Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
eth_v10.c
Go to the documentation of this file.
1 /*
2  * e100net.c: A network driver for the ETRAX 100LX network controller.
3  *
4  * Copyright (c) 1998-2002 Axis Communications AB.
5  *
6  * The outline of this driver comes from skeleton.c.
7  *
8  */
9 
10 
11 #include <linux/module.h>
12 
13 #include <linux/kernel.h>
14 #include <linux/delay.h>
15 #include <linux/types.h>
16 #include <linux/fcntl.h>
17 #include <linux/interrupt.h>
18 #include <linux/ptrace.h>
19 #include <linux/ioport.h>
20 #include <linux/in.h>
21 #include <linux/string.h>
22 #include <linux/spinlock.h>
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/bitops.h>
26 
27 #include <linux/if.h>
28 #include <linux/mii.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/ethtool.h>
33 
34 #include <arch/svinto.h>/* DMA and register descriptions */
35 #include <asm/io.h> /* CRIS_LED_* I/O functions */
36 #include <asm/irq.h>
37 #include <asm/dma.h>
38 #include <asm/ethernet.h>
39 #include <asm/cache.h>
40 #include <arch/io_interface_mux.h>
41 
42 //#define ETHDEBUG
43 #define D(x)
44 
45 /*
46  * The name of the card. Is used for messages and in the requests for
47  * io regions, irqs and dma channels
48  */
49 
50 static const char* cardname = "ETRAX 100LX built-in ethernet controller";
51 
52 /* A default ethernet address. Highlevel SW will set the real one later */
53 
54 static struct sockaddr default_mac = {
55  0,
56  { 0x00, 0x40, 0x8C, 0xCD, 0x00, 0x00 }
57 };
58 
59 /* Information that need to be kept for each board. */
60 struct net_local {
62 
63  /* Tx control lock. This protects the transmit buffer ring
64  * state along with the "tx full" state of the driver. This
65  * means all netif_queue flow control actions are protected
66  * by this lock as well.
67  */
69 
70  spinlock_t led_lock; /* Protect LED state */
71  spinlock_t transceiver_lock; /* Protect transceiver state. */
72 };
73 
74 typedef struct etrax_eth_descr
75 {
77  struct sk_buff* skb;
79 
80 /* Some transceivers requires special handling */
82 {
83  unsigned int oui;
86 };
87 
88 /* Duplex settings */
89 enum duplex
90 {
94 };
95 
96 /* Dma descriptors etc. */
97 
98 #define MAX_MEDIA_DATA_SIZE 1522
99 
100 #define MIN_PACKET_LEN 46
101 #define ETHER_HEAD_LEN 14
102 
103 /*
104 ** MDIO constants.
105 */
106 #define MDIO_START 0x1
107 #define MDIO_READ 0x2
108 #define MDIO_WRITE 0x1
109 #define MDIO_PREAMBLE 0xfffffffful
110 
111 /* Broadcom specific */
112 #define MDIO_AUX_CTRL_STATUS_REG 0x18
113 #define MDIO_BC_FULL_DUPLEX_IND 0x1
114 #define MDIO_BC_SPEED 0x2
115 
116 /* TDK specific */
117 #define MDIO_TDK_DIAGNOSTIC_REG 18
118 #define MDIO_TDK_DIAGNOSTIC_RATE 0x400
119 #define MDIO_TDK_DIAGNOSTIC_DPLX 0x800
120 
121 /*Intel LXT972A specific*/
122 #define MDIO_INT_STATUS_REG_2 0x0011
123 #define MDIO_INT_FULL_DUPLEX_IND (1 << 9)
124 #define MDIO_INT_SPEED (1 << 14)
125 
126 /* Network flash constants */
127 #define NET_FLASH_TIME (HZ/50) /* 20 ms */
128 #define NET_FLASH_PAUSE (HZ/100) /* 10 ms */
129 #define NET_LINK_UP_CHECK_INTERVAL (2*HZ) /* 2 s */
130 #define NET_DUPLEX_CHECK_INTERVAL (2*HZ) /* 2 s */
131 
132 #define NO_NETWORK_ACTIVITY 0
133 #define NETWORK_ACTIVITY 1
134 
135 #define NBR_OF_RX_DESC 32
136 #define NBR_OF_TX_DESC 16
137 
138 /* Large packets are sent directly to upper layers while small packets are */
139 /* copied (to reduce memory waste). The following constant decides the breakpoint */
140 #define RX_COPYBREAK 256
141 
142 /* Due to a chip bug we need to flush the cache when descriptors are returned */
143 /* to the DMA. To decrease performance impact we return descriptors in chunks. */
144 /* The following constant determines the number of descriptors to return. */
145 #define RX_QUEUE_THRESHOLD NBR_OF_RX_DESC/2
146 
147 #define GET_BIT(bit,val) (((val) >> (bit)) & 0x01)
148 
149 /* Define some macros to access ETRAX 100 registers */
150 #define SETF(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
151  IO_FIELD_(reg##_, field##_, val)
152 #define SETS(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
153  IO_STATE_(reg##_, field##_, _##val)
154 
155 static etrax_eth_descr *myNextRxDesc; /* Points to the next descriptor to
156  to be processed */
157 static etrax_eth_descr *myLastRxDesc; /* The last processed descriptor */
158 
159 static etrax_eth_descr RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned(32)));
160 
161 static etrax_eth_descr* myFirstTxDesc; /* First packet not yet sent */
162 static etrax_eth_descr* myLastTxDesc; /* End of send queue */
163 static etrax_eth_descr* myNextTxDesc; /* Next descriptor to use */
164 static etrax_eth_descr TxDescList[NBR_OF_TX_DESC] __attribute__ ((aligned(32)));
165 
166 static unsigned int network_rec_config_shadow = 0;
167 
168 static unsigned int network_tr_ctrl_shadow = 0;
169 
170 /* Network speed indication. */
171 static DEFINE_TIMER(speed_timer, NULL, 0, 0);
172 static DEFINE_TIMER(clear_led_timer, NULL, 0, 0);
173 static int current_speed; /* Speed read from transceiver */
174 static int current_speed_selection; /* Speed selected by user */
175 static unsigned long led_next_time;
176 static int led_active;
177 static int rx_queue_len;
178 
179 /* Duplex */
180 static DEFINE_TIMER(duplex_timer, NULL, 0, 0);
181 static int full_duplex;
182 static enum duplex current_duplex;
183 
184 /* Index to functions, as function prototypes. */
185 
186 static int etrax_ethernet_init(void);
187 
188 static int e100_open(struct net_device *dev);
189 static int e100_set_mac_address(struct net_device *dev, void *addr);
190 static int e100_send_packet(struct sk_buff *skb, struct net_device *dev);
191 static irqreturn_t e100rxtx_interrupt(int irq, void *dev_id);
192 static irqreturn_t e100nw_interrupt(int irq, void *dev_id);
193 static void e100_rx(struct net_device *dev);
194 static int e100_close(struct net_device *dev);
195 static int e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
196 static int e100_set_config(struct net_device* dev, struct ifmap* map);
197 static void e100_tx_timeout(struct net_device *dev);
198 static struct net_device_stats *e100_get_stats(struct net_device *dev);
199 static void set_multicast_list(struct net_device *dev);
200 static void e100_hardware_send_packet(struct net_local* np, char *buf, int length);
201 static void update_rx_stats(struct net_device_stats *);
202 static void update_tx_stats(struct net_device_stats *);
203 static int e100_probe_transceiver(struct net_device* dev);
204 
205 static void e100_check_speed(unsigned long priv);
206 static void e100_set_speed(struct net_device* dev, unsigned long speed);
207 static void e100_check_duplex(unsigned long priv);
208 static void e100_set_duplex(struct net_device* dev, enum duplex);
209 static void e100_negotiate(struct net_device* dev);
210 
211 static int e100_get_mdio_reg(struct net_device *dev, int phy_id, int location);
212 static void e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value);
213 
214 static void e100_send_mdio_cmd(unsigned short cmd, int write_cmd);
215 static void e100_send_mdio_bit(unsigned char bit);
216 static unsigned char e100_receive_mdio_bit(void);
217 static void e100_reset_transceiver(struct net_device* net);
218 
219 static void e100_clear_network_leds(unsigned long dummy);
220 static void e100_set_network_leds(int active);
221 
222 static const struct ethtool_ops e100_ethtool_ops;
223 #if defined(CONFIG_ETRAX_NO_PHY)
224 static void dummy_check_speed(struct net_device* dev);
225 static void dummy_check_duplex(struct net_device* dev);
226 #else
227 static void broadcom_check_speed(struct net_device* dev);
228 static void broadcom_check_duplex(struct net_device* dev);
229 static void tdk_check_speed(struct net_device* dev);
230 static void tdk_check_duplex(struct net_device* dev);
231 static void intel_check_speed(struct net_device* dev);
232 static void intel_check_duplex(struct net_device* dev);
233 static void generic_check_speed(struct net_device* dev);
234 static void generic_check_duplex(struct net_device* dev);
235 #endif
236 #ifdef CONFIG_NET_POLL_CONTROLLER
237 static void e100_netpoll(struct net_device* dev);
238 #endif
239 
240 static int autoneg_normal = 1;
241 
243 {
244 #if defined(CONFIG_ETRAX_NO_PHY)
245  {0x0000, dummy_check_speed, dummy_check_duplex} /* Dummy */
246 #else
247  {0x1018, broadcom_check_speed, broadcom_check_duplex}, /* Broadcom */
248  {0xC039, tdk_check_speed, tdk_check_duplex}, /* TDK 2120 */
249  {0x039C, tdk_check_speed, tdk_check_duplex}, /* TDK 2120C */
250  {0x04de, intel_check_speed, intel_check_duplex}, /* Intel LXT972A*/
251  {0x0000, generic_check_speed, generic_check_duplex} /* Generic, must be last */
252 #endif
253 };
254 
255 struct transceiver_ops* transceiver = &transceivers[0];
256 
257 static const struct net_device_ops e100_netdev_ops = {
258  .ndo_open = e100_open,
259  .ndo_stop = e100_close,
260  .ndo_start_xmit = e100_send_packet,
261  .ndo_tx_timeout = e100_tx_timeout,
262  .ndo_get_stats = e100_get_stats,
263  .ndo_set_rx_mode = set_multicast_list,
264  .ndo_do_ioctl = e100_ioctl,
265  .ndo_set_mac_address = e100_set_mac_address,
266  .ndo_validate_addr = eth_validate_addr,
267  .ndo_change_mtu = eth_change_mtu,
268  .ndo_set_config = e100_set_config,
269 #ifdef CONFIG_NET_POLL_CONTROLLER
270  .ndo_poll_controller = e100_netpoll,
271 #endif
272 };
273 
274 #define tx_done(dev) (*R_DMA_CH0_CMD == 0)
275 
276 /*
277  * Check for a network adaptor of this type, and return '0' if one exists.
278  * If dev->base_addr == 0, probe all likely locations.
279  * If dev->base_addr == 1, always return failure.
280  * If dev->base_addr == 2, allocate space for the device and return success
281  * (detachable devices only).
282  */
283 
284 static int __init
285 etrax_ethernet_init(void)
286 {
287  struct net_device *dev;
288  struct net_local* np;
289  int i, err;
290 
292  "ETRAX 100LX 10/100MBit ethernet v2.0 (c) 1998-2007 Axis Communications AB\n");
293 
294  if (cris_request_io_interface(if_eth, cardname)) {
295  printk(KERN_CRIT "etrax_ethernet_init failed to get IO interface\n");
296  return -EBUSY;
297  }
298 
299  dev = alloc_etherdev(sizeof(struct net_local));
300  if (!dev)
301  return -ENOMEM;
302 
303  np = netdev_priv(dev);
304 
305  /* we do our own locking */
306  dev->features |= NETIF_F_LLTX;
307 
308  dev->base_addr = (unsigned int)R_NETWORK_SA_0; /* just to have something to show */
309 
310  /* now setup our etrax specific stuff */
311 
312  dev->irq = NETWORK_DMA_RX_IRQ_NBR; /* we really use DMATX as well... */
313  dev->dma = NETWORK_RX_DMA_NBR;
314 
315  /* fill in our handlers so the network layer can talk to us in the future */
316 
317  dev->ethtool_ops = &e100_ethtool_ops;
318  dev->netdev_ops = &e100_netdev_ops;
319 
320  spin_lock_init(&np->lock);
321  spin_lock_init(&np->led_lock);
323 
324  /* Initialise the list of Etrax DMA-descriptors */
325 
326  /* Initialise receive descriptors */
327 
328  for (i = 0; i < NBR_OF_RX_DESC; i++) {
329  /* Allocate two extra cachelines to make sure that buffer used
330  * by DMA does not share cacheline with any other data (to
331  * avoid cache bug)
332  */
333  RxDescList[i].skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
334  if (!RxDescList[i].skb)
335  return -ENOMEM;
336  RxDescList[i].descr.ctrl = 0;
337  RxDescList[i].descr.sw_len = MAX_MEDIA_DATA_SIZE;
338  RxDescList[i].descr.next = virt_to_phys(&RxDescList[i + 1]);
339  RxDescList[i].descr.buf = L1_CACHE_ALIGN(virt_to_phys(RxDescList[i].skb->data));
340  RxDescList[i].descr.status = 0;
341  RxDescList[i].descr.hw_len = 0;
342  prepare_rx_descriptor(&RxDescList[i].descr);
343  }
344 
345  RxDescList[NBR_OF_RX_DESC - 1].descr.ctrl = d_eol;
346  RxDescList[NBR_OF_RX_DESC - 1].descr.next = virt_to_phys(&RxDescList[0]);
347  rx_queue_len = 0;
348 
349  /* Initialize transmit descriptors */
350  for (i = 0; i < NBR_OF_TX_DESC; i++) {
351  TxDescList[i].descr.ctrl = 0;
352  TxDescList[i].descr.sw_len = 0;
353  TxDescList[i].descr.next = virt_to_phys(&TxDescList[i + 1].descr);
354  TxDescList[i].descr.buf = 0;
355  TxDescList[i].descr.status = 0;
356  TxDescList[i].descr.hw_len = 0;
357  TxDescList[i].skb = 0;
358  }
359 
360  TxDescList[NBR_OF_TX_DESC - 1].descr.ctrl = d_eol;
361  TxDescList[NBR_OF_TX_DESC - 1].descr.next = virt_to_phys(&TxDescList[0].descr);
362 
363  /* Initialise initial pointers */
364 
365  myNextRxDesc = &RxDescList[0];
366  myLastRxDesc = &RxDescList[NBR_OF_RX_DESC - 1];
367  myFirstTxDesc = &TxDescList[0];
368  myNextTxDesc = &TxDescList[0];
369  myLastTxDesc = &TxDescList[NBR_OF_TX_DESC - 1];
370 
371  /* Register device */
372  err = register_netdev(dev);
373  if (err) {
374  free_netdev(dev);
375  return err;
376  }
377 
378  /* set the default MAC address */
379 
380  e100_set_mac_address(dev, &default_mac);
381 
382  /* Initialize speed indicator stuff. */
383 
384  current_speed = 10;
385  current_speed_selection = 0; /* Auto */
386  speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
387  speed_timer.data = (unsigned long)dev;
388  speed_timer.function = e100_check_speed;
389 
390  clear_led_timer.function = e100_clear_network_leds;
391  clear_led_timer.data = (unsigned long)dev;
392 
393  full_duplex = 0;
394  current_duplex = autoneg;
395  duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
396  duplex_timer.data = (unsigned long)dev;
397  duplex_timer.function = e100_check_duplex;
398 
399  /* Initialize mii interface */
400  np->mii_if.phy_id_mask = 0x1f;
401  np->mii_if.reg_num_mask = 0x1f;
402  np->mii_if.dev = dev;
403  np->mii_if.mdio_read = e100_get_mdio_reg;
404  np->mii_if.mdio_write = e100_set_mdio_reg;
405 
406  /* Initialize group address registers to make sure that no */
407  /* unwanted addresses are matched */
408  *R_NETWORK_GA_0 = 0x00000000;
409  *R_NETWORK_GA_1 = 0x00000000;
410 
411  /* Initialize next time the led can flash */
412  led_next_time = jiffies;
413  return 0;
414 }
415 
416 /* set MAC address of the interface. called from the core after a
417  * SIOCSIFADDR ioctl, and from the bootup above.
418  */
419 
420 static int
421 e100_set_mac_address(struct net_device *dev, void *p)
422 {
423  struct net_local *np = netdev_priv(dev);
424  struct sockaddr *addr = p;
425 
426  spin_lock(&np->lock); /* preemption protection */
427 
428  /* remember it */
429 
430  memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
431 
432  /* Write it to the hardware.
433  * Note the way the address is wrapped:
434  * *R_NETWORK_SA_0 = a0_0 | (a0_1 << 8) | (a0_2 << 16) | (a0_3 << 24);
435  * *R_NETWORK_SA_1 = a0_4 | (a0_5 << 8);
436  */
437 
438  *R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
439  (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
440  *R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
441  *R_NETWORK_SA_2 = 0;
442 
443  /* show it in the log as well */
444 
445  printk(KERN_INFO "%s: changed MAC to %pM\n", dev->name, dev->dev_addr);
446 
447  spin_unlock(&np->lock);
448 
449  return 0;
450 }
451 
452 /*
453  * Open/initialize the board. This is called (in the current kernel)
454  * sometime after booting when the 'ifconfig' program is run.
455  *
456  * This routine should set everything up anew at each open, even
457  * registers that "should" only need to be set once at boot, so that
458  * there is non-reboot way to recover if something goes wrong.
459  */
460 
461 static int
462 e100_open(struct net_device *dev)
463 {
464  unsigned long flags;
465 
466  /* enable the MDIO output pin */
467 
468  *R_NETWORK_MGM_CTRL = IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable);
469 
470  *R_IRQ_MASK0_CLR =
471  IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
472  IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
473  IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
474 
475  /* clear dma0 and 1 eop and descr irq masks */
476  *R_IRQ_MASK2_CLR =
477  IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
478  IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
479  IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
480  IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
481 
482  /* Reset and wait for the DMA channels */
483 
488 
489  /* Initialise the etrax network controller */
490 
491  /* allocate the irq corresponding to the receiving DMA */
492 
493  if (request_irq(NETWORK_DMA_RX_IRQ_NBR, e100rxtx_interrupt, 0, cardname,
494  (void *)dev)) {
495  goto grace_exit0;
496  }
497 
498  /* allocate the irq corresponding to the transmitting DMA */
499 
500  if (request_irq(NETWORK_DMA_TX_IRQ_NBR, e100rxtx_interrupt, 0,
501  cardname, (void *)dev)) {
502  goto grace_exit1;
503  }
504 
505  /* allocate the irq corresponding to the network errors etc */
506 
507  if (request_irq(NETWORK_STATUS_IRQ_NBR, e100nw_interrupt, 0,
508  cardname, (void *)dev)) {
509  goto grace_exit2;
510  }
511 
512  /*
513  * Always allocate the DMA channels after the IRQ,
514  * and clean up on failure.
515  */
516 
518  cardname,
520  dma_eth)) {
521  goto grace_exit3;
522  }
523 
525  cardname,
527  dma_eth)) {
528  goto grace_exit4;
529  }
530 
531  /* give the HW an idea of what MAC address we want */
532 
533  *R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
534  (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
535  *R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
536  *R_NETWORK_SA_2 = 0;
537 
538 #if 0
539  /* use promiscuous mode for testing */
540  *R_NETWORK_GA_0 = 0xffffffff;
541  *R_NETWORK_GA_1 = 0xffffffff;
542 
543  *R_NETWORK_REC_CONFIG = 0xd; /* broadcast rec, individ. rec, ma0 enabled */
544 #else
545  SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, max_size, size1522);
546  SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, broadcast, receive);
547  SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, ma0, enable);
548  SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
549  *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
550 #endif
551 
552  *R_NETWORK_GEN_CONFIG =
553  IO_STATE(R_NETWORK_GEN_CONFIG, phy, mii_clk) |
554  IO_STATE(R_NETWORK_GEN_CONFIG, enable, on);
555 
556  SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
557  SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, delay, none);
558  SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cancel, dont);
559  SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cd, enable);
560  SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, retry, enable);
561  SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, pad, enable);
562  SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, crc, enable);
563  *R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
564 
565  local_irq_save(flags);
566 
567  /* enable the irq's for ethernet DMA */
568 
569  *R_IRQ_MASK2_SET =
570  IO_STATE(R_IRQ_MASK2_SET, dma0_eop, set) |
571  IO_STATE(R_IRQ_MASK2_SET, dma1_eop, set);
572 
573  *R_IRQ_MASK0_SET =
574  IO_STATE(R_IRQ_MASK0_SET, overrun, set) |
575  IO_STATE(R_IRQ_MASK0_SET, underrun, set) |
576  IO_STATE(R_IRQ_MASK0_SET, excessive_col, set);
577 
578  /* make sure the irqs are cleared */
579 
580  *R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
581  *R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
582 
583  /* make sure the rec and transmit error counters are cleared */
584 
585  (void)*R_REC_COUNTERS; /* dummy read */
586  (void)*R_TR_COUNTERS; /* dummy read */
587 
588  /* start the receiving DMA channel so we can receive packets from now on */
589 
590  *R_DMA_CH1_FIRST = virt_to_phys(myNextRxDesc);
591  *R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, start);
592 
593  /* Set up transmit DMA channel so it can be restarted later */
594 
595  *R_DMA_CH0_FIRST = 0;
596  *R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);
597  netif_start_queue(dev);
598 
599  local_irq_restore(flags);
600 
601  /* Probe for transceiver */
602  if (e100_probe_transceiver(dev))
603  goto grace_exit5;
604 
605  /* Start duplex/speed timers */
606  add_timer(&speed_timer);
607  add_timer(&duplex_timer);
608 
609  /* We are now ready to accept transmit requeusts from
610  * the queueing layer of the networking.
611  */
612  netif_carrier_on(dev);
613 
614  return 0;
615 
616 grace_exit5:
618 grace_exit4:
620 grace_exit3:
621  free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
622 grace_exit2:
623  free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
624 grace_exit1:
625  free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
626 grace_exit0:
627  return -EAGAIN;
628 }
629 
630 #if defined(CONFIG_ETRAX_NO_PHY)
631 static void
632 dummy_check_speed(struct net_device* dev)
633 {
634  current_speed = 100;
635 }
636 #else
637 static void
638 generic_check_speed(struct net_device* dev)
639 {
640  unsigned long data;
641  struct net_local *np = netdev_priv(dev);
642 
643  data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE);
644  if ((data & ADVERTISE_100FULL) ||
645  (data & ADVERTISE_100HALF))
646  current_speed = 100;
647  else
648  current_speed = 10;
649 }
650 
651 static void
652 tdk_check_speed(struct net_device* dev)
653 {
654  unsigned long data;
655  struct net_local *np = netdev_priv(dev);
656 
657  data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
659  current_speed = (data & MDIO_TDK_DIAGNOSTIC_RATE ? 100 : 10);
660 }
661 
662 static void
663 broadcom_check_speed(struct net_device* dev)
664 {
665  unsigned long data;
666  struct net_local *np = netdev_priv(dev);
667 
668  data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
670  current_speed = (data & MDIO_BC_SPEED ? 100 : 10);
671 }
672 
673 static void
674 intel_check_speed(struct net_device* dev)
675 {
676  unsigned long data;
677  struct net_local *np = netdev_priv(dev);
678 
679  data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
681  current_speed = (data & MDIO_INT_SPEED ? 100 : 10);
682 }
683 #endif
684 static void
685 e100_check_speed(unsigned long priv)
686 {
687  struct net_device* dev = (struct net_device*)priv;
688  struct net_local *np = netdev_priv(dev);
689  static int led_initiated = 0;
690  unsigned long data;
691  int old_speed = current_speed;
692 
693  spin_lock(&np->transceiver_lock);
694 
695  data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMSR);
696  if (!(data & BMSR_LSTATUS)) {
697  current_speed = 0;
698  } else {
699  transceiver->check_speed(dev);
700  }
701 
702  spin_lock(&np->led_lock);
703  if ((old_speed != current_speed) || !led_initiated) {
704  led_initiated = 1;
705  e100_set_network_leds(NO_NETWORK_ACTIVITY);
706  if (current_speed)
707  netif_carrier_on(dev);
708  else
709  netif_carrier_off(dev);
710  }
711  spin_unlock(&np->led_lock);
712 
713  /* Reinitialize the timer. */
714  speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
715  add_timer(&speed_timer);
716 
717  spin_unlock(&np->transceiver_lock);
718 }
719 
720 static void
721 e100_negotiate(struct net_device* dev)
722 {
723  struct net_local *np = netdev_priv(dev);
724  unsigned short data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
725  MII_ADVERTISE);
726 
727  /* Discard old speed and duplex settings */
728  data &= ~(ADVERTISE_100HALF | ADVERTISE_100FULL |
730 
731  switch (current_speed_selection) {
732  case 10:
733  if (current_duplex == full)
734  data |= ADVERTISE_10FULL;
735  else if (current_duplex == half)
736  data |= ADVERTISE_10HALF;
737  else
739  break;
740 
741  case 100:
742  if (current_duplex == full)
743  data |= ADVERTISE_100FULL;
744  else if (current_duplex == half)
745  data |= ADVERTISE_100HALF;
746  else
748  break;
749 
750  case 0: /* Auto */
751  if (current_duplex == full)
752  data |= ADVERTISE_100FULL | ADVERTISE_10FULL;
753  else if (current_duplex == half)
755  else
758  break;
759 
760  default: /* assume autoneg speed and duplex */
763  break;
764  }
765 
766  e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE, data);
767 
768  data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR);
769  if (autoneg_normal) {
770  /* Renegotiate with link partner */
771  data |= BMCR_ANENABLE | BMCR_ANRESTART;
772  } else {
773  /* Don't negotiate speed or duplex */
774  data &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
775 
776  /* Set speed and duplex static */
777  if (current_speed_selection == 10)
778  data &= ~BMCR_SPEED100;
779  else
780  data |= BMCR_SPEED100;
781 
782  if (current_duplex != full)
783  data &= ~BMCR_FULLDPLX;
784  else
785  data |= BMCR_FULLDPLX;
786  }
787  e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR, data);
788 }
789 
790 static void
791 e100_set_speed(struct net_device* dev, unsigned long speed)
792 {
793  struct net_local *np = netdev_priv(dev);
794 
795  spin_lock(&np->transceiver_lock);
796  if (speed != current_speed_selection) {
797  current_speed_selection = speed;
798  e100_negotiate(dev);
799  }
800  spin_unlock(&np->transceiver_lock);
801 }
802 
803 static void
804 e100_check_duplex(unsigned long priv)
805 {
806  struct net_device *dev = (struct net_device *)priv;
807  struct net_local *np = netdev_priv(dev);
808  int old_duplex;
809 
810  spin_lock(&np->transceiver_lock);
811  old_duplex = full_duplex;
812  transceiver->check_duplex(dev);
813  if (old_duplex != full_duplex) {
814  /* Duplex changed */
815  SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
816  *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
817  }
818 
819  /* Reinitialize the timer. */
820  duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
821  add_timer(&duplex_timer);
822  np->mii_if.full_duplex = full_duplex;
823  spin_unlock(&np->transceiver_lock);
824 }
825 #if defined(CONFIG_ETRAX_NO_PHY)
826 static void
827 dummy_check_duplex(struct net_device* dev)
828 {
829  full_duplex = 1;
830 }
831 #else
832 static void
833 generic_check_duplex(struct net_device* dev)
834 {
835  unsigned long data;
836  struct net_local *np = netdev_priv(dev);
837 
838  data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE);
839  if ((data & ADVERTISE_10FULL) ||
840  (data & ADVERTISE_100FULL))
841  full_duplex = 1;
842  else
843  full_duplex = 0;
844 }
845 
846 static void
847 tdk_check_duplex(struct net_device* dev)
848 {
849  unsigned long data;
850  struct net_local *np = netdev_priv(dev);
851 
852  data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
854  full_duplex = (data & MDIO_TDK_DIAGNOSTIC_DPLX) ? 1 : 0;
855 }
856 
857 static void
858 broadcom_check_duplex(struct net_device* dev)
859 {
860  unsigned long data;
861  struct net_local *np = netdev_priv(dev);
862 
863  data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
865  full_duplex = (data & MDIO_BC_FULL_DUPLEX_IND) ? 1 : 0;
866 }
867 
868 static void
869 intel_check_duplex(struct net_device* dev)
870 {
871  unsigned long data;
872  struct net_local *np = netdev_priv(dev);
873 
874  data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
876  full_duplex = (data & MDIO_INT_FULL_DUPLEX_IND) ? 1 : 0;
877 }
878 #endif
879 static void
880 e100_set_duplex(struct net_device* dev, enum duplex new_duplex)
881 {
882  struct net_local *np = netdev_priv(dev);
883 
884  spin_lock(&np->transceiver_lock);
885  if (new_duplex != current_duplex) {
886  current_duplex = new_duplex;
887  e100_negotiate(dev);
888  }
889  spin_unlock(&np->transceiver_lock);
890 }
891 
892 static int
893 e100_probe_transceiver(struct net_device* dev)
894 {
895  int ret = 0;
896 
897 #if !defined(CONFIG_ETRAX_NO_PHY)
898  unsigned int phyid_high;
899  unsigned int phyid_low;
900  unsigned int oui;
901  struct transceiver_ops* ops = NULL;
902  struct net_local *np = netdev_priv(dev);
903 
904  spin_lock(&np->transceiver_lock);
905 
906  /* Probe MDIO physical address */
907  for (np->mii_if.phy_id = 0; np->mii_if.phy_id <= 31;
908  np->mii_if.phy_id++) {
909  if (e100_get_mdio_reg(dev,
910  np->mii_if.phy_id, MII_BMSR) != 0xffff)
911  break;
912  }
913  if (np->mii_if.phy_id == 32) {
914  ret = -ENODEV;
915  goto out;
916  }
917 
918  /* Get manufacturer */
919  phyid_high = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID1);
920  phyid_low = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID2);
921  oui = (phyid_high << 6) | (phyid_low >> 10);
922 
923  for (ops = &transceivers[0]; ops->oui; ops++) {
924  if (ops->oui == oui)
925  break;
926  }
927  transceiver = ops;
928 out:
929  spin_unlock(&np->transceiver_lock);
930 #endif
931  return ret;
932 }
933 
934 static int
935 e100_get_mdio_reg(struct net_device *dev, int phy_id, int location)
936 {
937  unsigned short cmd; /* Data to be sent on MDIO port */
938  int data; /* Data read from MDIO */
939  int bitCounter;
940 
941  /* Start of frame, OP Code, Physical Address, Register Address */
942  cmd = (MDIO_START << 14) | (MDIO_READ << 12) | (phy_id << 7) |
943  (location << 2);
944 
945  e100_send_mdio_cmd(cmd, 0);
946 
947  data = 0;
948 
949  /* Data... */
950  for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
951  data |= (e100_receive_mdio_bit() << bitCounter);
952  }
953 
954  return data;
955 }
956 
957 static void
958 e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value)
959 {
960  int bitCounter;
961  unsigned short cmd;
962 
963  cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (phy_id << 7) |
964  (location << 2);
965 
966  e100_send_mdio_cmd(cmd, 1);
967 
968  /* Data... */
969  for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
970  e100_send_mdio_bit(GET_BIT(bitCounter, value));
971  }
972 
973 }
974 
975 static void
976 e100_send_mdio_cmd(unsigned short cmd, int write_cmd)
977 {
978  int bitCounter;
979  unsigned char data = 0x2;
980 
981  /* Preamble */
982  for (bitCounter = 31; bitCounter>= 0; bitCounter--)
983  e100_send_mdio_bit(GET_BIT(bitCounter, MDIO_PREAMBLE));
984 
985  for (bitCounter = 15; bitCounter >= 2; bitCounter--)
986  e100_send_mdio_bit(GET_BIT(bitCounter, cmd));
987 
988  /* Turnaround */
989  for (bitCounter = 1; bitCounter >= 0 ; bitCounter--)
990  if (write_cmd)
991  e100_send_mdio_bit(GET_BIT(bitCounter, data));
992  else
993  e100_receive_mdio_bit();
994 }
995 
996 static void
997 e100_send_mdio_bit(unsigned char bit)
998 {
999  *R_NETWORK_MGM_CTRL =
1000  IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
1001  IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
1002  udelay(1);
1003  *R_NETWORK_MGM_CTRL =
1004  IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
1005  IO_MASK(R_NETWORK_MGM_CTRL, mdck) |
1006  IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
1007  udelay(1);
1008 }
1009 
1010 static unsigned char
1011 e100_receive_mdio_bit(void)
1012 {
1013  unsigned char bit;
1014  *R_NETWORK_MGM_CTRL = 0;
1015  bit = IO_EXTRACT(R_NETWORK_STAT, mdio, *R_NETWORK_STAT);
1016  udelay(1);
1017  *R_NETWORK_MGM_CTRL = IO_MASK(R_NETWORK_MGM_CTRL, mdck);
1018  udelay(1);
1019  return bit;
1020 }
1021 
1022 static void
1023 e100_reset_transceiver(struct net_device* dev)
1024 {
1025  struct net_local *np = netdev_priv(dev);
1026  unsigned short cmd;
1027  unsigned short data;
1028  int bitCounter;
1029 
1030  data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR);
1031 
1032  cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (np->mii_if.phy_id << 7) | (MII_BMCR << 2);
1033 
1034  e100_send_mdio_cmd(cmd, 1);
1035 
1036  data |= 0x8000;
1037 
1038  for (bitCounter = 15; bitCounter >= 0 ; bitCounter--) {
1039  e100_send_mdio_bit(GET_BIT(bitCounter, data));
1040  }
1041 }
1042 
1043 /* Called by upper layers if they decide it took too long to complete
1044  * sending a packet - we need to reset and stuff.
1045  */
1046 
1047 static void
1048 e100_tx_timeout(struct net_device *dev)
1049 {
1050  struct net_local *np = netdev_priv(dev);
1051  unsigned long flags;
1052 
1053  spin_lock_irqsave(&np->lock, flags);
1054 
1055  printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name,
1056  tx_done(dev) ? "IRQ problem" : "network cable problem");
1057 
1058  /* remember we got an error */
1059 
1060  dev->stats.tx_errors++;
1061 
1062  /* reset the TX DMA in case it has hung on something */
1063 
1066 
1067  /* Reset the transceiver. */
1068 
1069  e100_reset_transceiver(dev);
1070 
1071  /* and get rid of the packets that never got an interrupt */
1072  while (myFirstTxDesc != myNextTxDesc) {
1073  dev_kfree_skb(myFirstTxDesc->skb);
1074  myFirstTxDesc->skb = 0;
1075  myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
1076  }
1077 
1078  /* Set up transmit DMA channel so it can be restarted later */
1079  *R_DMA_CH0_FIRST = 0;
1080  *R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);
1081 
1082  /* tell the upper layers we're ok again */
1083 
1084  netif_wake_queue(dev);
1085  spin_unlock_irqrestore(&np->lock, flags);
1086 }
1087 
1088 
1089 /* This will only be invoked if the driver is _not_ in XOFF state.
1090  * What this means is that we need not check it, and that this
1091  * invariant will hold if we make sure that the netif_*_queue()
1092  * calls are done at the proper times.
1093  */
1094 
1095 static int
1096 e100_send_packet(struct sk_buff *skb, struct net_device *dev)
1097 {
1098  struct net_local *np = netdev_priv(dev);
1099  unsigned char *buf = skb->data;
1100  unsigned long flags;
1101 
1102 #ifdef ETHDEBUG
1103  printk("send packet len %d\n", length);
1104 #endif
1105  spin_lock_irqsave(&np->lock, flags); /* protect from tx_interrupt and ourself */
1106 
1107  myNextTxDesc->skb = skb;
1108 
1109  dev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
1110 
1111  e100_hardware_send_packet(np, buf, skb->len);
1112 
1113  myNextTxDesc = phys_to_virt(myNextTxDesc->descr.next);
1114 
1115  /* Stop queue if full */
1116  if (myNextTxDesc == myFirstTxDesc) {
1117  netif_stop_queue(dev);
1118  }
1119 
1120  spin_unlock_irqrestore(&np->lock, flags);
1121 
1122  return NETDEV_TX_OK;
1123 }
1124 
1125 /*
1126  * The typical workload of the driver:
1127  * Handle the network interface interrupts.
1128  */
1129 
1130 static irqreturn_t
1131 e100rxtx_interrupt(int irq, void *dev_id)
1132 {
1133  struct net_device *dev = (struct net_device *)dev_id;
1134  unsigned long irqbits;
1135 
1136  /*
1137  * Note that both rx and tx interrupts are blocked at this point,
1138  * regardless of which got us here.
1139  */
1140 
1141  irqbits = *R_IRQ_MASK2_RD;
1142 
1143  /* Handle received packets */
1144  if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma1_eop, active)) {
1145  /* acknowledge the eop interrupt */
1146 
1147  *R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
1148 
1149  /* check if one or more complete packets were indeed received */
1150 
1151  while ((*R_DMA_CH1_FIRST != virt_to_phys(myNextRxDesc)) &&
1152  (myNextRxDesc != myLastRxDesc)) {
1153  /* Take out the buffer and give it to the OS, then
1154  * allocate a new buffer to put a packet in.
1155  */
1156  e100_rx(dev);
1157  dev->stats.rx_packets++;
1158  /* restart/continue on the channel, for safety */
1159  *R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, restart);
1160  /* clear dma channel 1 eop/descr irq bits */
1161  *R_DMA_CH1_CLR_INTR =
1162  IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do) |
1163  IO_STATE(R_DMA_CH1_CLR_INTR, clr_descr, do);
1164 
1165  /* now, we might have gotten another packet
1166  so we have to loop back and check if so */
1167  }
1168  }
1169 
1170  /* Report any packets that have been sent */
1171  while (virt_to_phys(myFirstTxDesc) != *R_DMA_CH0_FIRST &&
1172  (netif_queue_stopped(dev) || myFirstTxDesc != myNextTxDesc)) {
1173  dev->stats.tx_bytes += myFirstTxDesc->skb->len;
1174  dev->stats.tx_packets++;
1175 
1176  /* dma is ready with the transmission of the data in tx_skb, so now
1177  we can release the skb memory */
1178  dev_kfree_skb_irq(myFirstTxDesc->skb);
1179  myFirstTxDesc->skb = 0;
1180  myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
1181  /* Wake up queue. */
1182  netif_wake_queue(dev);
1183  }
1184 
1185  if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma0_eop, active)) {
1186  /* acknowledge the eop interrupt. */
1187  *R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
1188  }
1189 
1190  return IRQ_HANDLED;
1191 }
1192 
1193 static irqreturn_t
1194 e100nw_interrupt(int irq, void *dev_id)
1195 {
1196  struct net_device *dev = (struct net_device *)dev_id;
1197  unsigned long irqbits = *R_IRQ_MASK0_RD;
1198 
1199  /* check for underrun irq */
1200  if (irqbits & IO_STATE(R_IRQ_MASK0_RD, underrun, active)) {
1201  SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
1202  *R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
1203  SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop);
1204  dev->stats.tx_errors++;
1205  D(printk("ethernet receiver underrun!\n"));
1206  }
1207 
1208  /* check for overrun irq */
1209  if (irqbits & IO_STATE(R_IRQ_MASK0_RD, overrun, active)) {
1210  update_rx_stats(&dev->stats); /* this will ack the irq */
1211  D(printk("ethernet receiver overrun!\n"));
1212  }
1213  /* check for excessive collision irq */
1214  if (irqbits & IO_STATE(R_IRQ_MASK0_RD, excessive_col, active)) {
1215  SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
1216  *R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
1217  SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop);
1218  dev->stats.tx_errors++;
1219  D(printk("ethernet excessive collisions!\n"));
1220  }
1221  return IRQ_HANDLED;
1222 }
1223 
1224 /* We have a good packet(s), get it/them out of the buffers. */
1225 static void
1226 e100_rx(struct net_device *dev)
1227 {
1228  struct sk_buff *skb;
1229  int length = 0;
1230  struct net_local *np = netdev_priv(dev);
1231  unsigned char *skb_data_ptr;
1232 #ifdef ETHDEBUG
1233  int i;
1234 #endif
1235  etrax_eth_descr *prevRxDesc; /* The descriptor right before myNextRxDesc */
1236  spin_lock(&np->led_lock);
1237  if (!led_active && time_after(jiffies, led_next_time)) {
1238  /* light the network leds depending on the current speed. */
1239  e100_set_network_leds(NETWORK_ACTIVITY);
1240 
1241  /* Set the earliest time we may clear the LED */
1242  led_next_time = jiffies + NET_FLASH_TIME;
1243  led_active = 1;
1244  mod_timer(&clear_led_timer, jiffies + HZ/10);
1245  }
1246  spin_unlock(&np->led_lock);
1247 
1248  length = myNextRxDesc->descr.hw_len - 4;
1249  dev->stats.rx_bytes += length;
1250 
1251 #ifdef ETHDEBUG
1252  printk("Got a packet of length %d:\n", length);
1253  /* dump the first bytes in the packet */
1254  skb_data_ptr = (unsigned char *)phys_to_virt(myNextRxDesc->descr.buf);
1255  for (i = 0; i < 8; i++) {
1256  printk("%d: %.2x %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", i * 8,
1257  skb_data_ptr[0],skb_data_ptr[1],skb_data_ptr[2],skb_data_ptr[3],
1258  skb_data_ptr[4],skb_data_ptr[5],skb_data_ptr[6],skb_data_ptr[7]);
1259  skb_data_ptr += 8;
1260  }
1261 #endif
1262 
1263  if (length < RX_COPYBREAK) {
1264  /* Small packet, copy data */
1265  skb = dev_alloc_skb(length - ETHER_HEAD_LEN);
1266  if (!skb) {
1267  dev->stats.rx_errors++;
1268  printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
1269  goto update_nextrxdesc;
1270  }
1271 
1272  skb_put(skb, length - ETHER_HEAD_LEN); /* allocate room for the packet body */
1273  skb_data_ptr = skb_push(skb, ETHER_HEAD_LEN); /* allocate room for the header */
1274 
1275 #ifdef ETHDEBUG
1276  printk("head = 0x%x, data = 0x%x, tail = 0x%x, end = 0x%x\n",
1277  skb->head, skb->data, skb_tail_pointer(skb),
1278  skb_end_pointer(skb));
1279  printk("copying packet to 0x%x.\n", skb_data_ptr);
1280 #endif
1281 
1282  memcpy(skb_data_ptr, phys_to_virt(myNextRxDesc->descr.buf), length);
1283  }
1284  else {
1285  /* Large packet, send directly to upper layers and allocate new
1286  * memory (aligned to cache line boundary to avoid bug).
1287  * Before sending the skb to upper layers we must make sure
1288  * that skb->data points to the aligned start of the packet.
1289  */
1290  int align;
1291  struct sk_buff *new_skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
1292  if (!new_skb) {
1293  dev->stats.rx_errors++;
1294  printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
1295  goto update_nextrxdesc;
1296  }
1297  skb = myNextRxDesc->skb;
1298  align = (int)phys_to_virt(myNextRxDesc->descr.buf) - (int)skb->data;
1299  skb_put(skb, length + align);
1300  skb_pull(skb, align); /* Remove alignment bytes */
1301  myNextRxDesc->skb = new_skb;
1302  myNextRxDesc->descr.buf = L1_CACHE_ALIGN(virt_to_phys(myNextRxDesc->skb->data));
1303  }
1304 
1305  skb->protocol = eth_type_trans(skb, dev);
1306 
1307  /* Send the packet to the upper layers */
1308  netif_rx(skb);
1309 
1310  update_nextrxdesc:
1311  /* Prepare for next packet */
1312  myNextRxDesc->descr.status = 0;
1313  prevRxDesc = myNextRxDesc;
1314  myNextRxDesc = phys_to_virt(myNextRxDesc->descr.next);
1315 
1316  rx_queue_len++;
1317 
1318  /* Check if descriptors should be returned */
1319  if (rx_queue_len == RX_QUEUE_THRESHOLD) {
1321  prevRxDesc->descr.ctrl |= d_eol;
1322  myLastRxDesc->descr.ctrl &= ~d_eol;
1323  myLastRxDesc = prevRxDesc;
1324  rx_queue_len = 0;
1325  }
1326 }
1327 
1328 /* The inverse routine to net_open(). */
1329 static int
1330 e100_close(struct net_device *dev)
1331 {
1332  printk(KERN_INFO "Closing %s.\n", dev->name);
1333 
1334  netif_stop_queue(dev);
1335 
1336  *R_IRQ_MASK0_CLR =
1337  IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
1338  IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
1339  IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
1340 
1341  *R_IRQ_MASK2_CLR =
1342  IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
1343  IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
1344  IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
1345  IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
1346 
1347  /* Stop the receiver and the transmitter */
1348 
1351 
1352  /* Flush the Tx and disable Rx here. */
1353 
1354  free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
1355  free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
1356  free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
1357 
1358  cris_free_dma(NETWORK_TX_DMA_NBR, cardname);
1359  cris_free_dma(NETWORK_RX_DMA_NBR, cardname);
1360 
1361  /* Update the statistics here. */
1362 
1363  update_rx_stats(&dev->stats);
1364  update_tx_stats(&dev->stats);
1365 
1366  /* Stop speed/duplex timers */
1367  del_timer(&speed_timer);
1368  del_timer(&duplex_timer);
1369 
1370  return 0;
1371 }
1372 
1373 static int
1374 e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1375 {
1376  struct mii_ioctl_data *data = if_mii(ifr);
1377  struct net_local *np = netdev_priv(dev);
1378  int rc = 0;
1379  int old_autoneg;
1380 
1381  spin_lock(&np->lock); /* Preempt protection */
1382  switch (cmd) {
1383  /* The ioctls below should be considered obsolete but are */
1384  /* still present for compatibility with old scripts/apps */
1385  case SET_ETH_SPEED_10: /* 10 Mbps */
1386  e100_set_speed(dev, 10);
1387  break;
1388  case SET_ETH_SPEED_100: /* 100 Mbps */
1389  e100_set_speed(dev, 100);
1390  break;
1391  case SET_ETH_SPEED_AUTO: /* Auto-negotiate speed */
1392  e100_set_speed(dev, 0);
1393  break;
1394  case SET_ETH_DUPLEX_HALF: /* Half duplex */
1395  e100_set_duplex(dev, half);
1396  break;
1397  case SET_ETH_DUPLEX_FULL: /* Full duplex */
1398  e100_set_duplex(dev, full);
1399  break;
1400  case SET_ETH_DUPLEX_AUTO: /* Auto-negotiate duplex */
1401  e100_set_duplex(dev, autoneg);
1402  break;
1403  case SET_ETH_AUTONEG:
1404  old_autoneg = autoneg_normal;
1405  autoneg_normal = *(int*)data;
1406  if (autoneg_normal != old_autoneg)
1407  e100_negotiate(dev);
1408  break;
1409  default:
1410  rc = generic_mii_ioctl(&np->mii_if, if_mii(ifr),
1411  cmd, NULL);
1412  break;
1413  }
1414  spin_unlock(&np->lock);
1415  return rc;
1416 }
1417 
1418 static int e100_get_settings(struct net_device *dev,
1419  struct ethtool_cmd *cmd)
1420 {
1421  struct net_local *np = netdev_priv(dev);
1422  int err;
1423 
1424  spin_lock_irq(&np->lock);
1425  err = mii_ethtool_gset(&np->mii_if, cmd);
1426  spin_unlock_irq(&np->lock);
1427 
1428  /* The PHY may support 1000baseT, but the Etrax100 does not. */
1431  return err;
1432 }
1433 
1434 static int e100_set_settings(struct net_device *dev,
1435  struct ethtool_cmd *ecmd)
1436 {
1437  if (ecmd->autoneg == AUTONEG_ENABLE) {
1438  e100_set_duplex(dev, autoneg);
1439  e100_set_speed(dev, 0);
1440  } else {
1441  e100_set_duplex(dev, ecmd->duplex == DUPLEX_HALF ? half : full);
1442  e100_set_speed(dev, ecmd->speed == SPEED_10 ? 10: 100);
1443  }
1444 
1445  return 0;
1446 }
1447 
1448 static void e100_get_drvinfo(struct net_device *dev,
1449  struct ethtool_drvinfo *info)
1450 {
1451  strncpy(info->driver, "ETRAX 100LX", sizeof(info->driver) - 1);
1452  strncpy(info->version, "$Revision: 1.31 $", sizeof(info->version) - 1);
1453  strncpy(info->fw_version, "N/A", sizeof(info->fw_version) - 1);
1454  strncpy(info->bus_info, "N/A", sizeof(info->bus_info) - 1);
1455 }
1456 
1457 static int e100_nway_reset(struct net_device *dev)
1458 {
1459  if (current_duplex == autoneg && current_speed_selection == 0)
1460  e100_negotiate(dev);
1461  return 0;
1462 }
1463 
1464 static const struct ethtool_ops e100_ethtool_ops = {
1465  .get_settings = e100_get_settings,
1466  .set_settings = e100_set_settings,
1467  .get_drvinfo = e100_get_drvinfo,
1468  .nway_reset = e100_nway_reset,
1469  .get_link = ethtool_op_get_link,
1470 };
1471 
1472 static int
1473 e100_set_config(struct net_device *dev, struct ifmap *map)
1474 {
1475  struct net_local *np = netdev_priv(dev);
1476 
1477  spin_lock(&np->lock); /* Preempt protection */
1478 
1479  switch(map->port) {
1480  case IF_PORT_UNKNOWN:
1481  /* Use autoneg */
1482  e100_set_speed(dev, 0);
1483  e100_set_duplex(dev, autoneg);
1484  break;
1485  case IF_PORT_10BASET:
1486  e100_set_speed(dev, 10);
1487  e100_set_duplex(dev, autoneg);
1488  break;
1489  case IF_PORT_100BASET:
1490  case IF_PORT_100BASETX:
1491  e100_set_speed(dev, 100);
1492  e100_set_duplex(dev, autoneg);
1493  break;
1494  case IF_PORT_100BASEFX:
1495  case IF_PORT_10BASE2:
1496  case IF_PORT_AUI:
1497  spin_unlock(&np->lock);
1498  return -EOPNOTSUPP;
1499  break;
1500  default:
1501  printk(KERN_ERR "%s: Invalid media selected", dev->name);
1502  spin_unlock(&np->lock);
1503  return -EINVAL;
1504  }
1505  spin_unlock(&np->lock);
1506  return 0;
1507 }
1508 
1509 static void
1510 update_rx_stats(struct net_device_stats *es)
1511 {
1512  unsigned long r = *R_REC_COUNTERS;
1513  /* update stats relevant to reception errors */
1514  es->rx_fifo_errors += IO_EXTRACT(R_REC_COUNTERS, congestion, r);
1515  es->rx_crc_errors += IO_EXTRACT(R_REC_COUNTERS, crc_error, r);
1516  es->rx_frame_errors += IO_EXTRACT(R_REC_COUNTERS, alignment_error, r);
1517  es->rx_length_errors += IO_EXTRACT(R_REC_COUNTERS, oversize, r);
1518 }
1519 
1520 static void
1521 update_tx_stats(struct net_device_stats *es)
1522 {
1523  unsigned long r = *R_TR_COUNTERS;
1524  /* update stats relevant to transmission errors */
1525  es->collisions +=
1526  IO_EXTRACT(R_TR_COUNTERS, single_col, r) +
1527  IO_EXTRACT(R_TR_COUNTERS, multiple_col, r);
1528 }
1529 
1530 /*
1531  * Get the current statistics.
1532  * This may be called with the card open or closed.
1533  */
1534 static struct net_device_stats *
1535 e100_get_stats(struct net_device *dev)
1536 {
1537  struct net_local *lp = netdev_priv(dev);
1538  unsigned long flags;
1539 
1540  spin_lock_irqsave(&lp->lock, flags);
1541 
1542  update_rx_stats(&dev->stats);
1543  update_tx_stats(&dev->stats);
1544 
1545  spin_unlock_irqrestore(&lp->lock, flags);
1546  return &dev->stats;
1547 }
1548 
1549 /*
1550  * Set or clear the multicast filter for this adaptor.
1551  * num_addrs == -1 Promiscuous mode, receive all packets
1552  * num_addrs == 0 Normal mode, clear multicast list
1553  * num_addrs > 0 Multicast mode, receive normal and MC packets,
1554  * and do best-effort filtering.
1555  */
1556 static void
1557 set_multicast_list(struct net_device *dev)
1558 {
1559  struct net_local *lp = netdev_priv(dev);
1560  int num_addr = netdev_mc_count(dev);
1561  unsigned long int lo_bits;
1562  unsigned long int hi_bits;
1563 
1564  spin_lock(&lp->lock);
1565  if (dev->flags & IFF_PROMISC) {
1566  /* promiscuous mode */
1567  lo_bits = 0xfffffffful;
1568  hi_bits = 0xfffffffful;
1569 
1570  /* Enable individual receive */
1571  SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, receive);
1572  *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1573  } else if (dev->flags & IFF_ALLMULTI) {
1574  /* enable all multicasts */
1575  lo_bits = 0xfffffffful;
1576  hi_bits = 0xfffffffful;
1577 
1578  /* Disable individual receive */
1579  SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1580  *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1581  } else if (num_addr == 0) {
1582  /* Normal, clear the mc list */
1583  lo_bits = 0x00000000ul;
1584  hi_bits = 0x00000000ul;
1585 
1586  /* Disable individual receive */
1587  SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1588  *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1589  } else {
1590  /* MC mode, receive normal and MC packets */
1591  char hash_ix;
1592  struct netdev_hw_addr *ha;
1593  char *baddr;
1594 
1595  lo_bits = 0x00000000ul;
1596  hi_bits = 0x00000000ul;
1597  netdev_for_each_mc_addr(ha, dev) {
1598  /* Calculate the hash index for the GA registers */
1599 
1600  hash_ix = 0;
1601  baddr = ha->addr;
1602  hash_ix ^= (*baddr) & 0x3f;
1603  hash_ix ^= ((*baddr) >> 6) & 0x03;
1604  ++baddr;
1605  hash_ix ^= ((*baddr) << 2) & 0x03c;
1606  hash_ix ^= ((*baddr) >> 4) & 0xf;
1607  ++baddr;
1608  hash_ix ^= ((*baddr) << 4) & 0x30;
1609  hash_ix ^= ((*baddr) >> 2) & 0x3f;
1610  ++baddr;
1611  hash_ix ^= (*baddr) & 0x3f;
1612  hash_ix ^= ((*baddr) >> 6) & 0x03;
1613  ++baddr;
1614  hash_ix ^= ((*baddr) << 2) & 0x03c;
1615  hash_ix ^= ((*baddr) >> 4) & 0xf;
1616  ++baddr;
1617  hash_ix ^= ((*baddr) << 4) & 0x30;
1618  hash_ix ^= ((*baddr) >> 2) & 0x3f;
1619 
1620  hash_ix &= 0x3f;
1621 
1622  if (hash_ix >= 32) {
1623  hi_bits |= (1 << (hash_ix-32));
1624  } else {
1625  lo_bits |= (1 << hash_ix);
1626  }
1627  }
1628  /* Disable individual receive */
1629  SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1630  *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1631  }
1632  *R_NETWORK_GA_0 = lo_bits;
1633  *R_NETWORK_GA_1 = hi_bits;
1634  spin_unlock(&lp->lock);
1635 }
1636 
1637 void
1638 e100_hardware_send_packet(struct net_local *np, char *buf, int length)
1639 {
1640  D(printk("e100 send pack, buf 0x%x len %d\n", buf, length));
1641 
1642  spin_lock(&np->led_lock);
1643  if (!led_active && time_after(jiffies, led_next_time)) {
1644  /* light the network leds depending on the current speed. */
1645  e100_set_network_leds(NETWORK_ACTIVITY);
1646 
1647  /* Set the earliest time we may clear the LED */
1648  led_next_time = jiffies + NET_FLASH_TIME;
1649  led_active = 1;
1650  mod_timer(&clear_led_timer, jiffies + HZ/10);
1651  }
1652  spin_unlock(&np->led_lock);
1653 
1654  /* configure the tx dma descriptor */
1655  myNextTxDesc->descr.sw_len = length;
1656  myNextTxDesc->descr.ctrl = d_eop | d_eol | d_wait;
1657  myNextTxDesc->descr.buf = virt_to_phys(buf);
1658 
1659  /* Move end of list */
1660  myLastTxDesc->descr.ctrl &= ~d_eol;
1661  myLastTxDesc = myNextTxDesc;
1662 
1663  /* Restart DMA channel */
1664  *R_DMA_CH0_CMD = IO_STATE(R_DMA_CH0_CMD, cmd, restart);
1665 }
1666 
1667 static void
1668 e100_clear_network_leds(unsigned long dummy)
1669 {
1670  struct net_device *dev = (struct net_device *)dummy;
1671  struct net_local *np = netdev_priv(dev);
1672 
1673  spin_lock(&np->led_lock);
1674 
1675  if (led_active && time_after(jiffies, led_next_time)) {
1676  e100_set_network_leds(NO_NETWORK_ACTIVITY);
1677 
1678  /* Set the earliest time we may set the LED */
1679  led_next_time = jiffies + NET_FLASH_PAUSE;
1680  led_active = 0;
1681  }
1682 
1683  spin_unlock(&np->led_lock);
1684 }
1685 
1686 static void
1687 e100_set_network_leds(int active)
1688 {
1689 #if defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK)
1690  int light_leds = (active == NO_NETWORK_ACTIVITY);
1691 #elif defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY)
1692  int light_leds = (active == NETWORK_ACTIVITY);
1693 #else
1694 #error "Define either CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK or CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY"
1695 #endif
1696 
1697  if (!current_speed) {
1698  /* Make LED red, link is down */
1700  } else if (light_leds) {
1701  if (current_speed == 10) {
1703  } else {
1705  }
1706  } else {
1708  }
1709 }
1710 
1711 #ifdef CONFIG_NET_POLL_CONTROLLER
1712 static void
1713 e100_netpoll(struct net_device* netdev)
1714 {
1715  e100rxtx_interrupt(NETWORK_DMA_TX_IRQ_NBR, netdev);
1716 }
1717 #endif
1718 
1719 static int
1720 etrax_init_module(void)
1721 {
1722  return etrax_ethernet_init();
1723 }
1724 
1725 static int __init
1726 e100_boot_setup(char* str)
1727 {
1728  struct sockaddr sa = {0};
1729  int i;
1730 
1731  /* Parse the colon separated Ethernet station address */
1732  for (i = 0; i < ETH_ALEN; i++) {
1733  unsigned int tmp;
1734  if (sscanf(str + 3*i, "%2x", &tmp) != 1) {
1735  printk(KERN_WARNING "Malformed station address");
1736  return 0;
1737  }
1738  sa.sa_data[i] = (char)tmp;
1739  }
1740 
1741  default_mac = sa;
1742  return 1;
1743 }
1744 
1745 __setup("etrax100_eth=", e100_boot_setup);
1746 
1747 module_init(etrax_init_module);