Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
extent_io.c
Go to the documentation of this file.
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27 
28 static LIST_HEAD(buffers);
29 static LIST_HEAD(states);
30 
31 #define LEAK_DEBUG 0
32 #if LEAK_DEBUG
33 static DEFINE_SPINLOCK(leak_lock);
34 #endif
35 
36 #define BUFFER_LRU_MAX 64
37 
38 struct tree_entry {
41  struct rb_node rb_node;
42 };
43 
45  struct bio *bio;
48  unsigned long bio_flags;
49 
50  /* tells writepage not to lock the state bits for this range
51  * it still does the unlocking
52  */
53  unsigned int extent_locked:1;
54 
55  /* tells the submit_bio code to use a WRITE_SYNC */
56  unsigned int sync_io:1;
57 };
58 
59 static noinline void flush_write_bio(void *data);
60 static inline struct btrfs_fs_info *
61 tree_fs_info(struct extent_io_tree *tree)
62 {
63  return btrfs_sb(tree->mapping->host->i_sb);
64 }
65 
67 {
68  extent_state_cache = kmem_cache_create("btrfs_extent_state",
69  sizeof(struct extent_state), 0,
71  if (!extent_state_cache)
72  return -ENOMEM;
73 
74  extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
75  sizeof(struct extent_buffer), 0,
77  if (!extent_buffer_cache)
78  goto free_state_cache;
79  return 0;
80 
81 free_state_cache:
82  kmem_cache_destroy(extent_state_cache);
83  return -ENOMEM;
84 }
85 
86 void extent_io_exit(void)
87 {
88  struct extent_state *state;
89  struct extent_buffer *eb;
90 
91  while (!list_empty(&states)) {
92  state = list_entry(states.next, struct extent_state, leak_list);
93  printk(KERN_ERR "btrfs state leak: start %llu end %llu "
94  "state %lu in tree %p refs %d\n",
95  (unsigned long long)state->start,
96  (unsigned long long)state->end,
97  state->state, state->tree, atomic_read(&state->refs));
98  list_del(&state->leak_list);
99  kmem_cache_free(extent_state_cache, state);
100 
101  }
102 
103  while (!list_empty(&buffers)) {
104  eb = list_entry(buffers.next, struct extent_buffer, leak_list);
105  printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
106  "refs %d\n", (unsigned long long)eb->start,
107  eb->len, atomic_read(&eb->refs));
108  list_del(&eb->leak_list);
109  kmem_cache_free(extent_buffer_cache, eb);
110  }
111 
112  /*
113  * Make sure all delayed rcu free are flushed before we
114  * destroy caches.
115  */
116  rcu_barrier();
117  if (extent_state_cache)
118  kmem_cache_destroy(extent_state_cache);
119  if (extent_buffer_cache)
120  kmem_cache_destroy(extent_buffer_cache);
121 }
122 
124  struct address_space *mapping)
125 {
126  tree->state = RB_ROOT;
128  tree->ops = NULL;
129  tree->dirty_bytes = 0;
130  spin_lock_init(&tree->lock);
131  spin_lock_init(&tree->buffer_lock);
132  tree->mapping = mapping;
133 }
134 
135 static struct extent_state *alloc_extent_state(gfp_t mask)
136 {
137  struct extent_state *state;
138 #if LEAK_DEBUG
139  unsigned long flags;
140 #endif
141 
142  state = kmem_cache_alloc(extent_state_cache, mask);
143  if (!state)
144  return state;
145  state->state = 0;
146  state->private = 0;
147  state->tree = NULL;
148 #if LEAK_DEBUG
149  spin_lock_irqsave(&leak_lock, flags);
150  list_add(&state->leak_list, &states);
151  spin_unlock_irqrestore(&leak_lock, flags);
152 #endif
153  atomic_set(&state->refs, 1);
154  init_waitqueue_head(&state->wq);
155  trace_alloc_extent_state(state, mask, _RET_IP_);
156  return state;
157 }
158 
159 void free_extent_state(struct extent_state *state)
160 {
161  if (!state)
162  return;
163  if (atomic_dec_and_test(&state->refs)) {
164 #if LEAK_DEBUG
165  unsigned long flags;
166 #endif
167  WARN_ON(state->tree);
168 #if LEAK_DEBUG
169  spin_lock_irqsave(&leak_lock, flags);
170  list_del(&state->leak_list);
171  spin_unlock_irqrestore(&leak_lock, flags);
172 #endif
173  trace_free_extent_state(state, _RET_IP_);
174  kmem_cache_free(extent_state_cache, state);
175  }
176 }
177 
178 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
179  struct rb_node *node)
180 {
181  struct rb_node **p = &root->rb_node;
182  struct rb_node *parent = NULL;
183  struct tree_entry *entry;
184 
185  while (*p) {
186  parent = *p;
187  entry = rb_entry(parent, struct tree_entry, rb_node);
188 
190  p = &(*p)->rb_left;
191  else if (offset > entry->end)
192  p = &(*p)->rb_right;
193  else
194  return parent;
195  }
196 
197  rb_link_node(node, parent, p);
198  rb_insert_color(node, root);
199  return NULL;
200 }
201 
202 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
203  struct rb_node **prev_ret,
204  struct rb_node **next_ret)
205 {
206  struct rb_root *root = &tree->state;
207  struct rb_node *n = root->rb_node;
208  struct rb_node *prev = NULL;
209  struct rb_node *orig_prev = NULL;
210  struct tree_entry *entry;
211  struct tree_entry *prev_entry = NULL;
212 
213  while (n) {
214  entry = rb_entry(n, struct tree_entry, rb_node);
215  prev = n;
216  prev_entry = entry;
217 
219  n = n->rb_left;
220  else if (offset > entry->end)
221  n = n->rb_right;
222  else
223  return n;
224  }
225 
226  if (prev_ret) {
227  orig_prev = prev;
228  while (prev && offset > prev_entry->end) {
229  prev = rb_next(prev);
230  prev_entry = rb_entry(prev, struct tree_entry, rb_node);
231  }
232  *prev_ret = prev;
233  prev = orig_prev;
234  }
235 
236  if (next_ret) {
237  prev_entry = rb_entry(prev, struct tree_entry, rb_node);
238  while (prev && offset < prev_entry->start) {
239  prev = rb_prev(prev);
240  prev_entry = rb_entry(prev, struct tree_entry, rb_node);
241  }
242  *next_ret = prev;
243  }
244  return NULL;
245 }
246 
247 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
248  u64 offset)
249 {
250  struct rb_node *prev = NULL;
251  struct rb_node *ret;
252 
253  ret = __etree_search(tree, offset, &prev, NULL);
254  if (!ret)
255  return prev;
256  return ret;
257 }
258 
259 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
260  struct extent_state *other)
261 {
262  if (tree->ops && tree->ops->merge_extent_hook)
263  tree->ops->merge_extent_hook(tree->mapping->host, new,
264  other);
265 }
266 
267 /*
268  * utility function to look for merge candidates inside a given range.
269  * Any extents with matching state are merged together into a single
270  * extent in the tree. Extents with EXTENT_IO in their state field
271  * are not merged because the end_io handlers need to be able to do
272  * operations on them without sleeping (or doing allocations/splits).
273  *
274  * This should be called with the tree lock held.
275  */
276 static void merge_state(struct extent_io_tree *tree,
277  struct extent_state *state)
278 {
279  struct extent_state *other;
280  struct rb_node *other_node;
281 
282  if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
283  return;
284 
285  other_node = rb_prev(&state->rb_node);
286  if (other_node) {
287  other = rb_entry(other_node, struct extent_state, rb_node);
288  if (other->end == state->start - 1 &&
289  other->state == state->state) {
290  merge_cb(tree, state, other);
291  state->start = other->start;
292  other->tree = NULL;
293  rb_erase(&other->rb_node, &tree->state);
294  free_extent_state(other);
295  }
296  }
297  other_node = rb_next(&state->rb_node);
298  if (other_node) {
299  other = rb_entry(other_node, struct extent_state, rb_node);
300  if (other->start == state->end + 1 &&
301  other->state == state->state) {
302  merge_cb(tree, state, other);
303  state->end = other->end;
304  other->tree = NULL;
305  rb_erase(&other->rb_node, &tree->state);
306  free_extent_state(other);
307  }
308  }
309 }
310 
311 static void set_state_cb(struct extent_io_tree *tree,
312  struct extent_state *state, int *bits)
313 {
314  if (tree->ops && tree->ops->set_bit_hook)
315  tree->ops->set_bit_hook(tree->mapping->host, state, bits);
316 }
317 
318 static void clear_state_cb(struct extent_io_tree *tree,
319  struct extent_state *state, int *bits)
320 {
321  if (tree->ops && tree->ops->clear_bit_hook)
322  tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
323 }
324 
325 static void set_state_bits(struct extent_io_tree *tree,
326  struct extent_state *state, int *bits);
327 
328 /*
329  * insert an extent_state struct into the tree. 'bits' are set on the
330  * struct before it is inserted.
331  *
332  * This may return -EEXIST if the extent is already there, in which case the
333  * state struct is freed.
334  *
335  * The tree lock is not taken internally. This is a utility function and
336  * probably isn't what you want to call (see set/clear_extent_bit).
337  */
338 static int insert_state(struct extent_io_tree *tree,
339  struct extent_state *state, u64 start, u64 end,
340  int *bits)
341 {
342  struct rb_node *node;
343 
344  if (end < start) {
345  printk(KERN_ERR "btrfs end < start %llu %llu\n",
346  (unsigned long long)end,
347  (unsigned long long)start);
348  WARN_ON(1);
349  }
350  state->start = start;
351  state->end = end;
352 
353  set_state_bits(tree, state, bits);
354 
355  node = tree_insert(&tree->state, end, &state->rb_node);
356  if (node) {
357  struct extent_state *found;
358  found = rb_entry(node, struct extent_state, rb_node);
359  printk(KERN_ERR "btrfs found node %llu %llu on insert of "
360  "%llu %llu\n", (unsigned long long)found->start,
361  (unsigned long long)found->end,
362  (unsigned long long)start, (unsigned long long)end);
363  return -EEXIST;
364  }
365  state->tree = tree;
366  merge_state(tree, state);
367  return 0;
368 }
369 
370 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
371  u64 split)
372 {
373  if (tree->ops && tree->ops->split_extent_hook)
374  tree->ops->split_extent_hook(tree->mapping->host, orig, split);
375 }
376 
377 /*
378  * split a given extent state struct in two, inserting the preallocated
379  * struct 'prealloc' as the newly created second half. 'split' indicates an
380  * offset inside 'orig' where it should be split.
381  *
382  * Before calling,
383  * the tree has 'orig' at [orig->start, orig->end]. After calling, there
384  * are two extent state structs in the tree:
385  * prealloc: [orig->start, split - 1]
386  * orig: [ split, orig->end ]
387  *
388  * The tree locks are not taken by this function. They need to be held
389  * by the caller.
390  */
391 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
392  struct extent_state *prealloc, u64 split)
393 {
394  struct rb_node *node;
395 
396  split_cb(tree, orig, split);
397 
398  prealloc->start = orig->start;
399  prealloc->end = split - 1;
400  prealloc->state = orig->state;
401  orig->start = split;
402 
403  node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
404  if (node) {
405  free_extent_state(prealloc);
406  return -EEXIST;
407  }
408  prealloc->tree = tree;
409  return 0;
410 }
411 
412 static struct extent_state *next_state(struct extent_state *state)
413 {
414  struct rb_node *next = rb_next(&state->rb_node);
415  if (next)
416  return rb_entry(next, struct extent_state, rb_node);
417  else
418  return NULL;
419 }
420 
421 /*
422  * utility function to clear some bits in an extent state struct.
423  * it will optionally wake up any one waiting on this state (wake == 1).
424  *
425  * If no bits are set on the state struct after clearing things, the
426  * struct is freed and removed from the tree
427  */
428 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
429  struct extent_state *state,
430  int *bits, int wake)
431 {
432  struct extent_state *next;
433  int bits_to_clear = *bits & ~EXTENT_CTLBITS;
434 
435  if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
436  u64 range = state->end - state->start + 1;
437  WARN_ON(range > tree->dirty_bytes);
438  tree->dirty_bytes -= range;
439  }
440  clear_state_cb(tree, state, bits);
441  state->state &= ~bits_to_clear;
442  if (wake)
443  wake_up(&state->wq);
444  if (state->state == 0) {
445  next = next_state(state);
446  if (state->tree) {
447  rb_erase(&state->rb_node, &tree->state);
448  state->tree = NULL;
449  free_extent_state(state);
450  } else {
451  WARN_ON(1);
452  }
453  } else {
454  merge_state(tree, state);
455  next = next_state(state);
456  }
457  return next;
458 }
459 
460 static struct extent_state *
461 alloc_extent_state_atomic(struct extent_state *prealloc)
462 {
463  if (!prealloc)
464  prealloc = alloc_extent_state(GFP_ATOMIC);
465 
466  return prealloc;
467 }
468 
469 void extent_io_tree_panic(struct extent_io_tree *tree, int err)
470 {
471  btrfs_panic(tree_fs_info(tree), err, "Locking error: "
472  "Extent tree was modified by another "
473  "thread while locked.");
474 }
475 
476 /*
477  * clear some bits on a range in the tree. This may require splitting
478  * or inserting elements in the tree, so the gfp mask is used to
479  * indicate which allocations or sleeping are allowed.
480  *
481  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
482  * the given range from the tree regardless of state (ie for truncate).
483  *
484  * the range [start, end] is inclusive.
485  *
486  * This takes the tree lock, and returns 0 on success and < 0 on error.
487  */
488 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
489  int bits, int wake, int delete,
490  struct extent_state **cached_state,
491  gfp_t mask)
492 {
493  struct extent_state *state;
494  struct extent_state *cached;
495  struct extent_state *prealloc = NULL;
496  struct rb_node *node;
497  u64 last_end;
498  int err;
499  int clear = 0;
500 
501  if (delete)
502  bits |= ~EXTENT_CTLBITS;
503  bits |= EXTENT_FIRST_DELALLOC;
504 
505  if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
506  clear = 1;
507 again:
508  if (!prealloc && (mask & __GFP_WAIT)) {
509  prealloc = alloc_extent_state(mask);
510  if (!prealloc)
511  return -ENOMEM;
512  }
513 
514  spin_lock(&tree->lock);
515  if (cached_state) {
516  cached = *cached_state;
517 
518  if (clear) {
519  *cached_state = NULL;
520  cached_state = NULL;
521  }
522 
523  if (cached && cached->tree && cached->start <= start &&
524  cached->end > start) {
525  if (clear)
526  atomic_dec(&cached->refs);
527  state = cached;
528  goto hit_next;
529  }
530  if (clear)
531  free_extent_state(cached);
532  }
533  /*
534  * this search will find the extents that end after
535  * our range starts
536  */
537  node = tree_search(tree, start);
538  if (!node)
539  goto out;
540  state = rb_entry(node, struct extent_state, rb_node);
541 hit_next:
542  if (state->start > end)
543  goto out;
544  WARN_ON(state->end < start);
545  last_end = state->end;
546 
547  /* the state doesn't have the wanted bits, go ahead */
548  if (!(state->state & bits)) {
549  state = next_state(state);
550  goto next;
551  }
552 
553  /*
554  * | ---- desired range ---- |
555  * | state | or
556  * | ------------- state -------------- |
557  *
558  * We need to split the extent we found, and may flip
559  * bits on second half.
560  *
561  * If the extent we found extends past our range, we
562  * just split and search again. It'll get split again
563  * the next time though.
564  *
565  * If the extent we found is inside our range, we clear
566  * the desired bit on it.
567  */
568 
569  if (state->start < start) {
570  prealloc = alloc_extent_state_atomic(prealloc);
571  BUG_ON(!prealloc);
572  err = split_state(tree, state, prealloc, start);
573  if (err)
574  extent_io_tree_panic(tree, err);
575 
576  prealloc = NULL;
577  if (err)
578  goto out;
579  if (state->end <= end) {
580  state = clear_state_bit(tree, state, &bits, wake);
581  goto next;
582  }
583  goto search_again;
584  }
585  /*
586  * | ---- desired range ---- |
587  * | state |
588  * We need to split the extent, and clear the bit
589  * on the first half
590  */
591  if (state->start <= end && state->end > end) {
592  prealloc = alloc_extent_state_atomic(prealloc);
593  BUG_ON(!prealloc);
594  err = split_state(tree, state, prealloc, end + 1);
595  if (err)
596  extent_io_tree_panic(tree, err);
597 
598  if (wake)
599  wake_up(&state->wq);
600 
601  clear_state_bit(tree, prealloc, &bits, wake);
602 
603  prealloc = NULL;
604  goto out;
605  }
606 
607  state = clear_state_bit(tree, state, &bits, wake);
608 next:
609  if (last_end == (u64)-1)
610  goto out;
611  start = last_end + 1;
612  if (start <= end && state && !need_resched())
613  goto hit_next;
614  goto search_again;
615 
616 out:
617  spin_unlock(&tree->lock);
618  if (prealloc)
619  free_extent_state(prealloc);
620 
621  return 0;
622 
623 search_again:
624  if (start > end)
625  goto out;
626  spin_unlock(&tree->lock);
627  if (mask & __GFP_WAIT)
628  cond_resched();
629  goto again;
630 }
631 
632 static void wait_on_state(struct extent_io_tree *tree,
633  struct extent_state *state)
634  __releases(tree->lock)
635  __acquires(tree->lock)
636 {
637  DEFINE_WAIT(wait);
639  spin_unlock(&tree->lock);
640  schedule();
641  spin_lock(&tree->lock);
642  finish_wait(&state->wq, &wait);
643 }
644 
645 /*
646  * waits for one or more bits to clear on a range in the state tree.
647  * The range [start, end] is inclusive.
648  * The tree lock is taken by this function
649  */
650 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
651 {
652  struct extent_state *state;
653  struct rb_node *node;
654 
655  spin_lock(&tree->lock);
656 again:
657  while (1) {
658  /*
659  * this search will find all the extents that end after
660  * our range starts
661  */
662  node = tree_search(tree, start);
663  if (!node)
664  break;
665 
666  state = rb_entry(node, struct extent_state, rb_node);
667 
668  if (state->start > end)
669  goto out;
670 
671  if (state->state & bits) {
672  start = state->start;
673  atomic_inc(&state->refs);
674  wait_on_state(tree, state);
675  free_extent_state(state);
676  goto again;
677  }
678  start = state->end + 1;
679 
680  if (start > end)
681  break;
682 
683  cond_resched_lock(&tree->lock);
684  }
685 out:
686  spin_unlock(&tree->lock);
687 }
688 
689 static void set_state_bits(struct extent_io_tree *tree,
690  struct extent_state *state,
691  int *bits)
692 {
693  int bits_to_set = *bits & ~EXTENT_CTLBITS;
694 
695  set_state_cb(tree, state, bits);
696  if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
697  u64 range = state->end - state->start + 1;
698  tree->dirty_bytes += range;
699  }
700  state->state |= bits_to_set;
701 }
702 
703 static void cache_state(struct extent_state *state,
704  struct extent_state **cached_ptr)
705 {
706  if (cached_ptr && !(*cached_ptr)) {
707  if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
708  *cached_ptr = state;
709  atomic_inc(&state->refs);
710  }
711  }
712 }
713 
714 static void uncache_state(struct extent_state **cached_ptr)
715 {
716  if (cached_ptr && (*cached_ptr)) {
717  struct extent_state *state = *cached_ptr;
718  *cached_ptr = NULL;
719  free_extent_state(state);
720  }
721 }
722 
723 /*
724  * set some bits on a range in the tree. This may require allocations or
725  * sleeping, so the gfp mask is used to indicate what is allowed.
726  *
727  * If any of the exclusive bits are set, this will fail with -EEXIST if some
728  * part of the range already has the desired bits set. The start of the
729  * existing range is returned in failed_start in this case.
730  *
731  * [start, end] is inclusive This takes the tree lock.
732  */
733 
734 static int __must_check
735 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
736  int bits, int exclusive_bits, u64 *failed_start,
737  struct extent_state **cached_state, gfp_t mask)
738 {
739  struct extent_state *state;
740  struct extent_state *prealloc = NULL;
741  struct rb_node *node;
742  int err = 0;
743  u64 last_start;
744  u64 last_end;
745 
746  bits |= EXTENT_FIRST_DELALLOC;
747 again:
748  if (!prealloc && (mask & __GFP_WAIT)) {
749  prealloc = alloc_extent_state(mask);
750  BUG_ON(!prealloc);
751  }
752 
753  spin_lock(&tree->lock);
754  if (cached_state && *cached_state) {
755  state = *cached_state;
756  if (state->start <= start && state->end > start &&
757  state->tree) {
758  node = &state->rb_node;
759  goto hit_next;
760  }
761  }
762  /*
763  * this search will find all the extents that end after
764  * our range starts.
765  */
766  node = tree_search(tree, start);
767  if (!node) {
768  prealloc = alloc_extent_state_atomic(prealloc);
769  BUG_ON(!prealloc);
770  err = insert_state(tree, prealloc, start, end, &bits);
771  if (err)
772  extent_io_tree_panic(tree, err);
773 
774  prealloc = NULL;
775  goto out;
776  }
777  state = rb_entry(node, struct extent_state, rb_node);
778 hit_next:
779  last_start = state->start;
780  last_end = state->end;
781 
782  /*
783  * | ---- desired range ---- |
784  * | state |
785  *
786  * Just lock what we found and keep going
787  */
788  if (state->start == start && state->end <= end) {
789  if (state->state & exclusive_bits) {
790  *failed_start = state->start;
791  err = -EEXIST;
792  goto out;
793  }
794 
795  set_state_bits(tree, state, &bits);
796  cache_state(state, cached_state);
797  merge_state(tree, state);
798  if (last_end == (u64)-1)
799  goto out;
800  start = last_end + 1;
801  state = next_state(state);
802  if (start < end && state && state->start == start &&
803  !need_resched())
804  goto hit_next;
805  goto search_again;
806  }
807 
808  /*
809  * | ---- desired range ---- |
810  * | state |
811  * or
812  * | ------------- state -------------- |
813  *
814  * We need to split the extent we found, and may flip bits on
815  * second half.
816  *
817  * If the extent we found extends past our
818  * range, we just split and search again. It'll get split
819  * again the next time though.
820  *
821  * If the extent we found is inside our range, we set the
822  * desired bit on it.
823  */
824  if (state->start < start) {
825  if (state->state & exclusive_bits) {
826  *failed_start = start;
827  err = -EEXIST;
828  goto out;
829  }
830 
831  prealloc = alloc_extent_state_atomic(prealloc);
832  BUG_ON(!prealloc);
833  err = split_state(tree, state, prealloc, start);
834  if (err)
835  extent_io_tree_panic(tree, err);
836 
837  prealloc = NULL;
838  if (err)
839  goto out;
840  if (state->end <= end) {
841  set_state_bits(tree, state, &bits);
842  cache_state(state, cached_state);
843  merge_state(tree, state);
844  if (last_end == (u64)-1)
845  goto out;
846  start = last_end + 1;
847  state = next_state(state);
848  if (start < end && state && state->start == start &&
849  !need_resched())
850  goto hit_next;
851  }
852  goto search_again;
853  }
854  /*
855  * | ---- desired range ---- |
856  * | state | or | state |
857  *
858  * There's a hole, we need to insert something in it and
859  * ignore the extent we found.
860  */
861  if (state->start > start) {
862  u64 this_end;
863  if (end < last_start)
864  this_end = end;
865  else
866  this_end = last_start - 1;
867 
868  prealloc = alloc_extent_state_atomic(prealloc);
869  BUG_ON(!prealloc);
870 
871  /*
872  * Avoid to free 'prealloc' if it can be merged with
873  * the later extent.
874  */
875  err = insert_state(tree, prealloc, start, this_end,
876  &bits);
877  if (err)
878  extent_io_tree_panic(tree, err);
879 
880  cache_state(prealloc, cached_state);
881  prealloc = NULL;
882  start = this_end + 1;
883  goto search_again;
884  }
885  /*
886  * | ---- desired range ---- |
887  * | state |
888  * We need to split the extent, and set the bit
889  * on the first half
890  */
891  if (state->start <= end && state->end > end) {
892  if (state->state & exclusive_bits) {
893  *failed_start = start;
894  err = -EEXIST;
895  goto out;
896  }
897 
898  prealloc = alloc_extent_state_atomic(prealloc);
899  BUG_ON(!prealloc);
900  err = split_state(tree, state, prealloc, end + 1);
901  if (err)
902  extent_io_tree_panic(tree, err);
903 
904  set_state_bits(tree, prealloc, &bits);
905  cache_state(prealloc, cached_state);
906  merge_state(tree, prealloc);
907  prealloc = NULL;
908  goto out;
909  }
910 
911  goto search_again;
912 
913 out:
914  spin_unlock(&tree->lock);
915  if (prealloc)
916  free_extent_state(prealloc);
917 
918  return err;
919 
920 search_again:
921  if (start > end)
922  goto out;
923  spin_unlock(&tree->lock);
924  if (mask & __GFP_WAIT)
925  cond_resched();
926  goto again;
927 }
928 
929 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
930  u64 *failed_start, struct extent_state **cached_state,
931  gfp_t mask)
932 {
933  return __set_extent_bit(tree, start, end, bits, 0, failed_start,
934  cached_state, mask);
935 }
936 
937 
955 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
956  int bits, int clear_bits,
957  struct extent_state **cached_state, gfp_t mask)
958 {
959  struct extent_state *state;
960  struct extent_state *prealloc = NULL;
961  struct rb_node *node;
962  int err = 0;
963  u64 last_start;
964  u64 last_end;
965 
966 again:
967  if (!prealloc && (mask & __GFP_WAIT)) {
968  prealloc = alloc_extent_state(mask);
969  if (!prealloc)
970  return -ENOMEM;
971  }
972 
973  spin_lock(&tree->lock);
974  if (cached_state && *cached_state) {
975  state = *cached_state;
976  if (state->start <= start && state->end > start &&
977  state->tree) {
978  node = &state->rb_node;
979  goto hit_next;
980  }
981  }
982 
983  /*
984  * this search will find all the extents that end after
985  * our range starts.
986  */
987  node = tree_search(tree, start);
988  if (!node) {
989  prealloc = alloc_extent_state_atomic(prealloc);
990  if (!prealloc) {
991  err = -ENOMEM;
992  goto out;
993  }
994  err = insert_state(tree, prealloc, start, end, &bits);
995  prealloc = NULL;
996  if (err)
997  extent_io_tree_panic(tree, err);
998  goto out;
999  }
1000  state = rb_entry(node, struct extent_state, rb_node);
1001 hit_next:
1002  last_start = state->start;
1003  last_end = state->end;
1004 
1005  /*
1006  * | ---- desired range ---- |
1007  * | state |
1008  *
1009  * Just lock what we found and keep going
1010  */
1011  if (state->start == start && state->end <= end) {
1012  set_state_bits(tree, state, &bits);
1013  cache_state(state, cached_state);
1014  state = clear_state_bit(tree, state, &clear_bits, 0);
1015  if (last_end == (u64)-1)
1016  goto out;
1017  start = last_end + 1;
1018  if (start < end && state && state->start == start &&
1019  !need_resched())
1020  goto hit_next;
1021  goto search_again;
1022  }
1023 
1024  /*
1025  * | ---- desired range ---- |
1026  * | state |
1027  * or
1028  * | ------------- state -------------- |
1029  *
1030  * We need to split the extent we found, and may flip bits on
1031  * second half.
1032  *
1033  * If the extent we found extends past our
1034  * range, we just split and search again. It'll get split
1035  * again the next time though.
1036  *
1037  * If the extent we found is inside our range, we set the
1038  * desired bit on it.
1039  */
1040  if (state->start < start) {
1041  prealloc = alloc_extent_state_atomic(prealloc);
1042  if (!prealloc) {
1043  err = -ENOMEM;
1044  goto out;
1045  }
1046  err = split_state(tree, state, prealloc, start);
1047  if (err)
1048  extent_io_tree_panic(tree, err);
1049  prealloc = NULL;
1050  if (err)
1051  goto out;
1052  if (state->end <= end) {
1053  set_state_bits(tree, state, &bits);
1054  cache_state(state, cached_state);
1055  state = clear_state_bit(tree, state, &clear_bits, 0);
1056  if (last_end == (u64)-1)
1057  goto out;
1058  start = last_end + 1;
1059  if (start < end && state && state->start == start &&
1060  !need_resched())
1061  goto hit_next;
1062  }
1063  goto search_again;
1064  }
1065  /*
1066  * | ---- desired range ---- |
1067  * | state | or | state |
1068  *
1069  * There's a hole, we need to insert something in it and
1070  * ignore the extent we found.
1071  */
1072  if (state->start > start) {
1073  u64 this_end;
1074  if (end < last_start)
1075  this_end = end;
1076  else
1077  this_end = last_start - 1;
1078 
1079  prealloc = alloc_extent_state_atomic(prealloc);
1080  if (!prealloc) {
1081  err = -ENOMEM;
1082  goto out;
1083  }
1084 
1085  /*
1086  * Avoid to free 'prealloc' if it can be merged with
1087  * the later extent.
1088  */
1089  err = insert_state(tree, prealloc, start, this_end,
1090  &bits);
1091  if (err)
1092  extent_io_tree_panic(tree, err);
1093  cache_state(prealloc, cached_state);
1094  prealloc = NULL;
1095  start = this_end + 1;
1096  goto search_again;
1097  }
1098  /*
1099  * | ---- desired range ---- |
1100  * | state |
1101  * We need to split the extent, and set the bit
1102  * on the first half
1103  */
1104  if (state->start <= end && state->end > end) {
1105  prealloc = alloc_extent_state_atomic(prealloc);
1106  if (!prealloc) {
1107  err = -ENOMEM;
1108  goto out;
1109  }
1110 
1111  err = split_state(tree, state, prealloc, end + 1);
1112  if (err)
1113  extent_io_tree_panic(tree, err);
1114 
1115  set_state_bits(tree, prealloc, &bits);
1116  cache_state(prealloc, cached_state);
1117  clear_state_bit(tree, prealloc, &clear_bits, 0);
1118  prealloc = NULL;
1119  goto out;
1120  }
1121 
1122  goto search_again;
1123 
1124 out:
1125  spin_unlock(&tree->lock);
1126  if (prealloc)
1127  free_extent_state(prealloc);
1128 
1129  return err;
1130 
1131 search_again:
1132  if (start > end)
1133  goto out;
1134  spin_unlock(&tree->lock);
1135  if (mask & __GFP_WAIT)
1136  cond_resched();
1137  goto again;
1138 }
1139 
1140 /* wrappers around set/clear extent bit */
1141 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1142  gfp_t mask)
1143 {
1144  return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1145  NULL, mask);
1146 }
1147 
1148 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1149  int bits, gfp_t mask)
1150 {
1151  return set_extent_bit(tree, start, end, bits, NULL,
1152  NULL, mask);
1153 }
1154 
1155 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1156  int bits, gfp_t mask)
1157 {
1158  return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1159 }
1160 
1161 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1162  struct extent_state **cached_state, gfp_t mask)
1163 {
1164  return set_extent_bit(tree, start, end,
1166  NULL, cached_state, mask);
1167 }
1168 
1169 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1170  struct extent_state **cached_state, gfp_t mask)
1171 {
1172  return set_extent_bit(tree, start, end,
1174  NULL, cached_state, mask);
1175 }
1176 
1177 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1178  gfp_t mask)
1179 {
1180  return clear_extent_bit(tree, start, end,
1181  EXTENT_DIRTY | EXTENT_DELALLOC |
1182  EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1183 }
1184 
1185 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1186  gfp_t mask)
1187 {
1188  return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1189  NULL, mask);
1190 }
1191 
1192 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1193  struct extent_state **cached_state, gfp_t mask)
1194 {
1195  return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1196  cached_state, mask);
1197 }
1198 
1199 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1200  struct extent_state **cached_state, gfp_t mask)
1201 {
1202  return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1203  cached_state, mask);
1204 }
1205 
1206 /*
1207  * either insert or lock state struct between start and end use mask to tell
1208  * us if waiting is desired.
1209  */
1210 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1211  int bits, struct extent_state **cached_state)
1212 {
1213  int err;
1214  u64 failed_start;
1215  while (1) {
1216  err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1217  EXTENT_LOCKED, &failed_start,
1218  cached_state, GFP_NOFS);
1219  if (err == -EEXIST) {
1220  wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1221  start = failed_start;
1222  } else
1223  break;
1224  WARN_ON(start > end);
1225  }
1226  return err;
1227 }
1228 
1229 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1230 {
1231  return lock_extent_bits(tree, start, end, 0, NULL);
1232 }
1233 
1234 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1235 {
1236  int err;
1237  u64 failed_start;
1238 
1239  err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1240  &failed_start, NULL, GFP_NOFS);
1241  if (err == -EEXIST) {
1242  if (failed_start > start)
1243  clear_extent_bit(tree, start, failed_start - 1,
1244  EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1245  return 0;
1246  }
1247  return 1;
1248 }
1249 
1250 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1251  struct extent_state **cached, gfp_t mask)
1252 {
1253  return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1254  mask);
1255 }
1256 
1257 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1258 {
1259  return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1260  GFP_NOFS);
1261 }
1262 
1263 /*
1264  * helper function to set both pages and extents in the tree writeback
1265  */
1266 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1267 {
1268  unsigned long index = start >> PAGE_CACHE_SHIFT;
1269  unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1270  struct page *page;
1271 
1272  while (index <= end_index) {
1273  page = find_get_page(tree->mapping, index);
1274  BUG_ON(!page); /* Pages should be in the extent_io_tree */
1275  set_page_writeback(page);
1276  page_cache_release(page);
1277  index++;
1278  }
1279  return 0;
1280 }
1281 
1282 /* find the first state struct with 'bits' set after 'start', and
1283  * return it. tree->lock must be held. NULL will returned if
1284  * nothing was found after 'start'
1285  */
1287  u64 start, int bits)
1288 {
1289  struct rb_node *node;
1290  struct extent_state *state;
1291 
1292  /*
1293  * this search will find all the extents that end after
1294  * our range starts.
1295  */
1296  node = tree_search(tree, start);
1297  if (!node)
1298  goto out;
1299 
1300  while (1) {
1301  state = rb_entry(node, struct extent_state, rb_node);
1302  if (state->end >= start && (state->state & bits))
1303  return state;
1304 
1305  node = rb_next(node);
1306  if (!node)
1307  break;
1308  }
1309 out:
1310  return NULL;
1311 }
1312 
1313 /*
1314  * find the first offset in the io tree with 'bits' set. zero is
1315  * returned if we find something, and *start_ret and *end_ret are
1316  * set to reflect the state struct that was found.
1317  *
1318  * If nothing was found, 1 is returned. If found something, return 0.
1319  */
1320 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1321  u64 *start_ret, u64 *end_ret, int bits,
1322  struct extent_state **cached_state)
1323 {
1324  struct extent_state *state;
1325  struct rb_node *n;
1326  int ret = 1;
1327 
1328  spin_lock(&tree->lock);
1329  if (cached_state && *cached_state) {
1330  state = *cached_state;
1331  if (state->end == start - 1 && state->tree) {
1332  n = rb_next(&state->rb_node);
1333  while (n) {
1334  state = rb_entry(n, struct extent_state,
1335  rb_node);
1336  if (state->state & bits)
1337  goto got_it;
1338  n = rb_next(n);
1339  }
1340  free_extent_state(*cached_state);
1341  *cached_state = NULL;
1342  goto out;
1343  }
1344  free_extent_state(*cached_state);
1345  *cached_state = NULL;
1346  }
1347 
1348  state = find_first_extent_bit_state(tree, start, bits);
1349 got_it:
1350  if (state) {
1351  cache_state(state, cached_state);
1352  *start_ret = state->start;
1353  *end_ret = state->end;
1354  ret = 0;
1355  }
1356 out:
1357  spin_unlock(&tree->lock);
1358  return ret;
1359 }
1360 
1361 /*
1362  * find a contiguous range of bytes in the file marked as delalloc, not
1363  * more than 'max_bytes'. start and end are used to return the range,
1364  *
1365  * 1 is returned if we find something, 0 if nothing was in the tree
1366  */
1367 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1368  u64 *start, u64 *end, u64 max_bytes,
1369  struct extent_state **cached_state)
1370 {
1371  struct rb_node *node;
1372  struct extent_state *state;
1373  u64 cur_start = *start;
1374  u64 found = 0;
1375  u64 total_bytes = 0;
1376 
1377  spin_lock(&tree->lock);
1378 
1379  /*
1380  * this search will find all the extents that end after
1381  * our range starts.
1382  */
1383  node = tree_search(tree, cur_start);
1384  if (!node) {
1385  if (!found)
1386  *end = (u64)-1;
1387  goto out;
1388  }
1389 
1390  while (1) {
1391  state = rb_entry(node, struct extent_state, rb_node);
1392  if (found && (state->start != cur_start ||
1393  (state->state & EXTENT_BOUNDARY))) {
1394  goto out;
1395  }
1396  if (!(state->state & EXTENT_DELALLOC)) {
1397  if (!found)
1398  *end = state->end;
1399  goto out;
1400  }
1401  if (!found) {
1402  *start = state->start;
1403  *cached_state = state;
1404  atomic_inc(&state->refs);
1405  }
1406  found++;
1407  *end = state->end;
1408  cur_start = state->end + 1;
1409  node = rb_next(node);
1410  if (!node)
1411  break;
1412  total_bytes += state->end - state->start + 1;
1413  if (total_bytes >= max_bytes)
1414  break;
1415  }
1416 out:
1417  spin_unlock(&tree->lock);
1418  return found;
1419 }
1420 
1421 static noinline void __unlock_for_delalloc(struct inode *inode,
1422  struct page *locked_page,
1423  u64 start, u64 end)
1424 {
1425  int ret;
1426  struct page *pages[16];
1427  unsigned long index = start >> PAGE_CACHE_SHIFT;
1428  unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1429  unsigned long nr_pages = end_index - index + 1;
1430  int i;
1431 
1432  if (index == locked_page->index && end_index == index)
1433  return;
1434 
1435  while (nr_pages > 0) {
1436  ret = find_get_pages_contig(inode->i_mapping, index,
1437  min_t(unsigned long, nr_pages,
1438  ARRAY_SIZE(pages)), pages);
1439  for (i = 0; i < ret; i++) {
1440  if (pages[i] != locked_page)
1441  unlock_page(pages[i]);
1442  page_cache_release(pages[i]);
1443  }
1444  nr_pages -= ret;
1445  index += ret;
1446  cond_resched();
1447  }
1448 }
1449 
1450 static noinline int lock_delalloc_pages(struct inode *inode,
1451  struct page *locked_page,
1452  u64 delalloc_start,
1453  u64 delalloc_end)
1454 {
1455  unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1456  unsigned long start_index = index;
1457  unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1458  unsigned long pages_locked = 0;
1459  struct page *pages[16];
1460  unsigned long nrpages;
1461  int ret;
1462  int i;
1463 
1464  /* the caller is responsible for locking the start index */
1465  if (index == locked_page->index && index == end_index)
1466  return 0;
1467 
1468  /* skip the page at the start index */
1469  nrpages = end_index - index + 1;
1470  while (nrpages > 0) {
1471  ret = find_get_pages_contig(inode->i_mapping, index,
1472  min_t(unsigned long,
1473  nrpages, ARRAY_SIZE(pages)), pages);
1474  if (ret == 0) {
1475  ret = -EAGAIN;
1476  goto done;
1477  }
1478  /* now we have an array of pages, lock them all */
1479  for (i = 0; i < ret; i++) {
1480  /*
1481  * the caller is taking responsibility for
1482  * locked_page
1483  */
1484  if (pages[i] != locked_page) {
1485  lock_page(pages[i]);
1486  if (!PageDirty(pages[i]) ||
1487  pages[i]->mapping != inode->i_mapping) {
1488  ret = -EAGAIN;
1489  unlock_page(pages[i]);
1490  page_cache_release(pages[i]);
1491  goto done;
1492  }
1493  }
1494  page_cache_release(pages[i]);
1495  pages_locked++;
1496  }
1497  nrpages -= ret;
1498  index += ret;
1499  cond_resched();
1500  }
1501  ret = 0;
1502 done:
1503  if (ret && pages_locked) {
1504  __unlock_for_delalloc(inode, locked_page,
1505  delalloc_start,
1506  ((u64)(start_index + pages_locked - 1)) <<
1507  PAGE_CACHE_SHIFT);
1508  }
1509  return ret;
1510 }
1511 
1512 /*
1513  * find a contiguous range of bytes in the file marked as delalloc, not
1514  * more than 'max_bytes'. start and end are used to return the range,
1515  *
1516  * 1 is returned if we find something, 0 if nothing was in the tree
1517  */
1518 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1519  struct extent_io_tree *tree,
1520  struct page *locked_page,
1521  u64 *start, u64 *end,
1522  u64 max_bytes)
1523 {
1524  u64 delalloc_start;
1525  u64 delalloc_end;
1526  u64 found;
1527  struct extent_state *cached_state = NULL;
1528  int ret;
1529  int loops = 0;
1530 
1531 again:
1532  /* step one, find a bunch of delalloc bytes starting at start */
1533  delalloc_start = *start;
1534  delalloc_end = 0;
1535  found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1536  max_bytes, &cached_state);
1537  if (!found || delalloc_end <= *start) {
1538  *start = delalloc_start;
1539  *end = delalloc_end;
1540  free_extent_state(cached_state);
1541  return found;
1542  }
1543 
1544  /*
1545  * start comes from the offset of locked_page. We have to lock
1546  * pages in order, so we can't process delalloc bytes before
1547  * locked_page
1548  */
1549  if (delalloc_start < *start)
1550  delalloc_start = *start;
1551 
1552  /*
1553  * make sure to limit the number of pages we try to lock down
1554  * if we're looping.
1555  */
1556  if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1557  delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1558 
1559  /* step two, lock all the pages after the page that has start */
1560  ret = lock_delalloc_pages(inode, locked_page,
1561  delalloc_start, delalloc_end);
1562  if (ret == -EAGAIN) {
1563  /* some of the pages are gone, lets avoid looping by
1564  * shortening the size of the delalloc range we're searching
1565  */
1566  free_extent_state(cached_state);
1567  if (!loops) {
1568  unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1569  max_bytes = PAGE_CACHE_SIZE - offset;
1570  loops = 1;
1571  goto again;
1572  } else {
1573  found = 0;
1574  goto out_failed;
1575  }
1576  }
1577  BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1578 
1579  /* step three, lock the state bits for the whole range */
1580  lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1581 
1582  /* then test to make sure it is all still delalloc */
1583  ret = test_range_bit(tree, delalloc_start, delalloc_end,
1584  EXTENT_DELALLOC, 1, cached_state);
1585  if (!ret) {
1586  unlock_extent_cached(tree, delalloc_start, delalloc_end,
1587  &cached_state, GFP_NOFS);
1588  __unlock_for_delalloc(inode, locked_page,
1589  delalloc_start, delalloc_end);
1590  cond_resched();
1591  goto again;
1592  }
1593  free_extent_state(cached_state);
1594  *start = delalloc_start;
1595  *end = delalloc_end;
1596 out_failed:
1597  return found;
1598 }
1599 
1600 int extent_clear_unlock_delalloc(struct inode *inode,
1601  struct extent_io_tree *tree,
1602  u64 start, u64 end, struct page *locked_page,
1603  unsigned long op)
1604 {
1605  int ret;
1606  struct page *pages[16];
1607  unsigned long index = start >> PAGE_CACHE_SHIFT;
1608  unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1609  unsigned long nr_pages = end_index - index + 1;
1610  int i;
1611  int clear_bits = 0;
1612 
1613  if (op & EXTENT_CLEAR_UNLOCK)
1614  clear_bits |= EXTENT_LOCKED;
1615  if (op & EXTENT_CLEAR_DIRTY)
1616  clear_bits |= EXTENT_DIRTY;
1617 
1618  if (op & EXTENT_CLEAR_DELALLOC)
1619  clear_bits |= EXTENT_DELALLOC;
1620 
1621  clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1622  if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1625  return 0;
1626 
1627  while (nr_pages > 0) {
1628  ret = find_get_pages_contig(inode->i_mapping, index,
1629  min_t(unsigned long,
1630  nr_pages, ARRAY_SIZE(pages)), pages);
1631  for (i = 0; i < ret; i++) {
1632 
1633  if (op & EXTENT_SET_PRIVATE2)
1634  SetPagePrivate2(pages[i]);
1635 
1636  if (pages[i] == locked_page) {
1637  page_cache_release(pages[i]);
1638  continue;
1639  }
1640  if (op & EXTENT_CLEAR_DIRTY)
1641  clear_page_dirty_for_io(pages[i]);
1642  if (op & EXTENT_SET_WRITEBACK)
1643  set_page_writeback(pages[i]);
1644  if (op & EXTENT_END_WRITEBACK)
1645  end_page_writeback(pages[i]);
1646  if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1647  unlock_page(pages[i]);
1648  page_cache_release(pages[i]);
1649  }
1650  nr_pages -= ret;
1651  index += ret;
1652  cond_resched();
1653  }
1654  return 0;
1655 }
1656 
1657 /*
1658  * count the number of bytes in the tree that have a given bit(s)
1659  * set. This can be fairly slow, except for EXTENT_DIRTY which is
1660  * cached. The total number found is returned.
1661  */
1663  u64 *start, u64 search_end, u64 max_bytes,
1664  unsigned long bits, int contig)
1665 {
1666  struct rb_node *node;
1667  struct extent_state *state;
1668  u64 cur_start = *start;
1669  u64 total_bytes = 0;
1670  u64 last = 0;
1671  int found = 0;
1672 
1673  if (search_end <= cur_start) {
1674  WARN_ON(1);
1675  return 0;
1676  }
1677 
1678  spin_lock(&tree->lock);
1679  if (cur_start == 0 && bits == EXTENT_DIRTY) {
1680  total_bytes = tree->dirty_bytes;
1681  goto out;
1682  }
1683  /*
1684  * this search will find all the extents that end after
1685  * our range starts.
1686  */
1687  node = tree_search(tree, cur_start);
1688  if (!node)
1689  goto out;
1690 
1691  while (1) {
1692  state = rb_entry(node, struct extent_state, rb_node);
1693  if (state->start > search_end)
1694  break;
1695  if (contig && found && state->start > last + 1)
1696  break;
1697  if (state->end >= cur_start && (state->state & bits) == bits) {
1698  total_bytes += min(search_end, state->end) + 1 -
1699  max(cur_start, state->start);
1700  if (total_bytes >= max_bytes)
1701  break;
1702  if (!found) {
1703  *start = max(cur_start, state->start);
1704  found = 1;
1705  }
1706  last = state->end;
1707  } else if (contig && found) {
1708  break;
1709  }
1710  node = rb_next(node);
1711  if (!node)
1712  break;
1713  }
1714 out:
1715  spin_unlock(&tree->lock);
1716  return total_bytes;
1717 }
1718 
1719 /*
1720  * set the private field for a given byte offset in the tree. If there isn't
1721  * an extent_state there already, this does nothing.
1722  */
1723 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1724 {
1725  struct rb_node *node;
1726  struct extent_state *state;
1727  int ret = 0;
1728 
1729  spin_lock(&tree->lock);
1730  /*
1731  * this search will find all the extents that end after
1732  * our range starts.
1733  */
1734  node = tree_search(tree, start);
1735  if (!node) {
1736  ret = -ENOENT;
1737  goto out;
1738  }
1739  state = rb_entry(node, struct extent_state, rb_node);
1740  if (state->start != start) {
1741  ret = -ENOENT;
1742  goto out;
1743  }
1744  state->private = private;
1745 out:
1746  spin_unlock(&tree->lock);
1747  return ret;
1748 }
1749 
1750 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1751 {
1752  struct rb_node *node;
1753  struct extent_state *state;
1754  int ret = 0;
1755 
1756  spin_lock(&tree->lock);
1757  /*
1758  * this search will find all the extents that end after
1759  * our range starts.
1760  */
1761  node = tree_search(tree, start);
1762  if (!node) {
1763  ret = -ENOENT;
1764  goto out;
1765  }
1766  state = rb_entry(node, struct extent_state, rb_node);
1767  if (state->start != start) {
1768  ret = -ENOENT;
1769  goto out;
1770  }
1771  *private = state->private;
1772 out:
1773  spin_unlock(&tree->lock);
1774  return ret;
1775 }
1776 
1777 /*
1778  * searches a range in the state tree for a given mask.
1779  * If 'filled' == 1, this returns 1 only if every extent in the tree
1780  * has the bits set. Otherwise, 1 is returned if any bit in the
1781  * range is found set.
1782  */
1783 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1784  int bits, int filled, struct extent_state *cached)
1785 {
1786  struct extent_state *state = NULL;
1787  struct rb_node *node;
1788  int bitset = 0;
1789 
1790  spin_lock(&tree->lock);
1791  if (cached && cached->tree && cached->start <= start &&
1792  cached->end > start)
1793  node = &cached->rb_node;
1794  else
1795  node = tree_search(tree, start);
1796  while (node && start <= end) {
1797  state = rb_entry(node, struct extent_state, rb_node);
1798 
1799  if (filled && state->start > start) {
1800  bitset = 0;
1801  break;
1802  }
1803 
1804  if (state->start > end)
1805  break;
1806 
1807  if (state->state & bits) {
1808  bitset = 1;
1809  if (!filled)
1810  break;
1811  } else if (filled) {
1812  bitset = 0;
1813  break;
1814  }
1815 
1816  if (state->end == (u64)-1)
1817  break;
1818 
1819  start = state->end + 1;
1820  if (start > end)
1821  break;
1822  node = rb_next(node);
1823  if (!node) {
1824  if (filled)
1825  bitset = 0;
1826  break;
1827  }
1828  }
1829  spin_unlock(&tree->lock);
1830  return bitset;
1831 }
1832 
1833 /*
1834  * helper function to set a given page up to date if all the
1835  * extents in the tree for that page are up to date
1836  */
1837 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1838 {
1839  u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1840  u64 end = start + PAGE_CACHE_SIZE - 1;
1841  if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1842  SetPageUptodate(page);
1843 }
1844 
1845 /*
1846  * helper function to unlock a page if all the extents in the tree
1847  * for that page are unlocked
1848  */
1849 static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1850 {
1851  u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1852  u64 end = start + PAGE_CACHE_SIZE - 1;
1853  if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1854  unlock_page(page);
1855 }
1856 
1857 /*
1858  * helper function to end page writeback if all the extents
1859  * in the tree for that page are done with writeback
1860  */
1861 static void check_page_writeback(struct extent_io_tree *tree,
1862  struct page *page)
1863 {
1864  end_page_writeback(page);
1865 }
1866 
1867 /*
1868  * When IO fails, either with EIO or csum verification fails, we
1869  * try other mirrors that might have a good copy of the data. This
1870  * io_failure_record is used to record state as we go through all the
1871  * mirrors. If another mirror has good data, the page is set up to date
1872  * and things continue. If a good mirror can't be found, the original
1873  * bio end_io callback is called to indicate things have failed.
1874  */
1876  struct page *page;
1880  unsigned long bio_flags;
1884 };
1885 
1886 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1887  int did_repair)
1888 {
1889  int ret;
1890  int err = 0;
1891  struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1892 
1893  set_state_private(failure_tree, rec->start, 0);
1894  ret = clear_extent_bits(failure_tree, rec->start,
1895  rec->start + rec->len - 1,
1896  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1897  if (ret)
1898  err = ret;
1899 
1900  if (did_repair) {
1901  ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1902  rec->start + rec->len - 1,
1904  if (ret && !err)
1905  err = ret;
1906  }
1907 
1908  kfree(rec);
1909  return err;
1910 }
1911 
1912 static void repair_io_failure_callback(struct bio *bio, int err)
1913 {
1914  complete(bio->bi_private);
1915 }
1916 
1917 /*
1918  * this bypasses the standard btrfs submit functions deliberately, as
1919  * the standard behavior is to write all copies in a raid setup. here we only
1920  * want to write the one bad copy. so we do the mapping for ourselves and issue
1921  * submit_bio directly.
1922  * to avoid any synchonization issues, wait for the data after writing, which
1923  * actually prevents the read that triggered the error from finishing.
1924  * currently, there can be no more than two copies of every data bit. thus,
1925  * exactly one rewrite is required.
1926  */
1927 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1928  u64 length, u64 logical, struct page *page,
1929  int mirror_num)
1930 {
1931  struct bio *bio;
1932  struct btrfs_device *dev;
1934  u64 map_length = 0;
1935  u64 sector;
1936  struct btrfs_bio *bbio = NULL;
1937  int ret;
1938 
1939  BUG_ON(!mirror_num);
1940 
1941  bio = bio_alloc(GFP_NOFS, 1);
1942  if (!bio)
1943  return -EIO;
1944  bio->bi_private = &compl;
1945  bio->bi_end_io = repair_io_failure_callback;
1946  bio->bi_size = 0;
1947  map_length = length;
1948 
1949  ret = btrfs_map_block(map_tree, WRITE, logical,
1950  &map_length, &bbio, mirror_num);
1951  if (ret) {
1952  bio_put(bio);
1953  return -EIO;
1954  }
1955  BUG_ON(mirror_num != bbio->mirror_num);
1956  sector = bbio->stripes[mirror_num-1].physical >> 9;
1957  bio->bi_sector = sector;
1958  dev = bbio->stripes[mirror_num-1].dev;
1959  kfree(bbio);
1960  if (!dev || !dev->bdev || !dev->writeable) {
1961  bio_put(bio);
1962  return -EIO;
1963  }
1964  bio->bi_bdev = dev->bdev;
1965  bio_add_page(bio, page, length, start-page_offset(page));
1967  wait_for_completion(&compl);
1968 
1969  if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1970  /* try to remap that extent elsewhere? */
1971  bio_put(bio);
1973  return -EIO;
1974  }
1975 
1976  printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
1977  "(dev %s sector %llu)\n", page->mapping->host->i_ino,
1978  start, rcu_str_deref(dev->name), sector);
1979 
1980  bio_put(bio);
1981  return 0;
1982 }
1983 
1985  int mirror_num)
1986 {
1987  struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1988  u64 start = eb->start;
1989  unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
1990  int ret = 0;
1991 
1992  for (i = 0; i < num_pages; i++) {
1993  struct page *p = extent_buffer_page(eb, i);
1994  ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1995  start, p, mirror_num);
1996  if (ret)
1997  break;
1998  start += PAGE_CACHE_SIZE;
1999  }
2000 
2001  return ret;
2002 }
2003 
2004 /*
2005  * each time an IO finishes, we do a fast check in the IO failure tree
2006  * to see if we need to process or clean up an io_failure_record
2007  */
2008 static int clean_io_failure(u64 start, struct page *page)
2009 {
2010  u64 private;
2011  u64 private_failure;
2012  struct io_failure_record *failrec;
2013  struct btrfs_mapping_tree *map_tree;
2014  struct extent_state *state;
2015  int num_copies;
2016  int did_repair = 0;
2017  int ret;
2018  struct inode *inode = page->mapping->host;
2019 
2020  private = 0;
2021  ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2022  (u64)-1, 1, EXTENT_DIRTY, 0);
2023  if (!ret)
2024  return 0;
2025 
2026  ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2027  &private_failure);
2028  if (ret)
2029  return 0;
2030 
2031  failrec = (struct io_failure_record *)(unsigned long) private_failure;
2032  BUG_ON(!failrec->this_mirror);
2033 
2034  if (failrec->in_validation) {
2035  /* there was no real error, just free the record */
2036  pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2037  failrec->start);
2038  did_repair = 1;
2039  goto out;
2040  }
2041 
2042  spin_lock(&BTRFS_I(inode)->io_tree.lock);
2043  state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2044  failrec->start,
2045  EXTENT_LOCKED);
2046  spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2047 
2048  if (state && state->start == failrec->start) {
2049  map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
2050  num_copies = btrfs_num_copies(map_tree, failrec->logical,
2051  failrec->len);
2052  if (num_copies > 1) {
2053  ret = repair_io_failure(map_tree, start, failrec->len,
2054  failrec->logical, page,
2055  failrec->failed_mirror);
2056  did_repair = !ret;
2057  }
2058  }
2059 
2060 out:
2061  if (!ret)
2062  ret = free_io_failure(inode, failrec, did_repair);
2063 
2064  return ret;
2065 }
2066 
2067 /*
2068  * this is a generic handler for readpage errors (default
2069  * readpage_io_failed_hook). if other copies exist, read those and write back
2070  * good data to the failed position. does not investigate in remapping the
2071  * failed extent elsewhere, hoping the device will be smart enough to do this as
2072  * needed
2073  */
2074 
2075 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2076  u64 start, u64 end, int failed_mirror,
2077  struct extent_state *state)
2078 {
2079  struct io_failure_record *failrec = NULL;
2080  u64 private;
2081  struct extent_map *em;
2082  struct inode *inode = page->mapping->host;
2083  struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2084  struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2085  struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2086  struct bio *bio;
2087  int num_copies;
2088  int ret;
2089  int read_mode;
2090  u64 logical;
2091 
2092  BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2093 
2094  ret = get_state_private(failure_tree, start, &private);
2095  if (ret) {
2096  failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2097  if (!failrec)
2098  return -ENOMEM;
2099  failrec->start = start;
2100  failrec->len = end - start + 1;
2101  failrec->this_mirror = 0;
2102  failrec->bio_flags = 0;
2103  failrec->in_validation = 0;
2104 
2105  read_lock(&em_tree->lock);
2106  em = lookup_extent_mapping(em_tree, start, failrec->len);
2107  if (!em) {
2108  read_unlock(&em_tree->lock);
2109  kfree(failrec);
2110  return -EIO;
2111  }
2112 
2113  if (em->start > start || em->start + em->len < start) {
2114  free_extent_map(em);
2115  em = NULL;
2116  }
2117  read_unlock(&em_tree->lock);
2118 
2119  if (!em) {
2120  kfree(failrec);
2121  return -EIO;
2122  }
2123  logical = start - em->start;
2124  logical = em->block_start + logical;
2125  if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2126  logical = em->block_start;
2127  failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2128  extent_set_compress_type(&failrec->bio_flags,
2129  em->compress_type);
2130  }
2131  pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2132  "len=%llu\n", logical, start, failrec->len);
2133  failrec->logical = logical;
2134  free_extent_map(em);
2135 
2136  /* set the bits in the private failure tree */
2137  ret = set_extent_bits(failure_tree, start, end,
2138  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2139  if (ret >= 0)
2140  ret = set_state_private(failure_tree, start,
2141  (u64)(unsigned long)failrec);
2142  /* set the bits in the inode's tree */
2143  if (ret >= 0)
2144  ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2145  GFP_NOFS);
2146  if (ret < 0) {
2147  kfree(failrec);
2148  return ret;
2149  }
2150  } else {
2151  failrec = (struct io_failure_record *)(unsigned long)private;
2152  pr_debug("bio_readpage_error: (found) logical=%llu, "
2153  "start=%llu, len=%llu, validation=%d\n",
2154  failrec->logical, failrec->start, failrec->len,
2155  failrec->in_validation);
2156  /*
2157  * when data can be on disk more than twice, add to failrec here
2158  * (e.g. with a list for failed_mirror) to make
2159  * clean_io_failure() clean all those errors at once.
2160  */
2161  }
2162  num_copies = btrfs_num_copies(
2163  &BTRFS_I(inode)->root->fs_info->mapping_tree,
2164  failrec->logical, failrec->len);
2165  if (num_copies == 1) {
2166  /*
2167  * we only have a single copy of the data, so don't bother with
2168  * all the retry and error correction code that follows. no
2169  * matter what the error is, it is very likely to persist.
2170  */
2171  pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2172  "state=%p, num_copies=%d, next_mirror %d, "
2173  "failed_mirror %d\n", state, num_copies,
2174  failrec->this_mirror, failed_mirror);
2175  free_io_failure(inode, failrec, 0);
2176  return -EIO;
2177  }
2178 
2179  if (!state) {
2180  spin_lock(&tree->lock);
2181  state = find_first_extent_bit_state(tree, failrec->start,
2182  EXTENT_LOCKED);
2183  if (state && state->start != failrec->start)
2184  state = NULL;
2185  spin_unlock(&tree->lock);
2186  }
2187 
2188  /*
2189  * there are two premises:
2190  * a) deliver good data to the caller
2191  * b) correct the bad sectors on disk
2192  */
2193  if (failed_bio->bi_vcnt > 1) {
2194  /*
2195  * to fulfill b), we need to know the exact failing sectors, as
2196  * we don't want to rewrite any more than the failed ones. thus,
2197  * we need separate read requests for the failed bio
2198  *
2199  * if the following BUG_ON triggers, our validation request got
2200  * merged. we need separate requests for our algorithm to work.
2201  */
2202  BUG_ON(failrec->in_validation);
2203  failrec->in_validation = 1;
2204  failrec->this_mirror = failed_mirror;
2205  read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2206  } else {
2207  /*
2208  * we're ready to fulfill a) and b) alongside. get a good copy
2209  * of the failed sector and if we succeed, we have setup
2210  * everything for repair_io_failure to do the rest for us.
2211  */
2212  if (failrec->in_validation) {
2213  BUG_ON(failrec->this_mirror != failed_mirror);
2214  failrec->in_validation = 0;
2215  failrec->this_mirror = 0;
2216  }
2217  failrec->failed_mirror = failed_mirror;
2218  failrec->this_mirror++;
2219  if (failrec->this_mirror == failed_mirror)
2220  failrec->this_mirror++;
2221  read_mode = READ_SYNC;
2222  }
2223 
2224  if (!state || failrec->this_mirror > num_copies) {
2225  pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2226  "next_mirror %d, failed_mirror %d\n", state,
2227  num_copies, failrec->this_mirror, failed_mirror);
2228  free_io_failure(inode, failrec, 0);
2229  return -EIO;
2230  }
2231 
2232  bio = bio_alloc(GFP_NOFS, 1);
2233  if (!bio) {
2234  free_io_failure(inode, failrec, 0);
2235  return -EIO;
2236  }
2237  bio->bi_private = state;
2238  bio->bi_end_io = failed_bio->bi_end_io;
2239  bio->bi_sector = failrec->logical >> 9;
2240  bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2241  bio->bi_size = 0;
2242 
2243  bio_add_page(bio, page, failrec->len, start - page_offset(page));
2244 
2245  pr_debug("bio_readpage_error: submitting new read[%#x] to "
2246  "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2247  failrec->this_mirror, num_copies, failrec->in_validation);
2248 
2249  ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2250  failrec->this_mirror,
2251  failrec->bio_flags, 0);
2252  return ret;
2253 }
2254 
2255 /* lots and lots of room for performance fixes in the end_bio funcs */
2256 
2257 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2258 {
2259  int uptodate = (err == 0);
2260  struct extent_io_tree *tree;
2261  int ret;
2262 
2263  tree = &BTRFS_I(page->mapping->host)->io_tree;
2264 
2265  if (tree->ops && tree->ops->writepage_end_io_hook) {
2266  ret = tree->ops->writepage_end_io_hook(page, start,
2267  end, NULL, uptodate);
2268  if (ret)
2269  uptodate = 0;
2270  }
2271 
2272  if (!uptodate) {
2273  ClearPageUptodate(page);
2274  SetPageError(page);
2275  }
2276  return 0;
2277 }
2278 
2279 /*
2280  * after a writepage IO is done, we need to:
2281  * clear the uptodate bits on error
2282  * clear the writeback bits in the extent tree for this IO
2283  * end_page_writeback if the page has no more pending IO
2284  *
2285  * Scheduling is not allowed, so the extent state tree is expected
2286  * to have one and only one object corresponding to this IO.
2287  */
2288 static void end_bio_extent_writepage(struct bio *bio, int err)
2289 {
2290  struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2291  struct extent_io_tree *tree;
2292  u64 start;
2293  u64 end;
2294  int whole_page;
2295 
2296  do {
2297  struct page *page = bvec->bv_page;
2298  tree = &BTRFS_I(page->mapping->host)->io_tree;
2299 
2300  start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2301  bvec->bv_offset;
2302  end = start + bvec->bv_len - 1;
2303 
2304  if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2305  whole_page = 1;
2306  else
2307  whole_page = 0;
2308 
2309  if (--bvec >= bio->bi_io_vec)
2310  prefetchw(&bvec->bv_page->flags);
2311 
2312  if (end_extent_writepage(page, err, start, end))
2313  continue;
2314 
2315  if (whole_page)
2316  end_page_writeback(page);
2317  else
2318  check_page_writeback(tree, page);
2319  } while (bvec >= bio->bi_io_vec);
2320 
2321  bio_put(bio);
2322 }
2323 
2324 /*
2325  * after a readpage IO is done, we need to:
2326  * clear the uptodate bits on error
2327  * set the uptodate bits if things worked
2328  * set the page up to date if all extents in the tree are uptodate
2329  * clear the lock bit in the extent tree
2330  * unlock the page if there are no other extents locked for it
2331  *
2332  * Scheduling is not allowed, so the extent state tree is expected
2333  * to have one and only one object corresponding to this IO.
2334  */
2335 static void end_bio_extent_readpage(struct bio *bio, int err)
2336 {
2337  int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2338  struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2339  struct bio_vec *bvec = bio->bi_io_vec;
2340  struct extent_io_tree *tree;
2341  u64 start;
2342  u64 end;
2343  int whole_page;
2344  int mirror;
2345  int ret;
2346 
2347  if (err)
2348  uptodate = 0;
2349 
2350  do {
2351  struct page *page = bvec->bv_page;
2352  struct extent_state *cached = NULL;
2353  struct extent_state *state;
2354 
2355  pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2356  "mirror=%ld\n", (u64)bio->bi_sector, err,
2357  (long int)bio->bi_bdev);
2358  tree = &BTRFS_I(page->mapping->host)->io_tree;
2359 
2360  start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2361  bvec->bv_offset;
2362  end = start + bvec->bv_len - 1;
2363 
2364  if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2365  whole_page = 1;
2366  else
2367  whole_page = 0;
2368 
2369  if (++bvec <= bvec_end)
2370  prefetchw(&bvec->bv_page->flags);
2371 
2372  spin_lock(&tree->lock);
2373  state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2374  if (state && state->start == start) {
2375  /*
2376  * take a reference on the state, unlock will drop
2377  * the ref
2378  */
2379  cache_state(state, &cached);
2380  }
2381  spin_unlock(&tree->lock);
2382 
2383  mirror = (int)(unsigned long)bio->bi_bdev;
2384  if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2385  ret = tree->ops->readpage_end_io_hook(page, start, end,
2386  state, mirror);
2387  if (ret)
2388  uptodate = 0;
2389  else
2390  clean_io_failure(start, page);
2391  }
2392 
2393  if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2394  ret = tree->ops->readpage_io_failed_hook(page, mirror);
2395  if (!ret && !err &&
2396  test_bit(BIO_UPTODATE, &bio->bi_flags))
2397  uptodate = 1;
2398  } else if (!uptodate) {
2399  /*
2400  * The generic bio_readpage_error handles errors the
2401  * following way: If possible, new read requests are
2402  * created and submitted and will end up in
2403  * end_bio_extent_readpage as well (if we're lucky, not
2404  * in the !uptodate case). In that case it returns 0 and
2405  * we just go on with the next page in our bio. If it
2406  * can't handle the error it will return -EIO and we
2407  * remain responsible for that page.
2408  */
2409  ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2410  if (ret == 0) {
2411  uptodate =
2412  test_bit(BIO_UPTODATE, &bio->bi_flags);
2413  if (err)
2414  uptodate = 0;
2415  uncache_state(&cached);
2416  continue;
2417  }
2418  }
2419 
2420  if (uptodate && tree->track_uptodate) {
2421  set_extent_uptodate(tree, start, end, &cached,
2422  GFP_ATOMIC);
2423  }
2424  unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2425 
2426  if (whole_page) {
2427  if (uptodate) {
2428  SetPageUptodate(page);
2429  } else {
2430  ClearPageUptodate(page);
2431  SetPageError(page);
2432  }
2433  unlock_page(page);
2434  } else {
2435  if (uptodate) {
2436  check_page_uptodate(tree, page);
2437  } else {
2438  ClearPageUptodate(page);
2439  SetPageError(page);
2440  }
2441  check_page_locked(tree, page);
2442  }
2443  } while (bvec <= bvec_end);
2444 
2445  bio_put(bio);
2446 }
2447 
2448 struct bio *
2449 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2450  gfp_t gfp_flags)
2451 {
2452  struct bio *bio;
2453 
2454  bio = bio_alloc(gfp_flags, nr_vecs);
2455 
2456  if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2457  while (!bio && (nr_vecs /= 2))
2458  bio = bio_alloc(gfp_flags, nr_vecs);
2459  }
2460 
2461  if (bio) {
2462  bio->bi_size = 0;
2463  bio->bi_bdev = bdev;
2464  bio->bi_sector = first_sector;
2465  }
2466  return bio;
2467 }
2468 
2469 /*
2470  * Since writes are async, they will only return -ENOMEM.
2471  * Reads can return the full range of I/O error conditions.
2472  */
2473 static int __must_check submit_one_bio(int rw, struct bio *bio,
2474  int mirror_num, unsigned long bio_flags)
2475 {
2476  int ret = 0;
2477  struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2478  struct page *page = bvec->bv_page;
2479  struct extent_io_tree *tree = bio->bi_private;
2480  u64 start;
2481 
2482  start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2483 
2484  bio->bi_private = NULL;
2485 
2486  bio_get(bio);
2487 
2488  if (tree->ops && tree->ops->submit_bio_hook)
2489  ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2490  mirror_num, bio_flags, start);
2491  else
2492  btrfsic_submit_bio(rw, bio);
2493 
2494  if (bio_flagged(bio, BIO_EOPNOTSUPP))
2495  ret = -EOPNOTSUPP;
2496  bio_put(bio);
2497  return ret;
2498 }
2499 
2500 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2501  unsigned long offset, size_t size, struct bio *bio,
2502  unsigned long bio_flags)
2503 {
2504  int ret = 0;
2505  if (tree->ops && tree->ops->merge_bio_hook)
2506  ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2507  bio_flags);
2508  BUG_ON(ret < 0);
2509  return ret;
2510 
2511 }
2512 
2513 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2514  struct page *page, sector_t sector,
2515  size_t size, unsigned long offset,
2516  struct block_device *bdev,
2517  struct bio **bio_ret,
2518  unsigned long max_pages,
2519  bio_end_io_t end_io_func,
2520  int mirror_num,
2521  unsigned long prev_bio_flags,
2522  unsigned long bio_flags)
2523 {
2524  int ret = 0;
2525  struct bio *bio;
2526  int nr;
2527  int contig = 0;
2528  int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2529  int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2530  size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2531 
2532  if (bio_ret && *bio_ret) {
2533  bio = *bio_ret;
2534  if (old_compressed)
2535  contig = bio->bi_sector == sector;
2536  else
2537  contig = bio->bi_sector + (bio->bi_size >> 9) ==
2538  sector;
2539 
2540  if (prev_bio_flags != bio_flags || !contig ||
2541  merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2542  bio_add_page(bio, page, page_size, offset) < page_size) {
2543  ret = submit_one_bio(rw, bio, mirror_num,
2544  prev_bio_flags);
2545  if (ret < 0)
2546  return ret;
2547  bio = NULL;
2548  } else {
2549  return 0;
2550  }
2551  }
2552  if (this_compressed)
2553  nr = BIO_MAX_PAGES;
2554  else
2555  nr = bio_get_nr_vecs(bdev);
2556 
2557  bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2558  if (!bio)
2559  return -ENOMEM;
2560 
2561  bio_add_page(bio, page, page_size, offset);
2562  bio->bi_end_io = end_io_func;
2563  bio->bi_private = tree;
2564 
2565  if (bio_ret)
2566  *bio_ret = bio;
2567  else
2568  ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2569 
2570  return ret;
2571 }
2572 
2573 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
2574 {
2575  if (!PagePrivate(page)) {
2576  SetPagePrivate(page);
2577  page_cache_get(page);
2578  set_page_private(page, (unsigned long)eb);
2579  } else {
2580  WARN_ON(page->private != (unsigned long)eb);
2581  }
2582 }
2583 
2584 void set_page_extent_mapped(struct page *page)
2585 {
2586  if (!PagePrivate(page)) {
2587  SetPagePrivate(page);
2588  page_cache_get(page);
2589  set_page_private(page, EXTENT_PAGE_PRIVATE);
2590  }
2591 }
2592 
2593 /*
2594  * basic readpage implementation. Locked extent state structs are inserted
2595  * into the tree that are removed when the IO is done (by the end_io
2596  * handlers)
2597  * XXX JDM: This needs looking at to ensure proper page locking
2598  */
2599 static int __extent_read_full_page(struct extent_io_tree *tree,
2600  struct page *page,
2601  get_extent_t *get_extent,
2602  struct bio **bio, int mirror_num,
2603  unsigned long *bio_flags)
2604 {
2605  struct inode *inode = page->mapping->host;
2606  u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2607  u64 page_end = start + PAGE_CACHE_SIZE - 1;
2608  u64 end;
2609  u64 cur = start;
2610  u64 extent_offset;
2611  u64 last_byte = i_size_read(inode);
2612  u64 block_start;
2613  u64 cur_end;
2614  sector_t sector;
2615  struct extent_map *em;
2616  struct block_device *bdev;
2617  struct btrfs_ordered_extent *ordered;
2618  int ret;
2619  int nr = 0;
2620  size_t pg_offset = 0;
2621  size_t iosize;
2622  size_t disk_io_size;
2623  size_t blocksize = inode->i_sb->s_blocksize;
2624  unsigned long this_bio_flag = 0;
2625 
2626  set_page_extent_mapped(page);
2627 
2628  if (!PageUptodate(page)) {
2629  if (cleancache_get_page(page) == 0) {
2630  BUG_ON(blocksize != PAGE_SIZE);
2631  goto out;
2632  }
2633  }
2634 
2635  end = page_end;
2636  while (1) {
2637  lock_extent(tree, start, end);
2638  ordered = btrfs_lookup_ordered_extent(inode, start);
2639  if (!ordered)
2640  break;
2641  unlock_extent(tree, start, end);
2642  btrfs_start_ordered_extent(inode, ordered, 1);
2643  btrfs_put_ordered_extent(ordered);
2644  }
2645 
2646  if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2647  char *userpage;
2648  size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2649 
2650  if (zero_offset) {
2651  iosize = PAGE_CACHE_SIZE - zero_offset;
2652  userpage = kmap_atomic(page);
2653  memset(userpage + zero_offset, 0, iosize);
2654  flush_dcache_page(page);
2655  kunmap_atomic(userpage);
2656  }
2657  }
2658  while (cur <= end) {
2659  if (cur >= last_byte) {
2660  char *userpage;
2661  struct extent_state *cached = NULL;
2662 
2663  iosize = PAGE_CACHE_SIZE - pg_offset;
2664  userpage = kmap_atomic(page);
2665  memset(userpage + pg_offset, 0, iosize);
2666  flush_dcache_page(page);
2667  kunmap_atomic(userpage);
2668  set_extent_uptodate(tree, cur, cur + iosize - 1,
2669  &cached, GFP_NOFS);
2670  unlock_extent_cached(tree, cur, cur + iosize - 1,
2671  &cached, GFP_NOFS);
2672  break;
2673  }
2674  em = get_extent(inode, page, pg_offset, cur,
2675  end - cur + 1, 0);
2676  if (IS_ERR_OR_NULL(em)) {
2677  SetPageError(page);
2678  unlock_extent(tree, cur, end);
2679  break;
2680  }
2681  extent_offset = cur - em->start;
2682  BUG_ON(extent_map_end(em) <= cur);
2683  BUG_ON(end < cur);
2684 
2685  if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2686  this_bio_flag = EXTENT_BIO_COMPRESSED;
2687  extent_set_compress_type(&this_bio_flag,
2688  em->compress_type);
2689  }
2690 
2691  iosize = min(extent_map_end(em) - cur, end - cur + 1);
2692  cur_end = min(extent_map_end(em) - 1, end);
2693  iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2694  if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2695  disk_io_size = em->block_len;
2696  sector = em->block_start >> 9;
2697  } else {
2698  sector = (em->block_start + extent_offset) >> 9;
2699  disk_io_size = iosize;
2700  }
2701  bdev = em->bdev;
2702  block_start = em->block_start;
2703  if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2704  block_start = EXTENT_MAP_HOLE;
2705  free_extent_map(em);
2706  em = NULL;
2707 
2708  /* we've found a hole, just zero and go on */
2709  if (block_start == EXTENT_MAP_HOLE) {
2710  char *userpage;
2711  struct extent_state *cached = NULL;
2712 
2713  userpage = kmap_atomic(page);
2714  memset(userpage + pg_offset, 0, iosize);
2715  flush_dcache_page(page);
2716  kunmap_atomic(userpage);
2717 
2718  set_extent_uptodate(tree, cur, cur + iosize - 1,
2719  &cached, GFP_NOFS);
2720  unlock_extent_cached(tree, cur, cur + iosize - 1,
2721  &cached, GFP_NOFS);
2722  cur = cur + iosize;
2723  pg_offset += iosize;
2724  continue;
2725  }
2726  /* the get_extent function already copied into the page */
2727  if (test_range_bit(tree, cur, cur_end,
2728  EXTENT_UPTODATE, 1, NULL)) {
2729  check_page_uptodate(tree, page);
2730  unlock_extent(tree, cur, cur + iosize - 1);
2731  cur = cur + iosize;
2732  pg_offset += iosize;
2733  continue;
2734  }
2735  /* we have an inline extent but it didn't get marked up
2736  * to date. Error out
2737  */
2738  if (block_start == EXTENT_MAP_INLINE) {
2739  SetPageError(page);
2740  unlock_extent(tree, cur, cur + iosize - 1);
2741  cur = cur + iosize;
2742  pg_offset += iosize;
2743  continue;
2744  }
2745 
2746  ret = 0;
2747  if (tree->ops && tree->ops->readpage_io_hook) {
2748  ret = tree->ops->readpage_io_hook(page, cur,
2749  cur + iosize - 1);
2750  }
2751  if (!ret) {
2752  unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2753  pnr -= page->index;
2754  ret = submit_extent_page(READ, tree, page,
2755  sector, disk_io_size, pg_offset,
2756  bdev, bio, pnr,
2757  end_bio_extent_readpage, mirror_num,
2758  *bio_flags,
2759  this_bio_flag);
2760  if (!ret) {
2761  nr++;
2762  *bio_flags = this_bio_flag;
2763  }
2764  }
2765  if (ret) {
2766  SetPageError(page);
2767  unlock_extent(tree, cur, cur + iosize - 1);
2768  }
2769  cur = cur + iosize;
2770  pg_offset += iosize;
2771  }
2772 out:
2773  if (!nr) {
2774  if (!PageError(page))
2775  SetPageUptodate(page);
2776  unlock_page(page);
2777  }
2778  return 0;
2779 }
2780 
2781 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2782  get_extent_t *get_extent, int mirror_num)
2783 {
2784  struct bio *bio = NULL;
2785  unsigned long bio_flags = 0;
2786  int ret;
2787 
2788  ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2789  &bio_flags);
2790  if (bio)
2791  ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2792  return ret;
2793 }
2794 
2795 static noinline void update_nr_written(struct page *page,
2796  struct writeback_control *wbc,
2797  unsigned long nr_written)
2798 {
2799  wbc->nr_to_write -= nr_written;
2800  if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2801  wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2802  page->mapping->writeback_index = page->index + nr_written;
2803 }
2804 
2805 /*
2806  * the writepage semantics are similar to regular writepage. extent
2807  * records are inserted to lock ranges in the tree, and as dirty areas
2808  * are found, they are marked writeback. Then the lock bits are removed
2809  * and the end_io handler clears the writeback ranges
2810  */
2811 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2812  void *data)
2813 {
2814  struct inode *inode = page->mapping->host;
2815  struct extent_page_data *epd = data;
2816  struct extent_io_tree *tree = epd->tree;
2817  u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2818  u64 delalloc_start;
2819  u64 page_end = start + PAGE_CACHE_SIZE - 1;
2820  u64 end;
2821  u64 cur = start;
2822  u64 extent_offset;
2823  u64 last_byte = i_size_read(inode);
2824  u64 block_start;
2825  u64 iosize;
2826  sector_t sector;
2827  struct extent_state *cached_state = NULL;
2828  struct extent_map *em;
2829  struct block_device *bdev;
2830  int ret;
2831  int nr = 0;
2832  size_t pg_offset = 0;
2833  size_t blocksize;
2834  loff_t i_size = i_size_read(inode);
2835  unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2836  u64 nr_delalloc;
2837  u64 delalloc_end;
2838  int page_started;
2839  int compressed;
2840  int write_flags;
2841  unsigned long nr_written = 0;
2842  bool fill_delalloc = true;
2843 
2844  if (wbc->sync_mode == WB_SYNC_ALL)
2845  write_flags = WRITE_SYNC;
2846  else
2847  write_flags = WRITE;
2848 
2849  trace___extent_writepage(page, inode, wbc);
2850 
2851  WARN_ON(!PageLocked(page));
2852 
2853  ClearPageError(page);
2854 
2855  pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2856  if (page->index > end_index ||
2857  (page->index == end_index && !pg_offset)) {
2858  page->mapping->a_ops->invalidatepage(page, 0);
2859  unlock_page(page);
2860  return 0;
2861  }
2862 
2863  if (page->index == end_index) {
2864  char *userpage;
2865 
2866  userpage = kmap_atomic(page);
2867  memset(userpage + pg_offset, 0,
2868  PAGE_CACHE_SIZE - pg_offset);
2869  kunmap_atomic(userpage);
2870  flush_dcache_page(page);
2871  }
2872  pg_offset = 0;
2873 
2874  set_page_extent_mapped(page);
2875 
2876  if (!tree->ops || !tree->ops->fill_delalloc)
2877  fill_delalloc = false;
2878 
2879  delalloc_start = start;
2880  delalloc_end = 0;
2881  page_started = 0;
2882  if (!epd->extent_locked && fill_delalloc) {
2883  u64 delalloc_to_write = 0;
2884  /*
2885  * make sure the wbc mapping index is at least updated
2886  * to this page.
2887  */
2888  update_nr_written(page, wbc, 0);
2889 
2890  while (delalloc_end < page_end) {
2891  nr_delalloc = find_lock_delalloc_range(inode, tree,
2892  page,
2893  &delalloc_start,
2894  &delalloc_end,
2895  128 * 1024 * 1024);
2896  if (nr_delalloc == 0) {
2897  delalloc_start = delalloc_end + 1;
2898  continue;
2899  }
2900  ret = tree->ops->fill_delalloc(inode, page,
2901  delalloc_start,
2902  delalloc_end,
2903  &page_started,
2904  &nr_written);
2905  /* File system has been set read-only */
2906  if (ret) {
2907  SetPageError(page);
2908  goto done;
2909  }
2910  /*
2911  * delalloc_end is already one less than the total
2912  * length, so we don't subtract one from
2913  * PAGE_CACHE_SIZE
2914  */
2915  delalloc_to_write += (delalloc_end - delalloc_start +
2916  PAGE_CACHE_SIZE) >>
2917  PAGE_CACHE_SHIFT;
2918  delalloc_start = delalloc_end + 1;
2919  }
2920  if (wbc->nr_to_write < delalloc_to_write) {
2921  int thresh = 8192;
2922 
2923  if (delalloc_to_write < thresh * 2)
2924  thresh = delalloc_to_write;
2925  wbc->nr_to_write = min_t(u64, delalloc_to_write,
2926  thresh);
2927  }
2928 
2929  /* did the fill delalloc function already unlock and start
2930  * the IO?
2931  */
2932  if (page_started) {
2933  ret = 0;
2934  /*
2935  * we've unlocked the page, so we can't update
2936  * the mapping's writeback index, just update
2937  * nr_to_write.
2938  */
2939  wbc->nr_to_write -= nr_written;
2940  goto done_unlocked;
2941  }
2942  }
2943  if (tree->ops && tree->ops->writepage_start_hook) {
2944  ret = tree->ops->writepage_start_hook(page, start,
2945  page_end);
2946  if (ret) {
2947  /* Fixup worker will requeue */
2948  if (ret == -EBUSY)
2949  wbc->pages_skipped++;
2950  else
2951  redirty_page_for_writepage(wbc, page);
2952  update_nr_written(page, wbc, nr_written);
2953  unlock_page(page);
2954  ret = 0;
2955  goto done_unlocked;
2956  }
2957  }
2958 
2959  /*
2960  * we don't want to touch the inode after unlocking the page,
2961  * so we update the mapping writeback index now
2962  */
2963  update_nr_written(page, wbc, nr_written + 1);
2964 
2965  end = page_end;
2966  if (last_byte <= start) {
2967  if (tree->ops && tree->ops->writepage_end_io_hook)
2968  tree->ops->writepage_end_io_hook(page, start,
2969  page_end, NULL, 1);
2970  goto done;
2971  }
2972 
2973  blocksize = inode->i_sb->s_blocksize;
2974 
2975  while (cur <= end) {
2976  if (cur >= last_byte) {
2977  if (tree->ops && tree->ops->writepage_end_io_hook)
2978  tree->ops->writepage_end_io_hook(page, cur,
2979  page_end, NULL, 1);
2980  break;
2981  }
2982  em = epd->get_extent(inode, page, pg_offset, cur,
2983  end - cur + 1, 1);
2984  if (IS_ERR_OR_NULL(em)) {
2985  SetPageError(page);
2986  break;
2987  }
2988 
2989  extent_offset = cur - em->start;
2990  BUG_ON(extent_map_end(em) <= cur);
2991  BUG_ON(end < cur);
2992  iosize = min(extent_map_end(em) - cur, end - cur + 1);
2993  iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2994  sector = (em->block_start + extent_offset) >> 9;
2995  bdev = em->bdev;
2996  block_start = em->block_start;
2997  compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2998  free_extent_map(em);
2999  em = NULL;
3000 
3001  /*
3002  * compressed and inline extents are written through other
3003  * paths in the FS
3004  */
3005  if (compressed || block_start == EXTENT_MAP_HOLE ||
3006  block_start == EXTENT_MAP_INLINE) {
3007  /*
3008  * end_io notification does not happen here for
3009  * compressed extents
3010  */
3011  if (!compressed && tree->ops &&
3012  tree->ops->writepage_end_io_hook)
3013  tree->ops->writepage_end_io_hook(page, cur,
3014  cur + iosize - 1,
3015  NULL, 1);
3016  else if (compressed) {
3017  /* we don't want to end_page_writeback on
3018  * a compressed extent. this happens
3019  * elsewhere
3020  */
3021  nr++;
3022  }
3023 
3024  cur += iosize;
3025  pg_offset += iosize;
3026  continue;
3027  }
3028  /* leave this out until we have a page_mkwrite call */
3029  if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3030  EXTENT_DIRTY, 0, NULL)) {
3031  cur = cur + iosize;
3032  pg_offset += iosize;
3033  continue;
3034  }
3035 
3036  if (tree->ops && tree->ops->writepage_io_hook) {
3037  ret = tree->ops->writepage_io_hook(page, cur,
3038  cur + iosize - 1);
3039  } else {
3040  ret = 0;
3041  }
3042  if (ret) {
3043  SetPageError(page);
3044  } else {
3045  unsigned long max_nr = end_index + 1;
3046 
3047  set_range_writeback(tree, cur, cur + iosize - 1);
3048  if (!PageWriteback(page)) {
3049  printk(KERN_ERR "btrfs warning page %lu not "
3050  "writeback, cur %llu end %llu\n",
3051  page->index, (unsigned long long)cur,
3052  (unsigned long long)end);
3053  }
3054 
3055  ret = submit_extent_page(write_flags, tree, page,
3056  sector, iosize, pg_offset,
3057  bdev, &epd->bio, max_nr,
3058  end_bio_extent_writepage,
3059  0, 0, 0);
3060  if (ret)
3061  SetPageError(page);
3062  }
3063  cur = cur + iosize;
3064  pg_offset += iosize;
3065  nr++;
3066  }
3067 done:
3068  if (nr == 0) {
3069  /* make sure the mapping tag for page dirty gets cleared */
3070  set_page_writeback(page);
3071  end_page_writeback(page);
3072  }
3073  unlock_page(page);
3074 
3075 done_unlocked:
3076 
3077  /* drop our reference on any cached states */
3078  free_extent_state(cached_state);
3079  return 0;
3080 }
3081 
3082 static int eb_wait(void *word)
3083 {
3084  io_schedule();
3085  return 0;
3086 }
3087 
3088 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3089 {
3090  wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3092 }
3093 
3094 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3095  struct btrfs_fs_info *fs_info,
3096  struct extent_page_data *epd)
3097 {
3098  unsigned long i, num_pages;
3099  int flush = 0;
3100  int ret = 0;
3101 
3102  if (!btrfs_try_tree_write_lock(eb)) {
3103  flush = 1;
3104  flush_write_bio(epd);
3105  btrfs_tree_lock(eb);
3106  }
3107 
3109  btrfs_tree_unlock(eb);
3110  if (!epd->sync_io)
3111  return 0;
3112  if (!flush) {
3113  flush_write_bio(epd);
3114  flush = 1;
3115  }
3116  while (1) {
3117  wait_on_extent_buffer_writeback(eb);
3118  btrfs_tree_lock(eb);
3120  break;
3121  btrfs_tree_unlock(eb);
3122  }
3123  }
3124 
3125  /*
3126  * We need to do this to prevent races in people who check if the eb is
3127  * under IO since we can end up having no IO bits set for a short period
3128  * of time.
3129  */
3130  spin_lock(&eb->refs_lock);
3133  spin_unlock(&eb->refs_lock);
3134  btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3135  spin_lock(&fs_info->delalloc_lock);
3136  if (fs_info->dirty_metadata_bytes >= eb->len)
3137  fs_info->dirty_metadata_bytes -= eb->len;
3138  else
3139  WARN_ON(1);
3140  spin_unlock(&fs_info->delalloc_lock);
3141  ret = 1;
3142  } else {
3143  spin_unlock(&eb->refs_lock);
3144  }
3145 
3146  btrfs_tree_unlock(eb);
3147 
3148  if (!ret)
3149  return ret;
3150 
3151  num_pages = num_extent_pages(eb->start, eb->len);
3152  for (i = 0; i < num_pages; i++) {
3153  struct page *p = extent_buffer_page(eb, i);
3154 
3155  if (!trylock_page(p)) {
3156  if (!flush) {
3157  flush_write_bio(epd);
3158  flush = 1;
3159  }
3160  lock_page(p);
3161  }
3162  }
3163 
3164  return ret;
3165 }
3166 
3167 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3168 {
3172 }
3173 
3174 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3175 {
3176  int uptodate = err == 0;
3177  struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3178  struct extent_buffer *eb;
3179  int done;
3180 
3181  do {
3182  struct page *page = bvec->bv_page;
3183 
3184  bvec--;
3185  eb = (struct extent_buffer *)page->private;
3186  BUG_ON(!eb);
3187  done = atomic_dec_and_test(&eb->io_pages);
3188 
3189  if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3191  ClearPageUptodate(page);
3192  SetPageError(page);
3193  }
3194 
3195  end_page_writeback(page);
3196 
3197  if (!done)
3198  continue;
3199 
3200  end_extent_buffer_writeback(eb);
3201  } while (bvec >= bio->bi_io_vec);
3202 
3203  bio_put(bio);
3204 
3205 }
3206 
3207 static int write_one_eb(struct extent_buffer *eb,
3208  struct btrfs_fs_info *fs_info,
3209  struct writeback_control *wbc,
3210  struct extent_page_data *epd)
3211 {
3212  struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3213  u64 offset = eb->start;
3214  unsigned long i, num_pages;
3215  unsigned long bio_flags = 0;
3216  int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3217  int ret = 0;
3218 
3220  num_pages = num_extent_pages(eb->start, eb->len);
3221  atomic_set(&eb->io_pages, num_pages);
3222  if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3223  bio_flags = EXTENT_BIO_TREE_LOG;
3224 
3225  for (i = 0; i < num_pages; i++) {
3226  struct page *p = extent_buffer_page(eb, i);
3227 
3229  set_page_writeback(p);
3230  ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3231  PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3232  -1, end_bio_extent_buffer_writepage,
3233  0, epd->bio_flags, bio_flags);
3234  epd->bio_flags = bio_flags;
3235  if (ret) {
3237  SetPageError(p);
3238  if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3239  end_extent_buffer_writeback(eb);
3240  ret = -EIO;
3241  break;
3242  }
3243  offset += PAGE_CACHE_SIZE;
3244  update_nr_written(p, wbc, 1);
3245  unlock_page(p);
3246  }
3247 
3248  if (unlikely(ret)) {
3249  for (; i < num_pages; i++) {
3250  struct page *p = extent_buffer_page(eb, i);
3251  unlock_page(p);
3252  }
3253  }
3254 
3255  return ret;
3256 }
3257 
3259  struct writeback_control *wbc)
3260 {
3261  struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3262  struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3263  struct extent_buffer *eb, *prev_eb = NULL;
3264  struct extent_page_data epd = {
3265  .bio = NULL,
3266  .tree = tree,
3267  .extent_locked = 0,
3268  .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3269  .bio_flags = 0,
3270  };
3271  int ret = 0;
3272  int done = 0;
3273  int nr_to_write_done = 0;
3274  struct pagevec pvec;
3275  int nr_pages;
3276  pgoff_t index;
3277  pgoff_t end; /* Inclusive */
3278  int scanned = 0;
3279  int tag;
3280 
3281  pagevec_init(&pvec, 0);
3282  if (wbc->range_cyclic) {
3283  index = mapping->writeback_index; /* Start from prev offset */
3284  end = -1;
3285  } else {
3286  index = wbc->range_start >> PAGE_CACHE_SHIFT;
3287  end = wbc->range_end >> PAGE_CACHE_SHIFT;
3288  scanned = 1;
3289  }
3290  if (wbc->sync_mode == WB_SYNC_ALL)
3291  tag = PAGECACHE_TAG_TOWRITE;
3292  else
3293  tag = PAGECACHE_TAG_DIRTY;
3294 retry:
3295  if (wbc->sync_mode == WB_SYNC_ALL)
3296  tag_pages_for_writeback(mapping, index, end);
3297  while (!done && !nr_to_write_done && (index <= end) &&
3298  (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3299  min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3300  unsigned i;
3301 
3302  scanned = 1;
3303  for (i = 0; i < nr_pages; i++) {
3304  struct page *page = pvec.pages[i];
3305 
3306  if (!PagePrivate(page))
3307  continue;
3308 
3309  if (!wbc->range_cyclic && page->index > end) {
3310  done = 1;
3311  break;
3312  }
3313 
3314  spin_lock(&mapping->private_lock);
3315  if (!PagePrivate(page)) {
3316  spin_unlock(&mapping->private_lock);
3317  continue;
3318  }
3319 
3320  eb = (struct extent_buffer *)page->private;
3321 
3322  /*
3323  * Shouldn't happen and normally this would be a BUG_ON
3324  * but no sense in crashing the users box for something
3325  * we can survive anyway.
3326  */
3327  if (!eb) {
3328  spin_unlock(&mapping->private_lock);
3329  WARN_ON(1);
3330  continue;
3331  }
3332 
3333  if (eb == prev_eb) {
3334  spin_unlock(&mapping->private_lock);
3335  continue;
3336  }
3337 
3338  ret = atomic_inc_not_zero(&eb->refs);
3339  spin_unlock(&mapping->private_lock);
3340  if (!ret)
3341  continue;
3342 
3343  prev_eb = eb;
3344  ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3345  if (!ret) {
3346  free_extent_buffer(eb);
3347  continue;
3348  }
3349 
3350  ret = write_one_eb(eb, fs_info, wbc, &epd);
3351  if (ret) {
3352  done = 1;
3353  free_extent_buffer(eb);
3354  break;
3355  }
3356  free_extent_buffer(eb);
3357 
3358  /*
3359  * the filesystem may choose to bump up nr_to_write.
3360  * We have to make sure to honor the new nr_to_write
3361  * at any time
3362  */
3363  nr_to_write_done = wbc->nr_to_write <= 0;
3364  }
3365  pagevec_release(&pvec);
3366  cond_resched();
3367  }
3368  if (!scanned && !done) {
3369  /*
3370  * We hit the last page and there is more work to be done: wrap
3371  * back to the start of the file
3372  */
3373  scanned = 1;
3374  index = 0;
3375  goto retry;
3376  }
3377  flush_write_bio(&epd);
3378  return ret;
3379 }
3380 
3396 static int extent_write_cache_pages(struct extent_io_tree *tree,
3397  struct address_space *mapping,
3398  struct writeback_control *wbc,
3399  writepage_t writepage, void *data,
3400  void (*flush_fn)(void *))
3401 {
3402  struct inode *inode = mapping->host;
3403  int ret = 0;
3404  int done = 0;
3405  int nr_to_write_done = 0;
3406  struct pagevec pvec;
3407  int nr_pages;
3408  pgoff_t index;
3409  pgoff_t end; /* Inclusive */
3410  int scanned = 0;
3411  int tag;
3412 
3413  /*
3414  * We have to hold onto the inode so that ordered extents can do their
3415  * work when the IO finishes. The alternative to this is failing to add
3416  * an ordered extent if the igrab() fails there and that is a huge pain
3417  * to deal with, so instead just hold onto the inode throughout the
3418  * writepages operation. If it fails here we are freeing up the inode
3419  * anyway and we'd rather not waste our time writing out stuff that is
3420  * going to be truncated anyway.
3421  */
3422  if (!igrab(inode))
3423  return 0;
3424 
3425  pagevec_init(&pvec, 0);
3426  if (wbc->range_cyclic) {
3427  index = mapping->writeback_index; /* Start from prev offset */
3428  end = -1;
3429  } else {
3430  index = wbc->range_start >> PAGE_CACHE_SHIFT;
3431  end = wbc->range_end >> PAGE_CACHE_SHIFT;
3432  scanned = 1;
3433  }
3434  if (wbc->sync_mode == WB_SYNC_ALL)
3435  tag = PAGECACHE_TAG_TOWRITE;
3436  else
3437  tag = PAGECACHE_TAG_DIRTY;
3438 retry:
3439  if (wbc->sync_mode == WB_SYNC_ALL)
3440  tag_pages_for_writeback(mapping, index, end);
3441  while (!done && !nr_to_write_done && (index <= end) &&
3442  (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3443  min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3444  unsigned i;
3445 
3446  scanned = 1;
3447  for (i = 0; i < nr_pages; i++) {
3448  struct page *page = pvec.pages[i];
3449 
3450  /*
3451  * At this point we hold neither mapping->tree_lock nor
3452  * lock on the page itself: the page may be truncated or
3453  * invalidated (changing page->mapping to NULL), or even
3454  * swizzled back from swapper_space to tmpfs file
3455  * mapping
3456  */
3457  if (tree->ops &&
3458  tree->ops->write_cache_pages_lock_hook) {
3459  tree->ops->write_cache_pages_lock_hook(page,
3460  data, flush_fn);
3461  } else {
3462  if (!trylock_page(page)) {
3463  flush_fn(data);
3464  lock_page(page);
3465  }
3466  }
3467 
3468  if (unlikely(page->mapping != mapping)) {
3469  unlock_page(page);
3470  continue;
3471  }
3472 
3473  if (!wbc->range_cyclic && page->index > end) {
3474  done = 1;
3475  unlock_page(page);
3476  continue;
3477  }
3478 
3479  if (wbc->sync_mode != WB_SYNC_NONE) {
3480  if (PageWriteback(page))
3481  flush_fn(data);
3482  wait_on_page_writeback(page);
3483  }
3484 
3485  if (PageWriteback(page) ||
3486  !clear_page_dirty_for_io(page)) {
3487  unlock_page(page);
3488  continue;
3489  }
3490 
3491  ret = (*writepage)(page, wbc, data);
3492 
3493  if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3494  unlock_page(page);
3495  ret = 0;
3496  }
3497  if (ret)
3498  done = 1;
3499 
3500  /*
3501  * the filesystem may choose to bump up nr_to_write.
3502  * We have to make sure to honor the new nr_to_write
3503  * at any time
3504  */
3505  nr_to_write_done = wbc->nr_to_write <= 0;
3506  }
3507  pagevec_release(&pvec);
3508  cond_resched();
3509  }
3510  if (!scanned && !done) {
3511  /*
3512  * We hit the last page and there is more work to be done: wrap
3513  * back to the start of the file
3514  */
3515  scanned = 1;
3516  index = 0;
3517  goto retry;
3518  }
3519  btrfs_add_delayed_iput(inode);
3520  return ret;
3521 }
3522 
3523 static void flush_epd_write_bio(struct extent_page_data *epd)
3524 {
3525  if (epd->bio) {
3526  int rw = WRITE;
3527  int ret;
3528 
3529  if (epd->sync_io)
3530  rw = WRITE_SYNC;
3531 
3532  ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3533  BUG_ON(ret < 0); /* -ENOMEM */
3534  epd->bio = NULL;
3535  }
3536 }
3537 
3538 static noinline void flush_write_bio(void *data)
3539 {
3540  struct extent_page_data *epd = data;
3541  flush_epd_write_bio(epd);
3542 }
3543 
3544 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3545  get_extent_t *get_extent,
3546  struct writeback_control *wbc)
3547 {
3548  int ret;
3549  struct extent_page_data epd = {
3550  .bio = NULL,
3551  .tree = tree,
3552  .get_extent = get_extent,
3553  .extent_locked = 0,
3554  .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3555  .bio_flags = 0,
3556  };
3557 
3558  ret = __extent_writepage(page, wbc, &epd);
3559 
3560  flush_epd_write_bio(&epd);
3561  return ret;
3562 }
3563 
3564 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3565  u64 start, u64 end, get_extent_t *get_extent,
3566  int mode)
3567 {
3568  int ret = 0;
3569  struct address_space *mapping = inode->i_mapping;
3570  struct page *page;
3571  unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3572  PAGE_CACHE_SHIFT;
3573 
3574  struct extent_page_data epd = {
3575  .bio = NULL,
3576  .tree = tree,
3577  .get_extent = get_extent,
3578  .extent_locked = 1,
3579  .sync_io = mode == WB_SYNC_ALL,
3580  .bio_flags = 0,
3581  };
3582  struct writeback_control wbc_writepages = {
3583  .sync_mode = mode,
3584  .nr_to_write = nr_pages * 2,
3585  .range_start = start,
3586  .range_end = end + 1,
3587  };
3588 
3589  while (start <= end) {
3590  page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3591  if (clear_page_dirty_for_io(page))
3592  ret = __extent_writepage(page, &wbc_writepages, &epd);
3593  else {
3594  if (tree->ops && tree->ops->writepage_end_io_hook)
3595  tree->ops->writepage_end_io_hook(page, start,
3596  start + PAGE_CACHE_SIZE - 1,
3597  NULL, 1);
3598  unlock_page(page);
3599  }
3600  page_cache_release(page);
3601  start += PAGE_CACHE_SIZE;
3602  }
3603 
3604  flush_epd_write_bio(&epd);
3605  return ret;
3606 }
3607 
3609  struct address_space *mapping,
3610  get_extent_t *get_extent,
3611  struct writeback_control *wbc)
3612 {
3613  int ret = 0;
3614  struct extent_page_data epd = {
3615  .bio = NULL,
3616  .tree = tree,
3617  .get_extent = get_extent,
3618  .extent_locked = 0,
3619  .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3620  .bio_flags = 0,
3621  };
3622 
3623  ret = extent_write_cache_pages(tree, mapping, wbc,
3624  __extent_writepage, &epd,
3625  flush_write_bio);
3626  flush_epd_write_bio(&epd);
3627  return ret;
3628 }
3629 
3631  struct address_space *mapping,
3632  struct list_head *pages, unsigned nr_pages,
3633  get_extent_t get_extent)
3634 {
3635  struct bio *bio = NULL;
3636  unsigned page_idx;
3637  unsigned long bio_flags = 0;
3638  struct page *pagepool[16];
3639  struct page *page;
3640  int i = 0;
3641  int nr = 0;
3642 
3643  for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3644  page = list_entry(pages->prev, struct page, lru);
3645 
3646  prefetchw(&page->flags);
3647  list_del(&page->lru);
3648  if (add_to_page_cache_lru(page, mapping,
3649  page->index, GFP_NOFS)) {
3650  page_cache_release(page);
3651  continue;
3652  }
3653 
3654  pagepool[nr++] = page;
3655  if (nr < ARRAY_SIZE(pagepool))
3656  continue;
3657  for (i = 0; i < nr; i++) {
3658  __extent_read_full_page(tree, pagepool[i], get_extent,
3659  &bio, 0, &bio_flags);
3660  page_cache_release(pagepool[i]);
3661  }
3662  nr = 0;
3663  }
3664  for (i = 0; i < nr; i++) {
3665  __extent_read_full_page(tree, pagepool[i], get_extent,
3666  &bio, 0, &bio_flags);
3667  page_cache_release(pagepool[i]);
3668  }
3669 
3670  BUG_ON(!list_empty(pages));
3671  if (bio)
3672  return submit_one_bio(READ, bio, 0, bio_flags);
3673  return 0;
3674 }
3675 
3676 /*
3677  * basic invalidatepage code, this waits on any locked or writeback
3678  * ranges corresponding to the page, and then deletes any extent state
3679  * records from the tree
3680  */
3682  struct page *page, unsigned long offset)
3683 {
3684  struct extent_state *cached_state = NULL;
3685  u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3686  u64 end = start + PAGE_CACHE_SIZE - 1;
3687  size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3688 
3689  start += (offset + blocksize - 1) & ~(blocksize - 1);
3690  if (start > end)
3691  return 0;
3692 
3693  lock_extent_bits(tree, start, end, 0, &cached_state);
3694  wait_on_page_writeback(page);
3695  clear_extent_bit(tree, start, end,
3696  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3698  1, 1, &cached_state, GFP_NOFS);
3699  return 0;
3700 }
3701 
3702 /*
3703  * a helper for releasepage, this tests for areas of the page that
3704  * are locked or under IO and drops the related state bits if it is safe
3705  * to drop the page.
3706  */
3708  struct extent_io_tree *tree, struct page *page,
3709  gfp_t mask)
3710 {
3711  u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3712  u64 end = start + PAGE_CACHE_SIZE - 1;
3713  int ret = 1;
3714 
3715  if (test_range_bit(tree, start, end,
3716  EXTENT_IOBITS, 0, NULL))
3717  ret = 0;
3718  else {
3719  if ((mask & GFP_NOFS) == GFP_NOFS)
3720  mask = GFP_NOFS;
3721  /*
3722  * at this point we can safely clear everything except the
3723  * locked bit and the nodatasum bit
3724  */
3725  ret = clear_extent_bit(tree, start, end,
3727  0, 0, NULL, mask);
3728 
3729  /* if clear_extent_bit failed for enomem reasons,
3730  * we can't allow the release to continue.
3731  */
3732  if (ret < 0)
3733  ret = 0;
3734  else
3735  ret = 1;
3736  }
3737  return ret;
3738 }
3739 
3740 /*
3741  * a helper for releasepage. As long as there are no locked extents
3742  * in the range corresponding to the page, both state records and extent
3743  * map records are removed
3744  */
3746  struct extent_io_tree *tree, struct page *page,
3747  gfp_t mask)
3748 {
3749  struct extent_map *em;
3750  u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3751  u64 end = start + PAGE_CACHE_SIZE - 1;
3752 
3753  if ((mask & __GFP_WAIT) &&
3754  page->mapping->host->i_size > 16 * 1024 * 1024) {
3755  u64 len;
3756  while (start <= end) {
3757  len = end - start + 1;
3758  write_lock(&map->lock);
3759  em = lookup_extent_mapping(map, start, len);
3760  if (!em) {
3761  write_unlock(&map->lock);
3762  break;
3763  }
3764  if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3765  em->start != start) {
3766  write_unlock(&map->lock);
3767  free_extent_map(em);
3768  break;
3769  }
3770  if (!test_range_bit(tree, em->start,
3771  extent_map_end(em) - 1,
3773  0, NULL)) {
3774  remove_extent_mapping(map, em);
3775  /* once for the rb tree */
3776  free_extent_map(em);
3777  }
3778  start = extent_map_end(em);
3779  write_unlock(&map->lock);
3780 
3781  /* once for us */
3782  free_extent_map(em);
3783  }
3784  }
3785  return try_release_extent_state(map, tree, page, mask);
3786 }
3787 
3788 /*
3789  * helper function for fiemap, which doesn't want to see any holes.
3790  * This maps until we find something past 'last'
3791  */
3792 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3793  u64 offset,
3794  u64 last,
3795  get_extent_t *get_extent)
3796 {
3797  u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3798  struct extent_map *em;
3799  u64 len;
3800 
3801  if (offset >= last)
3802  return NULL;
3803 
3804  while(1) {
3805  len = last - offset;
3806  if (len == 0)
3807  break;
3808  len = (len + sectorsize - 1) & ~(sectorsize - 1);
3809  em = get_extent(inode, NULL, 0, offset, len, 0);
3810  if (IS_ERR_OR_NULL(em))
3811  return em;
3812 
3813  /* if this isn't a hole return it */
3814  if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3815  em->block_start != EXTENT_MAP_HOLE) {
3816  return em;
3817  }
3818 
3819  /* this is a hole, advance to the next extent */
3820  offset = extent_map_end(em);
3821  free_extent_map(em);
3822  if (offset >= last)
3823  break;
3824  }
3825  return NULL;
3826 }
3827 
3828 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3829  __u64 start, __u64 len, get_extent_t *get_extent)
3830 {
3831  int ret = 0;
3832  u64 off = start;
3833  u64 max = start + len;
3834  u32 flags = 0;
3835  u32 found_type;
3836  u64 last;
3837  u64 last_for_get_extent = 0;
3838  u64 disko = 0;
3839  u64 isize = i_size_read(inode);
3840  struct btrfs_key found_key;
3841  struct extent_map *em = NULL;
3842  struct extent_state *cached_state = NULL;
3843  struct btrfs_path *path;
3844  struct btrfs_file_extent_item *item;
3845  int end = 0;
3846  u64 em_start = 0;
3847  u64 em_len = 0;
3848  u64 em_end = 0;
3849  unsigned long emflags;
3850 
3851  if (len == 0)
3852  return -EINVAL;
3853 
3854  path = btrfs_alloc_path();
3855  if (!path)
3856  return -ENOMEM;
3857  path->leave_spinning = 1;
3858 
3859  start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3860  len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3861 
3862  /*
3863  * lookup the last file extent. We're not using i_size here
3864  * because there might be preallocation past i_size
3865  */
3866  ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3867  path, btrfs_ino(inode), -1, 0);
3868  if (ret < 0) {
3869  btrfs_free_path(path);
3870  return ret;
3871  }
3872  WARN_ON(!ret);
3873  path->slots[0]--;
3874  item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3875  struct btrfs_file_extent_item);
3876  btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3877  found_type = btrfs_key_type(&found_key);
3878 
3879  /* No extents, but there might be delalloc bits */
3880  if (found_key.objectid != btrfs_ino(inode) ||
3881  found_type != BTRFS_EXTENT_DATA_KEY) {
3882  /* have to trust i_size as the end */
3883  last = (u64)-1;
3884  last_for_get_extent = isize;
3885  } else {
3886  /*
3887  * remember the start of the last extent. There are a
3888  * bunch of different factors that go into the length of the
3889  * extent, so its much less complex to remember where it started
3890  */
3891  last = found_key.offset;
3892  last_for_get_extent = last + 1;
3893  }
3894  btrfs_free_path(path);
3895 
3896  /*
3897  * we might have some extents allocated but more delalloc past those
3898  * extents. so, we trust isize unless the start of the last extent is
3899  * beyond isize
3900  */
3901  if (last < isize) {
3902  last = (u64)-1;
3903  last_for_get_extent = isize;
3904  }
3905 
3906  lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3907  &cached_state);
3908 
3909  em = get_extent_skip_holes(inode, start, last_for_get_extent,
3910  get_extent);
3911  if (!em)
3912  goto out;
3913  if (IS_ERR(em)) {
3914  ret = PTR_ERR(em);
3915  goto out;
3916  }
3917 
3918  while (!end) {
3919  u64 offset_in_extent;
3920 
3921  /* break if the extent we found is outside the range */
3922  if (em->start >= max || extent_map_end(em) < off)
3923  break;
3924 
3925  /*
3926  * get_extent may return an extent that starts before our
3927  * requested range. We have to make sure the ranges
3928  * we return to fiemap always move forward and don't
3929  * overlap, so adjust the offsets here
3930  */
3931  em_start = max(em->start, off);
3932 
3933  /*
3934  * record the offset from the start of the extent
3935  * for adjusting the disk offset below
3936  */
3937  offset_in_extent = em_start - em->start;
3938  em_end = extent_map_end(em);
3939  em_len = em_end - em_start;
3940  emflags = em->flags;
3941  disko = 0;
3942  flags = 0;
3943 
3944  /*
3945  * bump off for our next call to get_extent
3946  */
3947  off = extent_map_end(em);
3948  if (off >= max)
3949  end = 1;
3950 
3951  if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3952  end = 1;
3953  flags |= FIEMAP_EXTENT_LAST;
3954  } else if (em->block_start == EXTENT_MAP_INLINE) {
3955  flags |= (FIEMAP_EXTENT_DATA_INLINE |
3957  } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3958  flags |= (FIEMAP_EXTENT_DELALLOC |
3960  } else {
3961  disko = em->block_start + offset_in_extent;
3962  }
3964  flags |= FIEMAP_EXTENT_ENCODED;
3965 
3966  free_extent_map(em);
3967  em = NULL;
3968  if ((em_start >= last) || em_len == (u64)-1 ||
3969  (last == (u64)-1 && isize <= em_end)) {
3970  flags |= FIEMAP_EXTENT_LAST;
3971  end = 1;
3972  }
3973 
3974  /* now scan forward to see if this is really the last extent. */
3975  em = get_extent_skip_holes(inode, off, last_for_get_extent,
3976  get_extent);
3977  if (IS_ERR(em)) {
3978  ret = PTR_ERR(em);
3979  goto out;
3980  }
3981  if (!em) {
3982  flags |= FIEMAP_EXTENT_LAST;
3983  end = 1;
3984  }
3985  ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3986  em_len, flags);
3987  if (ret)
3988  goto out_free;
3989  }
3990 out_free:
3991  free_extent_map(em);
3992 out:
3993  unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3994  &cached_state, GFP_NOFS);
3995  return ret;
3996 }
3997 
3998 static void __free_extent_buffer(struct extent_buffer *eb)
3999 {
4000 #if LEAK_DEBUG
4001  unsigned long flags;
4002  spin_lock_irqsave(&leak_lock, flags);
4003  list_del(&eb->leak_list);
4004  spin_unlock_irqrestore(&leak_lock, flags);
4005 #endif
4006  if (eb->pages && eb->pages != eb->inline_pages)
4007  kfree(eb->pages);
4008  kmem_cache_free(extent_buffer_cache, eb);
4009 }
4010 
4011 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4012  u64 start,
4013  unsigned long len,
4014  gfp_t mask)
4015 {
4016  struct extent_buffer *eb = NULL;
4017 #if LEAK_DEBUG
4018  unsigned long flags;
4019 #endif
4020 
4021  eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4022  if (eb == NULL)
4023  return NULL;
4024  eb->start = start;
4025  eb->len = len;
4026  eb->tree = tree;
4027  eb->bflags = 0;
4028  rwlock_init(&eb->lock);
4029  atomic_set(&eb->write_locks, 0);
4030  atomic_set(&eb->read_locks, 0);
4031  atomic_set(&eb->blocking_readers, 0);
4032  atomic_set(&eb->blocking_writers, 0);
4033  atomic_set(&eb->spinning_readers, 0);
4034  atomic_set(&eb->spinning_writers, 0);
4035  eb->lock_nested = 0;
4038 
4039 #if LEAK_DEBUG
4040  spin_lock_irqsave(&leak_lock, flags);
4041  list_add(&eb->leak_list, &buffers);
4042  spin_unlock_irqrestore(&leak_lock, flags);
4043 #endif
4044  spin_lock_init(&eb->refs_lock);
4045  atomic_set(&eb->refs, 1);
4046  atomic_set(&eb->io_pages, 0);
4047 
4048  if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
4049  struct page **pages;
4050  int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
4051  PAGE_CACHE_SHIFT;
4052  pages = kzalloc(num_pages, mask);
4053  if (!pages) {
4054  __free_extent_buffer(eb);
4055  return NULL;
4056  }
4057  eb->pages = pages;
4058  } else {
4059  eb->pages = eb->inline_pages;
4060  }
4061 
4062  return eb;
4063 }
4064 
4066 {
4067  unsigned long i;
4068  struct page *p;
4069  struct extent_buffer *new;
4070  unsigned long num_pages = num_extent_pages(src->start, src->len);
4071 
4072  new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4073  if (new == NULL)
4074  return NULL;
4075 
4076  for (i = 0; i < num_pages; i++) {
4077  p = alloc_page(GFP_ATOMIC);
4078  BUG_ON(!p);
4079  attach_extent_buffer_page(new, p);
4080  WARN_ON(PageDirty(p));
4081  SetPageUptodate(p);
4082  new->pages[i] = p;
4083  }
4084 
4085  copy_extent_buffer(new, src, 0, 0, src->len);
4086  set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4087  set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4088 
4089  return new;
4090 }
4091 
4092 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4093 {
4094  struct extent_buffer *eb;
4095  unsigned long num_pages = num_extent_pages(0, len);
4096  unsigned long i;
4097 
4098  eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4099  if (!eb)
4100  return NULL;
4101 
4102  for (i = 0; i < num_pages; i++) {
4103  eb->pages[i] = alloc_page(GFP_ATOMIC);
4104  if (!eb->pages[i])
4105  goto err;
4106  }
4108  btrfs_set_header_nritems(eb, 0);
4110 
4111  return eb;
4112 err:
4113  for (; i > 0; i--)
4114  __free_page(eb->pages[i - 1]);
4115  __free_extent_buffer(eb);
4116  return NULL;
4117 }
4118 
4119 static int extent_buffer_under_io(struct extent_buffer *eb)
4120 {
4121  return (atomic_read(&eb->io_pages) ||
4124 }
4125 
4126 /*
4127  * Helper for releasing extent buffer page.
4128  */
4129 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4130  unsigned long start_idx)
4131 {
4132  unsigned long index;
4133  unsigned long num_pages;
4134  struct page *page;
4135  int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4136 
4137  BUG_ON(extent_buffer_under_io(eb));
4138 
4139  num_pages = num_extent_pages(eb->start, eb->len);
4140  index = start_idx + num_pages;
4141  if (start_idx >= index)
4142  return;
4143 
4144  do {
4145  index--;
4146  page = extent_buffer_page(eb, index);
4147  if (page && mapped) {
4148  spin_lock(&page->mapping->private_lock);
4149  /*
4150  * We do this since we'll remove the pages after we've
4151  * removed the eb from the radix tree, so we could race
4152  * and have this page now attached to the new eb. So
4153  * only clear page_private if it's still connected to
4154  * this eb.
4155  */
4156  if (PagePrivate(page) &&
4157  page->private == (unsigned long)eb) {
4158  BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4159  BUG_ON(PageDirty(page));
4160  BUG_ON(PageWriteback(page));
4161  /*
4162  * We need to make sure we haven't be attached
4163  * to a new eb.
4164  */
4165  ClearPagePrivate(page);
4166  set_page_private(page, 0);
4167  /* One for the page private */
4168  page_cache_release(page);
4169  }
4170  spin_unlock(&page->mapping->private_lock);
4171 
4172  }
4173  if (page) {
4174  /* One for when we alloced the page */
4175  page_cache_release(page);
4176  }
4177  } while (index != start_idx);
4178 }
4179 
4180 /*
4181  * Helper for releasing the extent buffer.
4182  */
4183 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4184 {
4185  btrfs_release_extent_buffer_page(eb, 0);
4186  __free_extent_buffer(eb);
4187 }
4188 
4189 static void check_buffer_tree_ref(struct extent_buffer *eb)
4190 {
4191  /* the ref bit is tricky. We have to make sure it is set
4192  * if we have the buffer dirty. Otherwise the
4193  * code to free a buffer can end up dropping a dirty
4194  * page
4195  *
4196  * Once the ref bit is set, it won't go away while the
4197  * buffer is dirty or in writeback, and it also won't
4198  * go away while we have the reference count on the
4199  * eb bumped.
4200  *
4201  * We can't just set the ref bit without bumping the
4202  * ref on the eb because free_extent_buffer might
4203  * see the ref bit and try to clear it. If this happens
4204  * free_extent_buffer might end up dropping our original
4205  * ref by mistake and freeing the page before we are able
4206  * to add one more ref.
4207  *
4208  * So bump the ref count first, then set the bit. If someone
4209  * beat us to it, drop the ref we added.
4210  */
4211  spin_lock(&eb->refs_lock);
4213  atomic_inc(&eb->refs);
4214  spin_unlock(&eb->refs_lock);
4215 }
4216 
4217 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4218 {
4219  unsigned long num_pages, i;
4220 
4221  check_buffer_tree_ref(eb);
4222 
4223  num_pages = num_extent_pages(eb->start, eb->len);
4224  for (i = 0; i < num_pages; i++) {
4225  struct page *p = extent_buffer_page(eb, i);
4226  mark_page_accessed(p);
4227  }
4228 }
4229 
4231  u64 start, unsigned long len)
4232 {
4233  unsigned long num_pages = num_extent_pages(start, len);
4234  unsigned long i;
4235  unsigned long index = start >> PAGE_CACHE_SHIFT;
4236  struct extent_buffer *eb;
4237  struct extent_buffer *exists = NULL;
4238  struct page *p;
4239  struct address_space *mapping = tree->mapping;
4240  int uptodate = 1;
4241  int ret;
4242 
4243  rcu_read_lock();
4244  eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4245  if (eb && atomic_inc_not_zero(&eb->refs)) {
4246  rcu_read_unlock();
4247  mark_extent_buffer_accessed(eb);
4248  return eb;
4249  }
4250  rcu_read_unlock();
4251 
4252  eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4253  if (!eb)
4254  return NULL;
4255 
4256  for (i = 0; i < num_pages; i++, index++) {
4257  p = find_or_create_page(mapping, index, GFP_NOFS);
4258  if (!p)
4259  goto free_eb;
4260 
4261  spin_lock(&mapping->private_lock);
4262  if (PagePrivate(p)) {
4263  /*
4264  * We could have already allocated an eb for this page
4265  * and attached one so lets see if we can get a ref on
4266  * the existing eb, and if we can we know it's good and
4267  * we can just return that one, else we know we can just
4268  * overwrite page->private.
4269  */
4270  exists = (struct extent_buffer *)p->private;
4271  if (atomic_inc_not_zero(&exists->refs)) {
4272  spin_unlock(&mapping->private_lock);
4273  unlock_page(p);
4274  page_cache_release(p);
4275  mark_extent_buffer_accessed(exists);
4276  goto free_eb;
4277  }
4278 
4279  /*
4280  * Do this so attach doesn't complain and we need to
4281  * drop the ref the old guy had.
4282  */
4283  ClearPagePrivate(p);
4284  WARN_ON(PageDirty(p));
4285  page_cache_release(p);
4286  }
4288  spin_unlock(&mapping->private_lock);
4289  WARN_ON(PageDirty(p));
4290  mark_page_accessed(p);
4291  eb->pages[i] = p;
4292  if (!PageUptodate(p))
4293  uptodate = 0;
4294 
4295  /*
4296  * see below about how we avoid a nasty race with release page
4297  * and why we unlock later
4298  */
4299  }
4300  if (uptodate)
4302 again:
4304  if (ret)
4305  goto free_eb;
4306 
4307  spin_lock(&tree->buffer_lock);
4308  ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4309  if (ret == -EEXIST) {
4310  exists = radix_tree_lookup(&tree->buffer,
4311  start >> PAGE_CACHE_SHIFT);
4312  if (!atomic_inc_not_zero(&exists->refs)) {
4313  spin_unlock(&tree->buffer_lock);
4314  radix_tree_preload_end();
4315  exists = NULL;
4316  goto again;
4317  }
4318  spin_unlock(&tree->buffer_lock);
4319  radix_tree_preload_end();
4320  mark_extent_buffer_accessed(exists);
4321  goto free_eb;
4322  }
4323  /* add one reference for the tree */
4324  check_buffer_tree_ref(eb);
4325  spin_unlock(&tree->buffer_lock);
4326  radix_tree_preload_end();
4327 
4328  /*
4329  * there is a race where release page may have
4330  * tried to find this extent buffer in the radix
4331  * but failed. It will tell the VM it is safe to
4332  * reclaim the, and it will clear the page private bit.
4333  * We must make sure to set the page private bit properly
4334  * after the extent buffer is in the radix tree so
4335  * it doesn't get lost
4336  */
4337  SetPageChecked(eb->pages[0]);
4338  for (i = 1; i < num_pages; i++) {
4339  p = extent_buffer_page(eb, i);
4340  ClearPageChecked(p);
4341  unlock_page(p);
4342  }
4343  unlock_page(eb->pages[0]);
4344  return eb;
4345 
4346 free_eb:
4347  for (i = 0; i < num_pages; i++) {
4348  if (eb->pages[i])
4349  unlock_page(eb->pages[i]);
4350  }
4351 
4353  btrfs_release_extent_buffer(eb);
4354  return exists;
4355 }
4356 
4358  u64 start, unsigned long len)
4359 {
4360  struct extent_buffer *eb;
4361 
4362  rcu_read_lock();
4363  eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4364  if (eb && atomic_inc_not_zero(&eb->refs)) {
4365  rcu_read_unlock();
4366  mark_extent_buffer_accessed(eb);
4367  return eb;
4368  }
4369  rcu_read_unlock();
4370 
4371  return NULL;
4372 }
4373 
4374 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4375 {
4376  struct extent_buffer *eb =
4377  container_of(head, struct extent_buffer, rcu_head);
4378 
4379  __free_extent_buffer(eb);
4380 }
4381 
4382 /* Expects to have eb->eb_lock already held */
4383 static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4384 {
4385  WARN_ON(atomic_read(&eb->refs) == 0);
4386  if (atomic_dec_and_test(&eb->refs)) {
4387  if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4388  spin_unlock(&eb->refs_lock);
4389  } else {
4390  struct extent_io_tree *tree = eb->tree;
4391 
4392  spin_unlock(&eb->refs_lock);
4393 
4394  spin_lock(&tree->buffer_lock);
4395  radix_tree_delete(&tree->buffer,
4396  eb->start >> PAGE_CACHE_SHIFT);
4397  spin_unlock(&tree->buffer_lock);
4398  }
4399 
4400  /* Should be safe to release our pages at this point */
4401  btrfs_release_extent_buffer_page(eb, 0);
4402  call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4403  return 1;
4404  }
4405  spin_unlock(&eb->refs_lock);
4406 
4407  return 0;
4408 }
4409 
4411 {
4412  if (!eb)
4413  return;
4414 
4415  spin_lock(&eb->refs_lock);
4416  if (atomic_read(&eb->refs) == 2 &&
4418  atomic_dec(&eb->refs);
4419 
4420  if (atomic_read(&eb->refs) == 2 &&
4422  !extent_buffer_under_io(eb) &&
4424  atomic_dec(&eb->refs);
4425 
4426  /*
4427  * I know this is terrible, but it's temporary until we stop tracking
4428  * the uptodate bits and such for the extent buffers.
4429  */
4430  release_extent_buffer(eb, GFP_ATOMIC);
4431 }
4432 
4434 {
4435  if (!eb)
4436  return;
4437 
4438  spin_lock(&eb->refs_lock);
4440 
4441  if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4443  atomic_dec(&eb->refs);
4444  release_extent_buffer(eb, GFP_NOFS);
4445 }
4446 
4448 {
4449  unsigned long i;
4450  unsigned long num_pages;
4451  struct page *page;
4452 
4453  num_pages = num_extent_pages(eb->start, eb->len);
4454 
4455  for (i = 0; i < num_pages; i++) {
4456  page = extent_buffer_page(eb, i);
4457  if (!PageDirty(page))
4458  continue;
4459 
4460  lock_page(page);
4461  WARN_ON(!PagePrivate(page));
4462 
4464  spin_lock_irq(&page->mapping->tree_lock);
4465  if (!PageDirty(page)) {
4466  radix_tree_tag_clear(&page->mapping->page_tree,
4467  page_index(page),
4469  }
4470  spin_unlock_irq(&page->mapping->tree_lock);
4471  ClearPageError(page);
4472  unlock_page(page);
4473  }
4474  WARN_ON(atomic_read(&eb->refs) == 0);
4475 }
4476 
4478 {
4479  unsigned long i;
4480  unsigned long num_pages;
4481  int was_dirty = 0;
4482 
4483  check_buffer_tree_ref(eb);
4484 
4485  was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4486 
4487  num_pages = num_extent_pages(eb->start, eb->len);
4488  WARN_ON(atomic_read(&eb->refs) == 0);
4490 
4491  for (i = 0; i < num_pages; i++)
4492  set_page_dirty(extent_buffer_page(eb, i));
4493  return was_dirty;
4494 }
4495 
4496 static int range_straddles_pages(u64 start, u64 len)
4497 {
4498  if (len < PAGE_CACHE_SIZE)
4499  return 1;
4500  if (start & (PAGE_CACHE_SIZE - 1))
4501  return 1;
4502  if ((start + len) & (PAGE_CACHE_SIZE - 1))
4503  return 1;
4504  return 0;
4505 }
4506 
4508 {
4509  unsigned long i;
4510  struct page *page;
4511  unsigned long num_pages;
4512 
4514  num_pages = num_extent_pages(eb->start, eb->len);
4515  for (i = 0; i < num_pages; i++) {
4516  page = extent_buffer_page(eb, i);
4517  if (page)
4518  ClearPageUptodate(page);
4519  }
4520  return 0;
4521 }
4522 
4524 {
4525  unsigned long i;
4526  struct page *page;
4527  unsigned long num_pages;
4528 
4530  num_pages = num_extent_pages(eb->start, eb->len);
4531  for (i = 0; i < num_pages; i++) {
4532  page = extent_buffer_page(eb, i);
4533  SetPageUptodate(page);
4534  }
4535  return 0;
4536 }
4537 
4539  u64 start, u64 end)
4540 {
4541  struct page *page;
4542  int ret;
4543  int pg_uptodate = 1;
4544  int uptodate;
4545  unsigned long index;
4546 
4547  if (range_straddles_pages(start, end - start + 1)) {
4548  ret = test_range_bit(tree, start, end,
4549  EXTENT_UPTODATE, 1, NULL);
4550  if (ret)
4551  return 1;
4552  }
4553  while (start <= end) {
4554  index = start >> PAGE_CACHE_SHIFT;
4555  page = find_get_page(tree->mapping, index);
4556  if (!page)
4557  return 1;
4558  uptodate = PageUptodate(page);
4559  page_cache_release(page);
4560  if (!uptodate) {
4561  pg_uptodate = 0;
4562  break;
4563  }
4564  start += PAGE_CACHE_SIZE;
4565  }
4566  return pg_uptodate;
4567 }
4568 
4570 {
4571  return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4572 }
4573 
4575  struct extent_buffer *eb, u64 start, int wait,
4576  get_extent_t *get_extent, int mirror_num)
4577 {
4578  unsigned long i;
4579  unsigned long start_i;
4580  struct page *page;
4581  int err;
4582  int ret = 0;
4583  int locked_pages = 0;
4584  int all_uptodate = 1;
4585  unsigned long num_pages;
4586  unsigned long num_reads = 0;
4587  struct bio *bio = NULL;
4588  unsigned long bio_flags = 0;
4589 
4591  return 0;
4592 
4593  if (start) {
4594  WARN_ON(start < eb->start);
4595  start_i = (start >> PAGE_CACHE_SHIFT) -
4596  (eb->start >> PAGE_CACHE_SHIFT);
4597  } else {
4598  start_i = 0;
4599  }
4600 
4601  num_pages = num_extent_pages(eb->start, eb->len);
4602  for (i = start_i; i < num_pages; i++) {
4603  page = extent_buffer_page(eb, i);
4604  if (wait == WAIT_NONE) {
4605  if (!trylock_page(page))
4606  goto unlock_exit;
4607  } else {
4608  lock_page(page);
4609  }
4610  locked_pages++;
4611  if (!PageUptodate(page)) {
4612  num_reads++;
4613  all_uptodate = 0;
4614  }
4615  }
4616  if (all_uptodate) {
4617  if (start_i == 0)
4619  goto unlock_exit;
4620  }
4621 
4623  eb->read_mirror = 0;
4624  atomic_set(&eb->io_pages, num_reads);
4625  for (i = start_i; i < num_pages; i++) {
4626  page = extent_buffer_page(eb, i);
4627  if (!PageUptodate(page)) {
4628  ClearPageError(page);
4629  err = __extent_read_full_page(tree, page,
4630  get_extent, &bio,
4631  mirror_num, &bio_flags);
4632  if (err)
4633  ret = err;
4634  } else {
4635  unlock_page(page);
4636  }
4637  }
4638 
4639  if (bio) {
4640  err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4641  if (err)
4642  return err;
4643  }
4644 
4645  if (ret || wait != WAIT_COMPLETE)
4646  return ret;
4647 
4648  for (i = start_i; i < num_pages; i++) {
4649  page = extent_buffer_page(eb, i);
4650  wait_on_page_locked(page);
4651  if (!PageUptodate(page))
4652  ret = -EIO;
4653  }
4654 
4655  return ret;
4656 
4657 unlock_exit:
4658  i = start_i;
4659  while (locked_pages > 0) {
4660  page = extent_buffer_page(eb, i);
4661  i++;
4662  unlock_page(page);
4663  locked_pages--;
4664  }
4665  return ret;
4666 }
4667 
4668 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4669  unsigned long start,
4670  unsigned long len)
4671 {
4672  size_t cur;
4673  size_t offset;
4674  struct page *page;
4675  char *kaddr;
4676  char *dst = (char *)dstv;
4677  size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4678  unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4679 
4680  WARN_ON(start > eb->len);
4681  WARN_ON(start + len > eb->start + eb->len);
4682 
4683  offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4684 
4685  while (len > 0) {
4686  page = extent_buffer_page(eb, i);
4687 
4688  cur = min(len, (PAGE_CACHE_SIZE - offset));
4689  kaddr = page_address(page);
4690  memcpy(dst, kaddr + offset, cur);
4691 
4692  dst += cur;
4693  len -= cur;
4694  offset = 0;
4695  i++;
4696  }
4697 }
4698 
4699 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4700  unsigned long min_len, char **map,
4701  unsigned long *map_start,
4702  unsigned long *map_len)
4703 {
4704  size_t offset = start & (PAGE_CACHE_SIZE - 1);
4705  char *kaddr;
4706  struct page *p;
4707  size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4708  unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4709  unsigned long end_i = (start_offset + start + min_len - 1) >>
4710  PAGE_CACHE_SHIFT;
4711 
4712  if (i != end_i)
4713  return -EINVAL;
4714 
4715  if (i == 0) {
4716  offset = start_offset;
4717  *map_start = 0;
4718  } else {
4719  offset = 0;
4720  *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4721  }
4722 
4723  if (start + min_len > eb->len) {
4724  printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4725  "wanted %lu %lu\n", (unsigned long long)eb->start,
4726  eb->len, start, min_len);
4727  WARN_ON(1);
4728  return -EINVAL;
4729  }
4730 
4731  p = extent_buffer_page(eb, i);
4732  kaddr = page_address(p);
4733  *map = kaddr + offset;
4734  *map_len = PAGE_CACHE_SIZE - offset;
4735  return 0;
4736 }
4737 
4738 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4739  unsigned long start,
4740  unsigned long len)
4741 {
4742  size_t cur;
4743  size_t offset;
4744  struct page *page;
4745  char *kaddr;
4746  char *ptr = (char *)ptrv;
4747  size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4748  unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4749  int ret = 0;
4750 
4751  WARN_ON(start > eb->len);
4752  WARN_ON(start + len > eb->start + eb->len);
4753 
4754  offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4755 
4756  while (len > 0) {
4757  page = extent_buffer_page(eb, i);
4758 
4759  cur = min(len, (PAGE_CACHE_SIZE - offset));
4760 
4761  kaddr = page_address(page);
4762  ret = memcmp(ptr, kaddr + offset, cur);
4763  if (ret)
4764  break;
4765 
4766  ptr += cur;
4767  len -= cur;
4768  offset = 0;
4769  i++;
4770  }
4771  return ret;
4772 }
4773 
4774 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4775  unsigned long start, unsigned long len)
4776 {
4777  size_t cur;
4778  size_t offset;
4779  struct page *page;
4780  char *kaddr;
4781  char *src = (char *)srcv;
4782  size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4783  unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4784 
4785  WARN_ON(start > eb->len);
4786  WARN_ON(start + len > eb->start + eb->len);
4787 
4788  offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4789 
4790  while (len > 0) {
4791  page = extent_buffer_page(eb, i);
4792  WARN_ON(!PageUptodate(page));
4793 
4794  cur = min(len, PAGE_CACHE_SIZE - offset);
4795  kaddr = page_address(page);
4796  memcpy(kaddr + offset, src, cur);
4797 
4798  src += cur;
4799  len -= cur;
4800  offset = 0;
4801  i++;
4802  }
4803 }
4804 
4805 void memset_extent_buffer(struct extent_buffer *eb, char c,
4806  unsigned long start, unsigned long len)
4807 {
4808  size_t cur;
4809  size_t offset;
4810  struct page *page;
4811  char *kaddr;
4812  size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4813  unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4814 
4815  WARN_ON(start > eb->len);
4816  WARN_ON(start + len > eb->start + eb->len);
4817 
4818  offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4819 
4820  while (len > 0) {
4821  page = extent_buffer_page(eb, i);
4822  WARN_ON(!PageUptodate(page));
4823 
4824  cur = min(len, PAGE_CACHE_SIZE - offset);
4825  kaddr = page_address(page);
4826  memset(kaddr + offset, c, cur);
4827 
4828  len -= cur;
4829  offset = 0;
4830  i++;
4831  }
4832 }
4833 
4835  unsigned long dst_offset, unsigned long src_offset,
4836  unsigned long len)
4837 {
4838  u64 dst_len = dst->len;
4839  size_t cur;
4840  size_t offset;
4841  struct page *page;
4842  char *kaddr;
4843  size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4844  unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4845 
4846  WARN_ON(src->len != dst_len);
4847 
4848  offset = (start_offset + dst_offset) &
4849  ((unsigned long)PAGE_CACHE_SIZE - 1);
4850 
4851  while (len > 0) {
4852  page = extent_buffer_page(dst, i);
4853  WARN_ON(!PageUptodate(page));
4854 
4855  cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4856 
4857  kaddr = page_address(page);
4858  read_extent_buffer(src, kaddr + offset, src_offset, cur);
4859 
4860  src_offset += cur;
4861  len -= cur;
4862  offset = 0;
4863  i++;
4864  }
4865 }
4866 
4867 static void move_pages(struct page *dst_page, struct page *src_page,
4868  unsigned long dst_off, unsigned long src_off,
4869  unsigned long len)
4870 {
4871  char *dst_kaddr = page_address(dst_page);
4872  if (dst_page == src_page) {
4873  memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4874  } else {
4875  char *src_kaddr = page_address(src_page);
4876  char *p = dst_kaddr + dst_off + len;
4877  char *s = src_kaddr + src_off + len;
4878 
4879  while (len--)
4880  *--p = *--s;
4881  }
4882 }
4883 
4884 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4885 {
4886  unsigned long distance = (src > dst) ? src - dst : dst - src;
4887  return distance < len;
4888 }
4889 
4890 static void copy_pages(struct page *dst_page, struct page *src_page,
4891  unsigned long dst_off, unsigned long src_off,
4892  unsigned long len)
4893 {
4894  char *dst_kaddr = page_address(dst_page);
4895  char *src_kaddr;
4896  int must_memmove = 0;
4897 
4898  if (dst_page != src_page) {
4899  src_kaddr = page_address(src_page);
4900  } else {
4901  src_kaddr = dst_kaddr;
4902  if (areas_overlap(src_off, dst_off, len))
4903  must_memmove = 1;
4904  }
4905 
4906  if (must_memmove)
4907  memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4908  else
4909  memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4910 }
4911 
4912 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4913  unsigned long src_offset, unsigned long len)
4914 {
4915  size_t cur;
4916  size_t dst_off_in_page;
4917  size_t src_off_in_page;
4918  size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4919  unsigned long dst_i;
4920  unsigned long src_i;
4921 
4922  if (src_offset + len > dst->len) {
4923  printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4924  "len %lu dst len %lu\n", src_offset, len, dst->len);
4925  BUG_ON(1);
4926  }
4927  if (dst_offset + len > dst->len) {
4928  printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4929  "len %lu dst len %lu\n", dst_offset, len, dst->len);
4930  BUG_ON(1);
4931  }
4932 
4933  while (len > 0) {
4934  dst_off_in_page = (start_offset + dst_offset) &
4935  ((unsigned long)PAGE_CACHE_SIZE - 1);
4936  src_off_in_page = (start_offset + src_offset) &
4937  ((unsigned long)PAGE_CACHE_SIZE - 1);
4938 
4939  dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4940  src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4941 
4942  cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4943  src_off_in_page));
4944  cur = min_t(unsigned long, cur,
4945  (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4946 
4947  copy_pages(extent_buffer_page(dst, dst_i),
4948  extent_buffer_page(dst, src_i),
4949  dst_off_in_page, src_off_in_page, cur);
4950 
4951  src_offset += cur;
4952  dst_offset += cur;
4953  len -= cur;
4954  }
4955 }
4956 
4957 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4958  unsigned long src_offset, unsigned long len)
4959 {
4960  size_t cur;
4961  size_t dst_off_in_page;
4962  size_t src_off_in_page;
4963  unsigned long dst_end = dst_offset + len - 1;
4964  unsigned long src_end = src_offset + len - 1;
4965  size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4966  unsigned long dst_i;
4967  unsigned long src_i;
4968 
4969  if (src_offset + len > dst->len) {
4970  printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4971  "len %lu len %lu\n", src_offset, len, dst->len);
4972  BUG_ON(1);
4973  }
4974  if (dst_offset + len > dst->len) {
4975  printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4976  "len %lu len %lu\n", dst_offset, len, dst->len);
4977  BUG_ON(1);
4978  }
4979  if (dst_offset < src_offset) {
4980  memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4981  return;
4982  }
4983  while (len > 0) {
4984  dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4985  src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4986 
4987  dst_off_in_page = (start_offset + dst_end) &
4988  ((unsigned long)PAGE_CACHE_SIZE - 1);
4989  src_off_in_page = (start_offset + src_end) &
4990  ((unsigned long)PAGE_CACHE_SIZE - 1);
4991 
4992  cur = min_t(unsigned long, len, src_off_in_page + 1);
4993  cur = min(cur, dst_off_in_page + 1);
4994  move_pages(extent_buffer_page(dst, dst_i),
4995  extent_buffer_page(dst, src_i),
4996  dst_off_in_page - cur + 1,
4997  src_off_in_page - cur + 1, cur);
4998 
4999  dst_end -= cur;
5000  src_end -= cur;
5001  len -= cur;
5002  }
5003 }
5004 
5005 int try_release_extent_buffer(struct page *page, gfp_t mask)
5006 {
5007  struct extent_buffer *eb;
5008 
5009  /*
5010  * We need to make sure noboody is attaching this page to an eb right
5011  * now.
5012  */
5013  spin_lock(&page->mapping->private_lock);
5014  if (!PagePrivate(page)) {
5015  spin_unlock(&page->mapping->private_lock);
5016  return 1;
5017  }
5018 
5019  eb = (struct extent_buffer *)page->private;
5020  BUG_ON(!eb);
5021 
5022  /*
5023  * This is a little awful but should be ok, we need to make sure that
5024  * the eb doesn't disappear out from under us while we're looking at
5025  * this page.
5026  */
5027  spin_lock(&eb->refs_lock);
5028  if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5029  spin_unlock(&eb->refs_lock);
5030  spin_unlock(&page->mapping->private_lock);
5031  return 0;
5032  }
5033  spin_unlock(&page->mapping->private_lock);
5034 
5035  if ((mask & GFP_NOFS) == GFP_NOFS)
5036  mask = GFP_NOFS;
5037 
5038  /*
5039  * If tree ref isn't set then we know the ref on this eb is a real ref,
5040  * so just return, this page will likely be freed soon anyway.
5041  */
5043  spin_unlock(&eb->refs_lock);
5044  return 0;
5045  }
5046 
5047  return release_extent_buffer(eb, mask);
5048 }