806 
807 /*
808  * Hardware access functions
809  */
810 
811 /*
812  * Set the cable type to use.
813  */
814 
815 static void eexp_hw_set_interface(struct net_device *dev)
816 {
817  unsigned char oldval = inb(dev->base_addr + 0x300e);
818  oldval &= ~0x82;
819  switch (dev->if_port) {
820  case TPE:
821  oldval |= 0x2;
822  case BNC:
823  oldval |= 0x80;
824  break;
825  }
826  outb(oldval, dev->base_addr+0x300e);
827  mdelay(20);
828 }
829 
830 /*
831  * Check all the receive buffers, and hand any received packets
832  * to the upper levels. Basic sanity check on each frame
833  * descriptor, though we don't bother trying to fix broken ones.
834  */
835 
836 static void eexp_hw_rx_pio(struct net_device *dev)
837 {
838  struct net_local *lp = netdev_priv(dev);
839  unsigned short rx_block = lp->rx_ptr;
840  unsigned short boguscount = lp->num_rx_bufs;
841  unsigned short ioaddr = dev->base_addr;
842  unsigned short status;
843 
844 #if NET_DEBUG > 6
845  printk(KERN_DEBUG "%s: eexp_hw_rx()\n", dev->name);
846 #endif
847 
848  do {
849  unsigned short rfd_cmd, rx_next, pbuf, pkt_len;
850 
851  outw(rx_block, ioaddr + READ_PTR);
852  status = inw(ioaddr + DATAPORT);
853 
854  if (FD_Done(status))
855  {
856  rfd_cmd = inw(ioaddr + DATAPORT);
857  rx_next = inw(ioaddr + DATAPORT);
858  pbuf = inw(ioaddr + DATAPORT);
859 
860  outw(pbuf, ioaddr + READ_PTR);
861  pkt_len = inw(ioaddr + DATAPORT);
862 
863  if (rfd_cmd!=0x0000)
864  {
865  printk(KERN_WARNING "%s: rfd_cmd not zero:0x%04x\n",
866  dev->name, rfd_cmd);
867  continue;
868  }
869  else if (pbuf!=rx_block+0x16)
870  {
871  printk(KERN_WARNING "%s: rfd and rbd out of sync 0x%04x 0x%04x\n",
872  dev->name, rx_block+0x16, pbuf);
873  continue;
874  }
875  else if ((pkt_len & 0xc000)!=0xc000)
876  {
877  printk(KERN_WARNING "%s: EOF or F not set on received buffer (%04x)\n",
878  dev->name, pkt_len & 0xc000);
879  continue;
880  }
881  else if (!FD_OK(status))
882  {
883  dev->stats.rx_errors++;
884  if (FD_CRC(status))
885  dev->stats.rx_crc_errors++;
886  if (FD_Align(status))
887  dev->stats.rx_frame_errors++;
888  if (FD_Resrc(status))
889  dev->stats.rx_fifo_errors++;
890  if (FD_DMA(status))
891  dev->stats.rx_over_errors++;
892  if (FD_Short(status))
893  dev->stats.rx_length_errors++;
894  }
895  else
896  {
897  struct sk_buff *skb;
898  pkt_len &= 0x3fff;
899  skb = netdev_alloc_skb(dev, pkt_len + 16);
900  if (skb == NULL)
901  {
902  printk(KERN_WARNING "%s: Memory squeeze, dropping packet\n",dev->name);
903  dev->stats.rx_dropped++;
904  break;
905  }
906  skb_reserve(skb, 2);
907  outw(pbuf+10, ioaddr+READ_PTR);
908  insw(ioaddr+DATAPORT, skb_put(skb,pkt_len),(pkt_len+1)>>1);
909  skb->protocol = eth_type_trans(skb,dev);
910  netif_rx(skb);
911  dev->stats.rx_packets++;
912  dev->stats.rx_bytes += pkt_len;
913  }
914  outw(rx_block, ioaddr+WRITE_PTR);
915  outw(0, ioaddr+DATAPORT);
916  outw(0, ioaddr+DATAPORT);
917  rx_block = rx_next;
918  }
919  } while (FD_Done(status) && boguscount--);
920  lp->rx_ptr = rx_block;
921 }
922 
923 /*
924  * Hand a packet to the card for transmission
925  * If we get here, we MUST have already checked
926  * to make sure there is room in the transmit
927  * buffer region.
928  */
929 
930 static void eexp_hw_tx_pio(struct net_device *dev, unsigned short *buf,
931  unsigned short len)
932 {
933  struct net_local *lp = netdev_priv(dev);
934  unsigned short ioaddr = dev->base_addr;
935 
936  if (LOCKUP16 || lp->width) {
937  /* Stop the CU so that there is no chance that it
938  jumps off to a bogus address while we are writing the
939  pointer to the next transmit packet in 8-bit mode --
940  this eliminates the "CU wedged" errors in 8-bit mode.
941  (Zoltan Szilagyi 10-12-96) */
942  scb_command(dev, SCB_CUsuspend);
943  outw(0xFFFF, ioaddr+SIGNAL_CA);
944  }
945 
946  outw(lp->tx_head, ioaddr + WRITE_PTR);
947 
948  outw(0x0000, ioaddr + DATAPORT);
949  outw(Cmd_INT|Cmd_Xmit, ioaddr + DATAPORT);
950  outw(lp->tx_head+0x08, ioaddr + DATAPORT);
951  outw(lp->tx_head+0x0e, ioaddr + DATAPORT);
952 
953  outw(0x0000, ioaddr + DATAPORT);
954  outw(0x0000, ioaddr + DATAPORT);
955  outw(lp->tx_head+0x08, ioaddr + DATAPORT);
956 
957  outw(0x8000|len, ioaddr + DATAPORT);
958  outw(-1, ioaddr + DATAPORT);
959  outw(lp->tx_head+0x16, ioaddr + DATAPORT);
960  outw(0, ioaddr + DATAPORT);
961 
962  outsw(ioaddr + DATAPORT, buf, (len+1)>>1);
963 
964  outw(lp->tx_tail+0xc, ioaddr + WRITE_PTR);
965  outw(lp->tx_head, ioaddr + DATAPORT);
966 
967  dev->trans_start = jiffies;
968  lp->tx_tail = lp->tx_head;
969  if (lp->tx_head==TX_BUF_START+((lp->num_tx_bufs-1)*TX_BUF_SIZE))
970  lp->tx_head = TX_BUF_START;
971  else
972  lp->tx_head += TX_BUF_SIZE;
973  if (lp->tx_head != lp->tx_reap)
974  netif_wake_queue(dev);
975 
976  if (LOCKUP16 || lp->width) {
977  /* Restart the CU so that the packet can actually
978  be transmitted. (Zoltan Szilagyi 10-12-96) */
979  scb_command(dev, SCB_CUresume);
980  outw(0xFFFF, ioaddr+SIGNAL_CA);
981  }
982 
983  dev->stats.tx_packets++;
984  lp->last_tx = jiffies;
985 }
986 
987 static const struct net_device_ops eexp_netdev_ops = {
988  .ndo_open = eexp_open,
989  .ndo_stop = eexp_close,
990  .ndo_start_xmit = eexp_xmit,
991  .ndo_set_rx_mode = eexp_set_multicast,
992  .ndo_tx_timeout = eexp_timeout,
993  .ndo_change_mtu = eth_change_mtu,
994  .ndo_set_mac_address = eth_mac_addr,
995  .ndo_validate_addr = eth_validate_addr,
996 };
997 
998 /*
999  * Sanity check the suspected EtherExpress card
1000  * Read hardware address, reset card, size memory and initialize buffer
1001  * memory pointers. These are held in netdev_priv(), in case someone has more
1002  * than one card in a machine.
1003  */
1004 
1005 static int __init eexp_hw_probe(struct net_device *dev, unsigned short ioaddr)
1006 {
1007  unsigned short hw_addr[3];
1008  unsigned char buswidth;
1009  unsigned int memory_size;
1010  int i;
1011  unsigned short xsum = 0;
1012  struct net_local *lp = netdev_priv(dev);
1013 
1014  printk("%s: EtherExpress 16 at %#x ",dev->name,ioaddr);
1015 
1016  outb(ASIC_RST, ioaddr+EEPROM_Ctrl);
1017  outb(0, ioaddr+EEPROM_Ctrl);
1018  udelay(500);
1019  outb(i586_RST, ioaddr+EEPROM_Ctrl);
1020 
1021  hw_addr[0] = eexp_hw_readeeprom(ioaddr,2);
1022  hw_addr[1] = eexp_hw_readeeprom(ioaddr,3);
1023  hw_addr[2] = eexp_hw_readeeprom(ioaddr,4);
1024 
1025  /* Standard Address or Compaq LTE Address */
1026  if (!((hw_addr[2]==0x00aa && ((hw_addr[1] & 0xff00)==0x0000)) ||
1027  (hw_addr[2]==0x0080 && ((hw_addr[1] & 0xff00)==0x5F00))))
1028  {
1029  printk(" rejected: invalid address %04x%04x%04x\n",
1030  hw_addr[2],hw_addr[1],hw_addr[0]);
1031  return -ENODEV;
1032  }
1033 
1034  /* Calculate the EEPROM checksum. Carry on anyway if it's bad,
1035  * though.
1036  */
1037  for (i = 0; i < 64; i++)
1038  xsum += eexp_hw_readeeprom(ioaddr, i);
1039  if (xsum != 0xbaba)
1040  printk(" (bad EEPROM xsum 0x%02x)", xsum);
1041 
1042  dev->base_addr = ioaddr;
1043  for ( i=0 ; i<6 ; i++ )
1044  dev->dev_addr[i] = ((unsigned char *)hw_addr)[5-i];
1045 
1046  {
1047  static const char irqmap[] = { 0, 9, 3, 4, 5, 10, 11, 0 };
1048  unsigned short setupval = eexp_hw_readeeprom(ioaddr,0);
1049 
1050  /* Use the IRQ from EEPROM if none was given */
1051  if (!dev->irq)
1052  dev->irq = irqmap[setupval>>13];
1053 
1054  if (dev->if_port == 0xff) {
1055  dev->if_port = !(setupval & 0x1000) ? AUI :
1056  eexp_hw_readeeprom(ioaddr,5) & 0x1 ? TPE : BNC;
1057  }
1058 
1059  buswidth = !((setupval & 0x400) >> 10);
1060  }
1061 
1062  memset(lp, 0, sizeof(struct net_local));
1063  spin_lock_init(&lp->lock);
1064 
1065  printk("(IRQ %d, %s connector, %d-bit bus", dev->irq,
1066  eexp_ifmap[dev->if_port], buswidth?8:16);
1067 
1068  if (!request_region(dev->base_addr + 0x300e, 1, "EtherExpress"))
1069  return -EBUSY;
1070 
1071  eexp_hw_set_interface(dev);
1072 
1073  release_region(dev->base_addr + 0x300e, 1);
1074 
1075  /* Find out how much RAM we have on the card */
1076  outw(0, dev->base_addr + WRITE_PTR);
1077  for (i = 0; i < 32768; i++)
1078  outw(0, dev->base_addr + DATAPORT);
1079 
1080  for (memory_size = 0; memory_size < 64; memory_size++)
1081  {
1082  outw(memory_size<<10, dev->base_addr + READ_PTR);
1083  if (inw(dev->base_addr+DATAPORT))
1084  break;
1085  outw(memory_size<<10, dev->base_addr + WRITE_PTR);
1086  outw(memory_size | 0x5000, dev->base_addr+DATAPORT);
1087  outw(memory_size<<10, dev->base_addr + READ_PTR);
1088  if (inw(dev->base_addr+DATAPORT) != (memory_size | 0x5000))
1089  break;
1090  }
1091 
1092  /* Sort out the number of buffers. We may have 16, 32, 48 or 64k
1093  * of RAM to play with.
1094  */
1095  lp->num_tx_bufs = 4;
1096  lp->rx_buf_end = 0x3ff6;
1097  switch (memory_size)
1098  {
1099  case 64:
1100  lp->rx_buf_end += 0x4000;
1101  case 48:
1102  lp->num_tx_bufs += 4;
1103  lp->rx_buf_end += 0x4000;
1104  case 32:
1105  lp->rx_buf_end += 0x4000;
1106  case 16:
1107  printk(", %dk RAM)\n", memory_size);
1108  break;
1109  default:
1110  printk(") bad memory size (%dk).\n", memory_size);
1111  return -ENODEV;
1112  break;
1113  }
1114 
1116  lp->width = buswidth;
1117 
1118  dev->netdev_ops = &eexp_netdev_ops;
1119  dev->watchdog_timeo = 2*HZ;
1120 
1121  return register_netdev(dev);
1122 }
1123 
1124 /*
1125  * Read a word from the EtherExpress on-board serial EEPROM.
1126  * The EEPROM contains 64 words of 16 bits.
1127  */
1128 static unsigned short __init eexp_hw_readeeprom(unsigned short ioaddr,
1129  unsigned char location)
1130 {
1131  unsigned short cmd = 0x180|(location&0x7f);
1132  unsigned short rval = 0,wval = EC_CS|i586_RST;
1133  int i;
1134 
1135  outb(EC_CS|i586_RST,ioaddr+EEPROM_Ctrl);
1136  for (i=0x100 ; i ; i>>=1 )
1137  {
1138  if (cmd&i)
1139  wval |= EC_Wr;
1140  else
1141  wval &= ~EC_Wr;
1142 
1143  outb(wval,ioaddr+EEPROM_Ctrl);
1144  outb(wval|EC_Clk,ioaddr+EEPROM_Ctrl);
1145  eeprom_delay();
1146  outb(wval,ioaddr+EEPROM_Ctrl);
1147  eeprom_delay();
1148  }
1149  wval &= ~EC_Wr;
1150  outb(wval,ioaddr+EEPROM_Ctrl);
1151  for (i=0x8000 ; i ; i>>=1 )
1152  {
1153  outb(wval|EC_Clk,ioaddr+EEPROM_Ctrl);
1154  eeprom_delay();
1155  if (inb(ioaddr+EEPROM_Ctrl)&EC_Rd)
1156  rval |= i;
1157  outb(wval,ioaddr+EEPROM_Ctrl);
1158  eeprom_delay();
1159  }
1160  wval &= ~EC_CS;
1161  outb(wval|EC_Clk,ioaddr+EEPROM_Ctrl);
1162  eeprom_delay();
1163  outb(wval,ioaddr+EEPROM_Ctrl);
1164  eeprom_delay();
1165  return rval;
1166 }
1167 
1168 /*
1169  * Reap tx buffers and return last transmit status.
1170  * if ==0 then either:
1171  * a) we're not transmitting anything, so why are we here?
1172  * b) we've died.
1173  * otherwise, Stat_Busy(return) means we've still got some packets
1174  * to transmit, Stat_Done(return) means our buffers should be empty
1175  * again
1176  */
1177 
1178 static unsigned short eexp_hw_lasttxstat(struct net_device *dev)
1179 {
1180  struct net_local *lp = netdev_priv(dev);
1181  unsigned short tx_block = lp->tx_reap;
1182  unsigned short status;
1183 
1184  if (!netif_queue_stopped(dev) && lp->tx_head==lp->tx_reap)
1185  return 0x0000;
1186 
1187  do
1188  {
1189  outw(tx_block & ~31, dev->base_addr + SM_PTR);
1190  status = inw(dev->base_addr + SHADOW(tx_block));
1191  if (!Stat_Done(status))
1192  {
1193  lp->tx_link = tx_block;
1194  return status;
1195  }
1196  else
1197  {
1198  lp->last_tx_restart = 0;
1199  dev->stats.collisions += Stat_NoColl(status);
1200  if (!Stat_OK(status))
1201  {
1202  char *whatsup = NULL;
1203  dev->stats.tx_errors++;
1204  if (Stat_Abort(status))
1205  dev->stats.tx_aborted_errors++;
1206  if (Stat_TNoCar(status)) {
1207  whatsup = "aborted, no carrier";
1208  dev->stats.tx_carrier_errors++;
1209  }
1210  if (Stat_TNoCTS(status)) {
1211  whatsup = "aborted, lost CTS";
1212  dev->stats.tx_carrier_errors++;
1213  }
1214  if (Stat_TNoDMA(status)) {
1215  whatsup = "FIFO underran";
1216  dev->stats.tx_fifo_errors++;
1217  }
1218  if (Stat_TXColl(status)) {
1219  whatsup = "aborted, too many collisions";
1220  dev->stats.tx_aborted_errors++;
1221  }
1222  if (whatsup)
1223  printk(KERN_INFO "%s: transmit %s\n",
1224  dev->name, whatsup);
1225  }
1226  else
1227  dev->stats.tx_packets++;
1228  }
1229  if (tx_block == TX_BUF_START+((lp->num_tx_bufs-1)*TX_BUF_SIZE))
1230  lp->tx_reap = tx_block = TX_BUF_START;
1231  else
1232  lp->tx_reap = tx_block += TX_BUF_SIZE;
1233  netif_wake_queue(dev);
1234  }
1235  while (lp->tx_reap != lp->tx_head);
1236 
1237  lp->tx_link = lp->tx_tail + 0x08;
1238 
1239  return status;
1240 }
1241 
1242 /*
1243  * This should never happen. It is called when some higher routine detects
1244  * that the CU has stopped, to try to restart it from the last packet we knew
1245  * we were working on, or the idle loop if we had finished for the time.
1246  */
1247 
1248 static void eexp_hw_txrestart(struct net_device *dev)
1249 {
1250  struct net_local *lp = netdev_priv(dev);
1251  unsigned short ioaddr = dev->base_addr;
1252 
1253  lp->last_tx_restart = lp->tx_link;
1254  scb_wrcbl(dev, lp->tx_link);
1255  scb_command(dev, SCB_CUstart);
1256  outb(0,ioaddr+SIGNAL_CA);
1257 
1258  {
1259  unsigned short boguscount=50,failcount=5;
1260  while (!scb_status(dev))
1261  {
1262  if (!--boguscount)
1263  {
1264  if (--failcount)
1265  {
1266  printk(KERN_WARNING "%s: CU start timed out, status %04x, cmd %04x\n", dev->name, scb_status(dev), scb_rdcmd(dev));
1267  scb_wrcbl(dev, lp->tx_link);
1268  scb_command(dev, SCB_CUstart);
1269  outb(0,ioaddr+SIGNAL_CA);
1270  boguscount = 100;
1271  }
1272  else
1273  {
1274  printk(KERN_WARNING "%s: Failed to restart CU, resetting board...\n",dev->name);
1275  eexp_hw_init586(dev);
1276  netif_wake_queue(dev);
1277  return;
1278  }
1279  }
1280  }
1281  }
1282 }
1283 
1284 /*
1285  * Writes down the list of transmit buffers into card memory. Each
1286  * entry consists of an 82586 transmit command, followed by a jump
1287  * pointing to itself. When we want to transmit a packet, we write
1288  * the data into the appropriate transmit buffer and then modify the
1289  * preceding jump to point at the new transmit command. This means that
1290  * the 586 command unit is continuously active.
1291  */
1292 
1293 static void eexp_hw_txinit(struct net_device *dev)
1294 {
1295  struct net_local *lp = netdev_priv(dev);
1296  unsigned short tx_block = TX_BUF_START;
1297  unsigned short curtbuf;
1298  unsigned short ioaddr = dev->base_addr;
1299 
1300  for ( curtbuf=0 ; curtbuf<lp->num_tx_bufs ; curtbuf++ )
1301  {
1302  outw(tx_block, ioaddr + WRITE_PTR);
1303 
1304  outw(0x0000, ioaddr + DATAPORT);
1305  outw(Cmd_INT|Cmd_Xmit, ioaddr + DATAPORT);
1306  outw(tx_block+0x08, ioaddr + DATAPORT);
1307  outw(tx_block+0x0e, ioaddr + DATAPORT);
1308 
1309  outw(0x0000, ioaddr + DATAPORT);
1310  outw(0x0000, ioaddr + DATAPORT);
1311  outw(tx_block+0x08, ioaddr + DATAPORT);
1312 
1313  outw(0x8000, ioaddr + DATAPORT);
1314  outw(-1, ioaddr + DATAPORT);
1315  outw(tx_block+0x16, ioaddr + DATAPORT);
1316  outw(0x0000, ioaddr + DATAPORT);
1317 
1318  tx_block += TX_BUF_SIZE;
1319  }
1320  lp->tx_head = TX_BUF_START;
1321  lp->tx_reap = TX_BUF_START;
1322  lp->tx_tail = tx_block - TX_BUF_SIZE;
1323  lp->tx_link = lp->tx_tail + 0x08;
1324  lp->rx_buf_start = tx_block;
1325 
1326 }
1327 
1328 /*
1329  * Write the circular list of receive buffer descriptors to card memory.
1330  * The end of the list isn't marked, which means that the 82586 receive
1331  * unit will loop until buffers become available (this avoids it giving us
1332  * "out of resources" messages).
1333  */
1334 
1335 static void eexp_hw_rxinit(struct net_device *dev)
1336 {
1337  struct net_local *lp = netdev_priv(dev);
1338  unsigned short rx_block = lp->rx_buf_start;
1339  unsigned short ioaddr = dev->base_addr;
1340 
1341  lp->num_rx_bufs = 0;
1342  lp->rx_first = lp->rx_ptr = rx_block;
1343  do
1344  {
1345  lp->num_rx_bufs++;
1346 
1347  outw(rx_block, ioaddr + WRITE_PTR);
1348 
1349  outw(0, ioaddr + DATAPORT); outw(0, ioaddr+DATAPORT);
1350  outw(rx_block + RX_BUF_SIZE, ioaddr+DATAPORT);
1351  outw(0xffff, ioaddr+DATAPORT);
1352 
1353  outw(0x0000, ioaddr+DATAPORT);
1354  outw(0xdead, ioaddr+DATAPORT);
1355  outw(0xdead, ioaddr+DATAPORT);
1356  outw(0xdead, ioaddr+DATAPORT);
1357  outw(0xdead, ioaddr+DATAPORT);
1358  outw(0xdead, ioaddr+DATAPORT);
1359  outw(0xdead, ioaddr+DATAPORT);
1360 
1361  outw(0x0000, ioaddr+DATAPORT);
1362  outw(rx_block + RX_BUF_SIZE + 0x16, ioaddr+DATAPORT);
1363  outw(rx_block + 0x20, ioaddr+DATAPORT);
1364  outw(0, ioaddr+DATAPORT);
1365  outw(RX_BUF_SIZE-0x20, ioaddr+DATAPORT);
1366 
1367  lp->rx_last = rx_block;
1368  rx_block += RX_BUF_SIZE;
1369  } while (rx_block <= lp->rx_buf_end-RX_BUF_SIZE);
1370 
1371 
1372  /* Make first Rx frame descriptor point to first Rx buffer
1373  descriptor */
1374  outw(lp->rx_first + 6, ioaddr+WRITE_PTR);
1375  outw(lp->rx_first + 0x16, ioaddr+DATAPORT);
1376 
1377  /* Close Rx frame descriptor ring */
1378  outw(lp->rx_last + 4, ioaddr+WRITE_PTR);
1379  outw(lp->rx_first, ioaddr+DATAPORT);
1380 
1381  /* Close Rx buffer descriptor ring */
1382  outw(lp->rx_last + 0x16 + 2, ioaddr+WRITE_PTR);
1383  outw(lp->rx_first + 0x16, ioaddr+DATAPORT);
1384 
1385 }
1386 
1387 /*
1388  * Un-reset the 586, and start the configuration sequence. We don't wait for
1389  * this to finish, but allow the interrupt handler to start the CU and RU for
1390  * us. We can't start the receive/transmission system up before we know that
1391  * the hardware is configured correctly.
1392  */
1393 
1394 static void eexp_hw_init586(struct net_device *dev)
1395 {
1396  struct net_local *lp = netdev_priv(dev);
1397  unsigned short ioaddr = dev->base_addr;
1398  int i;
1399 
1400 #if NET_DEBUG > 6
1401  printk("%s: eexp_hw_init586()\n", dev->name);
1402 #endif
1403 
1404  lp->started = 0;
1405 
1406  set_loopback(dev);
1407 
1408  outb(SIRQ_dis|irqrmap[dev->irq],ioaddr+SET_IRQ);
1409 
1410  /* Download the startup code */
1411  outw(lp->rx_buf_end & ~31, ioaddr + SM_PTR);
1412  outw(lp->width?0x0001:0x0000, ioaddr + 0x8006);
1413  outw(0x0000, ioaddr + 0x8008);
1414  outw(0x0000, ioaddr + 0x800a);
1415  outw(0x0000, ioaddr + 0x800c);
1416  outw(0x0000, ioaddr + 0x800e);
1417 
1418  for (i = 0; i < ARRAY_SIZE(start_code) * 2; i+=32) {
1419  int j;
1420  outw(i, ioaddr + SM_PTR);
1421  for (j = 0; j < 16 && (i+j)/2 < ARRAY_SIZE(start_code); j+=2)
1422  outw(start_code[(i+j)/2],
1423  ioaddr+0x4000+j);
1424  for (j = 0; j < 16 && (i+j+16)/2 < ARRAY_SIZE(start_code); j+=2)
1425  outw(start_code[(i+j+16)/2],
1426  ioaddr+0x8000+j);
1427  }
1428 
1429  /* Do we want promiscuous mode or multicast? */
1430  outw(CONF_PROMISC & ~31, ioaddr+SM_PTR);
1431  i = inw(ioaddr+SHADOW(CONF_PROMISC));
1432  outw((dev->flags & IFF_PROMISC)?(i|1):(i & ~1),
1433  ioaddr+SHADOW(CONF_PROMISC));
1434  lp->was_promisc = dev->flags & IFF_PROMISC;
1435 #if 0
1436  eexp_setup_filter(dev);
1437 #endif
1438 
1439  /* Write our hardware address */
1440  outw(CONF_HWADDR & ~31, ioaddr+SM_PTR);
1441  outw(((unsigned short *)dev->dev_addr)[0], ioaddr+SHADOW(CONF_HWADDR));
1442  outw(((unsigned short *)dev->dev_addr)[1],
1443  ioaddr+SHADOW(CONF_HWADDR+2));
1444  outw(((unsigned short *)dev->dev_addr)[2],
1445  ioaddr+SHADOW(CONF_HWADDR+4));
1446 
1447  eexp_hw_txinit(dev);
1448  eexp_hw_rxinit(dev);
1449 
1450  outb(0,ioaddr+EEPROM_Ctrl);
1451  mdelay(5);
1452 
1453  scb_command(dev, 0xf000);
1454  outb(0,ioaddr+SIGNAL_CA);
1455 
1456  outw(0, ioaddr+SM_PTR);
1457 
1458  {
1459  unsigned short rboguscount=50,rfailcount=5;
1460  while (inw(ioaddr+0x4000))
1461  {
1462  if (!--rboguscount)
1463  {
1464  printk(KERN_WARNING "%s: i82586 reset timed out, kicking...\n",
1465  dev->name);
1466  scb_command(dev, 0);
1467  outb(0,ioaddr+SIGNAL_CA);
1468  rboguscount = 100;
1469  if (!--rfailcount)
1470  {
1471  printk(KERN_WARNING "%s: i82586 not responding, giving up.\n",
1472  dev->name);
1473  return;
1474  }
1475  }
1476  }
1477  }
1478 
1479  scb_wrcbl(dev, CONF_LINK);
1480  scb_command(dev, 0xf000|SCB_CUstart);
1481  outb(0,ioaddr+SIGNAL_CA);
1482 
1483  {
1484  unsigned short iboguscount=50,ifailcount=5;
1485  while (!scb_status(dev))
1486  {
1487  if (!--iboguscount)
1488  {
1489  if (--ifailcount)
1490  {
1491  printk(KERN_WARNING "%s: i82586 initialization timed out, status %04x, cmd %04x\n",
1492  dev->name, scb_status(dev), scb_rdcmd(dev));
1493  scb_wrcbl(dev, CONF_LINK);
1494  scb_command(dev, 0xf000|SCB_CUstart);
1495  outb(0,ioaddr+SIGNAL_CA);
1496  iboguscount = 100;
1497  }
1498  else
1499  {
1500  printk(KERN_WARNING "%s: Failed to initialize i82586, giving up.\n",dev->name);
1501  return;
1502  }
1503  }
1504  }
1505  }
1506 
1507  clear_loopback(dev);
1508  outb(SIRQ_en|irqrmap[dev->irq],ioaddr+SET_IRQ);
1509 
1510  lp->init_time = jiffies;
1511 #if NET_DEBUG > 6
1512  printk("%s: leaving eexp_hw_init586()\n", dev->name);
1513 #endif
1514 }
1515 
1516 static void eexp_setup_filter(struct net_device *dev)
1517 {
1518  struct netdev_hw_addr *ha;
1519  unsigned short ioaddr = dev->base_addr;
1520  int count = netdev_mc_count(dev);
1521  int i;
1522  if (count > 8) {
1523  printk(KERN_INFO "%s: too many multicast addresses (%d)\n",
1524  dev->name, count);
1525  count = 8;
1526  }
1527 
1528  outw(CONF_NR_MULTICAST & ~31, ioaddr+SM_PTR);
1529  outw(6*count, ioaddr+SHADOW(CONF_NR_MULTICAST));
1530  i = 0;
1531  netdev_for_each_mc_addr(ha, dev) {
1532  unsigned short *data = (unsigned short *) ha->addr;
1533 
1534  if (i == count)
1535  break;
1536  outw((CONF_MULTICAST+(6*i)) & ~31, ioaddr+SM_PTR);
1537  outw(data[0], ioaddr+SHADOW(CONF_MULTICAST+(6*i)));
1538  outw((CONF_MULTICAST+(6*i)+2) & ~31, ioaddr+SM_PTR);
1539  outw(data[1], ioaddr+SHADOW(CONF_MULTICAST+(6*i)+2));
1540  outw((CONF_MULTICAST+(6*i)+4) & ~31, ioaddr+SM_PTR);
1541  outw(data[2], ioaddr+SHADOW(CONF_MULTICAST+(6*i)+4));
1542  i++;
1543  }
1544 }
1545 
1546 /*
1547  * Set or clear the multicast filter for this adaptor.
1548  */
1549 static void
1550 eexp_set_multicast(struct net_device *dev)
1551 {
1552  unsigned short ioaddr = dev->base_addr;
1553  struct net_local *lp = netdev_priv(dev);
1554  int kick = 0, i;
1555  if ((dev->flags & IFF_PROMISC) != lp->was_promisc) {
1556  outw(CONF_PROMISC & ~31, ioaddr+SM_PTR);
1557  i = inw(ioaddr+SHADOW(CONF_PROMISC));
1558  outw((dev->flags & IFF_PROMISC)?(i|1):(i & ~1),
1559  ioaddr+SHADOW(CONF_PROMISC));
1560  lp->was_promisc = dev->flags & IFF_PROMISC;
1561  kick = 1;
1562  }
1563  if (!(dev->flags & IFF_PROMISC)) {
1564  eexp_setup_filter(dev);
1565  if (lp->old_mc_count != netdev_mc_count(dev)) {
1566  kick = 1;
1567  lp->old_mc_count = netdev_mc_count(dev);
1568  }
1569  }
1570  if (kick) {
1571  unsigned long oj;
1572  scb_command(dev, SCB_CUsuspend);
1573  outb(0, ioaddr+SIGNAL_CA);
1574  outb(0, ioaddr+SIGNAL_CA);
1575 #if 0
1576  printk("%s: waiting for CU to go suspended\n", dev->name);
1577 #endif
1578  oj = jiffies;
1579  while ((SCB_CUstat(scb_status(dev)) == 2) &&
1580  (time_before(jiffies, oj + 2000)));
1581  if (SCB_CUstat(scb_status(dev)) == 2)
1582  printk("%s: warning, CU didn't stop\n", dev->name);
1583  lp->started &= ~(STARTED_CU);
1584  scb_wrcbl(dev, CONF_LINK);
1585  scb_command(dev, SCB_CUstart);
1586  outb(0, ioaddr+SIGNAL_CA);
1587  }
1588 }
1589 
1590 
1591 /*
1592  * MODULE stuff
1593  */
1594 
1595 #ifdef MODULE
1596 
1597 #define EEXP_MAX_CARDS 4 /* max number of cards to support */
1598 
1599 static struct net_device *dev_eexp[EEXP_MAX_CARDS];
1600 static int irq[EEXP_MAX_CARDS];
1601 static int io[EEXP_MAX_CARDS];
1602 
1603 module_param_array(io, int, NULL, 0);
1604 module_param_array(irq, int, NULL, 0);
1605 MODULE_PARM_DESC(io, "EtherExpress 16 I/O base address(es)");
1606 MODULE_PARM_DESC(irq, "EtherExpress 16 IRQ number(s)");
1607 MODULE_LICENSE("GPL");
1608 
1609 
1610 /* Ideally the user would give us io=, irq= for every card. If any parameters
1611  * are specified, we verify and then use them. If no parameters are given, we
1612  * autoprobe for one card only.
1613  */
1614 int __init init_module(void)
1615 {
1616  struct net_device *dev;
1617  int this_dev, found = 0;
1618 
1619  for (this_dev = 0; this_dev < EEXP_MAX_CARDS; this_dev++) {
1620  dev = alloc_etherdev(sizeof(struct net_local));
1621  dev->irq = irq[this_dev];
1622  dev->base_addr = io[this_dev];
1623  if (io[this_dev] == 0) {
1624  if (this_dev)
1625  break;
1626  printk(KERN_NOTICE "eexpress.c: Module autoprobe not recommended, give io=xx.\n");
1627  }
1628  if (do_express_probe(dev) == 0) {
1629  dev_eexp[this_dev] = dev;
1630  found++;
1631  continue;
1632  }
1633  printk(KERN_WARNING "eexpress.c: Failed to register card at 0x%x.\n", io[this_dev]);
1634  free_netdev(dev);
1635  break;
1636  }
1637  if (found)
1638  return 0;
1639  return -ENXIO;
1640 }
1641 
1642 void __exit cleanup_module(void)
1643 {
1644  int this_dev;
1645 
1646  for (this_dev = 0; this_dev < EEXP_MAX_CARDS; this_dev++) {
1647  struct net_device *dev = dev_eexp[this_dev];
1648  if (dev) {
1649  unregister_netdev(dev);
1650  free_netdev(dev);
1651  }
1652  }
1653 }
1654 #endif
1655 
1656 /*
1657  * Local Variables:
1658  * c-file-style: "linux"
1659  * tab-width: 8
1660  * End:
1661  */