Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hyperv.h
Go to the documentation of this file.
1 /*
2  *
3  * Copyright (c) 2011, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  * Haiyang Zhang <[email protected]>
20  * Hank Janssen <[email protected]>
21  * K. Y. Srinivasan <[email protected]>
22  *
23  */
24 
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27 
28 #include <linux/types.h>
29 
30 /*
31  * An implementation of HyperV key value pair (KVP) functionality for Linux.
32  *
33  *
34  * Copyright (C) 2010, Novell, Inc.
35  * Author : K. Y. Srinivasan <[email protected]>
36  *
37  */
38 
39 /*
40  * Maximum value size - used for both key names and value data, and includes
41  * any applicable NULL terminators.
42  *
43  * Note: This limit is somewhat arbitrary, but falls easily within what is
44  * supported for all native guests (back to Win 2000) and what is reasonable
45  * for the IC KVP exchange functionality. Note that Windows Me/98/95 are
46  * limited to 255 character key names.
47  *
48  * MSDN recommends not storing data values larger than 2048 bytes in the
49  * registry.
50  *
51  * Note: This value is used in defining the KVP exchange message - this value
52  * cannot be modified without affecting the message size and compatibility.
53  */
54 
55 /*
56  * bytes, including any null terminators
57  */
58 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048)
59 
60 
61 /*
62  * Maximum key size - the registry limit for the length of an entry name
63  * is 256 characters, including the null terminator
64  */
65 
66 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512)
67 
68 /*
69  * In Linux, we implement the KVP functionality in two components:
70  * 1) The kernel component which is packaged as part of the hv_utils driver
71  * is responsible for communicating with the host and responsible for
72  * implementing the host/guest protocol. 2) A user level daemon that is
73  * responsible for data gathering.
74  *
75  * Host/Guest Protocol: The host iterates over an index and expects the guest
76  * to assign a key name to the index and also return the value corresponding to
77  * the key. The host will have atmost one KVP transaction outstanding at any
78  * given point in time. The host side iteration stops when the guest returns
79  * an error. Microsoft has specified the following mapping of key names to
80  * host specified index:
81  *
82  * Index Key Name
83  * 0 FullyQualifiedDomainName
84  * 1 IntegrationServicesVersion
85  * 2 NetworkAddressIPv4
86  * 3 NetworkAddressIPv6
87  * 4 OSBuildNumber
88  * 5 OSName
89  * 6 OSMajorVersion
90  * 7 OSMinorVersion
91  * 8 OSVersion
92  * 9 ProcessorArchitecture
93  *
94  * The Windows host expects the Key Name and Key Value to be encoded in utf16.
95  *
96  * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
97  * data gathering functionality in a user mode daemon. The user level daemon
98  * is also responsible for binding the key name to the index as well. The
99  * kernel and user-level daemon communicate using a connector channel.
100  *
101  * The user mode component first registers with the
102  * the kernel component. Subsequently, the kernel component requests, data
103  * for the specified keys. In response to this message the user mode component
104  * fills in the value corresponding to the specified key. We overload the
105  * sequence field in the cn_msg header to define our KVP message types.
106  *
107  *
108  * The kernel component simply acts as a conduit for communication between the
109  * Windows host and the user-level daemon. The kernel component passes up the
110  * index received from the Host to the user-level daemon. If the index is
111  * valid (supported), the corresponding key as well as its
112  * value (both are strings) is returned. If the index is invalid
113  * (not supported), a NULL key string is returned.
114  */
115 
116 
117 /*
118  * Registry value types.
119  */
120 
121 #define REG_SZ 1
122 #define REG_U32 4
123 #define REG_U64 8
124 
125 /*
126  * As we look at expanding the KVP functionality to include
127  * IP injection functionality, we need to maintain binary
128  * compatibility with older daemons.
129  *
130  * The KVP opcodes are defined by the host and it was unfortunate
131  * that I chose to treat the registration operation as part of the
132  * KVP operations defined by the host.
133  * Here is the level of compatibility
134  * (between the user level daemon and the kernel KVP driver) that we
135  * will implement:
136  *
137  * An older daemon will always be supported on a newer driver.
138  * A given user level daemon will require a minimal version of the
139  * kernel driver.
140  * If we cannot handle the version differences, we will fail gracefully
141  * (this can happen when we have a user level daemon that is more
142  * advanced than the KVP driver.
143  *
144  * We will use values used in this handshake for determining if we have
145  * workable user level daemon and the kernel driver. We begin by taking the
146  * registration opcode out of the KVP opcode namespace. We will however,
147  * maintain compatibility with the existing user-level daemon code.
148  */
149 
150 /*
151  * Daemon code not supporting IP injection (legacy daemon).
152  */
153 
154 #define KVP_OP_REGISTER 4
155 
156 /*
157  * Daemon code supporting IP injection.
158  * The KVP opcode field is used to communicate the
159  * registration information; so define a namespace that
160  * will be distinct from the host defined KVP opcode.
161  */
162 
163 #define KVP_OP_REGISTER1 100
164 
172  KVP_OP_COUNT /* Number of operations, must be last. */
173 };
174 
181  KVP_POOL_COUNT /* Number of pools, must be last. */
182 };
183 
184 /*
185  * Some Hyper-V status codes.
186  */
187 
188 #define HV_S_OK 0x00000000
189 #define HV_E_FAIL 0x80004005
190 #define HV_S_CONT 0x80070103
191 #define HV_ERROR_NOT_SUPPORTED 0x80070032
192 #define HV_ERROR_MACHINE_LOCKED 0x800704F7
193 #define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F
194 #define HV_INVALIDARG 0x80070057
195 #define HV_GUID_NOTFOUND 0x80041002
196 
197 #define ADDR_FAMILY_NONE 0x00
198 #define ADDR_FAMILY_IPV4 0x01
199 #define ADDR_FAMILY_IPV6 0x02
200 
201 #define MAX_ADAPTER_ID_SIZE 128
202 #define MAX_IP_ADDR_SIZE 1024
203 #define MAX_GATEWAY_SIZE 512
204 
205 
214 } __attribute__((packed));
217 struct hv_kvp_hdr {
221 } __attribute__((packed));
228  union {
232  };
233 } __attribute__((packed));
238 } __attribute__((packed));
242 };
243 
246 };
247 
251 };
252 
255 };
256 
257 struct hv_kvp_msg {
258  union {
260  int error;
261  };
262  union {
269  } body;
270 } __attribute__((packed));
271 
276 } __attribute__((packed));
278 #ifdef __KERNEL__
280 #include <linux/list.h>
281 #include <linux/uuid.h>
282 #include <linux/timer.h>
283 #include <linux/workqueue.h>
284 #include <linux/completion.h>
285 #include <linux/device.h>
286 #include <linux/mod_devicetable.h>
287 
288 
289 #define MAX_PAGE_BUFFER_COUNT 19
290 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
291 
292 #pragma pack(push, 1)
293 
294 /* Single-page buffer */
295 struct hv_page_buffer {
296  u32 len;
297  u32 offset;
298  u64 pfn;
299 };
300 
301 /* Multiple-page buffer */
302 struct hv_multipage_buffer {
303  /* Length and Offset determines the # of pfns in the array */
304  u32 len;
305  u32 offset;
306  u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
307 };
308 
309 /* 0x18 includes the proprietary packet header */
310 #define MAX_PAGE_BUFFER_PACKET (0x18 + \
311  (sizeof(struct hv_page_buffer) * \
312  MAX_PAGE_BUFFER_COUNT))
313 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
314  sizeof(struct hv_multipage_buffer))
315 
316 
317 #pragma pack(pop)
318 
319 struct hv_ring_buffer {
320  /* Offset in bytes from the start of ring data below */
321  u32 write_index;
322 
323  /* Offset in bytes from the start of ring data below */
324  u32 read_index;
325 
326  u32 interrupt_mask;
327 
328  /* Pad it to PAGE_SIZE so that data starts on page boundary */
329  u8 reserved[4084];
330 
331  /* NOTE:
332  * The interrupt_mask field is used only for channels but since our
333  * vmbus connection also uses this data structure and its data starts
334  * here, we commented out this field.
335  */
336 
337  /*
338  * Ring data starts here + RingDataStartOffset
339  * !!! DO NOT place any fields below this !!!
340  */
341  u8 buffer[0];
342 } __packed;
343 
344 struct hv_ring_buffer_info {
345  struct hv_ring_buffer *ring_buffer;
346  u32 ring_size; /* Include the shared header */
347  spinlock_t ring_lock;
348 
349  u32 ring_datasize; /* < ring_size */
350  u32 ring_data_startoffset;
351 };
352 
353 struct hv_ring_buffer_debug_info {
354  u32 current_interrupt_mask;
355  u32 current_read_index;
356  u32 current_write_index;
357  u32 bytes_avail_toread;
358  u32 bytes_avail_towrite;
359 };
360 
361 
362 /*
363  *
364  * hv_get_ringbuffer_availbytes()
365  *
366  * Get number of bytes available to read and to write to
367  * for the specified ring buffer
368  */
369 static inline void
370 hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi,
371  u32 *read, u32 *write)
372 {
373  u32 read_loc, write_loc, dsize;
374 
376 
377  /* Capture the read/write indices before they changed */
378  read_loc = rbi->ring_buffer->read_index;
379  write_loc = rbi->ring_buffer->write_index;
380  dsize = rbi->ring_datasize;
381 
382  *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
383  read_loc - write_loc;
384  *read = dsize - *write;
385 }
386 
387 
388 /*
389  * We use the same version numbering for all Hyper-V modules.
390  *
391  * Definition of versioning is as follows;
392  *
393  * Major Number Changes for these scenarios;
394  * 1. When a new version of Windows Hyper-V
395  * is released.
396  * 2. A Major change has occurred in the
397  * Linux IC's.
398  * (For example the merge for the first time
399  * into the kernel) Every time the Major Number
400  * changes, the Revision number is reset to 0.
401  * Minor Number Changes when new functionality is added
402  * to the Linux IC's that is not a bug fix.
403  *
404  * 3.1 - Added completed hv_utils driver. Shutdown/Heartbeat/Timesync
405  */
406 #define HV_DRV_VERSION "3.1"
407 
408 
409 /*
410  * A revision number of vmbus that is used for ensuring both ends on a
411  * partition are using compatible versions.
412  */
413 #define VMBUS_REVISION_NUMBER 13
414 
415 /* Make maximum size of pipe payload of 16K */
416 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
417 
418 /* Define PipeMode values. */
419 #define VMBUS_PIPE_TYPE_BYTE 0x00000000
420 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
421 
422 /* The size of the user defined data buffer for non-pipe offers. */
423 #define MAX_USER_DEFINED_BYTES 120
424 
425 /* The size of the user defined data buffer for pipe offers. */
426 #define MAX_PIPE_USER_DEFINED_BYTES 116
427 
428 /*
429  * At the center of the Channel Management library is the Channel Offer. This
430  * struct contains the fundamental information about an offer.
431  */
432 struct vmbus_channel_offer {
433  uuid_le if_type;
434  uuid_le if_instance;
435  u64 int_latency; /* in 100ns units */
436  u32 if_revision;
437  u32 server_ctx_size; /* in bytes */
438  u16 chn_flags;
439  u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
440 
441  union {
442  /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
443  struct {
444  unsigned char user_def[MAX_USER_DEFINED_BYTES];
445  } std;
446 
447  /*
448  * Pipes:
449  * The following sructure is an integrated pipe protocol, which
450  * is implemented on top of standard user-defined data. Pipe
451  * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
452  * use.
453  */
454  struct {
455  u32 pipe_mode;
456  unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
457  } pipe;
458  } u;
459  u32 padding;
460 } __packed;
461 
462 /* Server Flags */
463 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
464 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
465 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
466 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
467 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
468 #define VMBUS_CHANNEL_PARENT_OFFER 0x200
469 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
470 
471 struct vmpacket_descriptor {
472  u16 type;
473  u16 offset8;
474  u16 len8;
475  u16 flags;
476  u64 trans_id;
477 } __packed;
478 
479 struct vmpacket_header {
480  u32 prev_pkt_start_offset;
481  struct vmpacket_descriptor descriptor;
482 } __packed;
483 
484 struct vmtransfer_page_range {
485  u32 byte_count;
487 } __packed;
488 
489 struct vmtransfer_page_packet_header {
490  struct vmpacket_descriptor d;
491  u16 xfer_pageset_id;
492  u8 sender_owns_set;
493  u8 reserved;
494  u32 range_cnt;
495  struct vmtransfer_page_range ranges[1];
496 } __packed;
497 
498 struct vmgpadl_packet_header {
499  struct vmpacket_descriptor d;
500  u32 gpadl;
501  u32 reserved;
502 } __packed;
503 
504 struct vmadd_remove_transfer_page_set {
505  struct vmpacket_descriptor d;
506  u32 gpadl;
507  u16 xfer_pageset_id;
508  u16 reserved;
509 } __packed;
510 
511 /*
512  * This structure defines a range in guest physical space that can be made to
513  * look virtually contiguous.
514  */
515 struct gpa_range {
516  u32 byte_count;
518  u64 pfn_array[0];
519 };
520 
521 /*
522  * This is the format for an Establish Gpadl packet, which contains a handle by
523  * which this GPADL will be known and a set of GPA ranges associated with it.
524  * This can be converted to a MDL by the guest OS. If there are multiple GPA
525  * ranges, then the resulting MDL will be "chained," representing multiple VA
526  * ranges.
527  */
528 struct vmestablish_gpadl {
529  struct vmpacket_descriptor d;
530  u32 gpadl;
531  u32 range_cnt;
532  struct gpa_range range[1];
533 } __packed;
534 
535 /*
536  * This is the format for a Teardown Gpadl packet, which indicates that the
537  * GPADL handle in the Establish Gpadl packet will never be referenced again.
538  */
539 struct vmteardown_gpadl {
540  struct vmpacket_descriptor d;
541  u32 gpadl;
542  u32 reserved; /* for alignment to a 8-byte boundary */
543 } __packed;
544 
545 /*
546  * This is the format for a GPA-Direct packet, which contains a set of GPA
547  * ranges, in addition to commands and/or data.
548  */
549 struct vmdata_gpa_direct {
550  struct vmpacket_descriptor d;
551  u32 reserved;
552  u32 range_cnt;
553  struct gpa_range range[1];
554 } __packed;
555 
556 /* This is the format for a Additional Data Packet. */
557 struct vmadditional_data {
558  struct vmpacket_descriptor d;
560  u32 offset;
561  u32 byte_cnt;
562  unsigned char data[1];
563 } __packed;
564 
565 union vmpacket_largest_possible_header {
566  struct vmpacket_descriptor simple_hdr;
567  struct vmtransfer_page_packet_header xfer_page_hdr;
568  struct vmgpadl_packet_header gpadl_hdr;
569  struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
570  struct vmestablish_gpadl establish_gpadl_hdr;
571  struct vmteardown_gpadl teardown_gpadl_hdr;
572  struct vmdata_gpa_direct data_gpa_direct_hdr;
573 };
574 
575 #define VMPACKET_DATA_START_ADDRESS(__packet) \
576  (void *)(((unsigned char *)__packet) + \
577  ((struct vmpacket_descriptor)__packet)->offset8 * 8)
578 
579 #define VMPACKET_DATA_LENGTH(__packet) \
580  ((((struct vmpacket_descriptor)__packet)->len8 - \
581  ((struct vmpacket_descriptor)__packet)->offset8) * 8)
582 
583 #define VMPACKET_TRANSFER_MODE(__packet) \
584  (((struct IMPACT)__packet)->type)
585 
586 enum vmbus_packet_type {
587  VM_PKT_INVALID = 0x0,
588  VM_PKT_SYNCH = 0x1,
589  VM_PKT_ADD_XFER_PAGESET = 0x2,
590  VM_PKT_RM_XFER_PAGESET = 0x3,
591  VM_PKT_ESTABLISH_GPADL = 0x4,
592  VM_PKT_TEARDOWN_GPADL = 0x5,
593  VM_PKT_DATA_INBAND = 0x6,
594  VM_PKT_DATA_USING_XFER_PAGES = 0x7,
595  VM_PKT_DATA_USING_GPADL = 0x8,
596  VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
597  VM_PKT_CANCEL_REQUEST = 0xa,
598  VM_PKT_COMP = 0xb,
599  VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
600  VM_PKT_ADDITIONAL_DATA = 0xd
601 };
602 
603 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
604 
605 
606 /* Version 1 messages */
607 enum vmbus_channel_message_type {
608  CHANNELMSG_INVALID = 0,
609  CHANNELMSG_OFFERCHANNEL = 1,
610  CHANNELMSG_RESCIND_CHANNELOFFER = 2,
611  CHANNELMSG_REQUESTOFFERS = 3,
612  CHANNELMSG_ALLOFFERS_DELIVERED = 4,
613  CHANNELMSG_OPENCHANNEL = 5,
614  CHANNELMSG_OPENCHANNEL_RESULT = 6,
615  CHANNELMSG_CLOSECHANNEL = 7,
616  CHANNELMSG_GPADL_HEADER = 8,
617  CHANNELMSG_GPADL_BODY = 9,
618  CHANNELMSG_GPADL_CREATED = 10,
619  CHANNELMSG_GPADL_TEARDOWN = 11,
620  CHANNELMSG_GPADL_TORNDOWN = 12,
621  CHANNELMSG_RELID_RELEASED = 13,
622  CHANNELMSG_INITIATE_CONTACT = 14,
623  CHANNELMSG_VERSION_RESPONSE = 15,
624  CHANNELMSG_UNLOAD = 16,
625 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
626  CHANNELMSG_VIEWRANGE_ADD = 17,
627  CHANNELMSG_VIEWRANGE_REMOVE = 18,
628 #endif
629  CHANNELMSG_COUNT
630 };
631 
632 struct vmbus_channel_message_header {
633  enum vmbus_channel_message_type msgtype;
634  u32 padding;
635 } __packed;
636 
637 /* Query VMBus Version parameters */
638 struct vmbus_channel_query_vmbus_version {
639  struct vmbus_channel_message_header header;
640  u32 version;
641 } __packed;
642 
643 /* VMBus Version Supported parameters */
644 struct vmbus_channel_version_supported {
645  struct vmbus_channel_message_header header;
646  u8 version_supported;
647 } __packed;
648 
649 /* Offer Channel parameters */
650 struct vmbus_channel_offer_channel {
651  struct vmbus_channel_message_header header;
652  struct vmbus_channel_offer offer;
653  u32 child_relid;
654  u8 monitorid;
655  u8 monitor_allocated;
656 } __packed;
657 
658 /* Rescind Offer parameters */
659 struct vmbus_channel_rescind_offer {
660  struct vmbus_channel_message_header header;
661  u32 child_relid;
662 } __packed;
663 
664 /*
665  * Request Offer -- no parameters, SynIC message contains the partition ID
666  * Set Snoop -- no parameters, SynIC message contains the partition ID
667  * Clear Snoop -- no parameters, SynIC message contains the partition ID
668  * All Offers Delivered -- no parameters, SynIC message contains the partition
669  * ID
670  * Flush Client -- no parameters, SynIC message contains the partition ID
671  */
672 
673 /* Open Channel parameters */
674 struct vmbus_channel_open_channel {
675  struct vmbus_channel_message_header header;
676 
677  /* Identifies the specific VMBus channel that is being opened. */
678  u32 child_relid;
679 
680  /* ID making a particular open request at a channel offer unique. */
681  u32 openid;
682 
683  /* GPADL for the channel's ring buffer. */
684  u32 ringbuffer_gpadlhandle;
685 
686  /* GPADL for the channel's server context save area. */
687  u32 server_contextarea_gpadlhandle;
688 
689  /*
690  * The upstream ring buffer begins at offset zero in the memory
691  * described by RingBufferGpadlHandle. The downstream ring buffer
692  * follows it at this offset (in pages).
693  */
694  u32 downstream_ringbuffer_pageoffset;
695 
696  /* User-specific data to be passed along to the server endpoint. */
697  unsigned char userdata[MAX_USER_DEFINED_BYTES];
698 } __packed;
699 
700 /* Open Channel Result parameters */
701 struct vmbus_channel_open_result {
702  struct vmbus_channel_message_header header;
703  u32 child_relid;
704  u32 openid;
705  u32 status;
706 } __packed;
707 
708 /* Close channel parameters; */
709 struct vmbus_channel_close_channel {
710  struct vmbus_channel_message_header header;
711  u32 child_relid;
712 } __packed;
713 
714 /* Channel Message GPADL */
715 #define GPADL_TYPE_RING_BUFFER 1
716 #define GPADL_TYPE_SERVER_SAVE_AREA 2
717 #define GPADL_TYPE_TRANSACTION 8
718 
719 /*
720  * The number of PFNs in a GPADL message is defined by the number of
721  * pages that would be spanned by ByteCount and ByteOffset. If the
722  * implied number of PFNs won't fit in this packet, there will be a
723  * follow-up packet that contains more.
724  */
725 struct vmbus_channel_gpadl_header {
726  struct vmbus_channel_message_header header;
727  u32 child_relid;
728  u32 gpadl;
729  u16 range_buflen;
730  u16 rangecount;
731  struct gpa_range range[0];
732 } __packed;
733 
734 /* This is the followup packet that contains more PFNs. */
735 struct vmbus_channel_gpadl_body {
736  struct vmbus_channel_message_header header;
737  u32 msgnumber;
738  u32 gpadl;
739  u64 pfn[0];
740 } __packed;
741 
742 struct vmbus_channel_gpadl_created {
743  struct vmbus_channel_message_header header;
744  u32 child_relid;
745  u32 gpadl;
746  u32 creation_status;
747 } __packed;
748 
749 struct vmbus_channel_gpadl_teardown {
750  struct vmbus_channel_message_header header;
751  u32 child_relid;
752  u32 gpadl;
753 } __packed;
754 
755 struct vmbus_channel_gpadl_torndown {
756  struct vmbus_channel_message_header header;
757  u32 gpadl;
758 } __packed;
759 
760 #ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD
761 struct vmbus_channel_view_range_add {
762  struct vmbus_channel_message_header header;
763  PHYSICAL_ADDRESS viewrange_base;
764  u64 viewrange_length;
765  u32 child_relid;
766 } __packed;
767 
768 struct vmbus_channel_view_range_remove {
769  struct vmbus_channel_message_header header;
770  PHYSICAL_ADDRESS viewrange_base;
771  u32 child_relid;
772 } __packed;
773 #endif
774 
775 struct vmbus_channel_relid_released {
776  struct vmbus_channel_message_header header;
777  u32 child_relid;
778 } __packed;
779 
780 struct vmbus_channel_initiate_contact {
781  struct vmbus_channel_message_header header;
782  u32 vmbus_version_requested;
783  u32 padding2;
784  u64 interrupt_page;
785  u64 monitor_page1;
786  u64 monitor_page2;
787 } __packed;
788 
789 struct vmbus_channel_version_response {
790  struct vmbus_channel_message_header header;
791  u8 version_supported;
792 } __packed;
793 
794 enum vmbus_channel_state {
795  CHANNEL_OFFER_STATE,
796  CHANNEL_OPENING_STATE,
797  CHANNEL_OPEN_STATE,
798 };
799 
800 struct vmbus_channel_debug_info {
801  u32 relid;
802  enum vmbus_channel_state state;
803  uuid_le interfacetype;
804  uuid_le interface_instance;
805  u32 monitorid;
806  u32 servermonitor_pending;
807  u32 servermonitor_latency;
808  u32 servermonitor_connectionid;
809  u32 clientmonitor_pending;
810  u32 clientmonitor_latency;
811  u32 clientmonitor_connectionid;
812 
813  struct hv_ring_buffer_debug_info inbound;
814  struct hv_ring_buffer_debug_info outbound;
815 };
816 
817 /*
818  * Represents each channel msg on the vmbus connection This is a
819  * variable-size data structure depending on the msg type itself
820  */
821 struct vmbus_channel_msginfo {
822  /* Bookkeeping stuff */
823  struct list_head msglistentry;
824 
825  /* So far, this is only used to handle gpadl body message */
826  struct list_head submsglist;
827 
828  /* Synchronize the request/response if needed */
829  struct completion waitevent;
830  union {
831  struct vmbus_channel_version_supported version_supported;
832  struct vmbus_channel_open_result open_result;
833  struct vmbus_channel_gpadl_torndown gpadl_torndown;
834  struct vmbus_channel_gpadl_created gpadl_created;
835  struct vmbus_channel_version_response version_response;
836  } response;
837 
838  u32 msgsize;
839  /*
840  * The channel message that goes out on the "wire".
841  * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
842  */
843  unsigned char msg[0];
844 };
845 
846 struct vmbus_close_msg {
847  struct vmbus_channel_msginfo info;
848  struct vmbus_channel_close_channel msg;
849 };
850 
851 struct vmbus_channel {
852  struct list_head listentry;
853 
854  struct hv_device *device_obj;
855 
856  struct work_struct work;
857 
858  enum vmbus_channel_state state;
859 
860  struct vmbus_channel_offer_channel offermsg;
861  /*
862  * These are based on the OfferMsg.MonitorId.
863  * Save it here for easy access.
864  */
865  u8 monitor_grp;
866  u8 monitor_bit;
867 
868  u32 ringbuffer_gpadlhandle;
869 
870  /* Allocated memory for ring buffer */
871  void *ringbuffer_pages;
872  u32 ringbuffer_pagecount;
873  struct hv_ring_buffer_info outbound; /* send to parent */
874  struct hv_ring_buffer_info inbound; /* receive from parent */
875  spinlock_t inbound_lock;
876  struct workqueue_struct *controlwq;
877 
878  struct vmbus_close_msg close_msg;
879 
880  /* Channel callback are invoked in this workqueue context */
881  /* HANDLE dataWorkQueue; */
882 
883  void (*onchannel_callback)(void *context);
884  void *channel_callback_context;
885 };
886 
887 void vmbus_onmessage(void *context);
888 
889 int vmbus_request_offers(void);
890 
891 /* The format must be the same as struct vmdata_gpa_direct */
892 struct vmbus_channel_packet_page_buffer {
893  u16 type;
894  u16 dataoffset8;
895  u16 length8;
896  u16 flags;
897  u64 transactionid;
898  u32 reserved;
899  u32 rangecount;
900  struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
901 } __packed;
902 
903 /* The format must be the same as struct vmdata_gpa_direct */
904 struct vmbus_channel_packet_multipage_buffer {
905  u16 type;
906  u16 dataoffset8;
907  u16 length8;
908  u16 flags;
909  u64 transactionid;
910  u32 reserved;
911  u32 rangecount; /* Always 1 in this case */
912  struct hv_multipage_buffer range;
913 } __packed;
914 
915 
916 extern int vmbus_open(struct vmbus_channel *channel,
917  u32 send_ringbuffersize,
918  u32 recv_ringbuffersize,
919  void *userdata,
920  u32 userdatalen,
921  void(*onchannel_callback)(void *context),
922  void *context);
923 
924 extern void vmbus_close(struct vmbus_channel *channel);
925 
926 extern int vmbus_sendpacket(struct vmbus_channel *channel,
927  const void *buffer,
928  u32 bufferLen,
929  u64 requestid,
930  enum vmbus_packet_type type,
931  u32 flags);
932 
933 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
934  struct hv_page_buffer pagebuffers[],
935  u32 pagecount,
936  void *buffer,
937  u32 bufferlen,
938  u64 requestid);
939 
940 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
941  struct hv_multipage_buffer *mpb,
942  void *buffer,
943  u32 bufferlen,
944  u64 requestid);
945 
946 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
947  void *kbuffer,
948  u32 size,
949  u32 *gpadl_handle);
950 
951 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
952  u32 gpadl_handle);
953 
954 extern int vmbus_recvpacket(struct vmbus_channel *channel,
955  void *buffer,
956  u32 bufferlen,
957  u32 *buffer_actual_len,
958  u64 *requestid);
959 
960 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
961  void *buffer,
962  u32 bufferlen,
963  u32 *buffer_actual_len,
964  u64 *requestid);
965 
966 
967 extern void vmbus_get_debug_info(struct vmbus_channel *channel,
968  struct vmbus_channel_debug_info *debug);
969 
970 extern void vmbus_ontimer(unsigned long data);
971 
972 struct hv_dev_port_info {
973  u32 int_mask;
974  u32 read_idx;
975  u32 write_idx;
976  u32 bytes_avail_toread;
977  u32 bytes_avail_towrite;
978 };
979 
980 /* Base driver object */
981 struct hv_driver {
982  const char *name;
983 
984  /* the device type supported by this driver */
986  const struct hv_vmbus_device_id *id_table;
987 
988  struct device_driver driver;
989 
990  int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
991  int (*remove)(struct hv_device *);
992  void (*shutdown)(struct hv_device *);
993 
994 };
995 
996 /* Base device object */
997 struct hv_device {
998  /* the device type id of this device */
1000 
1001  /* the device instance id of this device */
1002  uuid_le dev_instance;
1003 
1004  struct device device;
1005 
1006  struct vmbus_channel *channel;
1007 };
1008 
1009 
1010 static inline struct hv_device *device_to_hv_device(struct device *d)
1011 {
1012  return container_of(d, struct hv_device, device);
1013 }
1014 
1015 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1016 {
1017  return container_of(d, struct hv_driver, driver);
1018 }
1019 
1020 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1021 {
1022  dev_set_drvdata(&dev->device, data);
1023 }
1024 
1025 static inline void *hv_get_drvdata(struct hv_device *dev)
1026 {
1027  return dev_get_drvdata(&dev->device);
1028 }
1029 
1030 /* Vmbus interface */
1031 #define vmbus_driver_register(driver) \
1032  __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1033 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1034  struct module *owner,
1035  const char *mod_name);
1036 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1037 
1044 #define VMBUS_DEVICE(g0, g1, g2, g3, g4, g5, g6, g7, \
1045  g8, g9, ga, gb, gc, gd, ge, gf) \
1046  .guid = { g0, g1, g2, g3, g4, g5, g6, g7, \
1047  g8, g9, ga, gb, gc, gd, ge, gf },
1048 
1049 /*
1050  * Common header for Hyper-V ICs
1051  */
1052 
1053 #define ICMSGTYPE_NEGOTIATE 0
1054 #define ICMSGTYPE_HEARTBEAT 1
1055 #define ICMSGTYPE_KVPEXCHANGE 2
1056 #define ICMSGTYPE_SHUTDOWN 3
1057 #define ICMSGTYPE_TIMESYNC 4
1058 #define ICMSGTYPE_VSS 5
1059 
1060 #define ICMSGHDRFLAG_TRANSACTION 1
1061 #define ICMSGHDRFLAG_REQUEST 2
1062 #define ICMSGHDRFLAG_RESPONSE 4
1063 
1064 
1065 /*
1066  * While we want to handle util services as regular devices,
1067  * there is only one instance of each of these services; so
1068  * we statically allocate the service specific state.
1069  */
1070 
1071 struct hv_util_service {
1072  u8 *recv_buffer;
1073  void (*util_cb)(void *);
1074  int (*util_init)(struct hv_util_service *);
1075  void (*util_deinit)(void);
1076 };
1077 
1078 struct vmbuspipe_hdr {
1079  u32 flags;
1080  u32 msgsize;
1081 } __packed;
1082 
1083 struct ic_version {
1084  u16 major;
1085  u16 minor;
1086 } __packed;
1087 
1088 struct icmsg_hdr {
1089  struct ic_version icverframe;
1090  u16 icmsgtype;
1091  struct ic_version icvermsg;
1092  u16 icmsgsize;
1093  u32 status;
1094  u8 ictransaction_id;
1095  u8 icflags;
1096  u8 reserved[2];
1097 } __packed;
1098 
1099 struct icmsg_negotiate {
1100  u16 icframe_vercnt;
1101  u16 icmsg_vercnt;
1102  u32 reserved;
1103  struct ic_version icversion_data[1]; /* any size array */
1104 } __packed;
1105 
1106 struct shutdown_msg_data {
1107  u32 reason_code;
1108  u32 timeout_seconds;
1109  u32 flags;
1110  u8 display_message[2048];
1111 } __packed;
1112 
1113 struct heartbeat_msg_data {
1114  u64 seq_num;
1115  u32 reserved[8];
1116 } __packed;
1117 
1118 /* Time Sync IC defs */
1119 #define ICTIMESYNCFLAG_PROBE 0
1120 #define ICTIMESYNCFLAG_SYNC 1
1121 #define ICTIMESYNCFLAG_SAMPLE 2
1122 
1123 #ifdef __x86_64__
1124 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1125 #else
1126 #define WLTIMEDELTA 116444736000000000LL
1127 #endif
1128 
1129 struct ictimesync_data {
1130  u64 parenttime;
1131  u64 childtime;
1132  u64 roundtriptime;
1133  u8 flags;
1134 } __packed;
1135 
1136 struct hyperv_service_callback {
1137  u8 msg_type;
1138  char *log_msg;
1139  uuid_le data;
1140  struct vmbus_channel *channel;
1141  void (*callback) (void *context);
1142 };
1143 
1144 #define MAX_SRV_VER 0x7ffffff
1145 extern void vmbus_prep_negotiate_resp(struct icmsg_hdr *,
1146  struct icmsg_negotiate *, u8 *, int,
1147  int);
1148 
1149 int hv_kvp_init(struct hv_util_service *);
1150 void hv_kvp_deinit(void);
1151 void hv_kvp_onchannelcallback(void *);
1152 
1153 #endif /* __KERNEL__ */
1154 #endif /* _HYPERV_H */