Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
esp_scsi.c
Go to the documentation of this file.
1 /* esp_scsi.c: ESP SCSI driver.
2  *
3  * Copyright (C) 2007 David S. Miller ([email protected])
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/delay.h>
10 #include <linux/list.h>
11 #include <linux/completion.h>
12 #include <linux/kallsyms.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/init.h>
16 #include <linux/irqreturn.h>
17 
18 #include <asm/irq.h>
19 #include <asm/io.h>
20 #include <asm/dma.h>
21 
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_host.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_tcq.h>
27 #include <scsi/scsi_dbg.h>
29 
30 #include "esp_scsi.h"
31 
32 #define DRV_MODULE_NAME "esp"
33 #define PFX DRV_MODULE_NAME ": "
34 #define DRV_VERSION "2.000"
35 #define DRV_MODULE_RELDATE "April 19, 2007"
36 
37 /* SCSI bus reset settle time in seconds. */
38 static int esp_bus_reset_settle = 3;
39 
40 static u32 esp_debug;
41 #define ESP_DEBUG_INTR 0x00000001
42 #define ESP_DEBUG_SCSICMD 0x00000002
43 #define ESP_DEBUG_RESET 0x00000004
44 #define ESP_DEBUG_MSGIN 0x00000008
45 #define ESP_DEBUG_MSGOUT 0x00000010
46 #define ESP_DEBUG_CMDDONE 0x00000020
47 #define ESP_DEBUG_DISCONNECT 0x00000040
48 #define ESP_DEBUG_DATASTART 0x00000080
49 #define ESP_DEBUG_DATADONE 0x00000100
50 #define ESP_DEBUG_RECONNECT 0x00000200
51 #define ESP_DEBUG_AUTOSENSE 0x00000400
52 
53 #define esp_log_intr(f, a...) \
54 do { if (esp_debug & ESP_DEBUG_INTR) \
55  printk(f, ## a); \
56 } while (0)
57 
58 #define esp_log_reset(f, a...) \
59 do { if (esp_debug & ESP_DEBUG_RESET) \
60  printk(f, ## a); \
61 } while (0)
62 
63 #define esp_log_msgin(f, a...) \
64 do { if (esp_debug & ESP_DEBUG_MSGIN) \
65  printk(f, ## a); \
66 } while (0)
67 
68 #define esp_log_msgout(f, a...) \
69 do { if (esp_debug & ESP_DEBUG_MSGOUT) \
70  printk(f, ## a); \
71 } while (0)
72 
73 #define esp_log_cmddone(f, a...) \
74 do { if (esp_debug & ESP_DEBUG_CMDDONE) \
75  printk(f, ## a); \
76 } while (0)
77 
78 #define esp_log_disconnect(f, a...) \
79 do { if (esp_debug & ESP_DEBUG_DISCONNECT) \
80  printk(f, ## a); \
81 } while (0)
82 
83 #define esp_log_datastart(f, a...) \
84 do { if (esp_debug & ESP_DEBUG_DATASTART) \
85  printk(f, ## a); \
86 } while (0)
87 
88 #define esp_log_datadone(f, a...) \
89 do { if (esp_debug & ESP_DEBUG_DATADONE) \
90  printk(f, ## a); \
91 } while (0)
92 
93 #define esp_log_reconnect(f, a...) \
94 do { if (esp_debug & ESP_DEBUG_RECONNECT) \
95  printk(f, ## a); \
96 } while (0)
97 
98 #define esp_log_autosense(f, a...) \
99 do { if (esp_debug & ESP_DEBUG_AUTOSENSE) \
100  printk(f, ## a); \
101 } while (0)
102 
103 #define esp_read8(REG) esp->ops->esp_read8(esp, REG)
104 #define esp_write8(VAL,REG) esp->ops->esp_write8(esp, VAL, REG)
105 
106 static void esp_log_fill_regs(struct esp *esp,
107  struct esp_event_ent *p)
108 {
109  p->sreg = esp->sreg;
110  p->seqreg = esp->seqreg;
111  p->sreg2 = esp->sreg2;
112  p->ireg = esp->ireg;
113  p->select_state = esp->select_state;
114  p->event = esp->event;
115 }
116 
117 void scsi_esp_cmd(struct esp *esp, u8 val)
118 {
119  struct esp_event_ent *p;
120  int idx = esp->esp_event_cur;
121 
122  p = &esp->esp_event_log[idx];
124  p->val = val;
125  esp_log_fill_regs(esp, p);
126 
127  esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
128 
129  esp_write8(val, ESP_CMD);
130 }
132 
133 static void esp_event(struct esp *esp, u8 val)
134 {
135  struct esp_event_ent *p;
136  int idx = esp->esp_event_cur;
137 
138  p = &esp->esp_event_log[idx];
140  p->val = val;
141  esp_log_fill_regs(esp, p);
142 
143  esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
144 
145  esp->event = val;
146 }
147 
148 static void esp_dump_cmd_log(struct esp *esp)
149 {
150  int idx = esp->esp_event_cur;
151  int stop = idx;
152 
153  printk(KERN_INFO PFX "esp%d: Dumping command log\n",
154  esp->host->unique_id);
155  do {
156  struct esp_event_ent *p = &esp->esp_event_log[idx];
157 
158  printk(KERN_INFO PFX "esp%d: ent[%d] %s ",
159  esp->host->unique_id, idx,
160  p->type == ESP_EVENT_TYPE_CMD ? "CMD" : "EVENT");
161 
162  printk("val[%02x] sreg[%02x] seqreg[%02x] "
163  "sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n",
164  p->val, p->sreg, p->seqreg,
165  p->sreg2, p->ireg, p->select_state, p->event);
166 
167  idx = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
168  } while (idx != stop);
169 }
170 
171 static void esp_flush_fifo(struct esp *esp)
172 {
174  if (esp->rev == ESP236) {
175  int lim = 1000;
176 
177  while (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES) {
178  if (--lim == 0) {
179  printk(KERN_ALERT PFX "esp%d: ESP_FF_BYTES "
180  "will not clear!\n",
181  esp->host->unique_id);
182  break;
183  }
184  udelay(1);
185  }
186  }
187 }
188 
189 static void hme_read_fifo(struct esp *esp)
190 {
191  int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
192  int idx = 0;
193 
194  while (fcnt--) {
195  esp->fifo[idx++] = esp_read8(ESP_FDATA);
196  esp->fifo[idx++] = esp_read8(ESP_FDATA);
197  }
198  if (esp->sreg2 & ESP_STAT2_F1BYTE) {
199  esp_write8(0, ESP_FDATA);
200  esp->fifo[idx++] = esp_read8(ESP_FDATA);
202  }
203  esp->fifo_cnt = idx;
204 }
205 
206 static void esp_set_all_config3(struct esp *esp, u8 val)
207 {
208  int i;
209 
210  for (i = 0; i < ESP_MAX_TARGET; i++)
211  esp->target[i].esp_config3 = val;
212 }
213 
214 /* Reset the ESP chip, _not_ the SCSI bus. */
215 static void esp_reset_esp(struct esp *esp)
216 {
217  u8 family_code, version;
218 
219  /* Now reset the ESP chip */
220  scsi_esp_cmd(esp, ESP_CMD_RC);
222  if (esp->rev == FAST)
225 
226  /* This is the only point at which it is reliable to read
227  * the ID-code for a fast ESP chip variants.
228  */
229  esp->max_period = ((35 * esp->ccycle) / 1000);
230  if (esp->rev == FAST) {
231  version = esp_read8(ESP_UID);
232  family_code = (version & 0xf8) >> 3;
233  if (family_code == 0x02)
234  esp->rev = FAS236;
235  else if (family_code == 0x0a)
236  esp->rev = FASHME; /* Version is usually '5'. */
237  else
238  esp->rev = FAS100A;
239  esp->min_period = ((4 * esp->ccycle) / 1000);
240  } else {
241  esp->min_period = ((5 * esp->ccycle) / 1000);
242  }
243  esp->max_period = (esp->max_period + 3)>>2;
244  esp->min_period = (esp->min_period + 3)>>2;
245 
246  esp_write8(esp->config1, ESP_CFG1);
247  switch (esp->rev) {
248  case ESP100:
249  /* nothing to do */
250  break;
251 
252  case ESP100A:
253  esp_write8(esp->config2, ESP_CFG2);
254  break;
255 
256  case ESP236:
257  /* Slow 236 */
258  esp_write8(esp->config2, ESP_CFG2);
259  esp->prev_cfg3 = esp->target[0].esp_config3;
261  break;
262 
263  case FASHME:
265  /* fallthrough... */
266 
267  case FAS236:
268  /* Fast 236 or HME */
269  esp_write8(esp->config2, ESP_CFG2);
270  if (esp->rev == FASHME) {
271  u8 cfg3 = esp->target[0].esp_config3;
272 
274  if (esp->scsi_id >= 8)
275  cfg3 |= ESP_CONFIG3_IDBIT3;
276  esp_set_all_config3(esp, cfg3);
277  } else {
278  u32 cfg3 = esp->target[0].esp_config3;
279 
280  cfg3 |= ESP_CONFIG3_FCLK;
281  esp_set_all_config3(esp, cfg3);
282  }
283  esp->prev_cfg3 = esp->target[0].esp_config3;
285  if (esp->rev == FASHME) {
286  esp->radelay = 80;
287  } else {
288  if (esp->flags & ESP_FLAG_DIFFERENTIAL)
289  esp->radelay = 0;
290  else
291  esp->radelay = 96;
292  }
293  break;
294 
295  case FAS100A:
296  /* Fast 100a */
297  esp_write8(esp->config2, ESP_CFG2);
298  esp_set_all_config3(esp,
299  (esp->target[0].esp_config3 |
301  esp->prev_cfg3 = esp->target[0].esp_config3;
303  esp->radelay = 32;
304  break;
305 
306  default:
307  break;
308  }
309 
310  /* Reload the configuration registers */
311  esp_write8(esp->cfact, ESP_CFACT);
312 
313  esp->prev_stp = 0;
314  esp_write8(esp->prev_stp, ESP_STP);
315 
316  esp->prev_soff = 0;
318 
320 
321  /* Eat any bitrot in the chip */
323  udelay(100);
324 }
325 
326 static void esp_map_dma(struct esp *esp, struct scsi_cmnd *cmd)
327 {
328  struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
329  struct scatterlist *sg = scsi_sglist(cmd);
330  int dir = cmd->sc_data_direction;
331  int total, i;
332 
333  if (dir == DMA_NONE)
334  return;
335 
336  spriv->u.num_sg = esp->ops->map_sg(esp, sg, scsi_sg_count(cmd), dir);
337  spriv->cur_residue = sg_dma_len(sg);
338  spriv->cur_sg = sg;
339 
340  total = 0;
341  for (i = 0; i < spriv->u.num_sg; i++)
342  total += sg_dma_len(&sg[i]);
343  spriv->tot_residue = total;
344 }
345 
346 static dma_addr_t esp_cur_dma_addr(struct esp_cmd_entry *ent,
347  struct scsi_cmnd *cmd)
348 {
349  struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
350 
351  if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
352  return ent->sense_dma +
353  (ent->sense_ptr - cmd->sense_buffer);
354  }
355 
356  return sg_dma_address(p->cur_sg) +
357  (sg_dma_len(p->cur_sg) -
358  p->cur_residue);
359 }
360 
361 static unsigned int esp_cur_dma_len(struct esp_cmd_entry *ent,
362  struct scsi_cmnd *cmd)
363 {
364  struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
365 
366  if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
367  return SCSI_SENSE_BUFFERSIZE -
368  (ent->sense_ptr - cmd->sense_buffer);
369  }
370  return p->cur_residue;
371 }
372 
373 static void esp_advance_dma(struct esp *esp, struct esp_cmd_entry *ent,
374  struct scsi_cmnd *cmd, unsigned int len)
375 {
376  struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
377 
378  if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
379  ent->sense_ptr += len;
380  return;
381  }
382 
383  p->cur_residue -= len;
384  p->tot_residue -= len;
385  if (p->cur_residue < 0 || p->tot_residue < 0) {
386  printk(KERN_ERR PFX "esp%d: Data transfer overflow.\n",
387  esp->host->unique_id);
388  printk(KERN_ERR PFX "esp%d: cur_residue[%d] tot_residue[%d] "
389  "len[%u]\n",
390  esp->host->unique_id,
391  p->cur_residue, p->tot_residue, len);
392  p->cur_residue = 0;
393  p->tot_residue = 0;
394  }
395  if (!p->cur_residue && p->tot_residue) {
396  p->cur_sg++;
397  p->cur_residue = sg_dma_len(p->cur_sg);
398  }
399 }
400 
401 static void esp_unmap_dma(struct esp *esp, struct scsi_cmnd *cmd)
402 {
403  struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
404  int dir = cmd->sc_data_direction;
405 
406  if (dir == DMA_NONE)
407  return;
408 
409  esp->ops->unmap_sg(esp, scsi_sglist(cmd), spriv->u.num_sg, dir);
410 }
411 
412 static void esp_save_pointers(struct esp *esp, struct esp_cmd_entry *ent)
413 {
414  struct scsi_cmnd *cmd = ent->cmd;
415  struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
416 
417  if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
418  ent->saved_sense_ptr = ent->sense_ptr;
419  return;
420  }
421  ent->saved_cur_residue = spriv->cur_residue;
422  ent->saved_cur_sg = spriv->cur_sg;
423  ent->saved_tot_residue = spriv->tot_residue;
424 }
425 
426 static void esp_restore_pointers(struct esp *esp, struct esp_cmd_entry *ent)
427 {
428  struct scsi_cmnd *cmd = ent->cmd;
429  struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
430 
431  if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
432  ent->sense_ptr = ent->saved_sense_ptr;
433  return;
434  }
435  spriv->cur_residue = ent->saved_cur_residue;
436  spriv->cur_sg = ent->saved_cur_sg;
437  spriv->tot_residue = ent->saved_tot_residue;
438 }
439 
440 static void esp_check_command_len(struct esp *esp, struct scsi_cmnd *cmd)
441 {
442  if (cmd->cmd_len == 6 ||
443  cmd->cmd_len == 10 ||
444  cmd->cmd_len == 12) {
445  esp->flags &= ~ESP_FLAG_DOING_SLOWCMD;
446  } else {
448  }
449 }
450 
451 static void esp_write_tgt_config3(struct esp *esp, int tgt)
452 {
453  if (esp->rev > ESP100A) {
454  u8 val = esp->target[tgt].esp_config3;
455 
456  if (val != esp->prev_cfg3) {
457  esp->prev_cfg3 = val;
458  esp_write8(val, ESP_CFG3);
459  }
460  }
461 }
462 
463 static void esp_write_tgt_sync(struct esp *esp, int tgt)
464 {
465  u8 off = esp->target[tgt].esp_offset;
466  u8 per = esp->target[tgt].esp_period;
467 
468  if (off != esp->prev_soff) {
469  esp->prev_soff = off;
470  esp_write8(off, ESP_SOFF);
471  }
472  if (per != esp->prev_stp) {
473  esp->prev_stp = per;
474  esp_write8(per, ESP_STP);
475  }
476 }
477 
478 static u32 esp_dma_length_limit(struct esp *esp, u32 dma_addr, u32 dma_len)
479 {
480  if (esp->rev == FASHME) {
481  /* Arbitrary segment boundaries, 24-bit counts. */
482  if (dma_len > (1U << 24))
483  dma_len = (1U << 24);
484  } else {
485  u32 base, end;
486 
487  /* ESP chip limits other variants by 16-bits of transfer
488  * count. Actually on FAS100A and FAS236 we could get
489  * 24-bits of transfer count by enabling ESP_CONFIG2_FENAB
490  * in the ESP_CFG2 register but that causes other unwanted
491  * changes so we don't use it currently.
492  */
493  if (dma_len > (1U << 16))
494  dma_len = (1U << 16);
495 
496  /* All of the DMA variants hooked up to these chips
497  * cannot handle crossing a 24-bit address boundary.
498  */
499  base = dma_addr & ((1U << 24) - 1U);
500  end = base + dma_len;
501  if (end > (1U << 24))
502  end = (1U <<24);
503  dma_len = end - base;
504  }
505  return dma_len;
506 }
507 
508 static int esp_need_to_nego_wide(struct esp_target_data *tp)
509 {
510  struct scsi_target *target = tp->starget;
511 
512  return spi_width(target) != tp->nego_goal_width;
513 }
514 
515 static int esp_need_to_nego_sync(struct esp_target_data *tp)
516 {
517  struct scsi_target *target = tp->starget;
518 
519  /* When offset is zero, period is "don't care". */
520  if (!spi_offset(target) && !tp->nego_goal_offset)
521  return 0;
522 
523  if (spi_offset(target) == tp->nego_goal_offset &&
524  spi_period(target) == tp->nego_goal_period)
525  return 0;
526 
527  return 1;
528 }
529 
530 static int esp_alloc_lun_tag(struct esp_cmd_entry *ent,
531  struct esp_lun_data *lp)
532 {
533  if (!ent->tag[0]) {
534  /* Non-tagged, slot already taken? */
535  if (lp->non_tagged_cmd)
536  return -EBUSY;
537 
538  if (lp->hold) {
539  /* We are being held by active tagged
540  * commands.
541  */
542  if (lp->num_tagged)
543  return -EBUSY;
544 
545  /* Tagged commands completed, we can unplug
546  * the queue and run this untagged command.
547  */
548  lp->hold = 0;
549  } else if (lp->num_tagged) {
550  /* Plug the queue until num_tagged decreases
551  * to zero in esp_free_lun_tag.
552  */
553  lp->hold = 1;
554  return -EBUSY;
555  }
556 
557  lp->non_tagged_cmd = ent;
558  return 0;
559  } else {
560  /* Tagged command, see if blocked by a
561  * non-tagged one.
562  */
563  if (lp->non_tagged_cmd || lp->hold)
564  return -EBUSY;
565  }
566 
567  BUG_ON(lp->tagged_cmds[ent->tag[1]]);
568 
569  lp->tagged_cmds[ent->tag[1]] = ent;
570  lp->num_tagged++;
571 
572  return 0;
573 }
574 
575 static void esp_free_lun_tag(struct esp_cmd_entry *ent,
576  struct esp_lun_data *lp)
577 {
578  if (ent->tag[0]) {
579  BUG_ON(lp->tagged_cmds[ent->tag[1]] != ent);
580  lp->tagged_cmds[ent->tag[1]] = NULL;
581  lp->num_tagged--;
582  } else {
583  BUG_ON(lp->non_tagged_cmd != ent);
584  lp->non_tagged_cmd = NULL;
585  }
586 }
587 
588 /* When a contingent allegiance conditon is created, we force feed a
589  * REQUEST_SENSE command to the device to fetch the sense data. I
590  * tried many other schemes, relying on the scsi error handling layer
591  * to send out the REQUEST_SENSE automatically, but this was difficult
592  * to get right especially in the presence of applications like smartd
593  * which use SG_IO to send out their own REQUEST_SENSE commands.
594  */
595 static void esp_autosense(struct esp *esp, struct esp_cmd_entry *ent)
596 {
597  struct scsi_cmnd *cmd = ent->cmd;
598  struct scsi_device *dev = cmd->device;
599  int tgt, lun;
600  u8 *p, val;
601 
602  tgt = dev->id;
603  lun = dev->lun;
604 
605 
606  if (!ent->sense_ptr) {
607  esp_log_autosense("esp%d: Doing auto-sense for "
608  "tgt[%d] lun[%d]\n",
609  esp->host->unique_id, tgt, lun);
610 
611  ent->sense_ptr = cmd->sense_buffer;
612  ent->sense_dma = esp->ops->map_single(esp,
613  ent->sense_ptr,
616  }
617  ent->saved_sense_ptr = ent->sense_ptr;
618 
619  esp->active_cmd = ent;
620 
621  p = esp->command_block;
622  esp->msg_out_len = 0;
623 
624  *p++ = IDENTIFY(0, lun);
625  *p++ = REQUEST_SENSE;
626  *p++ = ((dev->scsi_level <= SCSI_2) ?
627  (lun << 5) : 0);
628  *p++ = 0;
629  *p++ = 0;
630  *p++ = SCSI_SENSE_BUFFERSIZE;
631  *p++ = 0;
632 
634 
635  val = tgt;
636  if (esp->rev == FASHME)
638  esp_write8(val, ESP_BUSID);
639 
640  esp_write_tgt_sync(esp, tgt);
641  esp_write_tgt_config3(esp, tgt);
642 
643  val = (p - esp->command_block);
644 
645  if (esp->rev == FASHME)
647  esp->ops->send_dma_cmd(esp, esp->command_block_dma,
648  val, 16, 0, ESP_CMD_DMA | ESP_CMD_SELA);
649 }
650 
651 static struct esp_cmd_entry *find_and_prep_issuable_command(struct esp *esp)
652 {
653  struct esp_cmd_entry *ent;
654 
655  list_for_each_entry(ent, &esp->queued_cmds, list) {
656  struct scsi_cmnd *cmd = ent->cmd;
657  struct scsi_device *dev = cmd->device;
658  struct esp_lun_data *lp = dev->hostdata;
659 
660  if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
661  ent->tag[0] = 0;
662  ent->tag[1] = 0;
663  return ent;
664  }
665 
666  if (!scsi_populate_tag_msg(cmd, &ent->tag[0])) {
667  ent->tag[0] = 0;
668  ent->tag[1] = 0;
669  }
670 
671  if (esp_alloc_lun_tag(ent, lp) < 0)
672  continue;
673 
674  return ent;
675  }
676 
677  return NULL;
678 }
679 
680 static void esp_maybe_execute_command(struct esp *esp)
681 {
682  struct esp_target_data *tp;
683  struct esp_lun_data *lp;
684  struct scsi_device *dev;
685  struct scsi_cmnd *cmd;
686  struct esp_cmd_entry *ent;
687  int tgt, lun, i;
688  u32 val, start_cmd;
689  u8 *p;
690 
691  if (esp->active_cmd ||
692  (esp->flags & ESP_FLAG_RESETTING))
693  return;
694 
695  ent = find_and_prep_issuable_command(esp);
696  if (!ent)
697  return;
698 
699  if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
700  esp_autosense(esp, ent);
701  return;
702  }
703 
704  cmd = ent->cmd;
705  dev = cmd->device;
706  tgt = dev->id;
707  lun = dev->lun;
708  tp = &esp->target[tgt];
709  lp = dev->hostdata;
710 
711  list_move(&ent->list, &esp->active_cmds);
712 
713  esp->active_cmd = ent;
714 
715  esp_map_dma(esp, cmd);
716  esp_save_pointers(esp, ent);
717 
718  esp_check_command_len(esp, cmd);
719 
720  p = esp->command_block;
721 
722  esp->msg_out_len = 0;
723  if (tp->flags & ESP_TGT_CHECK_NEGO) {
724  /* Need to negotiate. If the target is broken
725  * go for synchronous transfers and non-wide.
726  */
727  if (tp->flags & ESP_TGT_BROKEN) {
728  tp->flags &= ~ESP_TGT_DISCONNECT;
729  tp->nego_goal_period = 0;
730  tp->nego_goal_offset = 0;
731  tp->nego_goal_width = 0;
732  tp->nego_goal_tags = 0;
733  }
734 
735  /* If the settings are not changing, skip this. */
736  if (spi_width(tp->starget) == tp->nego_goal_width &&
737  spi_period(tp->starget) == tp->nego_goal_period &&
738  spi_offset(tp->starget) == tp->nego_goal_offset) {
739  tp->flags &= ~ESP_TGT_CHECK_NEGO;
740  goto build_identify;
741  }
742 
743  if (esp->rev == FASHME && esp_need_to_nego_wide(tp)) {
744  esp->msg_out_len =
746  (tp->nego_goal_width ?
747  1 : 0));
748  tp->flags |= ESP_TGT_NEGO_WIDE;
749  } else if (esp_need_to_nego_sync(tp)) {
750  esp->msg_out_len =
752  tp->nego_goal_period,
753  tp->nego_goal_offset);
754  tp->flags |= ESP_TGT_NEGO_SYNC;
755  } else {
756  tp->flags &= ~ESP_TGT_CHECK_NEGO;
757  }
758 
759  /* Process it like a slow command. */
762  }
763 
764 build_identify:
765  /* If we don't have a lun-data struct yet, we're probing
766  * so do not disconnect. Also, do not disconnect unless
767  * we have a tag on this command.
768  */
769  if (lp && (tp->flags & ESP_TGT_DISCONNECT) && ent->tag[0])
770  *p++ = IDENTIFY(1, lun);
771  else
772  *p++ = IDENTIFY(0, lun);
773 
774  if (ent->tag[0] && esp->rev == ESP100) {
775  /* ESP100 lacks select w/atn3 command, use select
776  * and stop instead.
777  */
779  }
780 
781  if (!(esp->flags & ESP_FLAG_DOING_SLOWCMD)) {
782  start_cmd = ESP_CMD_DMA | ESP_CMD_SELA;
783  if (ent->tag[0]) {
784  *p++ = ent->tag[0];
785  *p++ = ent->tag[1];
786 
787  start_cmd = ESP_CMD_DMA | ESP_CMD_SA3;
788  }
789 
790  for (i = 0; i < cmd->cmd_len; i++)
791  *p++ = cmd->cmnd[i];
792 
794  } else {
795  esp->cmd_bytes_left = cmd->cmd_len;
796  esp->cmd_bytes_ptr = &cmd->cmnd[0];
797 
798  if (ent->tag[0]) {
799  for (i = esp->msg_out_len - 1;
800  i >= 0; i--)
801  esp->msg_out[i + 2] = esp->msg_out[i];
802  esp->msg_out[0] = ent->tag[0];
803  esp->msg_out[1] = ent->tag[1];
804  esp->msg_out_len += 2;
805  }
806 
807  start_cmd = ESP_CMD_DMA | ESP_CMD_SELAS;
809  }
810  val = tgt;
811  if (esp->rev == FASHME)
813  esp_write8(val, ESP_BUSID);
814 
815  esp_write_tgt_sync(esp, tgt);
816  esp_write_tgt_config3(esp, tgt);
817 
818  val = (p - esp->command_block);
819 
820  if (esp_debug & ESP_DEBUG_SCSICMD) {
821  printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt, lun);
822  for (i = 0; i < cmd->cmd_len; i++)
823  printk("%02x ", cmd->cmnd[i]);
824  printk("]\n");
825  }
826 
827  if (esp->rev == FASHME)
829  esp->ops->send_dma_cmd(esp, esp->command_block_dma,
830  val, 16, 0, start_cmd);
831 }
832 
833 static struct esp_cmd_entry *esp_get_ent(struct esp *esp)
834 {
835  struct list_head *head = &esp->esp_cmd_pool;
836  struct esp_cmd_entry *ret;
837 
838  if (list_empty(head)) {
839  ret = kzalloc(sizeof(struct esp_cmd_entry), GFP_ATOMIC);
840  } else {
841  ret = list_entry(head->next, struct esp_cmd_entry, list);
842  list_del(&ret->list);
843  memset(ret, 0, sizeof(*ret));
844  }
845  return ret;
846 }
847 
848 static void esp_put_ent(struct esp *esp, struct esp_cmd_entry *ent)
849 {
850  list_add(&ent->list, &esp->esp_cmd_pool);
851 }
852 
853 static void esp_cmd_is_done(struct esp *esp, struct esp_cmd_entry *ent,
854  struct scsi_cmnd *cmd, unsigned int result)
855 {
856  struct scsi_device *dev = cmd->device;
857  int tgt = dev->id;
858  int lun = dev->lun;
859 
860  esp->active_cmd = NULL;
861  esp_unmap_dma(esp, cmd);
862  esp_free_lun_tag(ent, dev->hostdata);
863  cmd->result = result;
864 
865  if (ent->eh_done) {
866  complete(ent->eh_done);
867  ent->eh_done = NULL;
868  }
869 
870  if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
871  esp->ops->unmap_single(esp, ent->sense_dma,
873  ent->sense_ptr = NULL;
874 
875  /* Restore the message/status bytes to what we actually
876  * saw originally. Also, report that we are providing
877  * the sense data.
878  */
879  cmd->result = ((DRIVER_SENSE << 24) |
880  (DID_OK << 16) |
881  (COMMAND_COMPLETE << 8) |
882  (SAM_STAT_CHECK_CONDITION << 0));
883 
884  ent->flags &= ~ESP_CMD_FLAG_AUTOSENSE;
885  if (esp_debug & ESP_DEBUG_AUTOSENSE) {
886  int i;
887 
888  printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ",
889  esp->host->unique_id, tgt, lun);
890  for (i = 0; i < 18; i++)
891  printk("%02x ", cmd->sense_buffer[i]);
892  printk("]\n");
893  }
894  }
895 
896  cmd->scsi_done(cmd);
897 
898  list_del(&ent->list);
899  esp_put_ent(esp, ent);
900 
901  esp_maybe_execute_command(esp);
902 }
903 
904 static unsigned int compose_result(unsigned int status, unsigned int message,
905  unsigned int driver_code)
906 {
907  return (status | (message << 8) | (driver_code << 16));
908 }
909 
910 static void esp_event_queue_full(struct esp *esp, struct esp_cmd_entry *ent)
911 {
912  struct scsi_device *dev = ent->cmd->device;
913  struct esp_lun_data *lp = dev->hostdata;
914 
915  scsi_track_queue_full(dev, lp->num_tagged - 1);
916 }
917 
918 static int esp_queuecommand_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
919 {
920  struct scsi_device *dev = cmd->device;
921  struct esp *esp = shost_priv(dev->host);
922  struct esp_cmd_priv *spriv;
923  struct esp_cmd_entry *ent;
924 
925  ent = esp_get_ent(esp);
926  if (!ent)
927  return SCSI_MLQUEUE_HOST_BUSY;
928 
929  ent->cmd = cmd;
930 
931  cmd->scsi_done = done;
932 
933  spriv = ESP_CMD_PRIV(cmd);
934  spriv->u.dma_addr = ~(dma_addr_t)0x0;
935 
936  list_add_tail(&ent->list, &esp->queued_cmds);
937 
938  esp_maybe_execute_command(esp);
939 
940  return 0;
941 }
942 
943 static DEF_SCSI_QCMD(esp_queuecommand)
944 
945 static int esp_check_gross_error(struct esp *esp)
946 {
947  if (esp->sreg & ESP_STAT_SPAM) {
948  /* Gross Error, could be one of:
949  * - top of fifo overwritten
950  * - top of command register overwritten
951  * - DMA programmed with wrong direction
952  * - improper phase change
953  */
954  printk(KERN_ERR PFX "esp%d: Gross error sreg[%02x]\n",
955  esp->host->unique_id, esp->sreg);
956  /* XXX Reset the chip. XXX */
957  return 1;
958  }
959  return 0;
960 }
961 
962 static int esp_check_spur_intr(struct esp *esp)
963 {
964  switch (esp->rev) {
965  case ESP100:
966  case ESP100A:
967  /* The interrupt pending bit of the status register cannot
968  * be trusted on these revisions.
969  */
970  esp->sreg &= ~ESP_STAT_INTR;
971  break;
972 
973  default:
974  if (!(esp->sreg & ESP_STAT_INTR)) {
975  esp->ireg = esp_read8(ESP_INTRPT);
976  if (esp->ireg & ESP_INTR_SR)
977  return 1;
978 
979  /* If the DMA is indicating interrupt pending and the
980  * ESP is not, the only possibility is a DMA error.
981  */
982  if (!esp->ops->dma_error(esp)) {
983  printk(KERN_ERR PFX "esp%d: Spurious irq, "
984  "sreg=%02x.\n",
985  esp->host->unique_id, esp->sreg);
986  return -1;
987  }
988 
989  printk(KERN_ERR PFX "esp%d: DMA error\n",
990  esp->host->unique_id);
991 
992  /* XXX Reset the chip. XXX */
993  return -1;
994  }
995  break;
996  }
997 
998  return 0;
999 }
1000 
1001 static void esp_schedule_reset(struct esp *esp)
1002 {
1003  esp_log_reset("ESP: esp_schedule_reset() from %pf\n",
1004  __builtin_return_address(0));
1005  esp->flags |= ESP_FLAG_RESETTING;
1006  esp_event(esp, ESP_EVENT_RESET);
1007 }
1008 
1009 /* In order to avoid having to add a special half-reconnected state
1010  * into the driver we just sit here and poll through the rest of
1011  * the reselection process to get the tag message bytes.
1012  */
1013 static struct esp_cmd_entry *esp_reconnect_with_tag(struct esp *esp,
1014  struct esp_lun_data *lp)
1015 {
1016  struct esp_cmd_entry *ent;
1017  int i;
1018 
1019  if (!lp->num_tagged) {
1020  printk(KERN_ERR PFX "esp%d: Reconnect w/num_tagged==0\n",
1021  esp->host->unique_id);
1022  return NULL;
1023  }
1024 
1025  esp_log_reconnect("ESP: reconnect tag, ");
1026 
1027  for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
1028  if (esp->ops->irq_pending(esp))
1029  break;
1030  }
1031  if (i == ESP_QUICKIRQ_LIMIT) {
1032  printk(KERN_ERR PFX "esp%d: Reconnect IRQ1 timeout\n",
1033  esp->host->unique_id);
1034  return NULL;
1035  }
1036 
1037  esp->sreg = esp_read8(ESP_STATUS);
1038  esp->ireg = esp_read8(ESP_INTRPT);
1039 
1040  esp_log_reconnect("IRQ(%d:%x:%x), ",
1041  i, esp->ireg, esp->sreg);
1042 
1043  if (esp->ireg & ESP_INTR_DC) {
1044  printk(KERN_ERR PFX "esp%d: Reconnect, got disconnect.\n",
1045  esp->host->unique_id);
1046  return NULL;
1047  }
1048 
1049  if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP) {
1050  printk(KERN_ERR PFX "esp%d: Reconnect, not MIP sreg[%02x].\n",
1051  esp->host->unique_id, esp->sreg);
1052  return NULL;
1053  }
1054 
1055  /* DMA in the tag bytes... */
1056  esp->command_block[0] = 0xff;
1057  esp->command_block[1] = 0xff;
1058  esp->ops->send_dma_cmd(esp, esp->command_block_dma,
1059  2, 2, 1, ESP_CMD_DMA | ESP_CMD_TI);
1060 
1061  /* ACK the message. */
1062  scsi_esp_cmd(esp, ESP_CMD_MOK);
1063 
1064  for (i = 0; i < ESP_RESELECT_TAG_LIMIT; i++) {
1065  if (esp->ops->irq_pending(esp)) {
1066  esp->sreg = esp_read8(ESP_STATUS);
1067  esp->ireg = esp_read8(ESP_INTRPT);
1068  if (esp->ireg & ESP_INTR_FDONE)
1069  break;
1070  }
1071  udelay(1);
1072  }
1073  if (i == ESP_RESELECT_TAG_LIMIT) {
1074  printk(KERN_ERR PFX "esp%d: Reconnect IRQ2 timeout\n",
1075  esp->host->unique_id);
1076  return NULL;
1077  }
1078  esp->ops->dma_drain(esp);
1079  esp->ops->dma_invalidate(esp);
1080 
1081  esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n",
1082  i, esp->ireg, esp->sreg,
1083  esp->command_block[0],
1084  esp->command_block[1]);
1085 
1086  if (esp->command_block[0] < SIMPLE_QUEUE_TAG ||
1087  esp->command_block[0] > ORDERED_QUEUE_TAG) {
1088  printk(KERN_ERR PFX "esp%d: Reconnect, bad tag "
1089  "type %02x.\n",
1090  esp->host->unique_id, esp->command_block[0]);
1091  return NULL;
1092  }
1093 
1094  ent = lp->tagged_cmds[esp->command_block[1]];
1095  if (!ent) {
1096  printk(KERN_ERR PFX "esp%d: Reconnect, no entry for "
1097  "tag %02x.\n",
1098  esp->host->unique_id, esp->command_block[1]);
1099  return NULL;
1100  }
1101 
1102  return ent;
1103 }
1104 
1105 static int esp_reconnect(struct esp *esp)
1106 {
1107  struct esp_cmd_entry *ent;
1108  struct esp_target_data *tp;
1109  struct esp_lun_data *lp;
1110  struct scsi_device *dev;
1111  int target, lun;
1112 
1113  BUG_ON(esp->active_cmd);
1114  if (esp->rev == FASHME) {
1115  /* FASHME puts the target and lun numbers directly
1116  * into the fifo.
1117  */
1118  target = esp->fifo[0];
1119  lun = esp->fifo[1] & 0x7;
1120  } else {
1122 
1123  /* Older chips put the lun directly into the fifo, but
1124  * the target is given as a sample of the arbitration
1125  * lines on the bus at reselection time. So we should
1126  * see the ID of the ESP and the one reconnecting target
1127  * set in the bitmap.
1128  */
1129  if (!(bits & esp->scsi_id_mask))
1130  goto do_reset;
1131  bits &= ~esp->scsi_id_mask;
1132  if (!bits || (bits & (bits - 1)))
1133  goto do_reset;
1134 
1135  target = ffs(bits) - 1;
1136  lun = (esp_read8(ESP_FDATA) & 0x7);
1137 
1139  if (esp->rev == ESP100) {
1140  u8 ireg = esp_read8(ESP_INTRPT);
1141  /* This chip has a bug during reselection that can
1142  * cause a spurious illegal-command interrupt, which
1143  * we simply ACK here. Another possibility is a bus
1144  * reset so we must check for that.
1145  */
1146  if (ireg & ESP_INTR_SR)
1147  goto do_reset;
1148  }
1149  scsi_esp_cmd(esp, ESP_CMD_NULL);
1150  }
1151 
1152  esp_write_tgt_sync(esp, target);
1153  esp_write_tgt_config3(esp, target);
1154 
1155  scsi_esp_cmd(esp, ESP_CMD_MOK);
1156 
1157  if (esp->rev == FASHME)
1159  ESP_BUSID);
1160 
1161  tp = &esp->target[target];
1162  dev = __scsi_device_lookup_by_target(tp->starget, lun);
1163  if (!dev) {
1164  printk(KERN_ERR PFX "esp%d: Reconnect, no lp "
1165  "tgt[%u] lun[%u]\n",
1166  esp->host->unique_id, target, lun);
1167  goto do_reset;
1168  }
1169  lp = dev->hostdata;
1170 
1171  ent = lp->non_tagged_cmd;
1172  if (!ent) {
1173  ent = esp_reconnect_with_tag(esp, lp);
1174  if (!ent)
1175  goto do_reset;
1176  }
1177 
1178  esp->active_cmd = ent;
1179 
1180  if (ent->flags & ESP_CMD_FLAG_ABORT) {
1181  esp->msg_out[0] = ABORT_TASK_SET;
1182  esp->msg_out_len = 1;
1183  scsi_esp_cmd(esp, ESP_CMD_SATN);
1184  }
1185 
1186  esp_event(esp, ESP_EVENT_CHECK_PHASE);
1187  esp_restore_pointers(esp, ent);
1189  return 1;
1190 
1191 do_reset:
1192  esp_schedule_reset(esp);
1193  return 0;
1194 }
1195 
1196 static int esp_finish_select(struct esp *esp)
1197 {
1198  struct esp_cmd_entry *ent;
1199  struct scsi_cmnd *cmd;
1200  u8 orig_select_state;
1201 
1202  orig_select_state = esp->select_state;
1203 
1204  /* No longer selecting. */
1206 
1208  ent = esp->active_cmd;
1209  cmd = ent->cmd;
1210 
1211  if (esp->ops->dma_error(esp)) {
1212  /* If we see a DMA error during or as a result of selection,
1213  * all bets are off.
1214  */
1215  esp_schedule_reset(esp);
1216  esp_cmd_is_done(esp, ent, cmd, (DID_ERROR << 16));
1217  return 0;
1218  }
1219 
1220  esp->ops->dma_invalidate(esp);
1221 
1222  if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) {
1223  struct esp_target_data *tp = &esp->target[cmd->device->id];
1224 
1225  /* Carefully back out of the selection attempt. Release
1226  * resources (such as DMA mapping & TAG) and reset state (such
1227  * as message out and command delivery variables).
1228  */
1229  if (!(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1230  esp_unmap_dma(esp, cmd);
1231  esp_free_lun_tag(ent, cmd->device->hostdata);
1233  esp->flags &= ~ESP_FLAG_DOING_SLOWCMD;
1234  esp->cmd_bytes_ptr = NULL;
1235  esp->cmd_bytes_left = 0;
1236  } else {
1237  esp->ops->unmap_single(esp, ent->sense_dma,
1239  DMA_FROM_DEVICE);
1240  ent->sense_ptr = NULL;
1241  }
1242 
1243  /* Now that the state is unwound properly, put back onto
1244  * the issue queue. This command is no longer active.
1245  */
1246  list_move(&ent->list, &esp->queued_cmds);
1247  esp->active_cmd = NULL;
1248 
1249  /* Return value ignored by caller, it directly invokes
1250  * esp_reconnect().
1251  */
1252  return 0;
1253  }
1254 
1255  if (esp->ireg == ESP_INTR_DC) {
1256  struct scsi_device *dev = cmd->device;
1257 
1258  /* Disconnect. Make sure we re-negotiate sync and
1259  * wide parameters if this target starts responding
1260  * again in the future.
1261  */
1262  esp->target[dev->id].flags |= ESP_TGT_CHECK_NEGO;
1263 
1264  scsi_esp_cmd(esp, ESP_CMD_ESEL);
1265  esp_cmd_is_done(esp, ent, cmd, (DID_BAD_TARGET << 16));
1266  return 1;
1267  }
1268 
1269  if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) {
1270  /* Selection successful. On pre-FAST chips we have
1271  * to do a NOP and possibly clean out the FIFO.
1272  */
1273  if (esp->rev <= ESP236) {
1274  int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1275 
1276  scsi_esp_cmd(esp, ESP_CMD_NULL);
1277 
1278  if (!fcnt &&
1279  (!esp->prev_soff ||
1280  ((esp->sreg & ESP_STAT_PMASK) != ESP_DIP)))
1281  esp_flush_fifo(esp);
1282  }
1283 
1284  /* If we are doing a slow command, negotiation, etc.
1285  * we'll do the right thing as we transition to the
1286  * next phase.
1287  */
1288  esp_event(esp, ESP_EVENT_CHECK_PHASE);
1289  return 0;
1290  }
1291 
1292  printk("ESP: Unexpected selection completion ireg[%x].\n",
1293  esp->ireg);
1294  esp_schedule_reset(esp);
1295  return 0;
1296 }
1297 
1298 static int esp_data_bytes_sent(struct esp *esp, struct esp_cmd_entry *ent,
1299  struct scsi_cmnd *cmd)
1300 {
1301  int fifo_cnt, ecount, bytes_sent, flush_fifo;
1302 
1303  fifo_cnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1304  if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE)
1305  fifo_cnt <<= 1;
1306 
1307  ecount = 0;
1308  if (!(esp->sreg & ESP_STAT_TCNT)) {
1309  ecount = ((unsigned int)esp_read8(ESP_TCLOW) |
1310  (((unsigned int)esp_read8(ESP_TCMED)) << 8));
1311  if (esp->rev == FASHME)
1312  ecount |= ((unsigned int)esp_read8(FAS_RLO)) << 16;
1313  }
1314 
1315  bytes_sent = esp->data_dma_len;
1316  bytes_sent -= ecount;
1317 
1318  if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1319  bytes_sent -= fifo_cnt;
1320 
1321  flush_fifo = 0;
1322  if (!esp->prev_soff) {
1323  /* Synchronous data transfer, always flush fifo. */
1324  flush_fifo = 1;
1325  } else {
1326  if (esp->rev == ESP100) {
1327  u32 fflags, phase;
1328 
1329  /* ESP100 has a chip bug where in the synchronous data
1330  * phase it can mistake a final long REQ pulse from the
1331  * target as an extra data byte. Fun.
1332  *
1333  * To detect this case we resample the status register
1334  * and fifo flags. If we're still in a data phase and
1335  * we see spurious chunks in the fifo, we return error
1336  * to the caller which should reset and set things up
1337  * such that we only try future transfers to this
1338  * target in synchronous mode.
1339  */
1340  esp->sreg = esp_read8(ESP_STATUS);
1341  phase = esp->sreg & ESP_STAT_PMASK;
1342  fflags = esp_read8(ESP_FFLAGS);
1343 
1344  if ((phase == ESP_DOP &&
1345  (fflags & ESP_FF_ONOTZERO)) ||
1346  (phase == ESP_DIP &&
1347  (fflags & ESP_FF_FBYTES)))
1348  return -1;
1349  }
1350  if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1351  flush_fifo = 1;
1352  }
1353 
1354  if (flush_fifo)
1355  esp_flush_fifo(esp);
1356 
1357  return bytes_sent;
1358 }
1359 
1360 static void esp_setsync(struct esp *esp, struct esp_target_data *tp,
1361  u8 scsi_period, u8 scsi_offset,
1362  u8 esp_stp, u8 esp_soff)
1363 {
1364  spi_period(tp->starget) = scsi_period;
1365  spi_offset(tp->starget) = scsi_offset;
1366  spi_width(tp->starget) = (tp->flags & ESP_TGT_WIDE) ? 1 : 0;
1367 
1368  if (esp_soff) {
1369  esp_stp &= 0x1f;
1370  esp_soff |= esp->radelay;
1371  if (esp->rev >= FAS236) {
1373  if (esp->rev >= FAS100A)
1374  bit = ESP_CONFIG3_FAST;
1375 
1376  if (scsi_period < 50) {
1377  if (esp->rev == FASHME)
1378  esp_soff &= ~esp->radelay;
1379  tp->esp_config3 |= bit;
1380  } else {
1381  tp->esp_config3 &= ~bit;
1382  }
1383  esp->prev_cfg3 = tp->esp_config3;
1384  esp_write8(esp->prev_cfg3, ESP_CFG3);
1385  }
1386  }
1387 
1388  tp->esp_period = esp->prev_stp = esp_stp;
1389  tp->esp_offset = esp->prev_soff = esp_soff;
1390 
1391  esp_write8(esp_soff, ESP_SOFF);
1392  esp_write8(esp_stp, ESP_STP);
1393 
1395 
1397 }
1398 
1399 static void esp_msgin_reject(struct esp *esp)
1400 {
1401  struct esp_cmd_entry *ent = esp->active_cmd;
1402  struct scsi_cmnd *cmd = ent->cmd;
1403  struct esp_target_data *tp;
1404  int tgt;
1405 
1406  tgt = cmd->device->id;
1407  tp = &esp->target[tgt];
1408 
1409  if (tp->flags & ESP_TGT_NEGO_WIDE) {
1410  tp->flags &= ~(ESP_TGT_NEGO_WIDE | ESP_TGT_WIDE);
1411 
1412  if (!esp_need_to_nego_sync(tp)) {
1413  tp->flags &= ~ESP_TGT_CHECK_NEGO;
1414  scsi_esp_cmd(esp, ESP_CMD_RATN);
1415  } else {
1416  esp->msg_out_len =
1417  spi_populate_sync_msg(&esp->msg_out[0],
1418  tp->nego_goal_period,
1419  tp->nego_goal_offset);
1420  tp->flags |= ESP_TGT_NEGO_SYNC;
1421  scsi_esp_cmd(esp, ESP_CMD_SATN);
1422  }
1423  return;
1424  }
1425 
1426  if (tp->flags & ESP_TGT_NEGO_SYNC) {
1428  tp->esp_period = 0;
1429  tp->esp_offset = 0;
1430  esp_setsync(esp, tp, 0, 0, 0, 0);
1431  scsi_esp_cmd(esp, ESP_CMD_RATN);
1432  return;
1433  }
1434 
1435  esp->msg_out[0] = ABORT_TASK_SET;
1436  esp->msg_out_len = 1;
1437  scsi_esp_cmd(esp, ESP_CMD_SATN);
1438 }
1439 
1440 static void esp_msgin_sdtr(struct esp *esp, struct esp_target_data *tp)
1441 {
1442  u8 period = esp->msg_in[3];
1443  u8 offset = esp->msg_in[4];
1444  u8 stp;
1445 
1446  if (!(tp->flags & ESP_TGT_NEGO_SYNC))
1447  goto do_reject;
1448 
1449  if (offset > 15)
1450  goto do_reject;
1451 
1452  if (offset) {
1453  int one_clock;
1454 
1455  if (period > esp->max_period) {
1456  period = offset = 0;
1457  goto do_sdtr;
1458  }
1459  if (period < esp->min_period)
1460  goto do_reject;
1461 
1462  one_clock = esp->ccycle / 1000;
1463  stp = DIV_ROUND_UP(period << 2, one_clock);
1464  if (stp && esp->rev >= FAS236) {
1465  if (stp >= 50)
1466  stp--;
1467  }
1468  } else {
1469  stp = 0;
1470  }
1471 
1472  esp_setsync(esp, tp, period, offset, stp, offset);
1473  return;
1474 
1475 do_reject:
1476  esp->msg_out[0] = MESSAGE_REJECT;
1477  esp->msg_out_len = 1;
1478  scsi_esp_cmd(esp, ESP_CMD_SATN);
1479  return;
1480 
1481 do_sdtr:
1482  tp->nego_goal_period = period;
1483  tp->nego_goal_offset = offset;
1484  esp->msg_out_len =
1485  spi_populate_sync_msg(&esp->msg_out[0],
1486  tp->nego_goal_period,
1487  tp->nego_goal_offset);
1488  scsi_esp_cmd(esp, ESP_CMD_SATN);
1489 }
1490 
1491 static void esp_msgin_wdtr(struct esp *esp, struct esp_target_data *tp)
1492 {
1493  int size = 8 << esp->msg_in[3];
1494  u8 cfg3;
1495 
1496  if (esp->rev != FASHME)
1497  goto do_reject;
1498 
1499  if (size != 8 && size != 16)
1500  goto do_reject;
1501 
1502  if (!(tp->flags & ESP_TGT_NEGO_WIDE))
1503  goto do_reject;
1504 
1505  cfg3 = tp->esp_config3;
1506  if (size == 16) {
1507  tp->flags |= ESP_TGT_WIDE;
1508  cfg3 |= ESP_CONFIG3_EWIDE;
1509  } else {
1510  tp->flags &= ~ESP_TGT_WIDE;
1511  cfg3 &= ~ESP_CONFIG3_EWIDE;
1512  }
1513  tp->esp_config3 = cfg3;
1514  esp->prev_cfg3 = cfg3;
1515  esp_write8(cfg3, ESP_CFG3);
1516 
1517  tp->flags &= ~ESP_TGT_NEGO_WIDE;
1518 
1519  spi_period(tp->starget) = 0;
1520  spi_offset(tp->starget) = 0;
1521  if (!esp_need_to_nego_sync(tp)) {
1522  tp->flags &= ~ESP_TGT_CHECK_NEGO;
1523  scsi_esp_cmd(esp, ESP_CMD_RATN);
1524  } else {
1525  esp->msg_out_len =
1526  spi_populate_sync_msg(&esp->msg_out[0],
1527  tp->nego_goal_period,
1528  tp->nego_goal_offset);
1529  tp->flags |= ESP_TGT_NEGO_SYNC;
1530  scsi_esp_cmd(esp, ESP_CMD_SATN);
1531  }
1532  return;
1533 
1534 do_reject:
1535  esp->msg_out[0] = MESSAGE_REJECT;
1536  esp->msg_out_len = 1;
1537  scsi_esp_cmd(esp, ESP_CMD_SATN);
1538 }
1539 
1540 static void esp_msgin_extended(struct esp *esp)
1541 {
1542  struct esp_cmd_entry *ent = esp->active_cmd;
1543  struct scsi_cmnd *cmd = ent->cmd;
1544  struct esp_target_data *tp;
1545  int tgt = cmd->device->id;
1546 
1547  tp = &esp->target[tgt];
1548  if (esp->msg_in[2] == EXTENDED_SDTR) {
1549  esp_msgin_sdtr(esp, tp);
1550  return;
1551  }
1552  if (esp->msg_in[2] == EXTENDED_WDTR) {
1553  esp_msgin_wdtr(esp, tp);
1554  return;
1555  }
1556 
1557  printk("ESP: Unexpected extended msg type %x\n",
1558  esp->msg_in[2]);
1559 
1560  esp->msg_out[0] = ABORT_TASK_SET;
1561  esp->msg_out_len = 1;
1562  scsi_esp_cmd(esp, ESP_CMD_SATN);
1563 }
1564 
1565 /* Analyze msgin bytes received from target so far. Return non-zero
1566  * if there are more bytes needed to complete the message.
1567  */
1568 static int esp_msgin_process(struct esp *esp)
1569 {
1570  u8 msg0 = esp->msg_in[0];
1571  int len = esp->msg_in_len;
1572 
1573  if (msg0 & 0x80) {
1574  /* Identify */
1575  printk("ESP: Unexpected msgin identify\n");
1576  return 0;
1577  }
1578 
1579  switch (msg0) {
1580  case EXTENDED_MESSAGE:
1581  if (len == 1)
1582  return 1;
1583  if (len < esp->msg_in[1] + 2)
1584  return 1;
1585  esp_msgin_extended(esp);
1586  return 0;
1587 
1588  case IGNORE_WIDE_RESIDUE: {
1589  struct esp_cmd_entry *ent;
1590  struct esp_cmd_priv *spriv;
1591  if (len == 1)
1592  return 1;
1593 
1594  if (esp->msg_in[1] != 1)
1595  goto do_reject;
1596 
1597  ent = esp->active_cmd;
1598  spriv = ESP_CMD_PRIV(ent->cmd);
1599 
1600  if (spriv->cur_residue == sg_dma_len(spriv->cur_sg)) {
1601  spriv->cur_sg--;
1602  spriv->cur_residue = 1;
1603  } else
1604  spriv->cur_residue++;
1605  spriv->tot_residue++;
1606  return 0;
1607  }
1608  case NOP:
1609  return 0;
1610  case RESTORE_POINTERS:
1611  esp_restore_pointers(esp, esp->active_cmd);
1612  return 0;
1613  case SAVE_POINTERS:
1614  esp_save_pointers(esp, esp->active_cmd);
1615  return 0;
1616 
1617  case COMMAND_COMPLETE:
1618  case DISCONNECT: {
1619  struct esp_cmd_entry *ent = esp->active_cmd;
1620 
1621  ent->message = msg0;
1622  esp_event(esp, ESP_EVENT_FREE_BUS);
1624  return 0;
1625  }
1626  case MESSAGE_REJECT:
1627  esp_msgin_reject(esp);
1628  return 0;
1629 
1630  default:
1631  do_reject:
1632  esp->msg_out[0] = MESSAGE_REJECT;
1633  esp->msg_out_len = 1;
1634  scsi_esp_cmd(esp, ESP_CMD_SATN);
1635  return 0;
1636  }
1637 }
1638 
1639 static int esp_process_event(struct esp *esp)
1640 {
1641  int write;
1642 
1643 again:
1644  write = 0;
1645  switch (esp->event) {
1646  case ESP_EVENT_CHECK_PHASE:
1647  switch (esp->sreg & ESP_STAT_PMASK) {
1648  case ESP_DOP:
1649  esp_event(esp, ESP_EVENT_DATA_OUT);
1650  break;
1651  case ESP_DIP:
1652  esp_event(esp, ESP_EVENT_DATA_IN);
1653  break;
1654  case ESP_STATP:
1655  esp_flush_fifo(esp);
1657  esp_event(esp, ESP_EVENT_STATUS);
1659  return 1;
1660 
1661  case ESP_MOP:
1662  esp_event(esp, ESP_EVENT_MSGOUT);
1663  break;
1664 
1665  case ESP_MIP:
1666  esp_event(esp, ESP_EVENT_MSGIN);
1667  break;
1668 
1669  case ESP_CMDP:
1670  esp_event(esp, ESP_EVENT_CMD_START);
1671  break;
1672 
1673  default:
1674  printk("ESP: Unexpected phase, sreg=%02x\n",
1675  esp->sreg);
1676  esp_schedule_reset(esp);
1677  return 0;
1678  }
1679  goto again;
1680  break;
1681 
1682  case ESP_EVENT_DATA_IN:
1683  write = 1;
1684  /* fallthru */
1685 
1686  case ESP_EVENT_DATA_OUT: {
1687  struct esp_cmd_entry *ent = esp->active_cmd;
1688  struct scsi_cmnd *cmd = ent->cmd;
1689  dma_addr_t dma_addr = esp_cur_dma_addr(ent, cmd);
1690  unsigned int dma_len = esp_cur_dma_len(ent, cmd);
1691 
1692  if (esp->rev == ESP100)
1693  scsi_esp_cmd(esp, ESP_CMD_NULL);
1694 
1695  if (write)
1696  ent->flags |= ESP_CMD_FLAG_WRITE;
1697  else
1698  ent->flags &= ~ESP_CMD_FLAG_WRITE;
1699 
1700  if (esp->ops->dma_length_limit)
1701  dma_len = esp->ops->dma_length_limit(esp, dma_addr,
1702  dma_len);
1703  else
1704  dma_len = esp_dma_length_limit(esp, dma_addr, dma_len);
1705 
1706  esp->data_dma_len = dma_len;
1707 
1708  if (!dma_len) {
1709  printk(KERN_ERR PFX "esp%d: DMA length is zero!\n",
1710  esp->host->unique_id);
1711  printk(KERN_ERR PFX "esp%d: cur adr[%08llx] len[%08x]\n",
1712  esp->host->unique_id,
1713  (unsigned long long)esp_cur_dma_addr(ent, cmd),
1714  esp_cur_dma_len(ent, cmd));
1715  esp_schedule_reset(esp);
1716  return 0;
1717  }
1718 
1719  esp_log_datastart("ESP: start data addr[%08llx] len[%u] "
1720  "write(%d)\n",
1721  (unsigned long long)dma_addr, dma_len, write);
1722 
1723  esp->ops->send_dma_cmd(esp, dma_addr, dma_len, dma_len,
1724  write, ESP_CMD_DMA | ESP_CMD_TI);
1725  esp_event(esp, ESP_EVENT_DATA_DONE);
1726  break;
1727  }
1728  case ESP_EVENT_DATA_DONE: {
1729  struct esp_cmd_entry *ent = esp->active_cmd;
1730  struct scsi_cmnd *cmd = ent->cmd;
1731  int bytes_sent;
1732 
1733  if (esp->ops->dma_error(esp)) {
1734  printk("ESP: data done, DMA error, resetting\n");
1735  esp_schedule_reset(esp);
1736  return 0;
1737  }
1738 
1739  if (ent->flags & ESP_CMD_FLAG_WRITE) {
1740  /* XXX parity errors, etc. XXX */
1741 
1742  esp->ops->dma_drain(esp);
1743  }
1744  esp->ops->dma_invalidate(esp);
1745 
1746  if (esp->ireg != ESP_INTR_BSERV) {
1747  /* We should always see exactly a bus-service
1748  * interrupt at the end of a successful transfer.
1749  */
1750  printk("ESP: data done, not BSERV, resetting\n");
1751  esp_schedule_reset(esp);
1752  return 0;
1753  }
1754 
1755  bytes_sent = esp_data_bytes_sent(esp, ent, cmd);
1756 
1757  esp_log_datadone("ESP: data done flgs[%x] sent[%d]\n",
1758  ent->flags, bytes_sent);
1759 
1760  if (bytes_sent < 0) {
1761  /* XXX force sync mode for this target XXX */
1762  esp_schedule_reset(esp);
1763  return 0;
1764  }
1765 
1766  esp_advance_dma(esp, ent, cmd, bytes_sent);
1767  esp_event(esp, ESP_EVENT_CHECK_PHASE);
1768  goto again;
1769  }
1770 
1771  case ESP_EVENT_STATUS: {
1772  struct esp_cmd_entry *ent = esp->active_cmd;
1773 
1774  if (esp->ireg & ESP_INTR_FDONE) {
1775  ent->status = esp_read8(ESP_FDATA);
1776  ent->message = esp_read8(ESP_FDATA);
1777  scsi_esp_cmd(esp, ESP_CMD_MOK);
1778  } else if (esp->ireg == ESP_INTR_BSERV) {
1779  ent->status = esp_read8(ESP_FDATA);
1780  ent->message = 0xff;
1781  esp_event(esp, ESP_EVENT_MSGIN);
1782  return 0;
1783  }
1784 
1785  if (ent->message != COMMAND_COMPLETE) {
1786  printk("ESP: Unexpected message %x in status\n",
1787  ent->message);
1788  esp_schedule_reset(esp);
1789  return 0;
1790  }
1791 
1792  esp_event(esp, ESP_EVENT_FREE_BUS);
1794  break;
1795  }
1796  case ESP_EVENT_FREE_BUS: {
1797  struct esp_cmd_entry *ent = esp->active_cmd;
1798  struct scsi_cmnd *cmd = ent->cmd;
1799 
1800  if (ent->message == COMMAND_COMPLETE ||
1801  ent->message == DISCONNECT)
1802  scsi_esp_cmd(esp, ESP_CMD_ESEL);
1803 
1804  if (ent->message == COMMAND_COMPLETE) {
1805  esp_log_cmddone("ESP: Command done status[%x] "
1806  "message[%x]\n",
1807  ent->status, ent->message);
1808  if (ent->status == SAM_STAT_TASK_SET_FULL)
1809  esp_event_queue_full(esp, ent);
1810 
1811  if (ent->status == SAM_STAT_CHECK_CONDITION &&
1812  !(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1813  ent->flags |= ESP_CMD_FLAG_AUTOSENSE;
1814  esp_autosense(esp, ent);
1815  } else {
1816  esp_cmd_is_done(esp, ent, cmd,
1817  compose_result(ent->status,
1818  ent->message,
1819  DID_OK));
1820  }
1821  } else if (ent->message == DISCONNECT) {
1822  esp_log_disconnect("ESP: Disconnecting tgt[%d] "
1823  "tag[%x:%x]\n",
1824  cmd->device->id,
1825  ent->tag[0], ent->tag[1]);
1826 
1827  esp->active_cmd = NULL;
1828  esp_maybe_execute_command(esp);
1829  } else {
1830  printk("ESP: Unexpected message %x in freebus\n",
1831  ent->message);
1832  esp_schedule_reset(esp);
1833  return 0;
1834  }
1835  if (esp->active_cmd)
1837  break;
1838  }
1839  case ESP_EVENT_MSGOUT: {
1841 
1842  if (esp_debug & ESP_DEBUG_MSGOUT) {
1843  int i;
1844  printk("ESP: Sending message [ ");
1845  for (i = 0; i < esp->msg_out_len; i++)
1846  printk("%02x ", esp->msg_out[i]);
1847  printk("]\n");
1848  }
1849 
1850  if (esp->rev == FASHME) {
1851  int i;
1852 
1853  /* Always use the fifo. */
1854  for (i = 0; i < esp->msg_out_len; i++) {
1855  esp_write8(esp->msg_out[i], ESP_FDATA);
1856  esp_write8(0, ESP_FDATA);
1857  }
1858  scsi_esp_cmd(esp, ESP_CMD_TI);
1859  } else {
1860  if (esp->msg_out_len == 1) {
1861  esp_write8(esp->msg_out[0], ESP_FDATA);
1862  scsi_esp_cmd(esp, ESP_CMD_TI);
1863  } else {
1864  /* Use DMA. */
1865  memcpy(esp->command_block,
1866  esp->msg_out,
1867  esp->msg_out_len);
1868 
1869  esp->ops->send_dma_cmd(esp,
1870  esp->command_block_dma,
1871  esp->msg_out_len,
1872  esp->msg_out_len,
1873  0,
1875  }
1876  }
1877  esp_event(esp, ESP_EVENT_MSGOUT_DONE);
1878  break;
1879  }
1880  case ESP_EVENT_MSGOUT_DONE:
1881  if (esp->rev == FASHME) {
1883  } else {
1884  if (esp->msg_out_len > 1)
1885  esp->ops->dma_invalidate(esp);
1886  }
1887 
1888  if (!(esp->ireg & ESP_INTR_DC)) {
1889  if (esp->rev != FASHME)
1890  scsi_esp_cmd(esp, ESP_CMD_NULL);
1891  }
1892  esp_event(esp, ESP_EVENT_CHECK_PHASE);
1893  goto again;
1894  case ESP_EVENT_MSGIN:
1895  if (esp->ireg & ESP_INTR_BSERV) {
1896  if (esp->rev == FASHME) {
1897  if (!(esp_read8(ESP_STATUS2) &
1900  } else {
1902  if (esp->rev == ESP100)
1903  scsi_esp_cmd(esp, ESP_CMD_NULL);
1904  }
1905  scsi_esp_cmd(esp, ESP_CMD_TI);
1907  return 1;
1908  }
1909  if (esp->ireg & ESP_INTR_FDONE) {
1910  u8 val;
1911 
1912  if (esp->rev == FASHME)
1913  val = esp->fifo[0];
1914  else
1915  val = esp_read8(ESP_FDATA);
1916  esp->msg_in[esp->msg_in_len++] = val;
1917 
1918  esp_log_msgin("ESP: Got msgin byte %x\n", val);
1919 
1920  if (!esp_msgin_process(esp))
1921  esp->msg_in_len = 0;
1922 
1923  if (esp->rev == FASHME)
1925 
1926  scsi_esp_cmd(esp, ESP_CMD_MOK);
1927 
1928  if (esp->event != ESP_EVENT_FREE_BUS)
1929  esp_event(esp, ESP_EVENT_CHECK_PHASE);
1930  } else {
1931  printk("ESP: MSGIN neither BSERV not FDON, resetting");
1932  esp_schedule_reset(esp);
1933  return 0;
1934  }
1935  break;
1936  case ESP_EVENT_CMD_START:
1937  memcpy(esp->command_block, esp->cmd_bytes_ptr,
1938  esp->cmd_bytes_left);
1939  if (esp->rev == FASHME)
1941  esp->ops->send_dma_cmd(esp, esp->command_block_dma,
1942  esp->cmd_bytes_left, 16, 0,
1944  esp_event(esp, ESP_EVENT_CMD_DONE);
1946  break;
1947  case ESP_EVENT_CMD_DONE:
1948  esp->ops->dma_invalidate(esp);
1949  if (esp->ireg & ESP_INTR_BSERV) {
1950  esp_event(esp, ESP_EVENT_CHECK_PHASE);
1951  goto again;
1952  }
1953  esp_schedule_reset(esp);
1954  return 0;
1955  break;
1956 
1957  case ESP_EVENT_RESET:
1958  scsi_esp_cmd(esp, ESP_CMD_RS);
1959  break;
1960 
1961  default:
1962  printk("ESP: Unexpected event %x, resetting\n",
1963  esp->event);
1964  esp_schedule_reset(esp);
1965  return 0;
1966  break;
1967  }
1968  return 1;
1969 }
1970 
1971 static void esp_reset_cleanup_one(struct esp *esp, struct esp_cmd_entry *ent)
1972 {
1973  struct scsi_cmnd *cmd = ent->cmd;
1974 
1975  esp_unmap_dma(esp, cmd);
1976  esp_free_lun_tag(ent, cmd->device->hostdata);
1977  cmd->result = DID_RESET << 16;
1978 
1979  if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
1980  esp->ops->unmap_single(esp, ent->sense_dma,
1982  ent->sense_ptr = NULL;
1983  }
1984 
1985  cmd->scsi_done(cmd);
1986  list_del(&ent->list);
1987  esp_put_ent(esp, ent);
1988 }
1989 
1990 static void esp_clear_hold(struct scsi_device *dev, void *data)
1991 {
1992  struct esp_lun_data *lp = dev->hostdata;
1993 
1994  BUG_ON(lp->num_tagged);
1995  lp->hold = 0;
1996 }
1997 
1998 static void esp_reset_cleanup(struct esp *esp)
1999 {
2000  struct esp_cmd_entry *ent, *tmp;
2001  int i;
2002 
2003  list_for_each_entry_safe(ent, tmp, &esp->queued_cmds, list) {
2004  struct scsi_cmnd *cmd = ent->cmd;
2005 
2006  list_del(&ent->list);
2007  cmd->result = DID_RESET << 16;
2008  cmd->scsi_done(cmd);
2009  esp_put_ent(esp, ent);
2010  }
2011 
2012  list_for_each_entry_safe(ent, tmp, &esp->active_cmds, list) {
2013  if (ent == esp->active_cmd)
2014  esp->active_cmd = NULL;
2015  esp_reset_cleanup_one(esp, ent);
2016  }
2017 
2018  BUG_ON(esp->active_cmd != NULL);
2019 
2020  /* Force renegotiation of sync/wide transfers. */
2021  for (i = 0; i < ESP_MAX_TARGET; i++) {
2022  struct esp_target_data *tp = &esp->target[i];
2023 
2024  tp->esp_period = 0;
2025  tp->esp_offset = 0;
2026  tp->esp_config3 &= ~(ESP_CONFIG3_EWIDE |
2029  tp->flags &= ~ESP_TGT_WIDE;
2030  tp->flags |= ESP_TGT_CHECK_NEGO;
2031 
2032  if (tp->starget)
2034  esp_clear_hold);
2035  }
2036  esp->flags &= ~ESP_FLAG_RESETTING;
2037 }
2038 
2039 /* Runs under host->lock */
2040 static void __esp_interrupt(struct esp *esp)
2041 {
2042  int finish_reset, intr_done;
2043  u8 phase;
2044 
2045  esp->sreg = esp_read8(ESP_STATUS);
2046 
2047  if (esp->flags & ESP_FLAG_RESETTING) {
2048  finish_reset = 1;
2049  } else {
2050  if (esp_check_gross_error(esp))
2051  return;
2052 
2053  finish_reset = esp_check_spur_intr(esp);
2054  if (finish_reset < 0)
2055  return;
2056  }
2057 
2058  esp->ireg = esp_read8(ESP_INTRPT);
2059 
2060  if (esp->ireg & ESP_INTR_SR)
2061  finish_reset = 1;
2062 
2063  if (finish_reset) {
2064  esp_reset_cleanup(esp);
2065  if (esp->eh_reset) {
2066  complete(esp->eh_reset);
2067  esp->eh_reset = NULL;
2068  }
2069  return;
2070  }
2071 
2072  phase = (esp->sreg & ESP_STAT_PMASK);
2073  if (esp->rev == FASHME) {
2074  if (((phase != ESP_DIP && phase != ESP_DOP) &&
2075  esp->select_state == ESP_SELECT_NONE &&
2076  esp->event != ESP_EVENT_STATUS &&
2077  esp->event != ESP_EVENT_DATA_DONE) ||
2078  (esp->ireg & ESP_INTR_RSEL)) {
2079  esp->sreg2 = esp_read8(ESP_STATUS2);
2080  if (!(esp->sreg2 & ESP_STAT2_FEMPTY) ||
2081  (esp->sreg2 & ESP_STAT2_F1BYTE))
2082  hme_read_fifo(esp);
2083  }
2084  }
2085 
2086  esp_log_intr("ESP: intr sreg[%02x] seqreg[%02x] "
2087  "sreg2[%02x] ireg[%02x]\n",
2088  esp->sreg, esp->seqreg, esp->sreg2, esp->ireg);
2089 
2090  intr_done = 0;
2091 
2092  if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN | ESP_INTR_IC)) {
2093  printk("ESP: unexpected IREG %02x\n", esp->ireg);
2094  if (esp->ireg & ESP_INTR_IC)
2095  esp_dump_cmd_log(esp);
2096 
2097  esp_schedule_reset(esp);
2098  } else {
2099  if (!(esp->ireg & ESP_INTR_RSEL)) {
2100  /* Some combination of FDONE, BSERV, DC. */
2101  if (esp->select_state != ESP_SELECT_NONE)
2102  intr_done = esp_finish_select(esp);
2103  } else if (esp->ireg & ESP_INTR_RSEL) {
2104  if (esp->active_cmd)
2105  (void) esp_finish_select(esp);
2106  intr_done = esp_reconnect(esp);
2107  }
2108  }
2109  while (!intr_done)
2110  intr_done = esp_process_event(esp);
2111 }
2112 
2114 {
2115  struct esp *esp = dev_id;
2116  unsigned long flags;
2117  irqreturn_t ret;
2118 
2119  spin_lock_irqsave(esp->host->host_lock, flags);
2120  ret = IRQ_NONE;
2121  if (esp->ops->irq_pending(esp)) {
2122  ret = IRQ_HANDLED;
2123  for (;;) {
2124  int i;
2125 
2126  __esp_interrupt(esp);
2127  if (!(esp->flags & ESP_FLAG_QUICKIRQ_CHECK))
2128  break;
2129  esp->flags &= ~ESP_FLAG_QUICKIRQ_CHECK;
2130 
2131  for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
2132  if (esp->ops->irq_pending(esp))
2133  break;
2134  }
2135  if (i == ESP_QUICKIRQ_LIMIT)
2136  break;
2137  }
2138  }
2139  spin_unlock_irqrestore(esp->host->host_lock, flags);
2140 
2141  return ret;
2142 }
2144 
2145 static void esp_get_revision(struct esp *esp)
2146 {
2147  u8 val;
2148 
2149  esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7));
2151  esp_write8(esp->config2, ESP_CFG2);
2152 
2153  val = esp_read8(ESP_CFG2);
2154  val &= ~ESP_CONFIG2_MAGIC;
2156  /* If what we write to cfg2 does not come back, cfg2 is not
2157  * implemented, therefore this must be a plain esp100.
2158  */
2159  esp->rev = ESP100;
2160  } else {
2161  esp->config2 = 0;
2162  esp_set_all_config3(esp, 5);
2163  esp->prev_cfg3 = 5;
2164  esp_write8(esp->config2, ESP_CFG2);
2165  esp_write8(0, ESP_CFG3);
2166  esp_write8(esp->prev_cfg3, ESP_CFG3);
2167 
2168  val = esp_read8(ESP_CFG3);
2169  if (val != 5) {
2170  /* The cfg2 register is implemented, however
2171  * cfg3 is not, must be esp100a.
2172  */
2173  esp->rev = ESP100A;
2174  } else {
2175  esp_set_all_config3(esp, 0);
2176  esp->prev_cfg3 = 0;
2177  esp_write8(esp->prev_cfg3, ESP_CFG3);
2178 
2179  /* All of cfg{1,2,3} implemented, must be one of
2180  * the fas variants, figure out which one.
2181  */
2182  if (esp->cfact == 0 || esp->cfact > ESP_CCF_F5) {
2183  esp->rev = FAST;
2184  esp->sync_defp = SYNC_DEFP_FAST;
2185  } else {
2186  esp->rev = ESP236;
2187  }
2188  esp->config2 = 0;
2189  esp_write8(esp->config2, ESP_CFG2);
2190  }
2191  }
2192 }
2193 
2194 static void esp_init_swstate(struct esp *esp)
2195 {
2196  int i;
2197 
2198  INIT_LIST_HEAD(&esp->queued_cmds);
2199  INIT_LIST_HEAD(&esp->active_cmds);
2200  INIT_LIST_HEAD(&esp->esp_cmd_pool);
2201 
2202  /* Start with a clear state, domain validation (via ->slave_configure,
2203  * spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged
2204  * commands.
2205  */
2206  for (i = 0 ; i < ESP_MAX_TARGET; i++) {
2207  esp->target[i].flags = 0;
2208  esp->target[i].nego_goal_period = 0;
2209  esp->target[i].nego_goal_offset = 0;
2210  esp->target[i].nego_goal_width = 0;
2211  esp->target[i].nego_goal_tags = 0;
2212  }
2213 }
2214 
2215 /* This places the ESP into a known state at boot time. */
2216 static void esp_bootup_reset(struct esp *esp)
2217 {
2218  u8 val;
2219 
2220  /* Reset the DMA */
2221  esp->ops->reset_dma(esp);
2222 
2223  /* Reset the ESP */
2224  esp_reset_esp(esp);
2225 
2226  /* Reset the SCSI bus, but tell ESP not to generate an irq */
2227  val = esp_read8(ESP_CFG1);
2228  val |= ESP_CONFIG1_SRRDISAB;
2229  esp_write8(val, ESP_CFG1);
2230 
2231  scsi_esp_cmd(esp, ESP_CMD_RS);
2232  udelay(400);
2233 
2234  esp_write8(esp->config1, ESP_CFG1);
2235 
2236  /* Eat any bitrot in the chip and we are done... */
2238 }
2239 
2240 static void esp_set_clock_params(struct esp *esp)
2241 {
2242  int fhz;
2243  u8 ccf;
2244 
2245  /* This is getting messy but it has to be done correctly or else
2246  * you get weird behavior all over the place. We are trying to
2247  * basically figure out three pieces of information.
2248  *
2249  * a) Clock Conversion Factor
2250  *
2251  * This is a representation of the input crystal clock frequency
2252  * going into the ESP on this machine. Any operation whose timing
2253  * is longer than 400ns depends on this value being correct. For
2254  * example, you'll get blips for arbitration/selection during high
2255  * load or with multiple targets if this is not set correctly.
2256  *
2257  * b) Selection Time-Out
2258  *
2259  * The ESP isn't very bright and will arbitrate for the bus and try
2260  * to select a target forever if you let it. This value tells the
2261  * ESP when it has taken too long to negotiate and that it should
2262  * interrupt the CPU so we can see what happened. The value is
2263  * computed as follows (from NCR/Symbios chip docs).
2264  *
2265  * (Time Out Period) * (Input Clock)
2266  * STO = ----------------------------------
2267  * (8192) * (Clock Conversion Factor)
2268  *
2269  * We use a time out period of 250ms (ESP_BUS_TIMEOUT).
2270  *
2271  * c) Imperical constants for synchronous offset and transfer period
2272  * register values
2273  *
2274  * This entails the smallest and largest sync period we could ever
2275  * handle on this ESP.
2276  */
2277  fhz = esp->cfreq;
2278 
2279  ccf = ((fhz / 1000000) + 4) / 5;
2280  if (ccf == 1)
2281  ccf = 2;
2282 
2283  /* If we can't find anything reasonable, just assume 20MHZ.
2284  * This is the clock frequency of the older sun4c's where I've
2285  * been unable to find the clock-frequency PROM property. All
2286  * other machines provide useful values it seems.
2287  */
2288  if (fhz <= 5000000 || ccf < 1 || ccf > 8) {
2289  fhz = 20000000;
2290  ccf = 4;
2291  }
2292 
2293  esp->cfact = (ccf == 8 ? 0 : ccf);
2294  esp->cfreq = fhz;
2295  esp->ccycle = ESP_HZ_TO_CYCLE(fhz);
2296  esp->ctick = ESP_TICK(ccf, esp->ccycle);
2297  esp->neg_defp = ESP_NEG_DEFP(fhz, ccf);
2298  esp->sync_defp = SYNC_DEFP_SLOW;
2299 }
2300 
2301 static const char *esp_chip_names[] = {
2302  "ESP100",
2303  "ESP100A",
2304  "ESP236",
2305  "FAS236",
2306  "FAS100A",
2307  "FAST",
2308  "FASHME",
2309 };
2310 
2311 static struct scsi_transport_template *esp_transport_template;
2312 
2313 int scsi_esp_register(struct esp *esp, struct device *dev)
2314 {
2315  static int instance;
2316  int err;
2317 
2318  esp->host->transportt = esp_transport_template;
2319  esp->host->max_lun = ESP_MAX_LUN;
2320  esp->host->cmd_per_lun = 2;
2321  esp->host->unique_id = instance;
2322 
2323  esp_set_clock_params(esp);
2324 
2325  esp_get_revision(esp);
2326 
2327  esp_init_swstate(esp);
2328 
2329  esp_bootup_reset(esp);
2330 
2331  printk(KERN_INFO PFX "esp%u, regs[%1p:%1p] irq[%u]\n",
2332  esp->host->unique_id, esp->regs, esp->dma_regs,
2333  esp->host->irq);
2334  printk(KERN_INFO PFX "esp%u is a %s, %u MHz (ccf=%u), SCSI ID %u\n",
2335  esp->host->unique_id, esp_chip_names[esp->rev],
2336  esp->cfreq / 1000000, esp->cfact, esp->scsi_id);
2337 
2338  /* Let the SCSI bus reset settle. */
2339  ssleep(esp_bus_reset_settle);
2340 
2341  err = scsi_add_host(esp->host, dev);
2342  if (err)
2343  return err;
2344 
2345  instance++;
2346 
2347  scsi_scan_host(esp->host);
2348 
2349  return 0;
2350 }
2352 
2353 void scsi_esp_unregister(struct esp *esp)
2354 {
2355  scsi_remove_host(esp->host);
2356 }
2358 
2359 static int esp_target_alloc(struct scsi_target *starget)
2360 {
2361  struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
2362  struct esp_target_data *tp = &esp->target[starget->id];
2363 
2364  tp->starget = starget;
2365 
2366  return 0;
2367 }
2368 
2369 static void esp_target_destroy(struct scsi_target *starget)
2370 {
2371  struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
2372  struct esp_target_data *tp = &esp->target[starget->id];
2373 
2374  tp->starget = NULL;
2375 }
2376 
2377 static int esp_slave_alloc(struct scsi_device *dev)
2378 {
2379  struct esp *esp = shost_priv(dev->host);
2380  struct esp_target_data *tp = &esp->target[dev->id];
2381  struct esp_lun_data *lp;
2382 
2383  lp = kzalloc(sizeof(*lp), GFP_KERNEL);
2384  if (!lp)
2385  return -ENOMEM;
2386  dev->hostdata = lp;
2387 
2388  spi_min_period(tp->starget) = esp->min_period;
2389  spi_max_offset(tp->starget) = 15;
2390 
2391  if (esp->flags & ESP_FLAG_WIDE_CAPABLE)
2392  spi_max_width(tp->starget) = 1;
2393  else
2394  spi_max_width(tp->starget) = 0;
2395 
2396  return 0;
2397 }
2398 
2399 static int esp_slave_configure(struct scsi_device *dev)
2400 {
2401  struct esp *esp = shost_priv(dev->host);
2402  struct esp_target_data *tp = &esp->target[dev->id];
2403  int goal_tags, queue_depth;
2404 
2405  goal_tags = 0;
2406 
2407  if (dev->tagged_supported) {
2408  /* XXX make this configurable somehow XXX */
2409  goal_tags = ESP_DEFAULT_TAGS;
2410 
2411  if (goal_tags > ESP_MAX_TAG)
2412  goal_tags = ESP_MAX_TAG;
2413  }
2414 
2415  queue_depth = goal_tags;
2416  if (queue_depth < dev->host->cmd_per_lun)
2417  queue_depth = dev->host->cmd_per_lun;
2418 
2419  if (goal_tags) {
2420  scsi_set_tag_type(dev, MSG_ORDERED_TAG);
2421  scsi_activate_tcq(dev, queue_depth);
2422  } else {
2423  scsi_deactivate_tcq(dev, queue_depth);
2424  }
2425  tp->flags |= ESP_TGT_DISCONNECT;
2426 
2427  if (!spi_initial_dv(dev->sdev_target))
2428  spi_dv_device(dev);
2429 
2430  return 0;
2431 }
2432 
2433 static void esp_slave_destroy(struct scsi_device *dev)
2434 {
2435  struct esp_lun_data *lp = dev->hostdata;
2436 
2437  kfree(lp);
2438  dev->hostdata = NULL;
2439 }
2440 
2441 static int esp_eh_abort_handler(struct scsi_cmnd *cmd)
2442 {
2443  struct esp *esp = shost_priv(cmd->device->host);
2444  struct esp_cmd_entry *ent, *tmp;
2445  struct completion eh_done;
2446  unsigned long flags;
2447 
2448  /* XXX This helps a lot with debugging but might be a bit
2449  * XXX much for the final driver.
2450  */
2451  spin_lock_irqsave(esp->host->host_lock, flags);
2452  printk(KERN_ERR PFX "esp%d: Aborting command [%p:%02x]\n",
2453  esp->host->unique_id, cmd, cmd->cmnd[0]);
2454  ent = esp->active_cmd;
2455  if (ent)
2456  printk(KERN_ERR PFX "esp%d: Current command [%p:%02x]\n",
2457  esp->host->unique_id, ent->cmd, ent->cmd->cmnd[0]);
2458  list_for_each_entry(ent, &esp->queued_cmds, list) {
2459  printk(KERN_ERR PFX "esp%d: Queued command [%p:%02x]\n",
2460  esp->host->unique_id, ent->cmd, ent->cmd->cmnd[0]);
2461  }
2462  list_for_each_entry(ent, &esp->active_cmds, list) {
2463  printk(KERN_ERR PFX "esp%d: Active command [%p:%02x]\n",
2464  esp->host->unique_id, ent->cmd, ent->cmd->cmnd[0]);
2465  }
2466  esp_dump_cmd_log(esp);
2467  spin_unlock_irqrestore(esp->host->host_lock, flags);
2468 
2469  spin_lock_irqsave(esp->host->host_lock, flags);
2470 
2471  ent = NULL;
2472  list_for_each_entry(tmp, &esp->queued_cmds, list) {
2473  if (tmp->cmd == cmd) {
2474  ent = tmp;
2475  break;
2476  }
2477  }
2478 
2479  if (ent) {
2480  /* Easiest case, we didn't even issue the command
2481  * yet so it is trivial to abort.
2482  */
2483  list_del(&ent->list);
2484 
2485  cmd->result = DID_ABORT << 16;
2486  cmd->scsi_done(cmd);
2487 
2488  esp_put_ent(esp, ent);
2489 
2490  goto out_success;
2491  }
2492 
2493  init_completion(&eh_done);
2494 
2495  ent = esp->active_cmd;
2496  if (ent && ent->cmd == cmd) {
2497  /* Command is the currently active command on
2498  * the bus. If we already have an output message
2499  * pending, no dice.
2500  */
2501  if (esp->msg_out_len)
2502  goto out_failure;
2503 
2504  /* Send out an abort, encouraging the target to
2505  * go to MSGOUT phase by asserting ATN.
2506  */
2507  esp->msg_out[0] = ABORT_TASK_SET;
2508  esp->msg_out_len = 1;
2509  ent->eh_done = &eh_done;
2510 
2511  scsi_esp_cmd(esp, ESP_CMD_SATN);
2512  } else {
2513  /* The command is disconnected. This is not easy to
2514  * abort. For now we fail and let the scsi error
2515  * handling layer go try a scsi bus reset or host
2516  * reset.
2517  *
2518  * What we could do is put together a scsi command
2519  * solely for the purpose of sending an abort message
2520  * to the target. Coming up with all the code to
2521  * cook up scsi commands, special case them everywhere,
2522  * etc. is for questionable gain and it would be better
2523  * if the generic scsi error handling layer could do at
2524  * least some of that for us.
2525  *
2526  * Anyways this is an area for potential future improvement
2527  * in this driver.
2528  */
2529  goto out_failure;
2530  }
2531 
2532  spin_unlock_irqrestore(esp->host->host_lock, flags);
2533 
2534  if (!wait_for_completion_timeout(&eh_done, 5 * HZ)) {
2535  spin_lock_irqsave(esp->host->host_lock, flags);
2536  ent->eh_done = NULL;
2537  spin_unlock_irqrestore(esp->host->host_lock, flags);
2538 
2539  return FAILED;
2540  }
2541 
2542  return SUCCESS;
2543 
2544 out_success:
2545  spin_unlock_irqrestore(esp->host->host_lock, flags);
2546  return SUCCESS;
2547 
2548 out_failure:
2549  /* XXX This might be a good location to set ESP_TGT_BROKEN
2550  * XXX since we know which target/lun in particular is
2551  * XXX causing trouble.
2552  */
2553  spin_unlock_irqrestore(esp->host->host_lock, flags);
2554  return FAILED;
2555 }
2556 
2557 static int esp_eh_bus_reset_handler(struct scsi_cmnd *cmd)
2558 {
2559  struct esp *esp = shost_priv(cmd->device->host);
2560  struct completion eh_reset;
2561  unsigned long flags;
2562 
2563  init_completion(&eh_reset);
2564 
2565  spin_lock_irqsave(esp->host->host_lock, flags);
2566 
2567  esp->eh_reset = &eh_reset;
2568 
2569  /* XXX This is too simple... We should add lots of
2570  * XXX checks here so that if we find that the chip is
2571  * XXX very wedged we return failure immediately so
2572  * XXX that we can perform a full chip reset.
2573  */
2574  esp->flags |= ESP_FLAG_RESETTING;
2575  scsi_esp_cmd(esp, ESP_CMD_RS);
2576 
2577  spin_unlock_irqrestore(esp->host->host_lock, flags);
2578 
2579  ssleep(esp_bus_reset_settle);
2580 
2581  if (!wait_for_completion_timeout(&eh_reset, 5 * HZ)) {
2582  spin_lock_irqsave(esp->host->host_lock, flags);
2583  esp->eh_reset = NULL;
2584  spin_unlock_irqrestore(esp->host->host_lock, flags);
2585 
2586  return FAILED;
2587  }
2588 
2589  return SUCCESS;
2590 }
2591 
2592 /* All bets are off, reset the entire device. */
2593 static int esp_eh_host_reset_handler(struct scsi_cmnd *cmd)
2594 {
2595  struct esp *esp = shost_priv(cmd->device->host);
2596  unsigned long flags;
2597 
2598  spin_lock_irqsave(esp->host->host_lock, flags);
2599  esp_bootup_reset(esp);
2600  esp_reset_cleanup(esp);
2601  spin_unlock_irqrestore(esp->host->host_lock, flags);
2602 
2603  ssleep(esp_bus_reset_settle);
2604 
2605  return SUCCESS;
2606 }
2607 
2608 static const char *esp_info(struct Scsi_Host *host)
2609 {
2610  return "esp";
2611 }
2612 
2614  .module = THIS_MODULE,
2615  .name = "esp",
2616  .info = esp_info,
2617  .queuecommand = esp_queuecommand,
2618  .target_alloc = esp_target_alloc,
2619  .target_destroy = esp_target_destroy,
2620  .slave_alloc = esp_slave_alloc,
2621  .slave_configure = esp_slave_configure,
2622  .slave_destroy = esp_slave_destroy,
2623  .eh_abort_handler = esp_eh_abort_handler,
2624  .eh_bus_reset_handler = esp_eh_bus_reset_handler,
2625  .eh_host_reset_handler = esp_eh_host_reset_handler,
2626  .can_queue = 7,
2627  .this_id = 7,
2628  .sg_tablesize = SG_ALL,
2629  .use_clustering = ENABLE_CLUSTERING,
2630  .max_sectors = 0xffff,
2631  .skip_settle_delay = 1,
2632 };
2633 EXPORT_SYMBOL(scsi_esp_template);
2634 
2635 static void esp_get_signalling(struct Scsi_Host *host)
2636 {
2637  struct esp *esp = shost_priv(host);
2638  enum spi_signal_type type;
2639 
2640  if (esp->flags & ESP_FLAG_DIFFERENTIAL)
2641  type = SPI_SIGNAL_HVD;
2642  else
2643  type = SPI_SIGNAL_SE;
2644 
2645  spi_signalling(host) = type;
2646 }
2647 
2648 static void esp_set_offset(struct scsi_target *target, int offset)
2649 {
2650  struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2651  struct esp *esp = shost_priv(host);
2652  struct esp_target_data *tp = &esp->target[target->id];
2653 
2654  if (esp->flags & ESP_FLAG_DISABLE_SYNC)
2655  tp->nego_goal_offset = 0;
2656  else
2657  tp->nego_goal_offset = offset;
2658  tp->flags |= ESP_TGT_CHECK_NEGO;
2659 }
2660 
2661 static void esp_set_period(struct scsi_target *target, int period)
2662 {
2663  struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2664  struct esp *esp = shost_priv(host);
2665  struct esp_target_data *tp = &esp->target[target->id];
2666 
2667  tp->nego_goal_period = period;
2668  tp->flags |= ESP_TGT_CHECK_NEGO;
2669 }
2670 
2671 static void esp_set_width(struct scsi_target *target, int width)
2672 {
2673  struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2674  struct esp *esp = shost_priv(host);
2675  struct esp_target_data *tp = &esp->target[target->id];
2676 
2677  tp->nego_goal_width = (width ? 1 : 0);
2678  tp->flags |= ESP_TGT_CHECK_NEGO;
2679 }
2680 
2681 static struct spi_function_template esp_transport_ops = {
2682  .set_offset = esp_set_offset,
2683  .show_offset = 1,
2684  .set_period = esp_set_period,
2685  .show_period = 1,
2686  .set_width = esp_set_width,
2687  .show_width = 1,
2688  .get_signalling = esp_get_signalling,
2689 };
2690 
2691 static int __init esp_init(void)
2692 {
2693  BUILD_BUG_ON(sizeof(struct scsi_pointer) <
2694  sizeof(struct esp_cmd_priv));
2695 
2696  esp_transport_template = spi_attach_transport(&esp_transport_ops);
2697  if (!esp_transport_template)
2698  return -ENODEV;
2699 
2700  return 0;
2701 }
2702 
2703 static void __exit esp_exit(void)
2704 {
2705  spi_release_transport(esp_transport_template);
2706 }
2707 
2708 MODULE_DESCRIPTION("ESP SCSI driver core");
2709 MODULE_AUTHOR("David S. Miller ([email protected])");
2710 MODULE_LICENSE("GPL");
2712 
2713 module_param(esp_bus_reset_settle, int, 0);
2714 MODULE_PARM_DESC(esp_bus_reset_settle,
2715  "ESP scsi bus reset delay in seconds");
2716 
2717 module_param(esp_debug, int, 0);
2718 MODULE_PARM_DESC(esp_debug,
2719 "ESP bitmapped debugging message enable value:\n"
2720 " 0x00000001 Log interrupt events\n"
2721 " 0x00000002 Log scsi commands\n"
2722 " 0x00000004 Log resets\n"
2723 " 0x00000008 Log message in events\n"
2724 " 0x00000010 Log message out events\n"
2725 " 0x00000020 Log command completion\n"
2726 " 0x00000040 Log disconnects\n"
2727 " 0x00000080 Log data start\n"
2728 " 0x00000100 Log data done\n"
2729 " 0x00000200 Log reconnects\n"
2730 " 0x00000400 Log auto-sense data\n"
2731 );
2732 
2733 module_init(esp_init);
2734 module_exit(esp_exit);