Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
farsync.c
Go to the documentation of this file.
1 /*
2  * FarSync WAN driver for Linux (2.6.x kernel version)
3  *
4  * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
5  *
6  * Copyright (C) 2001-2004 FarSite Communications Ltd.
7  * www.farsite.co.uk
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; either version
12  * 2 of the License, or (at your option) any later version.
13  *
14  * Author: R.J.Dunlop <[email protected]>
15  * Maintainer: Kevin Curtis <[email protected]>
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/version.h>
23 #include <linux/pci.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/ioport.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/if.h>
30 #include <linux/hdlc.h>
31 #include <asm/io.h>
32 #include <asm/uaccess.h>
33 
34 #include "farsync.h"
35 
36 /*
37  * Module info
38  */
39 MODULE_AUTHOR("R.J.Dunlop <[email protected]>");
40 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
41 MODULE_LICENSE("GPL");
42 
43 /* Driver configuration and global parameters
44  * ==========================================
45  */
46 
47 /* Number of ports (per card) and cards supported
48  */
49 #define FST_MAX_PORTS 4
50 #define FST_MAX_CARDS 32
51 
52 /* Default parameters for the link
53  */
54 #define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is
55  * useful */
56 #define FST_TXQ_DEPTH 16 /* This one is for the buffering
57  * of frames on the way down to the card
58  * so that we can keep the card busy
59  * and maximise throughput
60  */
61 #define FST_HIGH_WATER_MARK 12 /* Point at which we flow control
62  * network layer */
63 #define FST_LOW_WATER_MARK 8 /* Point at which we remove flow
64  * control from network layer */
65 #define FST_MAX_MTU 8000 /* Huge but possible */
66 #define FST_DEF_MTU 1500 /* Common sane value */
67 
68 #define FST_TX_TIMEOUT (2*HZ)
69 
70 #ifdef ARPHRD_RAWHDLC
71 #define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */
72 #else
73 #define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */
74 #endif
75 
76 /*
77  * Modules parameters and associated variables
78  */
79 static int fst_txq_low = FST_LOW_WATER_MARK;
80 static int fst_txq_high = FST_HIGH_WATER_MARK;
81 static int fst_max_reads = 7;
82 static int fst_excluded_cards = 0;
83 static int fst_excluded_list[FST_MAX_CARDS];
84 
85 module_param(fst_txq_low, int, 0);
86 module_param(fst_txq_high, int, 0);
87 module_param(fst_max_reads, int, 0);
88 module_param(fst_excluded_cards, int, 0);
89 module_param_array(fst_excluded_list, int, NULL, 0);
90 
91 /* Card shared memory layout
92  * =========================
93  */
94 #pragma pack(1)
95 
96 /* This information is derived in part from the FarSite FarSync Smc.h
97  * file. Unfortunately various name clashes and the non-portability of the
98  * bit field declarations in that file have meant that I have chosen to
99  * recreate the information here.
100  *
101  * The SMC (Shared Memory Configuration) has a version number that is
102  * incremented every time there is a significant change. This number can
103  * be used to check that we have not got out of step with the firmware
104  * contained in the .CDE files.
105  */
106 #define SMC_VERSION 24
108 #define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */
110 #define SMC_BASE 0x00002000L /* Base offset of the shared memory window main
111  * configuration structure */
112 #define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA
113  * buffers */
114 
115 #define LEN_TX_BUFFER 8192 /* Size of packet buffers */
116 #define LEN_RX_BUFFER 8192
117 
118 #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
119 #define LEN_SMALL_RX_BUFFER 256
120 
121 #define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */
122 #define NUM_RX_BUFFER 8
123 
124 /* Interrupt retry time in milliseconds */
125 #define INT_RETRY_TIME 2
126 
127 /* The Am186CH/CC processors support a SmartDMA mode using circular pools
128  * of buffer descriptors. The structure is almost identical to that used
129  * in the LANCE Ethernet controllers. Details available as PDF from the
130  * AMD web site: http://www.amd.com/products/epd/processors/\
131  * 2.16bitcont/3.am186cxfa/a21914/21914.pdf
132  */
133 struct txdesc { /* Transmit descriptor */
134  volatile u16 ladr; /* Low order address of packet. This is a
135  * linear address in the Am186 memory space
136  */
137  volatile u8 hadr; /* High order address. Low 4 bits only, high 4
138  * bits must be zero
139  */
140  volatile u8 bits; /* Status and config */
141  volatile u16 bcnt; /* 2s complement of packet size in low 15 bits.
142  * Transmit terminal count interrupt enable in
143  * top bit.
144  */
145  u16 unused; /* Not used in Tx */
146 };
148 struct rxdesc { /* Receive descriptor */
149  volatile u16 ladr; /* Low order address of packet */
150  volatile u8 hadr; /* High order address */
151  volatile u8 bits; /* Status and config */
152  volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits.
153  * Receive terminal count interrupt enable in
154  * top bit.
155  */
156  volatile u16 mcnt; /* Message byte count (15 bits) */
157 };
159 /* Convert a length into the 15 bit 2's complement */
160 /* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */
161 /* Since we need to set the high bit to enable the completion interrupt this
162  * can be made a lot simpler
163  */
164 #define cnv_bcnt(len) (-(len))
166 /* Status and config bits for the above */
167 #define DMA_OWN 0x80 /* SmartDMA owns the descriptor */
168 #define TX_STP 0x02 /* Tx: start of packet */
169 #define TX_ENP 0x01 /* Tx: end of packet */
170 #define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */
171 #define RX_FRAM 0x20 /* Rx: framing error */
172 #define RX_OFLO 0x10 /* Rx: overflow error */
173 #define RX_CRC 0x08 /* Rx: CRC error */
174 #define RX_HBUF 0x04 /* Rx: buffer error */
175 #define RX_STP 0x02 /* Rx: start of packet */
176 #define RX_ENP 0x01 /* Rx: end of packet */
178 /* Interrupts from the card are caused by various events which are presented
179  * in a circular buffer as several events may be processed on one physical int
180  */
181 #define MAX_CIRBUFF 32
182 
183 struct cirbuff {
184  u8 rdindex; /* read, then increment and wrap */
185  u8 wrindex; /* write, then increment and wrap */
187 };
189 /* Interrupt event codes.
190  * Where appropriate the two low order bits indicate the port number
191  */
192 #define CTLA_CHG 0x18 /* Control signal changed */
193 #define CTLB_CHG 0x19
194 #define CTLC_CHG 0x1A
195 #define CTLD_CHG 0x1B
197 #define INIT_CPLT 0x20 /* Initialisation complete */
198 #define INIT_FAIL 0x21 /* Initialisation failed */
200 #define ABTA_SENT 0x24 /* Abort sent */
201 #define ABTB_SENT 0x25
202 #define ABTC_SENT 0x26
203 #define ABTD_SENT 0x27
205 #define TXA_UNDF 0x28 /* Transmission underflow */
206 #define TXB_UNDF 0x29
207 #define TXC_UNDF 0x2A
208 #define TXD_UNDF 0x2B
210 #define F56_INT 0x2C
211 #define M32_INT 0x2D
213 #define TE1_ALMA 0x30
215 /* Port physical configuration. See farsync.h for field values */
216 struct port_cfg {
217  u16 lineInterface; /* Physical interface type */
218  u8 x25op; /* Unused at present */
219  u8 internalClock; /* 1 => internal clock, 0 => external */
220  u8 transparentMode; /* 1 => on, 0 => off */
221  u8 invertClock; /* 0 => normal, 1 => inverted */
222  u8 padBytes[6]; /* Padding */
223  u32 lineSpeed; /* Speed in bps */
224 };
226 /* TE1 port physical configuration */
227 struct su_config {
237  u8 loopMode;
238  u8 range;
245  u8 spare[44];
246 };
248 /* TE1 Status */
249 struct su_status {
255  u8 portStarted;
259  u8 spare[40];
260 };
262 /* Finally sling all the above together into the shared memory structure.
263  * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
264  * evolving under NT for some time so I guess we're stuck with it.
265  * The structure starts at offset SMC_BASE.
266  * See farsync.h for some field values.
267  */
268 struct fst_shared {
269  /* DMA descriptor rings */
270  struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
271  struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
273  /* Obsolete small buffers */
277  u8 taskStatus; /* 0x00 => initialising, 0x01 => running,
278  * 0xFF => halted
279  */
280 
281  u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt,
282  * set to 0xEE by host to acknowledge interrupt
283  */
285  u16 smcVersion; /* Must match SMC_VERSION */
287  u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
288  * version, RR = revision and BB = build
289  */
290 
291  u16 txa_done; /* Obsolete completion flags */
292  u16 rxa_done;
294  u16 rxb_done;
297  u16 txd_done;
299 
300  u16 mailbox[4]; /* Diagnostics mailbox. Not used */
301 
302  struct cirbuff interruptEvent; /* interrupt causes */
303 
304  u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */
305  u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */
306 
307  struct port_cfg portConfig[FST_MAX_PORTS];
309  u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
310 
311  u16 cableStatus; /* lsb: 0=> present, 1=> absent */
312 
313  u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */
314  u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */
315 
316  u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */
317  u16 cardMailbox[4]; /* Not used */
318 
319  /* Number of times the card thinks the host has
320  * missed an interrupt by not acknowledging
321  * within 2mS (I guess NT has problems)
322  */
324 
325  /* Driver private data used as an ID. We'll not
326  * use this as I'd rather keep such things
327  * in main memory rather than on the PCI bus
328  */
331  /* Count of Tx underflows for stats */
333 
334  /* Debounced V.24 control input status */
337  /* Adapter debounce timers. Don't touch */
343  u32 numberOfPorts; /* Number of ports detected at startup */
346 
347  u16 cardMode; /* Bit-mask to enable features:
348  * Bit 0: 1 enables LED identify mode
349  */
350 
352 
353  struct su_config suConfig; /* TE1 Bits */
354  struct su_status suStatus;
356  u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of
357  * the structure and marks the end of shared
358  * memory. Adapter code initializes it as
359  * END_SIG.
360  */
361 };
363 /* endOfSmcSignature value */
364 #define END_SIG 0x12345678
365 
366 /* Mailbox values. (portMailbox) */
367 #define NOP 0 /* No operation */
368 #define ACK 1 /* Positive acknowledgement to PC driver */
369 #define NAK 2 /* Negative acknowledgement to PC driver */
370 #define STARTPORT 3 /* Start an HDLC port */
371 #define STOPPORT 4 /* Stop an HDLC port */
372 #define ABORTTX 5 /* Abort the transmitter for a port */
373 #define SETV24O 6 /* Set V24 outputs */
374 
375 /* PLX Chip Register Offsets */
376 #define CNTRL_9052 0x50 /* Control Register */
377 #define CNTRL_9054 0x6c /* Control Register */
379 #define INTCSR_9052 0x4c /* Interrupt control/status register */
380 #define INTCSR_9054 0x68 /* Interrupt control/status register */
382 /* 9054 DMA Registers */
383 /*
384  * Note that we will be using DMA Channel 0 for copying rx data
385  * and Channel 1 for copying tx data
386  */
387 #define DMAMODE0 0x80
388 #define DMAPADR0 0x84
389 #define DMALADR0 0x88
390 #define DMASIZ0 0x8c
391 #define DMADPR0 0x90
392 #define DMAMODE1 0x94
393 #define DMAPADR1 0x98
394 #define DMALADR1 0x9c
395 #define DMASIZ1 0xa0
396 #define DMADPR1 0xa4
397 #define DMACSR0 0xa8
398 #define DMACSR1 0xa9
399 #define DMAARB 0xac
400 #define DMATHR 0xb0
401 #define DMADAC0 0xb4
402 #define DMADAC1 0xb8
403 #define DMAMARBR 0xac
405 #define FST_MIN_DMA_LEN 64
406 #define FST_RX_DMA_INT 0x01
407 #define FST_TX_DMA_INT 0x02
408 #define FST_CARD_INT 0x04
409 
410 /* Larger buffers are positioned in memory at offset BFM_BASE */
411 struct buf_window {
414 };
415 
416 /* Calculate offset of a buffer object within the shared memory window */
417 #define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X))
419 #pragma pack()
421 /* Device driver private information
422  * =================================
423  */
424 /* Per port (line or channel) information
425  */
427  struct net_device *dev; /* Device struct - must be first */
428  struct fst_card_info *card; /* Card we're associated with */
429  int index; /* Port index on the card */
430  int hwif; /* Line hardware (lineInterface copy) */
431  int run; /* Port is running */
432  int mode; /* Normal or FarSync raw */
433  int rxpos; /* Next Rx buffer to use */
434  int txpos; /* Next Tx buffer to use */
435  int txipos; /* Next Tx buffer to check for free */
436  int start; /* Indication of start/stop to network */
437  /*
438  * A sixteen entry transmit queue
439  */
440  int txqs; /* index to get next buffer to tx */
441  int txqe; /* index to queue next packet */
442  struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */
443  int rxqdepth;
444 };
446 /* Per card information
447  */
449  char __iomem *mem; /* Card memory mapped to kernel space */
450  char __iomem *ctlmem; /* Control memory for PCI cards */
451  unsigned int phys_mem; /* Physical memory window address */
452  unsigned int phys_ctlmem; /* Physical control memory address */
453  unsigned int irq; /* Interrupt request line number */
454  unsigned int nports; /* Number of serial ports */
455  unsigned int type; /* Type index of card */
456  unsigned int state; /* State of card */
457  spinlock_t card_lock; /* Lock for SMP access */
458  unsigned short pci_conf; /* PCI card config in I/O space */
459  /* Per port info */
461  struct pci_dev *device; /* Information about the pci device */
462  int card_no; /* Inst of the card on the system */
463  int family; /* TxP or TxU */
466  unsigned long int_count;
467  unsigned long int_time_ave;
470  void *tx_dma_handle_host;
472  struct sk_buff *dma_skb_rx;
475  int dma_len_rx;
476  int dma_len_tx;
477  int dma_txpos;
478  int dma_rxpos;
479 };
480 
481 /* Convert an HDLC device pointer into a port info pointer and similar */
482 #define dev_to_port(D) (dev_to_hdlc(D)->priv)
483 #define port_to_dev(P) ((P)->dev)
484 
485 
486 /*
487  * Shared memory window access macros
488  *
489  * We have a nice memory based structure above, which could be directly
490  * mapped on i386 but might not work on other architectures unless we use
491  * the readb,w,l and writeb,w,l macros. Unfortunately these macros take
492  * physical offsets so we have to convert. The only saving grace is that
493  * this should all collapse back to a simple indirection eventually.
494  */
495 #define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X))
496 
497 #define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E))
498 #define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E))
499 #define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E))
500 
501 #define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E))
502 #define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E))
503 #define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E))
504 
505 /*
506  * Debug support
507  */
508 #if FST_DEBUG
509 
510 static int fst_debug_mask = { FST_DEBUG };
511 
512 /* Most common debug activity is to print something if the corresponding bit
513  * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
514  * support variable numbers of macro parameters. The inverted if prevents us
515  * eating someone else's else clause.
516  */
517 #define dbg(F, fmt, args...) \
518 do { \
519  if (fst_debug_mask & (F)) \
520  printk(KERN_DEBUG pr_fmt(fmt), ##args); \
521 } while (0)
522 #else
523 #define dbg(F, fmt, args...) \
524 do { \
525  if (0) \
526  printk(KERN_DEBUG pr_fmt(fmt), ##args); \
527 } while (0)
528 #endif
529 
530 /*
531  * PCI ID lookup table
532  */
533 static DEFINE_PCI_DEVICE_TABLE(fst_pci_dev_id) = {
535  PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
536 
538  PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
539 
541  PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
542 
544  PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
545 
547  PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
548 
550  PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
551 
553  PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
554  {0,} /* End */
555 };
556 
557 MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
558 
559 /*
560  * Device Driver Work Queues
561  *
562  * So that we don't spend too much time processing events in the
563  * Interrupt Service routine, we will declare a work queue per Card
564  * and make the ISR schedule a task in the queue for later execution.
565  * In the 2.4 Kernel we used to use the immediate queue for BH's
566  * Now that they are gone, tasklets seem to be much better than work
567  * queues.
568  */
569 
570 static void do_bottom_half_tx(struct fst_card_info *card);
571 static void do_bottom_half_rx(struct fst_card_info *card);
572 static void fst_process_tx_work_q(unsigned long work_q);
573 static void fst_process_int_work_q(unsigned long work_q);
574 
575 static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
576 static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
577 
578 static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
579 static spinlock_t fst_work_q_lock;
580 static u64 fst_work_txq;
581 static u64 fst_work_intq;
582 
583 static void
584 fst_q_work_item(u64 * queue, int card_index)
585 {
586  unsigned long flags;
587  u64 mask;
588 
589  /*
590  * Grab the queue exclusively
591  */
592  spin_lock_irqsave(&fst_work_q_lock, flags);
593 
594  /*
595  * Making an entry in the queue is simply a matter of setting
596  * a bit for the card indicating that there is work to do in the
597  * bottom half for the card. Note the limitation of 64 cards.
598  * That ought to be enough
599  */
600  mask = (u64)1 << card_index;
601  *queue |= mask;
602  spin_unlock_irqrestore(&fst_work_q_lock, flags);
603 }
604 
605 static void
606 fst_process_tx_work_q(unsigned long /*void **/work_q)
607 {
608  unsigned long flags;
609  u64 work_txq;
610  int i;
611 
612  /*
613  * Grab the queue exclusively
614  */
615  dbg(DBG_TX, "fst_process_tx_work_q\n");
616  spin_lock_irqsave(&fst_work_q_lock, flags);
617  work_txq = fst_work_txq;
618  fst_work_txq = 0;
619  spin_unlock_irqrestore(&fst_work_q_lock, flags);
620 
621  /*
622  * Call the bottom half for each card with work waiting
623  */
624  for (i = 0; i < FST_MAX_CARDS; i++) {
625  if (work_txq & 0x01) {
626  if (fst_card_array[i] != NULL) {
627  dbg(DBG_TX, "Calling tx bh for card %d\n", i);
628  do_bottom_half_tx(fst_card_array[i]);
629  }
630  }
631  work_txq = work_txq >> 1;
632  }
633 }
634 
635 static void
636 fst_process_int_work_q(unsigned long /*void **/work_q)
637 {
638  unsigned long flags;
639  u64 work_intq;
640  int i;
641 
642  /*
643  * Grab the queue exclusively
644  */
645  dbg(DBG_INTR, "fst_process_int_work_q\n");
646  spin_lock_irqsave(&fst_work_q_lock, flags);
647  work_intq = fst_work_intq;
648  fst_work_intq = 0;
649  spin_unlock_irqrestore(&fst_work_q_lock, flags);
650 
651  /*
652  * Call the bottom half for each card with work waiting
653  */
654  for (i = 0; i < FST_MAX_CARDS; i++) {
655  if (work_intq & 0x01) {
656  if (fst_card_array[i] != NULL) {
657  dbg(DBG_INTR,
658  "Calling rx & tx bh for card %d\n", i);
659  do_bottom_half_rx(fst_card_array[i]);
660  do_bottom_half_tx(fst_card_array[i]);
661  }
662  }
663  work_intq = work_intq >> 1;
664  }
665 }
666 
667 /* Card control functions
668  * ======================
669  */
670 /* Place the processor in reset state
671  *
672  * Used to be a simple write to card control space but a glitch in the latest
673  * AMD Am186CH processor means that we now have to do it by asserting and de-
674  * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
675  * at offset 9052_CNTRL. Note the updates for the TXU.
676  */
677 static inline void
678 fst_cpureset(struct fst_card_info *card)
679 {
680  unsigned char interrupt_line_register;
681  unsigned long j = jiffies + 1;
682  unsigned int regval;
683 
684  if (card->family == FST_FAMILY_TXU) {
685  if (pci_read_config_byte
686  (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
687  dbg(DBG_ASS,
688  "Error in reading interrupt line register\n");
689  }
690  /*
691  * Assert PLX software reset and Am186 hardware reset
692  * and then deassert the PLX software reset but 186 still in reset
693  */
694  outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
695  outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
696  /*
697  * We are delaying here to allow the 9054 to reset itself
698  */
699  j = jiffies + 1;
700  while (jiffies < j)
701  /* Do nothing */ ;
702  outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
703  /*
704  * We are delaying here to allow the 9054 to reload its eeprom
705  */
706  j = jiffies + 1;
707  while (jiffies < j)
708  /* Do nothing */ ;
709  outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
710 
711  if (pci_write_config_byte
712  (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
713  dbg(DBG_ASS,
714  "Error in writing interrupt line register\n");
715  }
716 
717  } else {
718  regval = inl(card->pci_conf + CNTRL_9052);
719 
720  outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
721  outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
722  }
723 }
724 
725 /* Release the processor from reset
726  */
727 static inline void
728 fst_cpurelease(struct fst_card_info *card)
729 {
730  if (card->family == FST_FAMILY_TXU) {
731  /*
732  * Force posted writes to complete
733  */
734  (void) readb(card->mem);
735 
736  /*
737  * Release LRESET DO = 1
738  * Then release Local Hold, DO = 1
739  */
740  outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
741  outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
742  } else {
743  (void) readb(card->ctlmem);
744  }
745 }
746 
747 /* Clear the cards interrupt flag
748  */
749 static inline void
750 fst_clear_intr(struct fst_card_info *card)
751 {
752  if (card->family == FST_FAMILY_TXU) {
753  (void) readb(card->ctlmem);
754  } else {
755  /* Poke the appropriate PLX chip register (same as enabling interrupts)
756  */
757  outw(0x0543, card->pci_conf + INTCSR_9052);
758  }
759 }
760 
761 /* Enable card interrupts
762  */
763 static inline void
764 fst_enable_intr(struct fst_card_info *card)
765 {
766  if (card->family == FST_FAMILY_TXU) {
767  outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
768  } else {
769  outw(0x0543, card->pci_conf + INTCSR_9052);
770  }
771 }
772 
773 /* Disable card interrupts
774  */
775 static inline void
776 fst_disable_intr(struct fst_card_info *card)
777 {
778  if (card->family == FST_FAMILY_TXU) {
779  outl(0x00000000, card->pci_conf + INTCSR_9054);
780  } else {
781  outw(0x0000, card->pci_conf + INTCSR_9052);
782  }
783 }
784 
785 /* Process the result of trying to pass a received frame up the stack
786  */
787 static void
788 fst_process_rx_status(int rx_status, char *name)
789 {
790  switch (rx_status) {
791  case NET_RX_SUCCESS:
792  {
793  /*
794  * Nothing to do here
795  */
796  break;
797  }
798  case NET_RX_DROP:
799  {
800  dbg(DBG_ASS, "%s: Received packet dropped\n", name);
801  break;
802  }
803  }
804 }
805 
806 /* Initilaise DMA for PLX 9054
807  */
808 static inline void
809 fst_init_dma(struct fst_card_info *card)
810 {
811  /*
812  * This is only required for the PLX 9054
813  */
814  if (card->family == FST_FAMILY_TXU) {
815  pci_set_master(card->device);
816  outl(0x00020441, card->pci_conf + DMAMODE0);
817  outl(0x00020441, card->pci_conf + DMAMODE1);
818  outl(0x0, card->pci_conf + DMATHR);
819  }
820 }
821 
822 /* Tx dma complete interrupt
823  */
824 static void
825 fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
826  int len, int txpos)
827 {
828  struct net_device *dev = port_to_dev(port);
829 
830  /*
831  * Everything is now set, just tell the card to go
832  */
833  dbg(DBG_TX, "fst_tx_dma_complete\n");
834  FST_WRB(card, txDescrRing[port->index][txpos].bits,
835  DMA_OWN | TX_STP | TX_ENP);
836  dev->stats.tx_packets++;
837  dev->stats.tx_bytes += len;
838  dev->trans_start = jiffies;
839 }
840 
841 /*
842  * Mark it for our own raw sockets interface
843  */
844 static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
845 {
846  skb->dev = dev;
847  skb_reset_mac_header(skb);
848  skb->pkt_type = PACKET_HOST;
849  return htons(ETH_P_CUST);
850 }
851 
852 /* Rx dma complete interrupt
853  */
854 static void
855 fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
856  int len, struct sk_buff *skb, int rxp)
857 {
858  struct net_device *dev = port_to_dev(port);
859  int pi;
860  int rx_status;
861 
862  dbg(DBG_TX, "fst_rx_dma_complete\n");
863  pi = port->index;
864  memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
865 
866  /* Reset buffer descriptor */
867  FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
868 
869  /* Update stats */
870  dev->stats.rx_packets++;
871  dev->stats.rx_bytes += len;
872 
873  /* Push upstream */
874  dbg(DBG_RX, "Pushing the frame up the stack\n");
875  if (port->mode == FST_RAW)
876  skb->protocol = farsync_type_trans(skb, dev);
877  else
878  skb->protocol = hdlc_type_trans(skb, dev);
879  rx_status = netif_rx(skb);
880  fst_process_rx_status(rx_status, port_to_dev(port)->name);
881  if (rx_status == NET_RX_DROP)
882  dev->stats.rx_dropped++;
883 }
884 
885 /*
886  * Receive a frame through the DMA
887  */
888 static inline void
889 fst_rx_dma(struct fst_card_info *card, dma_addr_t skb,
890  dma_addr_t mem, int len)
891 {
892  /*
893  * This routine will setup the DMA and start it
894  */
895 
896  dbg(DBG_RX, "In fst_rx_dma %lx %lx %d\n",
897  (unsigned long) skb, (unsigned long) mem, len);
898  if (card->dmarx_in_progress) {
899  dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
900  }
901 
902  outl(skb, card->pci_conf + DMAPADR0); /* Copy to here */
903  outl(mem, card->pci_conf + DMALADR0); /* from here */
904  outl(len, card->pci_conf + DMASIZ0); /* for this length */
905  outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */
906 
907  /*
908  * We use the dmarx_in_progress flag to flag the channel as busy
909  */
910  card->dmarx_in_progress = 1;
911  outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */
912 }
913 
914 /*
915  * Send a frame through the DMA
916  */
917 static inline void
918 fst_tx_dma(struct fst_card_info *card, unsigned char *skb,
919  unsigned char *mem, int len)
920 {
921  /*
922  * This routine will setup the DMA and start it.
923  */
924 
925  dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len);
926  if (card->dmatx_in_progress) {
927  dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
928  }
929 
930  outl((unsigned long) skb, card->pci_conf + DMAPADR1); /* Copy from here */
931  outl((unsigned long) mem, card->pci_conf + DMALADR1); /* to here */
932  outl(len, card->pci_conf + DMASIZ1); /* for this length */
933  outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */
934 
935  /*
936  * We use the dmatx_in_progress to flag the channel as busy
937  */
938  card->dmatx_in_progress = 1;
939  outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */
940 }
941 
942 /* Issue a Mailbox command for a port.
943  * Note we issue them on a fire and forget basis, not expecting to see an
944  * error and not waiting for completion.
945  */
946 static void
947 fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
948 {
949  struct fst_card_info *card;
950  unsigned short mbval;
951  unsigned long flags;
952  int safety;
953 
954  card = port->card;
955  spin_lock_irqsave(&card->card_lock, flags);
956  mbval = FST_RDW(card, portMailbox[port->index][0]);
957 
958  safety = 0;
959  /* Wait for any previous command to complete */
960  while (mbval > NAK) {
961  spin_unlock_irqrestore(&card->card_lock, flags);
963  spin_lock_irqsave(&card->card_lock, flags);
964 
965  if (++safety > 2000) {
966  pr_err("Mailbox safety timeout\n");
967  break;
968  }
969 
970  mbval = FST_RDW(card, portMailbox[port->index][0]);
971  }
972  if (safety > 0) {
973  dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
974  }
975  if (mbval == NAK) {
976  dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
977  }
978 
979  FST_WRW(card, portMailbox[port->index][0], cmd);
980 
981  if (cmd == ABORTTX || cmd == STARTPORT) {
982  port->txpos = 0;
983  port->txipos = 0;
984  port->start = 0;
985  }
986 
987  spin_unlock_irqrestore(&card->card_lock, flags);
988 }
989 
990 /* Port output signals control
991  */
992 static inline void
993 fst_op_raise(struct fst_port_info *port, unsigned int outputs)
994 {
995  outputs |= FST_RDL(port->card, v24OpSts[port->index]);
996  FST_WRL(port->card, v24OpSts[port->index], outputs);
997 
998  if (port->run)
999  fst_issue_cmd(port, SETV24O);
1000 }
1001 
1002 static inline void
1003 fst_op_lower(struct fst_port_info *port, unsigned int outputs)
1004 {
1005  outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
1006  FST_WRL(port->card, v24OpSts[port->index], outputs);
1007 
1008  if (port->run)
1009  fst_issue_cmd(port, SETV24O);
1010 }
1011 
1012 /*
1013  * Setup port Rx buffers
1014  */
1015 static void
1016 fst_rx_config(struct fst_port_info *port)
1017 {
1018  int i;
1019  int pi;
1020  unsigned int offset;
1021  unsigned long flags;
1022  struct fst_card_info *card;
1023 
1024  pi = port->index;
1025  card = port->card;
1026  spin_lock_irqsave(&card->card_lock, flags);
1027  for (i = 0; i < NUM_RX_BUFFER; i++) {
1028  offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1029 
1030  FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1031  FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1032  FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1033  FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1034  FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1035  }
1036  port->rxpos = 0;
1037  spin_unlock_irqrestore(&card->card_lock, flags);
1038 }
1039 
1040 /*
1041  * Setup port Tx buffers
1042  */
1043 static void
1044 fst_tx_config(struct fst_port_info *port)
1045 {
1046  int i;
1047  int pi;
1048  unsigned int offset;
1049  unsigned long flags;
1050  struct fst_card_info *card;
1051 
1052  pi = port->index;
1053  card = port->card;
1054  spin_lock_irqsave(&card->card_lock, flags);
1055  for (i = 0; i < NUM_TX_BUFFER; i++) {
1056  offset = BUF_OFFSET(txBuffer[pi][i][0]);
1057 
1058  FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1059  FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1060  FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1061  FST_WRB(card, txDescrRing[pi][i].bits, 0);
1062  }
1063  port->txpos = 0;
1064  port->txipos = 0;
1065  port->start = 0;
1066  spin_unlock_irqrestore(&card->card_lock, flags);
1067 }
1068 
1069 /* TE1 Alarm change interrupt event
1070  */
1071 static void
1072 fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1073 {
1074  u8 los;
1075  u8 rra;
1076  u8 ais;
1077 
1078  los = FST_RDB(card, suStatus.lossOfSignal);
1079  rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1080  ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1081 
1082  if (los) {
1083  /*
1084  * Lost the link
1085  */
1086  if (netif_carrier_ok(port_to_dev(port))) {
1087  dbg(DBG_INTR, "Net carrier off\n");
1089  }
1090  } else {
1091  /*
1092  * Link available
1093  */
1094  if (!netif_carrier_ok(port_to_dev(port))) {
1095  dbg(DBG_INTR, "Net carrier on\n");
1097  }
1098  }
1099 
1100  if (los)
1101  dbg(DBG_INTR, "Assert LOS Alarm\n");
1102  else
1103  dbg(DBG_INTR, "De-assert LOS Alarm\n");
1104  if (rra)
1105  dbg(DBG_INTR, "Assert RRA Alarm\n");
1106  else
1107  dbg(DBG_INTR, "De-assert RRA Alarm\n");
1108 
1109  if (ais)
1110  dbg(DBG_INTR, "Assert AIS Alarm\n");
1111  else
1112  dbg(DBG_INTR, "De-assert AIS Alarm\n");
1113 }
1114 
1115 /* Control signal change interrupt event
1116  */
1117 static void
1118 fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1119 {
1120  int signals;
1121 
1122  signals = FST_RDL(card, v24DebouncedSts[port->index]);
1123 
1124  if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1125  ? IPSTS_INDICATE : IPSTS_DCD)) {
1126  if (!netif_carrier_ok(port_to_dev(port))) {
1127  dbg(DBG_INTR, "DCD active\n");
1129  }
1130  } else {
1131  if (netif_carrier_ok(port_to_dev(port))) {
1132  dbg(DBG_INTR, "DCD lost\n");
1134  }
1135  }
1136 }
1137 
1138 /* Log Rx Errors
1139  */
1140 static void
1141 fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1142  unsigned char dmabits, int rxp, unsigned short len)
1143 {
1144  struct net_device *dev = port_to_dev(port);
1145 
1146  /*
1147  * Increment the appropriate error counter
1148  */
1149  dev->stats.rx_errors++;
1150  if (dmabits & RX_OFLO) {
1151  dev->stats.rx_fifo_errors++;
1152  dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1153  card->card_no, port->index, rxp);
1154  }
1155  if (dmabits & RX_CRC) {
1156  dev->stats.rx_crc_errors++;
1157  dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1158  card->card_no, port->index);
1159  }
1160  if (dmabits & RX_FRAM) {
1161  dev->stats.rx_frame_errors++;
1162  dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1163  card->card_no, port->index);
1164  }
1165  if (dmabits == (RX_STP | RX_ENP)) {
1166  dev->stats.rx_length_errors++;
1167  dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1168  len, card->card_no, port->index);
1169  }
1170 }
1171 
1172 /* Rx Error Recovery
1173  */
1174 static void
1175 fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1176  unsigned char dmabits, int rxp, unsigned short len)
1177 {
1178  int i;
1179  int pi;
1180 
1181  pi = port->index;
1182  /*
1183  * Discard buffer descriptors until we see the start of the
1184  * next frame. Note that for long frames this could be in
1185  * a subsequent interrupt.
1186  */
1187  i = 0;
1188  while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1189  FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1190  rxp = (rxp+1) % NUM_RX_BUFFER;
1191  if (++i > NUM_RX_BUFFER) {
1192  dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1193  " than we have\n");
1194  break;
1195  }
1196  dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1197  dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1198  }
1199  dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1200 
1201  /* Discard the terminal buffer */
1202  if (!(dmabits & DMA_OWN)) {
1203  FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1204  rxp = (rxp+1) % NUM_RX_BUFFER;
1205  }
1206  port->rxpos = rxp;
1207  return;
1208 
1209 }
1210 
1211 /* Rx complete interrupt
1212  */
1213 static void
1214 fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1215 {
1216  unsigned char dmabits;
1217  int pi;
1218  int rxp;
1219  int rx_status;
1220  unsigned short len;
1221  struct sk_buff *skb;
1222  struct net_device *dev = port_to_dev(port);
1223 
1224  /* Check we have a buffer to process */
1225  pi = port->index;
1226  rxp = port->rxpos;
1227  dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1228  if (dmabits & DMA_OWN) {
1229  dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1230  pi, rxp);
1231  return;
1232  }
1233  if (card->dmarx_in_progress) {
1234  return;
1235  }
1236 
1237  /* Get buffer length */
1238  len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1239  /* Discard the CRC */
1240  len -= 2;
1241  if (len == 0) {
1242  /*
1243  * This seems to happen on the TE1 interface sometimes
1244  * so throw the frame away and log the event.
1245  */
1246  pr_err("Frame received with 0 length. Card %d Port %d\n",
1247  card->card_no, port->index);
1248  /* Return descriptor to card */
1249  FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1250 
1251  rxp = (rxp+1) % NUM_RX_BUFFER;
1252  port->rxpos = rxp;
1253  return;
1254  }
1255 
1256  /* Check buffer length and for other errors. We insist on one packet
1257  * in one buffer. This simplifies things greatly and since we've
1258  * allocated 8K it shouldn't be a real world limitation
1259  */
1260  dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1261  if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1262  fst_log_rx_error(card, port, dmabits, rxp, len);
1263  fst_recover_rx_error(card, port, dmabits, rxp, len);
1264  return;
1265  }
1266 
1267  /* Allocate SKB */
1268  if ((skb = dev_alloc_skb(len)) == NULL) {
1269  dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1270 
1271  dev->stats.rx_dropped++;
1272 
1273  /* Return descriptor to card */
1274  FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1275 
1276  rxp = (rxp+1) % NUM_RX_BUFFER;
1277  port->rxpos = rxp;
1278  return;
1279  }
1280 
1281  /*
1282  * We know the length we need to receive, len.
1283  * It's not worth using the DMA for reads of less than
1284  * FST_MIN_DMA_LEN
1285  */
1286 
1287  if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1288  memcpy_fromio(skb_put(skb, len),
1289  card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1290  len);
1291 
1292  /* Reset buffer descriptor */
1293  FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1294 
1295  /* Update stats */
1296  dev->stats.rx_packets++;
1297  dev->stats.rx_bytes += len;
1298 
1299  /* Push upstream */
1300  dbg(DBG_RX, "Pushing frame up the stack\n");
1301  if (port->mode == FST_RAW)
1302  skb->protocol = farsync_type_trans(skb, dev);
1303  else
1304  skb->protocol = hdlc_type_trans(skb, dev);
1305  rx_status = netif_rx(skb);
1306  fst_process_rx_status(rx_status, port_to_dev(port)->name);
1307  if (rx_status == NET_RX_DROP)
1308  dev->stats.rx_dropped++;
1309  } else {
1310  card->dma_skb_rx = skb;
1311  card->dma_port_rx = port;
1312  card->dma_len_rx = len;
1313  card->dma_rxpos = rxp;
1314  fst_rx_dma(card, card->rx_dma_handle_card,
1315  BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1316  }
1317  if (rxp != port->rxpos) {
1318  dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1319  dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1320  }
1321  rxp = (rxp+1) % NUM_RX_BUFFER;
1322  port->rxpos = rxp;
1323 }
1324 
1325 /*
1326  * The bottom halfs to the ISR
1327  *
1328  */
1329 
1330 static void
1331 do_bottom_half_tx(struct fst_card_info *card)
1332 {
1333  struct fst_port_info *port;
1334  int pi;
1335  int txq_length;
1336  struct sk_buff *skb;
1337  unsigned long flags;
1338  struct net_device *dev;
1339 
1340  /*
1341  * Find a free buffer for the transmit
1342  * Step through each port on this card
1343  */
1344 
1345  dbg(DBG_TX, "do_bottom_half_tx\n");
1346  for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1347  if (!port->run)
1348  continue;
1349 
1350  dev = port_to_dev(port);
1351  while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1352  DMA_OWN) &&
1353  !(card->dmatx_in_progress)) {
1354  /*
1355  * There doesn't seem to be a txdone event per-se
1356  * We seem to have to deduce it, by checking the DMA_OWN
1357  * bit on the next buffer we think we can use
1358  */
1359  spin_lock_irqsave(&card->card_lock, flags);
1360  if ((txq_length = port->txqe - port->txqs) < 0) {
1361  /*
1362  * This is the case where one has wrapped and the
1363  * maths gives us a negative number
1364  */
1365  txq_length = txq_length + FST_TXQ_DEPTH;
1366  }
1367  spin_unlock_irqrestore(&card->card_lock, flags);
1368  if (txq_length > 0) {
1369  /*
1370  * There is something to send
1371  */
1372  spin_lock_irqsave(&card->card_lock, flags);
1373  skb = port->txq[port->txqs];
1374  port->txqs++;
1375  if (port->txqs == FST_TXQ_DEPTH) {
1376  port->txqs = 0;
1377  }
1378  spin_unlock_irqrestore(&card->card_lock, flags);
1379  /*
1380  * copy the data and set the required indicators on the
1381  * card.
1382  */
1383  FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1384  cnv_bcnt(skb->len));
1385  if ((skb->len < FST_MIN_DMA_LEN) ||
1386  (card->family == FST_FAMILY_TXP)) {
1387  /* Enqueue the packet with normal io */
1388  memcpy_toio(card->mem +
1389  BUF_OFFSET(txBuffer[pi]
1390  [port->
1391  txpos][0]),
1392  skb->data, skb->len);
1393  FST_WRB(card,
1394  txDescrRing[pi][port->txpos].
1395  bits,
1396  DMA_OWN | TX_STP | TX_ENP);
1397  dev->stats.tx_packets++;
1398  dev->stats.tx_bytes += skb->len;
1399  dev->trans_start = jiffies;
1400  } else {
1401  /* Or do it through dma */
1402  memcpy(card->tx_dma_handle_host,
1403  skb->data, skb->len);
1404  card->dma_port_tx = port;
1405  card->dma_len_tx = skb->len;
1406  card->dma_txpos = port->txpos;
1407  fst_tx_dma(card,
1408  (char *) card->
1409  tx_dma_handle_card,
1410  (char *)
1411  BUF_OFFSET(txBuffer[pi]
1412  [port->txpos][0]),
1413  skb->len);
1414  }
1415  if (++port->txpos >= NUM_TX_BUFFER)
1416  port->txpos = 0;
1417  /*
1418  * If we have flow control on, can we now release it?
1419  */
1420  if (port->start) {
1421  if (txq_length < fst_txq_low) {
1422  netif_wake_queue(port_to_dev
1423  (port));
1424  port->start = 0;
1425  }
1426  }
1427  dev_kfree_skb(skb);
1428  } else {
1429  /*
1430  * Nothing to send so break out of the while loop
1431  */
1432  break;
1433  }
1434  }
1435  }
1436 }
1437 
1438 static void
1439 do_bottom_half_rx(struct fst_card_info *card)
1440 {
1441  struct fst_port_info *port;
1442  int pi;
1443  int rx_count = 0;
1444 
1445  /* Check for rx completions on all ports on this card */
1446  dbg(DBG_RX, "do_bottom_half_rx\n");
1447  for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1448  if (!port->run)
1449  continue;
1450 
1451  while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1452  & DMA_OWN) && !(card->dmarx_in_progress)) {
1453  if (rx_count > fst_max_reads) {
1454  /*
1455  * Don't spend forever in receive processing
1456  * Schedule another event
1457  */
1458  fst_q_work_item(&fst_work_intq, card->card_no);
1459  tasklet_schedule(&fst_int_task);
1460  break; /* Leave the loop */
1461  }
1462  fst_intr_rx(card, port);
1463  rx_count++;
1464  }
1465  }
1466 }
1467 
1468 /*
1469  * The interrupt service routine
1470  * Dev_id is our fst_card_info pointer
1471  */
1472 static irqreturn_t
1473 fst_intr(int dummy, void *dev_id)
1474 {
1475  struct fst_card_info *card = dev_id;
1476  struct fst_port_info *port;
1477  int rdidx; /* Event buffer indices */
1478  int wridx;
1479  int event; /* Actual event for processing */
1480  unsigned int dma_intcsr = 0;
1481  unsigned int do_card_interrupt;
1482  unsigned int int_retry_count;
1483 
1484  /*
1485  * Check to see if the interrupt was for this card
1486  * return if not
1487  * Note that the call to clear the interrupt is important
1488  */
1489  dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1490  if (card->state != FST_RUNNING) {
1491  pr_err("Interrupt received for card %d in a non running state (%d)\n",
1492  card->card_no, card->state);
1493 
1494  /*
1495  * It is possible to really be running, i.e. we have re-loaded
1496  * a running card
1497  * Clear and reprime the interrupt source
1498  */
1499  fst_clear_intr(card);
1500  return IRQ_HANDLED;
1501  }
1502 
1503  /* Clear and reprime the interrupt source */
1504  fst_clear_intr(card);
1505 
1506  /*
1507  * Is the interrupt for this card (handshake == 1)
1508  */
1509  do_card_interrupt = 0;
1510  if (FST_RDB(card, interruptHandshake) == 1) {
1511  do_card_interrupt += FST_CARD_INT;
1512  /* Set the software acknowledge */
1513  FST_WRB(card, interruptHandshake, 0xEE);
1514  }
1515  if (card->family == FST_FAMILY_TXU) {
1516  /*
1517  * Is it a DMA Interrupt
1518  */
1519  dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1520  if (dma_intcsr & 0x00200000) {
1521  /*
1522  * DMA Channel 0 (Rx transfer complete)
1523  */
1524  dbg(DBG_RX, "DMA Rx xfer complete\n");
1525  outb(0x8, card->pci_conf + DMACSR0);
1526  fst_rx_dma_complete(card, card->dma_port_rx,
1527  card->dma_len_rx, card->dma_skb_rx,
1528  card->dma_rxpos);
1529  card->dmarx_in_progress = 0;
1530  do_card_interrupt += FST_RX_DMA_INT;
1531  }
1532  if (dma_intcsr & 0x00400000) {
1533  /*
1534  * DMA Channel 1 (Tx transfer complete)
1535  */
1536  dbg(DBG_TX, "DMA Tx xfer complete\n");
1537  outb(0x8, card->pci_conf + DMACSR1);
1538  fst_tx_dma_complete(card, card->dma_port_tx,
1539  card->dma_len_tx, card->dma_txpos);
1540  card->dmatx_in_progress = 0;
1541  do_card_interrupt += FST_TX_DMA_INT;
1542  }
1543  }
1544 
1545  /*
1546  * Have we been missing Interrupts
1547  */
1548  int_retry_count = FST_RDL(card, interruptRetryCount);
1549  if (int_retry_count) {
1550  dbg(DBG_ASS, "Card %d int_retry_count is %d\n",
1551  card->card_no, int_retry_count);
1552  FST_WRL(card, interruptRetryCount, 0);
1553  }
1554 
1555  if (!do_card_interrupt) {
1556  return IRQ_HANDLED;
1557  }
1558 
1559  /* Scehdule the bottom half of the ISR */
1560  fst_q_work_item(&fst_work_intq, card->card_no);
1561  tasklet_schedule(&fst_int_task);
1562 
1563  /* Drain the event queue */
1564  rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1565  wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1566  while (rdidx != wridx) {
1567  event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1568  port = &card->ports[event & 0x03];
1569 
1570  dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1571 
1572  switch (event) {
1573  case TE1_ALMA:
1574  dbg(DBG_INTR, "TE1 Alarm intr\n");
1575  if (port->run)
1576  fst_intr_te1_alarm(card, port);
1577  break;
1578 
1579  case CTLA_CHG:
1580  case CTLB_CHG:
1581  case CTLC_CHG:
1582  case CTLD_CHG:
1583  if (port->run)
1584  fst_intr_ctlchg(card, port);
1585  break;
1586 
1587  case ABTA_SENT:
1588  case ABTB_SENT:
1589  case ABTC_SENT:
1590  case ABTD_SENT:
1591  dbg(DBG_TX, "Abort complete port %d\n", port->index);
1592  break;
1593 
1594  case TXA_UNDF:
1595  case TXB_UNDF:
1596  case TXC_UNDF:
1597  case TXD_UNDF:
1598  /* Difficult to see how we'd get this given that we
1599  * always load up the entire packet for DMA.
1600  */
1601  dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1602  port_to_dev(port)->stats.tx_errors++;
1603  port_to_dev(port)->stats.tx_fifo_errors++;
1604  dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1605  card->card_no, port->index);
1606  break;
1607 
1608  case INIT_CPLT:
1609  dbg(DBG_INIT, "Card init OK intr\n");
1610  break;
1611 
1612  case INIT_FAIL:
1613  dbg(DBG_INIT, "Card init FAILED intr\n");
1614  card->state = FST_IFAILED;
1615  break;
1616 
1617  default:
1618  pr_err("intr: unknown card event %d. ignored\n", event);
1619  break;
1620  }
1621 
1622  /* Bump and wrap the index */
1623  if (++rdidx >= MAX_CIRBUFF)
1624  rdidx = 0;
1625  }
1626  FST_WRB(card, interruptEvent.rdindex, rdidx);
1627  return IRQ_HANDLED;
1628 }
1629 
1630 /* Check that the shared memory configuration is one that we can handle
1631  * and that some basic parameters are correct
1632  */
1633 static void
1634 check_started_ok(struct fst_card_info *card)
1635 {
1636  int i;
1637 
1638  /* Check structure version and end marker */
1639  if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1640  pr_err("Bad shared memory version %d expected %d\n",
1641  FST_RDW(card, smcVersion), SMC_VERSION);
1642  card->state = FST_BADVERSION;
1643  return;
1644  }
1645  if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1646  pr_err("Missing shared memory signature\n");
1647  card->state = FST_BADVERSION;
1648  return;
1649  }
1650  /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1651  if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1652  card->state = FST_RUNNING;
1653  } else if (i == 0xFF) {
1654  pr_err("Firmware initialisation failed. Card halted\n");
1655  card->state = FST_HALTED;
1656  return;
1657  } else if (i != 0x00) {
1658  pr_err("Unknown firmware status 0x%x\n", i);
1659  card->state = FST_HALTED;
1660  return;
1661  }
1662 
1663  /* Finally check the number of ports reported by firmware against the
1664  * number we assumed at card detection. Should never happen with
1665  * existing firmware etc so we just report it for the moment.
1666  */
1667  if (FST_RDL(card, numberOfPorts) != card->nports) {
1668  pr_warn("Port count mismatch on card %d. Firmware thinks %d we say %d\n",
1669  card->card_no,
1670  FST_RDL(card, numberOfPorts), card->nports);
1671  }
1672 }
1673 
1674 static int
1675 set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1676  struct fstioc_info *info)
1677 {
1678  int err;
1679  unsigned char my_framing;
1680 
1681  /* Set things according to the user set valid flags
1682  * Several of the old options have been invalidated/replaced by the
1683  * generic hdlc package.
1684  */
1685  err = 0;
1686  if (info->valid & FSTVAL_PROTO) {
1687  if (info->proto == FST_RAW)
1688  port->mode = FST_RAW;
1689  else
1690  port->mode = FST_GEN_HDLC;
1691  }
1692 
1693  if (info->valid & FSTVAL_CABLE)
1694  err = -EINVAL;
1695 
1696  if (info->valid & FSTVAL_SPEED)
1697  err = -EINVAL;
1698 
1699  if (info->valid & FSTVAL_PHASE)
1700  FST_WRB(card, portConfig[port->index].invertClock,
1701  info->invertClock);
1702  if (info->valid & FSTVAL_MODE)
1703  FST_WRW(card, cardMode, info->cardMode);
1704  if (info->valid & FSTVAL_TE1) {
1705  FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1706  FST_WRB(card, suConfig.clocking, info->clockSource);
1707  my_framing = FRAMING_E1;
1708  if (info->framing == E1)
1709  my_framing = FRAMING_E1;
1710  if (info->framing == T1)
1711  my_framing = FRAMING_T1;
1712  if (info->framing == J1)
1713  my_framing = FRAMING_J1;
1714  FST_WRB(card, suConfig.framing, my_framing);
1715  FST_WRB(card, suConfig.structure, info->structure);
1716  FST_WRB(card, suConfig.interface, info->interface);
1717  FST_WRB(card, suConfig.coding, info->coding);
1718  FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1719  FST_WRB(card, suConfig.equalizer, info->equalizer);
1720  FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1721  FST_WRB(card, suConfig.loopMode, info->loopMode);
1722  FST_WRB(card, suConfig.range, info->range);
1723  FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1724  FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1725  FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1726  FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1727  if (info->idleCode)
1728  FST_WRB(card, suConfig.enableIdleCode, 1);
1729  else
1730  FST_WRB(card, suConfig.enableIdleCode, 0);
1731  FST_WRB(card, suConfig.idleCode, info->idleCode);
1732 #if FST_DEBUG
1733  if (info->valid & FSTVAL_TE1) {
1734  printk("Setting TE1 data\n");
1735  printk("Line Speed = %d\n", info->lineSpeed);
1736  printk("Start slot = %d\n", info->startingSlot);
1737  printk("Clock source = %d\n", info->clockSource);
1738  printk("Framing = %d\n", my_framing);
1739  printk("Structure = %d\n", info->structure);
1740  printk("interface = %d\n", info->interface);
1741  printk("Coding = %d\n", info->coding);
1742  printk("Line build out = %d\n", info->lineBuildOut);
1743  printk("Equaliser = %d\n", info->equalizer);
1744  printk("Transparent mode = %d\n",
1745  info->transparentMode);
1746  printk("Loop mode = %d\n", info->loopMode);
1747  printk("Range = %d\n", info->range);
1748  printk("Tx Buffer mode = %d\n", info->txBufferMode);
1749  printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1750  printk("LOS Threshold = %d\n", info->losThreshold);
1751  printk("Idle Code = %d\n", info->idleCode);
1752  }
1753 #endif
1754  }
1755 #if FST_DEBUG
1756  if (info->valid & FSTVAL_DEBUG) {
1757  fst_debug_mask = info->debug;
1758  }
1759 #endif
1760 
1761  return err;
1762 }
1763 
1764 static void
1765 gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1766  struct fstioc_info *info)
1767 {
1768  int i;
1769 
1770  memset(info, 0, sizeof (struct fstioc_info));
1771 
1772  i = port->index;
1773  info->kernelVersion = LINUX_VERSION_CODE;
1774  info->nports = card->nports;
1775  info->type = card->type;
1776  info->state = card->state;
1777  info->proto = FST_GEN_HDLC;
1778  info->index = i;
1779 #if FST_DEBUG
1780  info->debug = fst_debug_mask;
1781 #endif
1782 
1783  /* Only mark information as valid if card is running.
1784  * Copy the data anyway in case it is useful for diagnostics
1785  */
1786  info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1787 #if FST_DEBUG
1788  | FSTVAL_DEBUG
1789 #endif
1790  ;
1791 
1792  info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1793  info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1794  info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1795  info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1796  info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1797  info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1798  info->clockStatus = FST_RDW(card, clockStatus[i]);
1799  info->cableStatus = FST_RDW(card, cableStatus);
1800  info->cardMode = FST_RDW(card, cardMode);
1801  info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1802 
1803  /*
1804  * The T2U can report cable presence for both A or B
1805  * in bits 0 and 1 of cableStatus. See which port we are and
1806  * do the mapping.
1807  */
1808  if (card->family == FST_FAMILY_TXU) {
1809  if (port->index == 0) {
1810  /*
1811  * Port A
1812  */
1813  info->cableStatus = info->cableStatus & 1;
1814  } else {
1815  /*
1816  * Port B
1817  */
1818  info->cableStatus = info->cableStatus >> 1;
1819  info->cableStatus = info->cableStatus & 1;
1820  }
1821  }
1822  /*
1823  * Some additional bits if we are TE1
1824  */
1825  if (card->type == FST_TYPE_TE1) {
1826  info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1827  info->clockSource = FST_RDB(card, suConfig.clocking);
1828  info->framing = FST_RDB(card, suConfig.framing);
1829  info->structure = FST_RDB(card, suConfig.structure);
1830  info->interface = FST_RDB(card, suConfig.interface);
1831  info->coding = FST_RDB(card, suConfig.coding);
1832  info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1833  info->equalizer = FST_RDB(card, suConfig.equalizer);
1834  info->loopMode = FST_RDB(card, suConfig.loopMode);
1835  info->range = FST_RDB(card, suConfig.range);
1836  info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1837  info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1838  info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1839  info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1840  if (FST_RDB(card, suConfig.enableIdleCode))
1841  info->idleCode = FST_RDB(card, suConfig.idleCode);
1842  else
1843  info->idleCode = 0;
1844  info->receiveBufferDelay =
1845  FST_RDL(card, suStatus.receiveBufferDelay);
1846  info->framingErrorCount =
1847  FST_RDL(card, suStatus.framingErrorCount);
1848  info->codeViolationCount =
1849  FST_RDL(card, suStatus.codeViolationCount);
1850  info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1851  info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1852  info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1853  info->receiveRemoteAlarm =
1854  FST_RDB(card, suStatus.receiveRemoteAlarm);
1855  info->alarmIndicationSignal =
1856  FST_RDB(card, suStatus.alarmIndicationSignal);
1857  }
1858 }
1859 
1860 static int
1861 fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1862  struct ifreq *ifr)
1863 {
1865  int i;
1866 
1867  if (ifr->ifr_settings.size != sizeof (sync)) {
1868  return -ENOMEM;
1869  }
1870 
1871  if (copy_from_user
1872  (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1873  return -EFAULT;
1874  }
1875 
1876  if (sync.loopback)
1877  return -EINVAL;
1878 
1879  i = port->index;
1880 
1881  switch (ifr->ifr_settings.type) {
1882  case IF_IFACE_V35:
1883  FST_WRW(card, portConfig[i].lineInterface, V35);
1884  port->hwif = V35;
1885  break;
1886 
1887  case IF_IFACE_V24:
1888  FST_WRW(card, portConfig[i].lineInterface, V24);
1889  port->hwif = V24;
1890  break;
1891 
1892  case IF_IFACE_X21:
1893  FST_WRW(card, portConfig[i].lineInterface, X21);
1894  port->hwif = X21;
1895  break;
1896 
1897  case IF_IFACE_X21D:
1898  FST_WRW(card, portConfig[i].lineInterface, X21D);
1899  port->hwif = X21D;
1900  break;
1901 
1902  case IF_IFACE_T1:
1903  FST_WRW(card, portConfig[i].lineInterface, T1);
1904  port->hwif = T1;
1905  break;
1906 
1907  case IF_IFACE_E1:
1908  FST_WRW(card, portConfig[i].lineInterface, E1);
1909  port->hwif = E1;
1910  break;
1911 
1912  case IF_IFACE_SYNC_SERIAL:
1913  break;
1914 
1915  default:
1916  return -EINVAL;
1917  }
1918 
1919  switch (sync.clock_type) {
1920  case CLOCK_EXT:
1921  FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1922  break;
1923 
1924  case CLOCK_INT:
1925  FST_WRB(card, portConfig[i].internalClock, INTCLK);
1926  break;
1927 
1928  default:
1929  return -EINVAL;
1930  }
1931  FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1932  return 0;
1933 }
1934 
1935 static int
1936 fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1937  struct ifreq *ifr)
1938 {
1940  int i;
1941 
1942  /* First check what line type is set, we'll default to reporting X.21
1943  * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1944  * changed
1945  */
1946  switch (port->hwif) {
1947  case E1:
1948  ifr->ifr_settings.type = IF_IFACE_E1;
1949  break;
1950  case T1:
1951  ifr->ifr_settings.type = IF_IFACE_T1;
1952  break;
1953  case V35:
1954  ifr->ifr_settings.type = IF_IFACE_V35;
1955  break;
1956  case V24:
1957  ifr->ifr_settings.type = IF_IFACE_V24;
1958  break;
1959  case X21D:
1960  ifr->ifr_settings.type = IF_IFACE_X21D;
1961  break;
1962  case X21:
1963  default:
1964  ifr->ifr_settings.type = IF_IFACE_X21;
1965  break;
1966  }
1967  if (ifr->ifr_settings.size == 0) {
1968  return 0; /* only type requested */
1969  }
1970  if (ifr->ifr_settings.size < sizeof (sync)) {
1971  return -ENOMEM;
1972  }
1973 
1974  i = port->index;
1975  sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1976  /* Lucky card and linux use same encoding here */
1977  sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1979  sync.loopback = 0;
1980 
1981  if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
1982  return -EFAULT;
1983  }
1984 
1985  ifr->ifr_settings.size = sizeof (sync);
1986  return 0;
1987 }
1988 
1989 static int
1990 fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1991 {
1992  struct fst_card_info *card;
1993  struct fst_port_info *port;
1994  struct fstioc_write wrthdr;
1995  struct fstioc_info info;
1996  unsigned long flags;
1997  void *buf;
1998 
1999  dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
2000 
2001  port = dev_to_port(dev);
2002  card = port->card;
2003 
2004  if (!capable(CAP_NET_ADMIN))
2005  return -EPERM;
2006 
2007  switch (cmd) {
2008  case FSTCPURESET:
2009  fst_cpureset(card);
2010  card->state = FST_RESET;
2011  return 0;
2012 
2013  case FSTCPURELEASE:
2014  fst_cpurelease(card);
2015  card->state = FST_STARTING;
2016  return 0;
2017 
2018  case FSTWRITE: /* Code write (download) */
2019 
2020  /* First copy in the header with the length and offset of data
2021  * to write
2022  */
2023  if (ifr->ifr_data == NULL) {
2024  return -EINVAL;
2025  }
2026  if (copy_from_user(&wrthdr, ifr->ifr_data,
2027  sizeof (struct fstioc_write))) {
2028  return -EFAULT;
2029  }
2030 
2031  /* Sanity check the parameters. We don't support partial writes
2032  * when going over the top
2033  */
2034  if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
2035  wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2036  return -ENXIO;
2037  }
2038 
2039  /* Now copy the data to the card. */
2040 
2041  buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write),
2042  wrthdr.size);
2043  if (IS_ERR(buf))
2044  return PTR_ERR(buf);
2045 
2046  memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2047  kfree(buf);
2048 
2049  /* Writes to the memory of a card in the reset state constitute
2050  * a download
2051  */
2052  if (card->state == FST_RESET) {
2053  card->state = FST_DOWNLOAD;
2054  }
2055  return 0;
2056 
2057  case FSTGETCONF:
2058 
2059  /* If card has just been started check the shared memory config
2060  * version and marker
2061  */
2062  if (card->state == FST_STARTING) {
2063  check_started_ok(card);
2064 
2065  /* If everything checked out enable card interrupts */
2066  if (card->state == FST_RUNNING) {
2067  spin_lock_irqsave(&card->card_lock, flags);
2068  fst_enable_intr(card);
2069  FST_WRB(card, interruptHandshake, 0xEE);
2070  spin_unlock_irqrestore(&card->card_lock, flags);
2071  }
2072  }
2073 
2074  if (ifr->ifr_data == NULL) {
2075  return -EINVAL;
2076  }
2077 
2078  gather_conf_info(card, port, &info);
2079 
2080  if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2081  return -EFAULT;
2082  }
2083  return 0;
2084 
2085  case FSTSETCONF:
2086 
2087  /*
2088  * Most of the settings have been moved to the generic ioctls
2089  * this just covers debug and board ident now
2090  */
2091 
2092  if (card->state != FST_RUNNING) {
2093  pr_err("Attempt to configure card %d in non-running state (%d)\n",
2094  card->card_no, card->state);
2095  return -EIO;
2096  }
2097  if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2098  return -EFAULT;
2099  }
2100 
2101  return set_conf_from_info(card, port, &info);
2102 
2103  case SIOCWANDEV:
2104  switch (ifr->ifr_settings.type) {
2105  case IF_GET_IFACE:
2106  return fst_get_iface(card, port, ifr);
2107 
2108  case IF_IFACE_SYNC_SERIAL:
2109  case IF_IFACE_V35:
2110  case IF_IFACE_V24:
2111  case IF_IFACE_X21:
2112  case IF_IFACE_X21D:
2113  case IF_IFACE_T1:
2114  case IF_IFACE_E1:
2115  return fst_set_iface(card, port, ifr);
2116 
2117  case IF_PROTO_RAW:
2118  port->mode = FST_RAW;
2119  return 0;
2120 
2121  case IF_GET_PROTO:
2122  if (port->mode == FST_RAW) {
2123  ifr->ifr_settings.type = IF_PROTO_RAW;
2124  return 0;
2125  }
2126  return hdlc_ioctl(dev, ifr, cmd);
2127 
2128  default:
2129  port->mode = FST_GEN_HDLC;
2130  dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2131  ifr->ifr_settings.type);
2132  return hdlc_ioctl(dev, ifr, cmd);
2133  }
2134 
2135  default:
2136  /* Not one of ours. Pass through to HDLC package */
2137  return hdlc_ioctl(dev, ifr, cmd);
2138  }
2139 }
2140 
2141 static void
2142 fst_openport(struct fst_port_info *port)
2143 {
2144  int signals;
2145  int txq_length;
2146 
2147  /* Only init things if card is actually running. This allows open to
2148  * succeed for downloads etc.
2149  */
2150  if (port->card->state == FST_RUNNING) {
2151  if (port->run) {
2152  dbg(DBG_OPEN, "open: found port already running\n");
2153 
2154  fst_issue_cmd(port, STOPPORT);
2155  port->run = 0;
2156  }
2157 
2158  fst_rx_config(port);
2159  fst_tx_config(port);
2160  fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2161 
2162  fst_issue_cmd(port, STARTPORT);
2163  port->run = 1;
2164 
2165  signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2166  if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2167  ? IPSTS_INDICATE : IPSTS_DCD))
2169  else
2171 
2172  txq_length = port->txqe - port->txqs;
2173  port->txqe = 0;
2174  port->txqs = 0;
2175  }
2176 
2177 }
2178 
2179 static void
2180 fst_closeport(struct fst_port_info *port)
2181 {
2182  if (port->card->state == FST_RUNNING) {
2183  if (port->run) {
2184  port->run = 0;
2185  fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2186 
2187  fst_issue_cmd(port, STOPPORT);
2188  } else {
2189  dbg(DBG_OPEN, "close: port not running\n");
2190  }
2191  }
2192 }
2193 
2194 static int
2195 fst_open(struct net_device *dev)
2196 {
2197  int err;
2198  struct fst_port_info *port;
2199 
2200  port = dev_to_port(dev);
2201  if (!try_module_get(THIS_MODULE))
2202  return -EBUSY;
2203 
2204  if (port->mode != FST_RAW) {
2205  err = hdlc_open(dev);
2206  if (err) {
2207  module_put(THIS_MODULE);
2208  return err;
2209  }
2210  }
2211 
2212  fst_openport(port);
2213  netif_wake_queue(dev);
2214  return 0;
2215 }
2216 
2217 static int
2218 fst_close(struct net_device *dev)
2219 {
2220  struct fst_port_info *port;
2221  struct fst_card_info *card;
2222  unsigned char tx_dma_done;
2223  unsigned char rx_dma_done;
2224 
2225  port = dev_to_port(dev);
2226  card = port->card;
2227 
2228  tx_dma_done = inb(card->pci_conf + DMACSR1);
2229  rx_dma_done = inb(card->pci_conf + DMACSR0);
2230  dbg(DBG_OPEN,
2231  "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2232  card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2233  rx_dma_done);
2234 
2235  netif_stop_queue(dev);
2236  fst_closeport(dev_to_port(dev));
2237  if (port->mode != FST_RAW) {
2238  hdlc_close(dev);
2239  }
2240  module_put(THIS_MODULE);
2241  return 0;
2242 }
2243 
2244 static int
2245 fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2246 {
2247  /*
2248  * Setting currently fixed in FarSync card so we check and forget
2249  */
2250  if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2251  return -EINVAL;
2252  return 0;
2253 }
2254 
2255 static void
2256 fst_tx_timeout(struct net_device *dev)
2257 {
2258  struct fst_port_info *port;
2259  struct fst_card_info *card;
2260 
2261  port = dev_to_port(dev);
2262  card = port->card;
2263  dev->stats.tx_errors++;
2264  dev->stats.tx_aborted_errors++;
2265  dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2266  card->card_no, port->index);
2267  fst_issue_cmd(port, ABORTTX);
2268 
2269  dev->trans_start = jiffies;
2270  netif_wake_queue(dev);
2271  port->start = 0;
2272 }
2273 
2274 static netdev_tx_t
2275 fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2276 {
2277  struct fst_card_info *card;
2278  struct fst_port_info *port;
2279  unsigned long flags;
2280  int txq_length;
2281 
2282  port = dev_to_port(dev);
2283  card = port->card;
2284  dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2285 
2286  /* Drop packet with error if we don't have carrier */
2287  if (!netif_carrier_ok(dev)) {
2288  dev_kfree_skb(skb);
2289  dev->stats.tx_errors++;
2290  dev->stats.tx_carrier_errors++;
2291  dbg(DBG_ASS,
2292  "Tried to transmit but no carrier on card %d port %d\n",
2293  card->card_no, port->index);
2294  return NETDEV_TX_OK;
2295  }
2296 
2297  /* Drop it if it's too big! MTU failure ? */
2298  if (skb->len > LEN_TX_BUFFER) {
2299  dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2300  LEN_TX_BUFFER);
2301  dev_kfree_skb(skb);
2302  dev->stats.tx_errors++;
2303  return NETDEV_TX_OK;
2304  }
2305 
2306  /*
2307  * We are always going to queue the packet
2308  * so that the bottom half is the only place we tx from
2309  * Check there is room in the port txq
2310  */
2311  spin_lock_irqsave(&card->card_lock, flags);
2312  if ((txq_length = port->txqe - port->txqs) < 0) {
2313  /*
2314  * This is the case where the next free has wrapped but the
2315  * last used hasn't
2316  */
2317  txq_length = txq_length + FST_TXQ_DEPTH;
2318  }
2319  spin_unlock_irqrestore(&card->card_lock, flags);
2320  if (txq_length > fst_txq_high) {
2321  /*
2322  * We have got enough buffers in the pipeline. Ask the network
2323  * layer to stop sending frames down
2324  */
2325  netif_stop_queue(dev);
2326  port->start = 1; /* I'm using this to signal stop sent up */
2327  }
2328 
2329  if (txq_length == FST_TXQ_DEPTH - 1) {
2330  /*
2331  * This shouldn't have happened but such is life
2332  */
2333  dev_kfree_skb(skb);
2334  dev->stats.tx_errors++;
2335  dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2336  card->card_no, port->index);
2337  return NETDEV_TX_OK;
2338  }
2339 
2340  /*
2341  * queue the buffer
2342  */
2343  spin_lock_irqsave(&card->card_lock, flags);
2344  port->txq[port->txqe] = skb;
2345  port->txqe++;
2346  if (port->txqe == FST_TXQ_DEPTH)
2347  port->txqe = 0;
2348  spin_unlock_irqrestore(&card->card_lock, flags);
2349 
2350  /* Scehdule the bottom half which now does transmit processing */
2351  fst_q_work_item(&fst_work_txq, card->card_no);
2352  tasklet_schedule(&fst_tx_task);
2353 
2354  return NETDEV_TX_OK;
2355 }
2356 
2357 /*
2358  * Card setup having checked hardware resources.
2359  * Should be pretty bizarre if we get an error here (kernel memory
2360  * exhaustion is one possibility). If we do see a problem we report it
2361  * via a printk and leave the corresponding interface and all that follow
2362  * disabled.
2363  */
2364 static char *type_strings[] __devinitdata = {
2365  "no hardware", /* Should never be seen */
2366  "FarSync T2P",
2367  "FarSync T4P",
2368  "FarSync T1U",
2369  "FarSync T2U",
2370  "FarSync T4U",
2371  "FarSync TE1"
2372 };
2373 
2374 static void __devinit
2375 fst_init_card(struct fst_card_info *card)
2376 {
2377  int i;
2378  int err;
2379 
2380  /* We're working on a number of ports based on the card ID. If the
2381  * firmware detects something different later (should never happen)
2382  * we'll have to revise it in some way then.
2383  */
2384  for (i = 0; i < card->nports; i++) {
2385  err = register_hdlc_device(card->ports[i].dev);
2386  if (err < 0) {
2387  int j;
2388  pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2389  i, -err);
2390  for (j = i; j < card->nports; j++) {
2391  free_netdev(card->ports[j].dev);
2392  card->ports[j].dev = NULL;
2393  }
2394  card->nports = i;
2395  break;
2396  }
2397  }
2398 
2399  pr_info("%s-%s: %s IRQ%d, %d ports\n",
2400  port_to_dev(&card->ports[0])->name,
2401  port_to_dev(&card->ports[card->nports - 1])->name,
2402  type_strings[card->type], card->irq, card->nports);
2403 }
2404 
2405 static const struct net_device_ops fst_ops = {
2406  .ndo_open = fst_open,
2407  .ndo_stop = fst_close,
2408  .ndo_change_mtu = hdlc_change_mtu,
2409  .ndo_start_xmit = hdlc_start_xmit,
2410  .ndo_do_ioctl = fst_ioctl,
2411  .ndo_tx_timeout = fst_tx_timeout,
2412 };
2413 
2414 /*
2415  * Initialise card when detected.
2416  * Returns 0 to indicate success, or errno otherwise.
2417  */
2418 static int __devinit
2419 fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2420 {
2421  static int no_of_cards_added = 0;
2422  struct fst_card_info *card;
2423  int err = 0;
2424  int i;
2425 
2427  pr_fmt("FarSync WAN driver " FST_USER_VERSION
2428  " (c) 2001-2004 FarSite Communications Ltd.\n"));
2429 #if FST_DEBUG
2430  dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2431 #endif
2432  /*
2433  * We are going to be clever and allow certain cards not to be
2434  * configured. An exclude list can be provided in /etc/modules.conf
2435  */
2436  if (fst_excluded_cards != 0) {
2437  /*
2438  * There are cards to exclude
2439  *
2440  */
2441  for (i = 0; i < fst_excluded_cards; i++) {
2442  if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2443  pr_info("FarSync PCI device %d not assigned\n",
2444  (pdev->devfn) >> 3);
2445  return -EBUSY;
2446  }
2447  }
2448  }
2449 
2450  /* Allocate driver private data */
2451  card = kzalloc(sizeof (struct fst_card_info), GFP_KERNEL);
2452  if (card == NULL) {
2453  pr_err("FarSync card found but insufficient memory for driver storage\n");
2454  return -ENOMEM;
2455  }
2456 
2457  /* Try to enable the device */
2458  if ((err = pci_enable_device(pdev)) != 0) {
2459  pr_err("Failed to enable card. Err %d\n", -err);
2460  kfree(card);
2461  return err;
2462  }
2463 
2464  if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2465  pr_err("Failed to allocate regions. Err %d\n", -err);
2466  pci_disable_device(pdev);
2467  kfree(card);
2468  return err;
2469  }
2470 
2471  /* Get virtual addresses of memory regions */
2472  card->pci_conf = pci_resource_start(pdev, 1);
2473  card->phys_mem = pci_resource_start(pdev, 2);
2474  card->phys_ctlmem = pci_resource_start(pdev, 3);
2475  if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2476  pr_err("Physical memory remap failed\n");
2477  pci_release_regions(pdev);
2478  pci_disable_device(pdev);
2479  kfree(card);
2480  return -ENODEV;
2481  }
2482  if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2483  pr_err("Control memory remap failed\n");
2484  pci_release_regions(pdev);
2485  pci_disable_device(pdev);
2486  iounmap(card->mem);
2487  kfree(card);
2488  return -ENODEV;
2489  }
2490  dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2491 
2492  /* Register the interrupt handler */
2493  if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2494  pr_err("Unable to register interrupt %d\n", card->irq);
2495  pci_release_regions(pdev);
2496  pci_disable_device(pdev);
2497  iounmap(card->ctlmem);
2498  iounmap(card->mem);
2499  kfree(card);
2500  return -ENODEV;
2501  }
2502 
2503  /* Record info we need */
2504  card->irq = pdev->irq;
2505  card->type = ent->driver_data;
2506  card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2507  (ent->driver_data == FST_TYPE_T4P))
2509  if ((ent->driver_data == FST_TYPE_T1U) ||
2510  (ent->driver_data == FST_TYPE_TE1))
2511  card->nports = 1;
2512  else
2513  card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2514  (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2515 
2516  card->state = FST_UNINIT;
2517  spin_lock_init ( &card->card_lock );
2518 
2519  for ( i = 0 ; i < card->nports ; i++ ) {
2520  struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2521  hdlc_device *hdlc;
2522  if (!dev) {
2523  while (i--)
2524  free_netdev(card->ports[i].dev);
2525  pr_err("FarSync: out of memory\n");
2526  free_irq(card->irq, card);
2527  pci_release_regions(pdev);
2528  pci_disable_device(pdev);
2529  iounmap(card->ctlmem);
2530  iounmap(card->mem);
2531  kfree(card);
2532  return -ENODEV;
2533  }
2534  card->ports[i].dev = dev;
2535  card->ports[i].card = card;
2536  card->ports[i].index = i;
2537  card->ports[i].run = 0;
2538 
2539  hdlc = dev_to_hdlc(dev);
2540 
2541  /* Fill in the net device info */
2542  /* Since this is a PCI setup this is purely
2543  * informational. Give them the buffer addresses
2544  * and basic card I/O.
2545  */
2546  dev->mem_start = card->phys_mem
2547  + BUF_OFFSET ( txBuffer[i][0][0]);
2548  dev->mem_end = card->phys_mem
2549  + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
2550  dev->base_addr = card->pci_conf;
2551  dev->irq = card->irq;
2552 
2553  dev->netdev_ops = &fst_ops;
2556  hdlc->attach = fst_attach;
2557  hdlc->xmit = fst_start_xmit;
2558  }
2559 
2560  card->device = pdev;
2561 
2562  dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2563  card->nports, card->irq);
2564  dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2565  card->pci_conf, card->phys_mem, card->phys_ctlmem);
2566 
2567  /* Reset the card's processor */
2568  fst_cpureset(card);
2569  card->state = FST_RESET;
2570 
2571  /* Initialise DMA (if required) */
2572  fst_init_dma(card);
2573 
2574  /* Record driver data for later use */
2575  pci_set_drvdata(pdev, card);
2576 
2577  /* Remainder of card setup */
2578  fst_card_array[no_of_cards_added] = card;
2579  card->card_no = no_of_cards_added++; /* Record instance and bump it */
2580  fst_init_card(card);
2581  if (card->family == FST_FAMILY_TXU) {
2582  /*
2583  * Allocate a dma buffer for transmit and receives
2584  */
2585  card->rx_dma_handle_host =
2587  &card->rx_dma_handle_card);
2588  if (card->rx_dma_handle_host == NULL) {
2589  pr_err("Could not allocate rx dma buffer\n");
2590  fst_disable_intr(card);
2591  pci_release_regions(pdev);
2592  pci_disable_device(pdev);
2593  iounmap(card->ctlmem);
2594  iounmap(card->mem);
2595  kfree(card);
2596  return -ENOMEM;
2597  }
2598  card->tx_dma_handle_host =
2600  &card->tx_dma_handle_card);
2601  if (card->tx_dma_handle_host == NULL) {
2602  pr_err("Could not allocate tx dma buffer\n");
2603  fst_disable_intr(card);
2604  pci_release_regions(pdev);
2605  pci_disable_device(pdev);
2606  iounmap(card->ctlmem);
2607  iounmap(card->mem);
2608  kfree(card);
2609  return -ENOMEM;
2610  }
2611  }
2612  return 0; /* Success */
2613 }
2614 
2615 /*
2616  * Cleanup and close down a card
2617  */
2618 static void __devexit
2619 fst_remove_one(struct pci_dev *pdev)
2620 {
2621  struct fst_card_info *card;
2622  int i;
2623 
2624  card = pci_get_drvdata(pdev);
2625 
2626  for (i = 0; i < card->nports; i++) {
2627  struct net_device *dev = port_to_dev(&card->ports[i]);
2629  }
2630 
2631  fst_disable_intr(card);
2632  free_irq(card->irq, card);
2633 
2634  iounmap(card->ctlmem);
2635  iounmap(card->mem);
2636  pci_release_regions(pdev);
2637  if (card->family == FST_FAMILY_TXU) {
2638  /*
2639  * Free dma buffers
2640  */
2642  card->rx_dma_handle_host,
2643  card->rx_dma_handle_card);
2645  card->tx_dma_handle_host,
2646  card->tx_dma_handle_card);
2647  }
2648  fst_card_array[card->card_no] = NULL;
2649 }
2650 
2651 static struct pci_driver fst_driver = {
2652  .name = FST_NAME,
2653  .id_table = fst_pci_dev_id,
2654  .probe = fst_add_one,
2655  .remove = __devexit_p(fst_remove_one),
2656  .suspend = NULL,
2657  .resume = NULL,
2658 };
2659 
2660 static int __init
2661 fst_init(void)
2662 {
2663  int i;
2664 
2665  for (i = 0; i < FST_MAX_CARDS; i++)
2666  fst_card_array[i] = NULL;
2667  spin_lock_init(&fst_work_q_lock);
2668  return pci_register_driver(&fst_driver);
2669 }
2670 
2671 static void __exit
2672 fst_cleanup_module(void)
2673 {
2674  pr_info("FarSync WAN driver unloading\n");
2675  pci_unregister_driver(&fst_driver);
2676 }
2677 
2678 module_init(fst_init);
2679 module_exit(fst_cleanup_module);