Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
kprobes.c
Go to the documentation of this file.
1 /*
2  * Kernel Probes (KProbes)
3  * kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct Created by Vamsi Krishna S <[email protected]> Kernel
22  * Probes initial implementation (includes suggestions from
23  * Rusty Russell).
24  * 2004-Aug Updated by Prasanna S Panchamukhi <[email protected]> with
25  * hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July Suparna Bhattacharya <[email protected]> added jumper probes
27  * interface to access function arguments.
28  * 2004-Sep Prasanna S Panchamukhi <[email protected]> Changed Kprobes
29  * exceptions notifier to be first on the priority list.
30  * 2005-May Hien Nguyen <[email protected]>, Jim Keniston
31  * <[email protected]> and Prasanna S Panchamukhi
32  * <[email protected]> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51 
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56 
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59 
60 
61 /*
62  * Some oddball architectures like 64bit powerpc have function descriptors
63  * so this must be overridable.
64  */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67  addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69 
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73 
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76 
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83 
84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86  return &(kretprobe_table_locks[hash].lock);
87 }
88 
89 /*
90  * Normally, functions that we'd want to prohibit kprobes in, are marked
91  * __kprobes. But, there are cases where such functions already belong to
92  * a different section (__sched for preempt_schedule)
93  *
94  * For such cases, we now have a blacklist
95  */
96 static struct kprobe_blackpoint kprobe_blacklist[] = {
97  {"preempt_schedule",},
98  {"native_get_debugreg",},
99  {"irq_entries_start",},
100  {"common_interrupt",},
101  {"mcount",}, /* mcount can be called from everywhere */
102  {NULL} /* Terminator */
103 };
104 
105 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106 /*
107  * kprobe->ainsn.insn points to the copy of the instruction to be
108  * single-stepped. x86_64, POWER4 and above have no-exec support and
109  * stepping on the instruction on a vmalloced/kmalloced/data page
110  * is a recipe for disaster
111  */
112 struct kprobe_insn_page {
113  struct list_head list;
114  kprobe_opcode_t *insns; /* Page of instruction slots */
115  int nused;
116  int ngarbage;
117  char slot_used[];
118 };
119 
120 #define KPROBE_INSN_PAGE_SIZE(slots) \
121  (offsetof(struct kprobe_insn_page, slot_used) + \
122  (sizeof(char) * (slots)))
123 
124 struct kprobe_insn_cache {
125  struct list_head pages; /* list of kprobe_insn_page */
126  size_t insn_size; /* size of instruction slot */
127  int nr_garbage;
128 };
129 
130 static int slots_per_page(struct kprobe_insn_cache *c)
131 {
132  return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
133 }
134 
135 enum kprobe_slot_state {
136  SLOT_CLEAN = 0,
137  SLOT_DIRTY = 1,
138  SLOT_USED = 2,
139 };
140 
141 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */
142 static struct kprobe_insn_cache kprobe_insn_slots = {
143  .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144  .insn_size = MAX_INSN_SIZE,
145  .nr_garbage = 0,
146 };
147 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148 
153 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
154 {
155  struct kprobe_insn_page *kip;
156 
157  retry:
158  list_for_each_entry(kip, &c->pages, list) {
159  if (kip->nused < slots_per_page(c)) {
160  int i;
161  for (i = 0; i < slots_per_page(c); i++) {
162  if (kip->slot_used[i] == SLOT_CLEAN) {
163  kip->slot_used[i] = SLOT_USED;
164  kip->nused++;
165  return kip->insns + (i * c->insn_size);
166  }
167  }
168  /* kip->nused is broken. Fix it. */
169  kip->nused = slots_per_page(c);
170  WARN_ON(1);
171  }
172  }
173 
174  /* If there are any garbage slots, collect it and try again. */
175  if (c->nr_garbage && collect_garbage_slots(c) == 0)
176  goto retry;
177 
178  /* All out of space. Need to allocate a new page. */
179  kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180  if (!kip)
181  return NULL;
182 
183  /*
184  * Use module_alloc so this page is within +/- 2GB of where the
185  * kernel image and loaded module images reside. This is required
186  * so x86_64 can correctly handle the %rip-relative fixups.
187  */
188  kip->insns = module_alloc(PAGE_SIZE);
189  if (!kip->insns) {
190  kfree(kip);
191  return NULL;
192  }
193  INIT_LIST_HEAD(&kip->list);
194  memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195  kip->slot_used[0] = SLOT_USED;
196  kip->nused = 1;
197  kip->ngarbage = 0;
198  list_add(&kip->list, &c->pages);
199  return kip->insns;
200 }
201 
202 
203 kprobe_opcode_t __kprobes *get_insn_slot(void)
204 {
206 
207  mutex_lock(&kprobe_insn_mutex);
208  ret = __get_insn_slot(&kprobe_insn_slots);
209  mutex_unlock(&kprobe_insn_mutex);
210 
211  return ret;
212 }
213 
214 /* Return 1 if all garbages are collected, otherwise 0. */
215 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
216 {
217  kip->slot_used[idx] = SLOT_CLEAN;
218  kip->nused--;
219  if (kip->nused == 0) {
220  /*
221  * Page is no longer in use. Free it unless
222  * it's the last one. We keep the last one
223  * so as not to have to set it up again the
224  * next time somebody inserts a probe.
225  */
226  if (!list_is_singular(&kip->list)) {
227  list_del(&kip->list);
228  module_free(NULL, kip->insns);
229  kfree(kip);
230  }
231  return 1;
232  }
233  return 0;
234 }
235 
236 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
237 {
238  struct kprobe_insn_page *kip, *next;
239 
240  /* Ensure no-one is interrupted on the garbages */
242 
243  list_for_each_entry_safe(kip, next, &c->pages, list) {
244  int i;
245  if (kip->ngarbage == 0)
246  continue;
247  kip->ngarbage = 0; /* we will collect all garbages */
248  for (i = 0; i < slots_per_page(c); i++) {
249  if (kip->slot_used[i] == SLOT_DIRTY &&
250  collect_one_slot(kip, i))
251  break;
252  }
253  }
254  c->nr_garbage = 0;
255  return 0;
256 }
257 
258 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259  kprobe_opcode_t *slot, int dirty)
260 {
261  struct kprobe_insn_page *kip;
262 
263  list_for_each_entry(kip, &c->pages, list) {
264  long idx = ((long)slot - (long)kip->insns) /
265  (c->insn_size * sizeof(kprobe_opcode_t));
266  if (idx >= 0 && idx < slots_per_page(c)) {
267  WARN_ON(kip->slot_used[idx] != SLOT_USED);
268  if (dirty) {
269  kip->slot_used[idx] = SLOT_DIRTY;
270  kip->ngarbage++;
271  if (++c->nr_garbage > slots_per_page(c))
272  collect_garbage_slots(c);
273  } else
274  collect_one_slot(kip, idx);
275  return;
276  }
277  }
278  /* Could not free this slot. */
279  WARN_ON(1);
280 }
281 
282 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
283 {
284  mutex_lock(&kprobe_insn_mutex);
285  __free_insn_slot(&kprobe_insn_slots, slot, dirty);
286  mutex_unlock(&kprobe_insn_mutex);
287 }
288 #ifdef CONFIG_OPTPROBES
289 /* For optimized_kprobe buffer */
290 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291 static struct kprobe_insn_cache kprobe_optinsn_slots = {
292  .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293  /* .insn_size is initialized later */
294  .nr_garbage = 0,
295 };
296 /* Get a slot for optimized_kprobe buffer */
297 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
298 {
300 
301  mutex_lock(&kprobe_optinsn_mutex);
302  ret = __get_insn_slot(&kprobe_optinsn_slots);
303  mutex_unlock(&kprobe_optinsn_mutex);
304 
305  return ret;
306 }
307 
308 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
309 {
310  mutex_lock(&kprobe_optinsn_mutex);
311  __free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312  mutex_unlock(&kprobe_optinsn_mutex);
313 }
314 #endif
315 #endif
316 
317 /* We have preemption disabled.. so it is safe to use __ versions */
318 static inline void set_kprobe_instance(struct kprobe *kp)
319 {
320  __this_cpu_write(kprobe_instance, kp);
321 }
322 
323 static inline void reset_kprobe_instance(void)
324 {
325  __this_cpu_write(kprobe_instance, NULL);
326 }
327 
328 /*
329  * This routine is called either:
330  * - under the kprobe_mutex - during kprobe_[un]register()
331  * OR
332  * - with preemption disabled - from arch/xxx/kernel/kprobes.c
333  */
335 {
336  struct hlist_head *head;
337  struct hlist_node *node;
338  struct kprobe *p;
339 
340  head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
341  hlist_for_each_entry_rcu(p, node, head, hlist) {
342  if (p->addr == addr)
343  return p;
344  }
345 
346  return NULL;
347 }
348 
349 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
350 
351 /* Return true if the kprobe is an aggregator */
352 static inline int kprobe_aggrprobe(struct kprobe *p)
353 {
354  return p->pre_handler == aggr_pre_handler;
355 }
356 
357 /* Return true(!0) if the kprobe is unused */
358 static inline int kprobe_unused(struct kprobe *p)
359 {
360  return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
361  list_empty(&p->list);
362 }
363 
364 /*
365  * Keep all fields in the kprobe consistent
366  */
367 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
368 {
369  memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
370  memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
371 }
372 
373 #ifdef CONFIG_OPTPROBES
374 /* NOTE: change this value only with kprobe_mutex held */
375 static bool kprobes_allow_optimization;
376 
377 /*
378  * Call all pre_handler on the list, but ignores its return value.
379  * This must be called from arch-dep optimized caller.
380  */
381 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
382 {
383  struct kprobe *kp;
384 
385  list_for_each_entry_rcu(kp, &p->list, list) {
386  if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
387  set_kprobe_instance(kp);
388  kp->pre_handler(kp, regs);
389  }
390  reset_kprobe_instance();
391  }
392 }
393 
394 /* Free optimized instructions and optimized_kprobe */
395 static __kprobes void free_aggr_kprobe(struct kprobe *p)
396 {
397  struct optimized_kprobe *op;
398 
399  op = container_of(p, struct optimized_kprobe, kp);
402  kfree(op);
403 }
404 
405 /* Return true(!0) if the kprobe is ready for optimization. */
406 static inline int kprobe_optready(struct kprobe *p)
407 {
408  struct optimized_kprobe *op;
409 
410  if (kprobe_aggrprobe(p)) {
411  op = container_of(p, struct optimized_kprobe, kp);
412  return arch_prepared_optinsn(&op->optinsn);
413  }
414 
415  return 0;
416 }
417 
418 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
419 static inline int kprobe_disarmed(struct kprobe *p)
420 {
421  struct optimized_kprobe *op;
422 
423  /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
424  if (!kprobe_aggrprobe(p))
425  return kprobe_disabled(p);
426 
427  op = container_of(p, struct optimized_kprobe, kp);
428 
429  return kprobe_disabled(p) && list_empty(&op->list);
430 }
431 
432 /* Return true(!0) if the probe is queued on (un)optimizing lists */
433 static int __kprobes kprobe_queued(struct kprobe *p)
434 {
435  struct optimized_kprobe *op;
436 
437  if (kprobe_aggrprobe(p)) {
438  op = container_of(p, struct optimized_kprobe, kp);
439  if (!list_empty(&op->list))
440  return 1;
441  }
442  return 0;
443 }
444 
445 /*
446  * Return an optimized kprobe whose optimizing code replaces
447  * instructions including addr (exclude breakpoint).
448  */
449 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
450 {
451  int i;
452  struct kprobe *p = NULL;
453  struct optimized_kprobe *op;
454 
455  /* Don't check i == 0, since that is a breakpoint case. */
456  for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
457  p = get_kprobe((void *)(addr - i));
458 
459  if (p && kprobe_optready(p)) {
460  op = container_of(p, struct optimized_kprobe, kp);
461  if (arch_within_optimized_kprobe(op, addr))
462  return p;
463  }
464 
465  return NULL;
466 }
467 
468 /* Optimization staging list, protected by kprobe_mutex */
469 static LIST_HEAD(optimizing_list);
470 static LIST_HEAD(unoptimizing_list);
471 
472 static void kprobe_optimizer(struct work_struct *work);
473 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
474 static DECLARE_COMPLETION(optimizer_comp);
475 #define OPTIMIZE_DELAY 5
476 
477 /*
478  * Optimize (replace a breakpoint with a jump) kprobes listed on
479  * optimizing_list.
480  */
481 static __kprobes void do_optimize_kprobes(void)
482 {
483  /* Optimization never be done when disarmed */
484  if (kprobes_all_disarmed || !kprobes_allow_optimization ||
485  list_empty(&optimizing_list))
486  return;
487 
488  /*
489  * The optimization/unoptimization refers online_cpus via
490  * stop_machine() and cpu-hotplug modifies online_cpus.
491  * And same time, text_mutex will be held in cpu-hotplug and here.
492  * This combination can cause a deadlock (cpu-hotplug try to lock
493  * text_mutex but stop_machine can not be done because online_cpus
494  * has been changed)
495  * To avoid this deadlock, we need to call get_online_cpus()
496  * for preventing cpu-hotplug outside of text_mutex locking.
497  */
498  get_online_cpus();
499  mutex_lock(&text_mutex);
500  arch_optimize_kprobes(&optimizing_list);
501  mutex_unlock(&text_mutex);
502  put_online_cpus();
503 }
504 
505 /*
506  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
507  * if need) kprobes listed on unoptimizing_list.
508  */
509 static __kprobes void do_unoptimize_kprobes(struct list_head *free_list)
510 {
511  struct optimized_kprobe *op, *tmp;
512 
513  /* Unoptimization must be done anytime */
514  if (list_empty(&unoptimizing_list))
515  return;
516 
517  /* Ditto to do_optimize_kprobes */
518  get_online_cpus();
519  mutex_lock(&text_mutex);
520  arch_unoptimize_kprobes(&unoptimizing_list, free_list);
521  /* Loop free_list for disarming */
522  list_for_each_entry_safe(op, tmp, free_list, list) {
523  /* Disarm probes if marked disabled */
524  if (kprobe_disabled(&op->kp))
525  arch_disarm_kprobe(&op->kp);
526  if (kprobe_unused(&op->kp)) {
527  /*
528  * Remove unused probes from hash list. After waiting
529  * for synchronization, these probes are reclaimed.
530  * (reclaiming is done by do_free_cleaned_kprobes.)
531  */
532  hlist_del_rcu(&op->kp.hlist);
533  } else
534  list_del_init(&op->list);
535  }
536  mutex_unlock(&text_mutex);
537  put_online_cpus();
538 }
539 
540 /* Reclaim all kprobes on the free_list */
541 static __kprobes void do_free_cleaned_kprobes(struct list_head *free_list)
542 {
543  struct optimized_kprobe *op, *tmp;
544 
545  list_for_each_entry_safe(op, tmp, free_list, list) {
546  BUG_ON(!kprobe_unused(&op->kp));
547  list_del_init(&op->list);
548  free_aggr_kprobe(&op->kp);
549  }
550 }
551 
552 /* Start optimizer after OPTIMIZE_DELAY passed */
553 static __kprobes void kick_kprobe_optimizer(void)
554 {
555  if (!delayed_work_pending(&optimizing_work))
556  schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
557 }
558 
559 /* Kprobe jump optimizer */
560 static __kprobes void kprobe_optimizer(struct work_struct *work)
561 {
562  LIST_HEAD(free_list);
563 
564  mutex_lock(&kprobe_mutex);
565  /* Lock modules while optimizing kprobes */
566  mutex_lock(&module_mutex);
567 
568  /*
569  * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
570  * kprobes before waiting for quiesence period.
571  */
572  do_unoptimize_kprobes(&free_list);
573 
574  /*
575  * Step 2: Wait for quiesence period to ensure all running interrupts
576  * are done. Because optprobe may modify multiple instructions
577  * there is a chance that Nth instruction is interrupted. In that
578  * case, running interrupt can return to 2nd-Nth byte of jump
579  * instruction. This wait is for avoiding it.
580  */
582 
583  /* Step 3: Optimize kprobes after quiesence period */
584  do_optimize_kprobes();
585 
586  /* Step 4: Free cleaned kprobes after quiesence period */
587  do_free_cleaned_kprobes(&free_list);
588 
589  mutex_unlock(&module_mutex);
590  mutex_unlock(&kprobe_mutex);
591 
592  /* Step 5: Kick optimizer again if needed */
593  if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
594  kick_kprobe_optimizer();
595  else
596  /* Wake up all waiters */
597  complete_all(&optimizer_comp);
598 }
599 
600 /* Wait for completing optimization and unoptimization */
601 static __kprobes void wait_for_kprobe_optimizer(void)
602 {
603  if (delayed_work_pending(&optimizing_work))
604  wait_for_completion(&optimizer_comp);
605 }
606 
607 /* Optimize kprobe if p is ready to be optimized */
608 static __kprobes void optimize_kprobe(struct kprobe *p)
609 {
610  struct optimized_kprobe *op;
611 
612  /* Check if the kprobe is disabled or not ready for optimization. */
613  if (!kprobe_optready(p) || !kprobes_allow_optimization ||
614  (kprobe_disabled(p) || kprobes_all_disarmed))
615  return;
616 
617  /* Both of break_handler and post_handler are not supported. */
618  if (p->break_handler || p->post_handler)
619  return;
620 
621  op = container_of(p, struct optimized_kprobe, kp);
622 
623  /* Check there is no other kprobes at the optimized instructions */
624  if (arch_check_optimized_kprobe(op) < 0)
625  return;
626 
627  /* Check if it is already optimized. */
628  if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
629  return;
630  op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
631 
632  if (!list_empty(&op->list))
633  /* This is under unoptimizing. Just dequeue the probe */
634  list_del_init(&op->list);
635  else {
636  list_add(&op->list, &optimizing_list);
637  kick_kprobe_optimizer();
638  }
639 }
640 
641 /* Short cut to direct unoptimizing */
642 static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
643 {
644  get_online_cpus();
646  put_online_cpus();
647  if (kprobe_disabled(&op->kp))
648  arch_disarm_kprobe(&op->kp);
649 }
650 
651 /* Unoptimize a kprobe if p is optimized */
652 static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
653 {
654  struct optimized_kprobe *op;
655 
656  if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
657  return; /* This is not an optprobe nor optimized */
658 
659  op = container_of(p, struct optimized_kprobe, kp);
660  if (!kprobe_optimized(p)) {
661  /* Unoptimized or unoptimizing case */
662  if (force && !list_empty(&op->list)) {
663  /*
664  * Only if this is unoptimizing kprobe and forced,
665  * forcibly unoptimize it. (No need to unoptimize
666  * unoptimized kprobe again :)
667  */
668  list_del_init(&op->list);
669  force_unoptimize_kprobe(op);
670  }
671  return;
672  }
673 
674  op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
675  if (!list_empty(&op->list)) {
676  /* Dequeue from the optimization queue */
677  list_del_init(&op->list);
678  return;
679  }
680  /* Optimized kprobe case */
681  if (force)
682  /* Forcibly update the code: this is a special case */
683  force_unoptimize_kprobe(op);
684  else {
685  list_add(&op->list, &unoptimizing_list);
686  kick_kprobe_optimizer();
687  }
688 }
689 
690 /* Cancel unoptimizing for reusing */
691 static void reuse_unused_kprobe(struct kprobe *ap)
692 {
693  struct optimized_kprobe *op;
694 
695  BUG_ON(!kprobe_unused(ap));
696  /*
697  * Unused kprobe MUST be on the way of delayed unoptimizing (means
698  * there is still a relative jump) and disabled.
699  */
700  op = container_of(ap, struct optimized_kprobe, kp);
701  if (unlikely(list_empty(&op->list)))
702  printk(KERN_WARNING "Warning: found a stray unused "
703  "aggrprobe@%p\n", ap->addr);
704  /* Enable the probe again */
705  ap->flags &= ~KPROBE_FLAG_DISABLED;
706  /* Optimize it again (remove from op->list) */
707  BUG_ON(!kprobe_optready(ap));
708  optimize_kprobe(ap);
709 }
710 
711 /* Remove optimized instructions */
712 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
713 {
714  struct optimized_kprobe *op;
715 
716  op = container_of(p, struct optimized_kprobe, kp);
717  if (!list_empty(&op->list))
718  /* Dequeue from the (un)optimization queue */
719  list_del_init(&op->list);
720 
721  op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
722  /* Don't touch the code, because it is already freed. */
724 }
725 
726 /* Try to prepare optimized instructions */
727 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
728 {
729  struct optimized_kprobe *op;
730 
731  op = container_of(p, struct optimized_kprobe, kp);
733 }
734 
735 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
736 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
737 {
738  struct optimized_kprobe *op;
739 
740  op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
741  if (!op)
742  return NULL;
743 
744  INIT_LIST_HEAD(&op->list);
745  op->kp.addr = p->addr;
747 
748  return &op->kp;
749 }
750 
751 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
752 
753 /*
754  * Prepare an optimized_kprobe and optimize it
755  * NOTE: p must be a normal registered kprobe
756  */
757 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
758 {
759  struct kprobe *ap;
760  struct optimized_kprobe *op;
761 
762  /* Impossible to optimize ftrace-based kprobe */
763  if (kprobe_ftrace(p))
764  return;
765 
766  /* For preparing optimization, jump_label_text_reserved() is called */
767  jump_label_lock();
768  mutex_lock(&text_mutex);
769 
770  ap = alloc_aggr_kprobe(p);
771  if (!ap)
772  goto out;
773 
774  op = container_of(ap, struct optimized_kprobe, kp);
775  if (!arch_prepared_optinsn(&op->optinsn)) {
776  /* If failed to setup optimizing, fallback to kprobe */
778  kfree(op);
779  goto out;
780  }
781 
782  init_aggr_kprobe(ap, p);
783  optimize_kprobe(ap); /* This just kicks optimizer thread */
784 
785 out:
786  mutex_unlock(&text_mutex);
787  jump_label_unlock();
788 }
789 
790 #ifdef CONFIG_SYSCTL
791 /* This should be called with kprobe_mutex locked */
792 static void __kprobes optimize_all_kprobes(void)
793 {
794  struct hlist_head *head;
795  struct hlist_node *node;
796  struct kprobe *p;
797  unsigned int i;
798 
799  /* If optimization is already allowed, just return */
800  if (kprobes_allow_optimization)
801  return;
802 
803  kprobes_allow_optimization = true;
804  for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
805  head = &kprobe_table[i];
806  hlist_for_each_entry_rcu(p, node, head, hlist)
807  if (!kprobe_disabled(p))
808  optimize_kprobe(p);
809  }
810  printk(KERN_INFO "Kprobes globally optimized\n");
811 }
812 
813 /* This should be called with kprobe_mutex locked */
814 static void __kprobes unoptimize_all_kprobes(void)
815 {
816  struct hlist_head *head;
817  struct hlist_node *node;
818  struct kprobe *p;
819  unsigned int i;
820 
821  /* If optimization is already prohibited, just return */
822  if (!kprobes_allow_optimization)
823  return;
824 
825  kprobes_allow_optimization = false;
826  for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
827  head = &kprobe_table[i];
828  hlist_for_each_entry_rcu(p, node, head, hlist) {
829  if (!kprobe_disabled(p))
830  unoptimize_kprobe(p, false);
831  }
832  }
833  /* Wait for unoptimizing completion */
835  printk(KERN_INFO "Kprobes globally unoptimized\n");
836 }
837 
838 int sysctl_kprobes_optimization;
839 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
840  void __user *buffer, size_t *length,
841  loff_t *ppos)
842 {
843  int ret;
844 
845  mutex_lock(&kprobe_mutex);
846  sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
847  ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
848 
849  if (sysctl_kprobes_optimization)
850  optimize_all_kprobes();
851  else
852  unoptimize_all_kprobes();
853  mutex_unlock(&kprobe_mutex);
854 
855  return ret;
856 }
857 #endif /* CONFIG_SYSCTL */
858 
859 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
860 static void __kprobes __arm_kprobe(struct kprobe *p)
861 {
862  struct kprobe *_p;
863 
864  /* Check collision with other optimized kprobes */
865  _p = get_optimized_kprobe((unsigned long)p->addr);
866  if (unlikely(_p))
867  /* Fallback to unoptimized kprobe */
868  unoptimize_kprobe(_p, true);
869 
870  arch_arm_kprobe(p);
871  optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
872 }
873 
874 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
875 static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
876 {
877  struct kprobe *_p;
878 
879  unoptimize_kprobe(p, false); /* Try to unoptimize */
880 
881  if (!kprobe_queued(p)) {
883  /* If another kprobe was blocked, optimize it. */
884  _p = get_optimized_kprobe((unsigned long)p->addr);
885  if (unlikely(_p) && reopt)
886  optimize_kprobe(_p);
887  }
888  /* TODO: reoptimize others after unoptimized this probe */
889 }
890 
891 #else /* !CONFIG_OPTPROBES */
892 
893 #define optimize_kprobe(p) do {} while (0)
894 #define unoptimize_kprobe(p, f) do {} while (0)
895 #define kill_optimized_kprobe(p) do {} while (0)
896 #define prepare_optimized_kprobe(p) do {} while (0)
897 #define try_to_optimize_kprobe(p) do {} while (0)
898 #define __arm_kprobe(p) arch_arm_kprobe(p)
899 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
900 #define kprobe_disarmed(p) kprobe_disabled(p)
901 #define wait_for_kprobe_optimizer() do {} while (0)
902 
903 /* There should be no unused kprobes can be reused without optimization */
904 static void reuse_unused_kprobe(struct kprobe *ap)
905 {
906  printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
907  BUG_ON(kprobe_unused(ap));
908 }
909 
910 static __kprobes void free_aggr_kprobe(struct kprobe *p)
911 {
913  kfree(p);
914 }
915 
916 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
917 {
918  return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
919 }
920 #endif /* CONFIG_OPTPROBES */
921 
922 #ifdef KPROBES_CAN_USE_FTRACE
923 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
924  .func = kprobe_ftrace_handler,
925  .flags = FTRACE_OPS_FL_SAVE_REGS,
926 };
927 static int kprobe_ftrace_enabled;
928 
929 /* Must ensure p->addr is really on ftrace */
930 static int __kprobes prepare_kprobe(struct kprobe *p)
931 {
932  if (!kprobe_ftrace(p))
933  return arch_prepare_kprobe(p);
934 
935  return arch_prepare_kprobe_ftrace(p);
936 }
937 
938 /* Caller must lock kprobe_mutex */
939 static void __kprobes arm_kprobe_ftrace(struct kprobe *p)
940 {
941  int ret;
942 
943  ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
944  (unsigned long)p->addr, 0, 0);
945  WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
946  kprobe_ftrace_enabled++;
947  if (kprobe_ftrace_enabled == 1) {
948  ret = register_ftrace_function(&kprobe_ftrace_ops);
949  WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
950  }
951 }
952 
953 /* Caller must lock kprobe_mutex */
954 static void __kprobes disarm_kprobe_ftrace(struct kprobe *p)
955 {
956  int ret;
957 
958  kprobe_ftrace_enabled--;
959  if (kprobe_ftrace_enabled == 0) {
960  ret = unregister_ftrace_function(&kprobe_ftrace_ops);
961  WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
962  }
963  ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
964  (unsigned long)p->addr, 1, 0);
965  WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
966 }
967 #else /* !KPROBES_CAN_USE_FTRACE */
968 #define prepare_kprobe(p) arch_prepare_kprobe(p)
969 #define arm_kprobe_ftrace(p) do {} while (0)
970 #define disarm_kprobe_ftrace(p) do {} while (0)
971 #endif
972 
973 /* Arm a kprobe with text_mutex */
974 static void __kprobes arm_kprobe(struct kprobe *kp)
975 {
976  if (unlikely(kprobe_ftrace(kp))) {
977  arm_kprobe_ftrace(kp);
978  return;
979  }
980  /*
981  * Here, since __arm_kprobe() doesn't use stop_machine(),
982  * this doesn't cause deadlock on text_mutex. So, we don't
983  * need get_online_cpus().
984  */
986  __arm_kprobe(kp);
988 }
989 
990 /* Disarm a kprobe with text_mutex */
991 static void __kprobes disarm_kprobe(struct kprobe *kp, bool reopt)
992 {
993  if (unlikely(kprobe_ftrace(kp))) {
995  return;
996  }
997  /* Ditto */
998  mutex_lock(&text_mutex);
999  __disarm_kprobe(kp, reopt);
1000  mutex_unlock(&text_mutex);
1001 }
1002 
1003 /*
1004  * Aggregate handlers for multiple kprobes support - these handlers
1005  * take care of invoking the individual kprobe handlers on p->list
1006  */
1007 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1008 {
1009  struct kprobe *kp;
1010 
1011  list_for_each_entry_rcu(kp, &p->list, list) {
1012  if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1013  set_kprobe_instance(kp);
1014  if (kp->pre_handler(kp, regs))
1015  return 1;
1016  }
1017  reset_kprobe_instance();
1018  }
1019  return 0;
1020 }
1021 
1022 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1023  unsigned long flags)
1024 {
1025  struct kprobe *kp;
1026 
1027  list_for_each_entry_rcu(kp, &p->list, list) {
1028  if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1029  set_kprobe_instance(kp);
1030  kp->post_handler(kp, regs, flags);
1031  reset_kprobe_instance();
1032  }
1033  }
1034 }
1035 
1036 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1037  int trapnr)
1038 {
1039  struct kprobe *cur = __this_cpu_read(kprobe_instance);
1040 
1041  /*
1042  * if we faulted "during" the execution of a user specified
1043  * probe handler, invoke just that probe's fault handler
1044  */
1045  if (cur && cur->fault_handler) {
1046  if (cur->fault_handler(cur, regs, trapnr))
1047  return 1;
1048  }
1049  return 0;
1050 }
1051 
1052 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1053 {
1054  struct kprobe *cur = __this_cpu_read(kprobe_instance);
1055  int ret = 0;
1056 
1057  if (cur && cur->break_handler) {
1058  if (cur->break_handler(cur, regs))
1059  ret = 1;
1060  }
1061  reset_kprobe_instance();
1062  return ret;
1063 }
1064 
1065 /* Walks the list and increments nmissed count for multiprobe case */
1067 {
1068  struct kprobe *kp;
1069  if (!kprobe_aggrprobe(p)) {
1070  p->nmissed++;
1071  } else {
1072  list_for_each_entry_rcu(kp, &p->list, list)
1073  kp->nmissed++;
1074  }
1075  return;
1076 }
1077 
1079  struct hlist_head *head)
1080 {
1081  struct kretprobe *rp = ri->rp;
1082 
1083  /* remove rp inst off the rprobe_inst_table */
1084  hlist_del(&ri->hlist);
1085  INIT_HLIST_NODE(&ri->hlist);
1086  if (likely(rp)) {
1087  raw_spin_lock(&rp->lock);
1088  hlist_add_head(&ri->hlist, &rp->free_instances);
1089  raw_spin_unlock(&rp->lock);
1090  } else
1091  /* Unregistering */
1092  hlist_add_head(&ri->hlist, head);
1093 }
1094 
1096  struct hlist_head **head, unsigned long *flags)
1097 __acquires(hlist_lock)
1098 {
1099  unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1100  raw_spinlock_t *hlist_lock;
1101 
1102  *head = &kretprobe_inst_table[hash];
1103  hlist_lock = kretprobe_table_lock_ptr(hash);
1104  raw_spin_lock_irqsave(hlist_lock, *flags);
1105 }
1106 
1107 static void __kprobes kretprobe_table_lock(unsigned long hash,
1108  unsigned long *flags)
1109 __acquires(hlist_lock)
1110 {
1111  raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1112  raw_spin_lock_irqsave(hlist_lock, *flags);
1113 }
1114 
1116  unsigned long *flags)
1117 __releases(hlist_lock)
1118 {
1119  unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1120  raw_spinlock_t *hlist_lock;
1121 
1122  hlist_lock = kretprobe_table_lock_ptr(hash);
1123  raw_spin_unlock_irqrestore(hlist_lock, *flags);
1124 }
1125 
1126 static void __kprobes kretprobe_table_unlock(unsigned long hash,
1127  unsigned long *flags)
1128 __releases(hlist_lock)
1129 {
1130  raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1131  raw_spin_unlock_irqrestore(hlist_lock, *flags);
1132 }
1133 
1134 /*
1135  * This function is called from finish_task_switch when task tk becomes dead,
1136  * so that we can recycle any function-return probe instances associated
1137  * with this task. These left over instances represent probed functions
1138  * that have been called but will never return.
1139  */
1141 {
1142  struct kretprobe_instance *ri;
1143  struct hlist_head *head, empty_rp;
1144  struct hlist_node *node, *tmp;
1145  unsigned long hash, flags = 0;
1146 
1147  if (unlikely(!kprobes_initialized))
1148  /* Early boot. kretprobe_table_locks not yet initialized. */
1149  return;
1150 
1151  INIT_HLIST_HEAD(&empty_rp);
1152  hash = hash_ptr(tk, KPROBE_HASH_BITS);
1153  head = &kretprobe_inst_table[hash];
1154  kretprobe_table_lock(hash, &flags);
1155  hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
1156  if (ri->task == tk)
1157  recycle_rp_inst(ri, &empty_rp);
1158  }
1159  kretprobe_table_unlock(hash, &flags);
1160  hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
1161  hlist_del(&ri->hlist);
1162  kfree(ri);
1163  }
1164 }
1165 
1166 static inline void free_rp_inst(struct kretprobe *rp)
1167 {
1168  struct kretprobe_instance *ri;
1169  struct hlist_node *pos, *next;
1170 
1171  hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
1172  hlist_del(&ri->hlist);
1173  kfree(ri);
1174  }
1175 }
1176 
1177 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1178 {
1179  unsigned long flags, hash;
1180  struct kretprobe_instance *ri;
1181  struct hlist_node *pos, *next;
1182  struct hlist_head *head;
1183 
1184  /* No race here */
1185  for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1186  kretprobe_table_lock(hash, &flags);
1187  head = &kretprobe_inst_table[hash];
1188  hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
1189  if (ri->rp == rp)
1190  ri->rp = NULL;
1191  }
1192  kretprobe_table_unlock(hash, &flags);
1193  }
1194  free_rp_inst(rp);
1195 }
1196 
1197 /*
1198 * Add the new probe to ap->list. Fail if this is the
1199 * second jprobe at the address - two jprobes can't coexist
1200 */
1201 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1202 {
1203  BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1204 
1205  if (p->break_handler || p->post_handler)
1206  unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1207 
1208  if (p->break_handler) {
1209  if (ap->break_handler)
1210  return -EEXIST;
1211  list_add_tail_rcu(&p->list, &ap->list);
1212  ap->break_handler = aggr_break_handler;
1213  } else
1214  list_add_rcu(&p->list, &ap->list);
1215  if (p->post_handler && !ap->post_handler)
1216  ap->post_handler = aggr_post_handler;
1217 
1218  return 0;
1219 }
1220 
1221 /*
1222  * Fill in the required fields of the "manager kprobe". Replace the
1223  * earlier kprobe in the hlist with the manager kprobe
1224  */
1225 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1226 {
1227  /* Copy p's insn slot to ap */
1228  copy_kprobe(p, ap);
1229  flush_insn_slot(ap);
1230  ap->addr = p->addr;
1231  ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1232  ap->pre_handler = aggr_pre_handler;
1233  ap->fault_handler = aggr_fault_handler;
1234  /* We don't care the kprobe which has gone. */
1235  if (p->post_handler && !kprobe_gone(p))
1236  ap->post_handler = aggr_post_handler;
1237  if (p->break_handler && !kprobe_gone(p))
1238  ap->break_handler = aggr_break_handler;
1239 
1240  INIT_LIST_HEAD(&ap->list);
1241  INIT_HLIST_NODE(&ap->hlist);
1242 
1243  list_add_rcu(&p->list, &ap->list);
1244  hlist_replace_rcu(&p->hlist, &ap->hlist);
1245 }
1246 
1247 /*
1248  * This is the second or subsequent kprobe at the address - handle
1249  * the intricacies
1250  */
1251 static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1252  struct kprobe *p)
1253 {
1254  int ret = 0;
1255  struct kprobe *ap = orig_p;
1256 
1257  /* For preparing optimization, jump_label_text_reserved() is called */
1258  jump_label_lock();
1259  /*
1260  * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1261  * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1262  */
1263  get_online_cpus();
1264  mutex_lock(&text_mutex);
1265 
1266  if (!kprobe_aggrprobe(orig_p)) {
1267  /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1268  ap = alloc_aggr_kprobe(orig_p);
1269  if (!ap) {
1270  ret = -ENOMEM;
1271  goto out;
1272  }
1273  init_aggr_kprobe(ap, orig_p);
1274  } else if (kprobe_unused(ap))
1275  /* This probe is going to die. Rescue it */
1276  reuse_unused_kprobe(ap);
1277 
1278  if (kprobe_gone(ap)) {
1279  /*
1280  * Attempting to insert new probe at the same location that
1281  * had a probe in the module vaddr area which already
1282  * freed. So, the instruction slot has already been
1283  * released. We need a new slot for the new probe.
1284  */
1285  ret = arch_prepare_kprobe(ap);
1286  if (ret)
1287  /*
1288  * Even if fail to allocate new slot, don't need to
1289  * free aggr_probe. It will be used next time, or
1290  * freed by unregister_kprobe.
1291  */
1292  goto out;
1293 
1294  /* Prepare optimized instructions if possible. */
1296 
1297  /*
1298  * Clear gone flag to prevent allocating new slot again, and
1299  * set disabled flag because it is not armed yet.
1300  */
1301  ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1303  }
1304 
1305  /* Copy ap's insn slot to p */
1306  copy_kprobe(ap, p);
1307  ret = add_new_kprobe(ap, p);
1308 
1309 out:
1310  mutex_unlock(&text_mutex);
1311  put_online_cpus();
1312  jump_label_unlock();
1313 
1314  if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1315  ap->flags &= ~KPROBE_FLAG_DISABLED;
1316  if (!kprobes_all_disarmed)
1317  /* Arm the breakpoint again. */
1318  arm_kprobe(ap);
1319  }
1320  return ret;
1321 }
1322 
1323 static int __kprobes in_kprobes_functions(unsigned long addr)
1324 {
1325  struct kprobe_blackpoint *kb;
1326 
1327  if (addr >= (unsigned long)__kprobes_text_start &&
1328  addr < (unsigned long)__kprobes_text_end)
1329  return -EINVAL;
1330  /*
1331  * If there exists a kprobe_blacklist, verify and
1332  * fail any probe registration in the prohibited area
1333  */
1334  for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1335  if (kb->start_addr) {
1336  if (addr >= kb->start_addr &&
1337  addr < (kb->start_addr + kb->range))
1338  return -EINVAL;
1339  }
1340  }
1341  return 0;
1342 }
1343 
1344 /*
1345  * If we have a symbol_name argument, look it up and add the offset field
1346  * to it. This way, we can specify a relative address to a symbol.
1347  * This returns encoded errors if it fails to look up symbol or invalid
1348  * combination of parameters.
1349  */
1350 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1351 {
1352  kprobe_opcode_t *addr = p->addr;
1353 
1354  if ((p->symbol_name && p->addr) ||
1355  (!p->symbol_name && !p->addr))
1356  goto invalid;
1357 
1358  if (p->symbol_name) {
1359  kprobe_lookup_name(p->symbol_name, addr);
1360  if (!addr)
1361  return ERR_PTR(-ENOENT);
1362  }
1363 
1364  addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1365  if (addr)
1366  return addr;
1367 
1368 invalid:
1369  return ERR_PTR(-EINVAL);
1370 }
1371 
1372 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1373 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1374 {
1375  struct kprobe *ap, *list_p;
1376 
1377  ap = get_kprobe(p->addr);
1378  if (unlikely(!ap))
1379  return NULL;
1380 
1381  if (p != ap) {
1382  list_for_each_entry_rcu(list_p, &ap->list, list)
1383  if (list_p == p)
1384  /* kprobe p is a valid probe */
1385  goto valid;
1386  return NULL;
1387  }
1388 valid:
1389  return ap;
1390 }
1391 
1392 /* Return error if the kprobe is being re-registered */
1393 static inline int check_kprobe_rereg(struct kprobe *p)
1394 {
1395  int ret = 0;
1396 
1397  mutex_lock(&kprobe_mutex);
1398  if (__get_valid_kprobe(p))
1399  ret = -EINVAL;
1400  mutex_unlock(&kprobe_mutex);
1401 
1402  return ret;
1403 }
1404 
1405 static __kprobes int check_kprobe_address_safe(struct kprobe *p,
1406  struct module **probed_mod)
1407 {
1408  int ret = 0;
1409  unsigned long ftrace_addr;
1410 
1411  /*
1412  * If the address is located on a ftrace nop, set the
1413  * breakpoint to the following instruction.
1414  */
1415  ftrace_addr = ftrace_location((unsigned long)p->addr);
1416  if (ftrace_addr) {
1417 #ifdef KPROBES_CAN_USE_FTRACE
1418  /* Given address is not on the instruction boundary */
1419  if ((unsigned long)p->addr != ftrace_addr)
1420  return -EILSEQ;
1421  p->flags |= KPROBE_FLAG_FTRACE;
1422 #else /* !KPROBES_CAN_USE_FTRACE */
1423  return -EINVAL;
1424 #endif
1425  }
1426 
1427  jump_label_lock();
1428  preempt_disable();
1429 
1430  /* Ensure it is not in reserved area nor out of text */
1431  if (!kernel_text_address((unsigned long) p->addr) ||
1432  in_kprobes_functions((unsigned long) p->addr) ||
1433  jump_label_text_reserved(p->addr, p->addr)) {
1434  ret = -EINVAL;
1435  goto out;
1436  }
1437 
1438  /* Check if are we probing a module */
1439  *probed_mod = __module_text_address((unsigned long) p->addr);
1440  if (*probed_mod) {
1441  /*
1442  * We must hold a refcount of the probed module while updating
1443  * its code to prohibit unexpected unloading.
1444  */
1445  if (unlikely(!try_module_get(*probed_mod))) {
1446  ret = -ENOENT;
1447  goto out;
1448  }
1449 
1450  /*
1451  * If the module freed .init.text, we couldn't insert
1452  * kprobes in there.
1453  */
1454  if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1455  (*probed_mod)->state != MODULE_STATE_COMING) {
1456  module_put(*probed_mod);
1457  *probed_mod = NULL;
1458  ret = -ENOENT;
1459  }
1460  }
1461 out:
1462  preempt_enable();
1463  jump_label_unlock();
1464 
1465  return ret;
1466 }
1467 
1469 {
1470  int ret;
1471  struct kprobe *old_p;
1472  struct module *probed_mod;
1474 
1475  /* Adjust probe address from symbol */
1476  addr = kprobe_addr(p);
1477  if (IS_ERR(addr))
1478  return PTR_ERR(addr);
1479  p->addr = addr;
1480 
1481  ret = check_kprobe_rereg(p);
1482  if (ret)
1483  return ret;
1484 
1485  /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1487  p->nmissed = 0;
1488  INIT_LIST_HEAD(&p->list);
1489 
1490  ret = check_kprobe_address_safe(p, &probed_mod);
1491  if (ret)
1492  return ret;
1493 
1494  mutex_lock(&kprobe_mutex);
1495 
1496  old_p = get_kprobe(p->addr);
1497  if (old_p) {
1498  /* Since this may unoptimize old_p, locking text_mutex. */
1499  ret = register_aggr_kprobe(old_p, p);
1500  goto out;
1501  }
1502 
1503  mutex_lock(&text_mutex); /* Avoiding text modification */
1504  ret = prepare_kprobe(p);
1506  if (ret)
1507  goto out;
1508 
1509  INIT_HLIST_NODE(&p->hlist);
1510  hlist_add_head_rcu(&p->hlist,
1511  &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1512 
1513  if (!kprobes_all_disarmed && !kprobe_disabled(p))
1514  arm_kprobe(p);
1515 
1516  /* Try to optimize kprobe */
1518 
1519 out:
1520  mutex_unlock(&kprobe_mutex);
1521 
1522  if (probed_mod)
1523  module_put(probed_mod);
1524 
1525  return ret;
1526 }
1528 
1529 /* Check if all probes on the aggrprobe are disabled */
1530 static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1531 {
1532  struct kprobe *kp;
1533 
1534  list_for_each_entry_rcu(kp, &ap->list, list)
1535  if (!kprobe_disabled(kp))
1536  /*
1537  * There is an active probe on the list.
1538  * We can't disable this ap.
1539  */
1540  return 0;
1541 
1542  return 1;
1543 }
1544 
1545 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1546 static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1547 {
1548  struct kprobe *orig_p;
1549 
1550  /* Get an original kprobe for return */
1551  orig_p = __get_valid_kprobe(p);
1552  if (unlikely(orig_p == NULL))
1553  return NULL;
1554 
1555  if (!kprobe_disabled(p)) {
1556  /* Disable probe if it is a child probe */
1557  if (p != orig_p)
1558  p->flags |= KPROBE_FLAG_DISABLED;
1559 
1560  /* Try to disarm and disable this/parent probe */
1561  if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1562  disarm_kprobe(orig_p, true);
1563  orig_p->flags |= KPROBE_FLAG_DISABLED;
1564  }
1565  }
1566 
1567  return orig_p;
1568 }
1569 
1570 /*
1571  * Unregister a kprobe without a scheduler synchronization.
1572  */
1573 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1574 {
1575  struct kprobe *ap, *list_p;
1576 
1577  /* Disable kprobe. This will disarm it if needed. */
1578  ap = __disable_kprobe(p);
1579  if (ap == NULL)
1580  return -EINVAL;
1581 
1582  if (ap == p)
1583  /*
1584  * This probe is an independent(and non-optimized) kprobe
1585  * (not an aggrprobe). Remove from the hash list.
1586  */
1587  goto disarmed;
1588 
1589  /* Following process expects this probe is an aggrprobe */
1590  WARN_ON(!kprobe_aggrprobe(ap));
1591 
1592  if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1593  /*
1594  * !disarmed could be happen if the probe is under delayed
1595  * unoptimizing.
1596  */
1597  goto disarmed;
1598  else {
1599  /* If disabling probe has special handlers, update aggrprobe */
1600  if (p->break_handler && !kprobe_gone(p))
1601  ap->break_handler = NULL;
1602  if (p->post_handler && !kprobe_gone(p)) {
1603  list_for_each_entry_rcu(list_p, &ap->list, list) {
1604  if ((list_p != p) && (list_p->post_handler))
1605  goto noclean;
1606  }
1607  ap->post_handler = NULL;
1608  }
1609 noclean:
1610  /*
1611  * Remove from the aggrprobe: this path will do nothing in
1612  * __unregister_kprobe_bottom().
1613  */
1614  list_del_rcu(&p->list);
1615  if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1616  /*
1617  * Try to optimize this probe again, because post
1618  * handler may have been changed.
1619  */
1620  optimize_kprobe(ap);
1621  }
1622  return 0;
1623 
1624 disarmed:
1625  BUG_ON(!kprobe_disarmed(ap));
1626  hlist_del_rcu(&ap->hlist);
1627  return 0;
1628 }
1629 
1630 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1631 {
1632  struct kprobe *ap;
1633 
1634  if (list_empty(&p->list))
1635  /* This is an independent kprobe */
1636  arch_remove_kprobe(p);
1637  else if (list_is_singular(&p->list)) {
1638  /* This is the last child of an aggrprobe */
1639  ap = list_entry(p->list.next, struct kprobe, list);
1640  list_del(&p->list);
1641  free_aggr_kprobe(ap);
1642  }
1643  /* Otherwise, do nothing. */
1644 }
1645 
1646 int __kprobes register_kprobes(struct kprobe **kps, int num)
1647 {
1648  int i, ret = 0;
1649 
1650  if (num <= 0)
1651  return -EINVAL;
1652  for (i = 0; i < num; i++) {
1653  ret = register_kprobe(kps[i]);
1654  if (ret < 0) {
1655  if (i > 0)
1656  unregister_kprobes(kps, i);
1657  break;
1658  }
1659  }
1660  return ret;
1661 }
1663 
1665 {
1666  unregister_kprobes(&p, 1);
1667 }
1669 
1670 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1671 {
1672  int i;
1673 
1674  if (num <= 0)
1675  return;
1676  mutex_lock(&kprobe_mutex);
1677  for (i = 0; i < num; i++)
1678  if (__unregister_kprobe_top(kps[i]) < 0)
1679  kps[i]->addr = NULL;
1680  mutex_unlock(&kprobe_mutex);
1681 
1683  for (i = 0; i < num; i++)
1684  if (kps[i]->addr)
1685  __unregister_kprobe_bottom(kps[i]);
1686 }
1688 
1689 static struct notifier_block kprobe_exceptions_nb = {
1690  .notifier_call = kprobe_exceptions_notify,
1691  .priority = 0x7fffffff /* we need to be notified first */
1692 };
1693 
1695 {
1696  return (unsigned long)entry;
1697 }
1698 
1699 int __kprobes register_jprobes(struct jprobe **jps, int num)
1700 {
1701  struct jprobe *jp;
1702  int ret = 0, i;
1703 
1704  if (num <= 0)
1705  return -EINVAL;
1706  for (i = 0; i < num; i++) {
1707  unsigned long addr, offset;
1708  jp = jps[i];
1709  addr = arch_deref_entry_point(jp->entry);
1710 
1711  /* Verify probepoint is a function entry point */
1712  if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1713  offset == 0) {
1714  jp->kp.pre_handler = setjmp_pre_handler;
1715  jp->kp.break_handler = longjmp_break_handler;
1716  ret = register_kprobe(&jp->kp);
1717  } else
1718  ret = -EINVAL;
1719 
1720  if (ret < 0) {
1721  if (i > 0)
1722  unregister_jprobes(jps, i);
1723  break;
1724  }
1725  }
1726  return ret;
1727 }
1729 
1731 {
1732  return register_jprobes(&jp, 1);
1733 }
1735 
1737 {
1738  unregister_jprobes(&jp, 1);
1739 }
1741 
1742 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1743 {
1744  int i;
1745 
1746  if (num <= 0)
1747  return;
1748  mutex_lock(&kprobe_mutex);
1749  for (i = 0; i < num; i++)
1750  if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1751  jps[i]->kp.addr = NULL;
1752  mutex_unlock(&kprobe_mutex);
1753 
1755  for (i = 0; i < num; i++) {
1756  if (jps[i]->kp.addr)
1757  __unregister_kprobe_bottom(&jps[i]->kp);
1758  }
1759 }
1761 
1762 #ifdef CONFIG_KRETPROBES
1763 /*
1764  * This kprobe pre_handler is registered with every kretprobe. When probe
1765  * hits it will set up the return probe.
1766  */
1767 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1768  struct pt_regs *regs)
1769 {
1770  struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1771  unsigned long hash, flags = 0;
1772  struct kretprobe_instance *ri;
1773 
1774  /*TODO: consider to only swap the RA after the last pre_handler fired */
1775  hash = hash_ptr(current, KPROBE_HASH_BITS);
1776  raw_spin_lock_irqsave(&rp->lock, flags);
1777  if (!hlist_empty(&rp->free_instances)) {
1778  ri = hlist_entry(rp->free_instances.first,
1779  struct kretprobe_instance, hlist);
1780  hlist_del(&ri->hlist);
1781  raw_spin_unlock_irqrestore(&rp->lock, flags);
1782 
1783  ri->rp = rp;
1784  ri->task = current;
1785 
1786  if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1787  raw_spin_lock_irqsave(&rp->lock, flags);
1788  hlist_add_head(&ri->hlist, &rp->free_instances);
1789  raw_spin_unlock_irqrestore(&rp->lock, flags);
1790  return 0;
1791  }
1792 
1793  arch_prepare_kretprobe(ri, regs);
1794 
1795  /* XXX(hch): why is there no hlist_move_head? */
1796  INIT_HLIST_NODE(&ri->hlist);
1797  kretprobe_table_lock(hash, &flags);
1798  hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1799  kretprobe_table_unlock(hash, &flags);
1800  } else {
1801  rp->nmissed++;
1802  raw_spin_unlock_irqrestore(&rp->lock, flags);
1803  }
1804  return 0;
1805 }
1806 
1807 int __kprobes register_kretprobe(struct kretprobe *rp)
1808 {
1809  int ret = 0;
1810  struct kretprobe_instance *inst;
1811  int i;
1812  void *addr;
1813 
1815  addr = kprobe_addr(&rp->kp);
1816  if (IS_ERR(addr))
1817  return PTR_ERR(addr);
1818 
1819  for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1820  if (kretprobe_blacklist[i].addr == addr)
1821  return -EINVAL;
1822  }
1823  }
1824 
1825  rp->kp.pre_handler = pre_handler_kretprobe;
1826  rp->kp.post_handler = NULL;
1827  rp->kp.fault_handler = NULL;
1828  rp->kp.break_handler = NULL;
1829 
1830  /* Pre-allocate memory for max kretprobe instances */
1831  if (rp->maxactive <= 0) {
1832 #ifdef CONFIG_PREEMPT
1833  rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1834 #else
1835  rp->maxactive = num_possible_cpus();
1836 #endif
1837  }
1838  raw_spin_lock_init(&rp->lock);
1840  for (i = 0; i < rp->maxactive; i++) {
1841  inst = kmalloc(sizeof(struct kretprobe_instance) +
1842  rp->data_size, GFP_KERNEL);
1843  if (inst == NULL) {
1844  free_rp_inst(rp);
1845  return -ENOMEM;
1846  }
1847  INIT_HLIST_NODE(&inst->hlist);
1848  hlist_add_head(&inst->hlist, &rp->free_instances);
1849  }
1850 
1851  rp->nmissed = 0;
1852  /* Establish function entry probe point */
1853  ret = register_kprobe(&rp->kp);
1854  if (ret != 0)
1855  free_rp_inst(rp);
1856  return ret;
1857 }
1859 
1860 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1861 {
1862  int ret = 0, i;
1863 
1864  if (num <= 0)
1865  return -EINVAL;
1866  for (i = 0; i < num; i++) {
1867  ret = register_kretprobe(rps[i]);
1868  if (ret < 0) {
1869  if (i > 0)
1870  unregister_kretprobes(rps, i);
1871  break;
1872  }
1873  }
1874  return ret;
1875 }
1877 
1878 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1879 {
1880  unregister_kretprobes(&rp, 1);
1881 }
1883 
1884 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1885 {
1886  int i;
1887 
1888  if (num <= 0)
1889  return;
1890  mutex_lock(&kprobe_mutex);
1891  for (i = 0; i < num; i++)
1892  if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1893  rps[i]->kp.addr = NULL;
1894  mutex_unlock(&kprobe_mutex);
1895 
1897  for (i = 0; i < num; i++) {
1898  if (rps[i]->kp.addr) {
1899  __unregister_kprobe_bottom(&rps[i]->kp);
1900  cleanup_rp_inst(rps[i]);
1901  }
1902  }
1903 }
1905 
1906 #else /* CONFIG_KRETPROBES */
1908 {
1909  return -ENOSYS;
1910 }
1912 
1913 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1914 {
1915  return -ENOSYS;
1916 }
1918 
1920 {
1921 }
1923 
1924 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1925 {
1926 }
1928 
1929 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1930  struct pt_regs *regs)
1931 {
1932  return 0;
1933 }
1934 
1935 #endif /* CONFIG_KRETPROBES */
1936 
1937 /* Set the kprobe gone and remove its instruction buffer. */
1938 static void __kprobes kill_kprobe(struct kprobe *p)
1939 {
1940  struct kprobe *kp;
1941 
1942  p->flags |= KPROBE_FLAG_GONE;
1943  if (kprobe_aggrprobe(p)) {
1944  /*
1945  * If this is an aggr_kprobe, we have to list all the
1946  * chained probes and mark them GONE.
1947  */
1948  list_for_each_entry_rcu(kp, &p->list, list)
1949  kp->flags |= KPROBE_FLAG_GONE;
1950  p->post_handler = NULL;
1951  p->break_handler = NULL;
1953  }
1954  /*
1955  * Here, we can remove insn_slot safely, because no thread calls
1956  * the original probed function (which will be freed soon) any more.
1957  */
1958  arch_remove_kprobe(p);
1959 }
1960 
1961 /* Disable one kprobe */
1963 {
1964  int ret = 0;
1965 
1966  mutex_lock(&kprobe_mutex);
1967 
1968  /* Disable this kprobe */
1969  if (__disable_kprobe(kp) == NULL)
1970  ret = -EINVAL;
1971 
1972  mutex_unlock(&kprobe_mutex);
1973  return ret;
1974 }
1976 
1977 /* Enable one kprobe */
1979 {
1980  int ret = 0;
1981  struct kprobe *p;
1982 
1983  mutex_lock(&kprobe_mutex);
1984 
1985  /* Check whether specified probe is valid. */
1986  p = __get_valid_kprobe(kp);
1987  if (unlikely(p == NULL)) {
1988  ret = -EINVAL;
1989  goto out;
1990  }
1991 
1992  if (kprobe_gone(kp)) {
1993  /* This kprobe has gone, we couldn't enable it. */
1994  ret = -EINVAL;
1995  goto out;
1996  }
1997 
1998  if (p != kp)
1999  kp->flags &= ~KPROBE_FLAG_DISABLED;
2000 
2001  if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2002  p->flags &= ~KPROBE_FLAG_DISABLED;
2003  arm_kprobe(p);
2004  }
2005 out:
2006  mutex_unlock(&kprobe_mutex);
2007  return ret;
2008 }
2010 
2011 void __kprobes dump_kprobe(struct kprobe *kp)
2012 {
2013  printk(KERN_WARNING "Dumping kprobe:\n");
2014  printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2015  kp->symbol_name, kp->addr, kp->offset);
2016 }
2017 
2018 /* Module notifier call back, checking kprobes on the module */
2019 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
2020  unsigned long val, void *data)
2021 {
2022  struct module *mod = data;
2023  struct hlist_head *head;
2024  struct hlist_node *node;
2025  struct kprobe *p;
2026  unsigned int i;
2027  int checkcore = (val == MODULE_STATE_GOING);
2028 
2029  if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2030  return NOTIFY_DONE;
2031 
2032  /*
2033  * When MODULE_STATE_GOING was notified, both of module .text and
2034  * .init.text sections would be freed. When MODULE_STATE_LIVE was
2035  * notified, only .init.text section would be freed. We need to
2036  * disable kprobes which have been inserted in the sections.
2037  */
2038  mutex_lock(&kprobe_mutex);
2039  for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2040  head = &kprobe_table[i];
2041  hlist_for_each_entry_rcu(p, node, head, hlist)
2042  if (within_module_init((unsigned long)p->addr, mod) ||
2043  (checkcore &&
2044  within_module_core((unsigned long)p->addr, mod))) {
2045  /*
2046  * The vaddr this probe is installed will soon
2047  * be vfreed buy not synced to disk. Hence,
2048  * disarming the breakpoint isn't needed.
2049  */
2050  kill_kprobe(p);
2051  }
2052  }
2053  mutex_unlock(&kprobe_mutex);
2054  return NOTIFY_DONE;
2055 }
2056 
2057 static struct notifier_block kprobe_module_nb = {
2058  .notifier_call = kprobes_module_callback,
2059  .priority = 0
2060 };
2061 
2062 static int __init init_kprobes(void)
2063 {
2064  int i, err = 0;
2065  unsigned long offset = 0, size = 0;
2066  char *modname, namebuf[128];
2067  const char *symbol_name;
2068  void *addr;
2069  struct kprobe_blackpoint *kb;
2070 
2071  /* FIXME allocate the probe table, currently defined statically */
2072  /* initialize all list heads */
2073  for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2074  INIT_HLIST_HEAD(&kprobe_table[i]);
2075  INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2076  raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2077  }
2078 
2079  /*
2080  * Lookup and populate the kprobe_blacklist.
2081  *
2082  * Unlike the kretprobe blacklist, we'll need to determine
2083  * the range of addresses that belong to the said functions,
2084  * since a kprobe need not necessarily be at the beginning
2085  * of a function.
2086  */
2087  for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
2088  kprobe_lookup_name(kb->name, addr);
2089  if (!addr)
2090  continue;
2091 
2092  kb->start_addr = (unsigned long)addr;
2093  symbol_name = kallsyms_lookup(kb->start_addr,
2094  &size, &offset, &modname, namebuf);
2095  if (!symbol_name)
2096  kb->range = 0;
2097  else
2098  kb->range = size;
2099  }
2100 
2102  /* lookup the function address from its name */
2103  for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2105  kretprobe_blacklist[i].addr);
2106  if (!kretprobe_blacklist[i].addr)
2107  printk("kretprobe: lookup failed: %s\n",
2109  }
2110  }
2111 
2112 #if defined(CONFIG_OPTPROBES)
2113 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2114  /* Init kprobe_optinsn_slots */
2115  kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2116 #endif
2117  /* By default, kprobes can be optimized */
2118  kprobes_allow_optimization = true;
2119 #endif
2120 
2121  /* By default, kprobes are armed */
2122  kprobes_all_disarmed = false;
2123 
2124  err = arch_init_kprobes();
2125  if (!err)
2126  err = register_die_notifier(&kprobe_exceptions_nb);
2127  if (!err)
2128  err = register_module_notifier(&kprobe_module_nb);
2129 
2130  kprobes_initialized = (err == 0);
2131 
2132  if (!err)
2133  init_test_probes();
2134  return err;
2135 }
2136 
2137 #ifdef CONFIG_DEBUG_FS
2138 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2139  const char *sym, int offset, char *modname, struct kprobe *pp)
2140 {
2141  char *kprobe_type;
2142 
2143  if (p->pre_handler == pre_handler_kretprobe)
2144  kprobe_type = "r";
2145  else if (p->pre_handler == setjmp_pre_handler)
2146  kprobe_type = "j";
2147  else
2148  kprobe_type = "k";
2149 
2150  if (sym)
2151  seq_printf(pi, "%p %s %s+0x%x %s ",
2152  p->addr, kprobe_type, sym, offset,
2153  (modname ? modname : " "));
2154  else
2155  seq_printf(pi, "%p %s %p ",
2156  p->addr, kprobe_type, p->addr);
2157 
2158  if (!pp)
2159  pp = p;
2160  seq_printf(pi, "%s%s%s%s\n",
2161  (kprobe_gone(p) ? "[GONE]" : ""),
2162  ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2163  (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2164  (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2165 }
2166 
2167 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2168 {
2169  return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2170 }
2171 
2172 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2173 {
2174  (*pos)++;
2175  if (*pos >= KPROBE_TABLE_SIZE)
2176  return NULL;
2177  return pos;
2178 }
2179 
2180 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2181 {
2182  /* Nothing to do */
2183 }
2184 
2185 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2186 {
2187  struct hlist_head *head;
2188  struct hlist_node *node;
2189  struct kprobe *p, *kp;
2190  const char *sym = NULL;
2191  unsigned int i = *(loff_t *) v;
2192  unsigned long offset = 0;
2193  char *modname, namebuf[128];
2194 
2195  head = &kprobe_table[i];
2196  preempt_disable();
2197  hlist_for_each_entry_rcu(p, node, head, hlist) {
2198  sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2199  &offset, &modname, namebuf);
2200  if (kprobe_aggrprobe(p)) {
2201  list_for_each_entry_rcu(kp, &p->list, list)
2202  report_probe(pi, kp, sym, offset, modname, p);
2203  } else
2204  report_probe(pi, p, sym, offset, modname, NULL);
2205  }
2206  preempt_enable();
2207  return 0;
2208 }
2209 
2210 static const struct seq_operations kprobes_seq_ops = {
2211  .start = kprobe_seq_start,
2212  .next = kprobe_seq_next,
2213  .stop = kprobe_seq_stop,
2214  .show = show_kprobe_addr
2215 };
2216 
2217 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2218 {
2219  return seq_open(filp, &kprobes_seq_ops);
2220 }
2221 
2222 static const struct file_operations debugfs_kprobes_operations = {
2223  .open = kprobes_open,
2224  .read = seq_read,
2225  .llseek = seq_lseek,
2226  .release = seq_release,
2227 };
2228 
2229 static void __kprobes arm_all_kprobes(void)
2230 {
2231  struct hlist_head *head;
2232  struct hlist_node *node;
2233  struct kprobe *p;
2234  unsigned int i;
2235 
2236  mutex_lock(&kprobe_mutex);
2237 
2238  /* If kprobes are armed, just return */
2239  if (!kprobes_all_disarmed)
2240  goto already_enabled;
2241 
2242  /* Arming kprobes doesn't optimize kprobe itself */
2243  for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2244  head = &kprobe_table[i];
2245  hlist_for_each_entry_rcu(p, node, head, hlist)
2246  if (!kprobe_disabled(p))
2247  arm_kprobe(p);
2248  }
2249 
2250  kprobes_all_disarmed = false;
2251  printk(KERN_INFO "Kprobes globally enabled\n");
2252 
2253 already_enabled:
2254  mutex_unlock(&kprobe_mutex);
2255  return;
2256 }
2257 
2258 static void __kprobes disarm_all_kprobes(void)
2259 {
2260  struct hlist_head *head;
2261  struct hlist_node *node;
2262  struct kprobe *p;
2263  unsigned int i;
2264 
2265  mutex_lock(&kprobe_mutex);
2266 
2267  /* If kprobes are already disarmed, just return */
2268  if (kprobes_all_disarmed) {
2269  mutex_unlock(&kprobe_mutex);
2270  return;
2271  }
2272 
2273  kprobes_all_disarmed = true;
2274  printk(KERN_INFO "Kprobes globally disabled\n");
2275 
2276  for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2277  head = &kprobe_table[i];
2278  hlist_for_each_entry_rcu(p, node, head, hlist) {
2279  if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2280  disarm_kprobe(p, false);
2281  }
2282  }
2283  mutex_unlock(&kprobe_mutex);
2284 
2285  /* Wait for disarming all kprobes by optimizer */
2287 }
2288 
2289 /*
2290  * XXX: The debugfs bool file interface doesn't allow for callbacks
2291  * when the bool state is switched. We can reuse that facility when
2292  * available
2293  */
2294 static ssize_t read_enabled_file_bool(struct file *file,
2295  char __user *user_buf, size_t count, loff_t *ppos)
2296 {
2297  char buf[3];
2298 
2299  if (!kprobes_all_disarmed)
2300  buf[0] = '1';
2301  else
2302  buf[0] = '0';
2303  buf[1] = '\n';
2304  buf[2] = 0x00;
2305  return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2306 }
2307 
2308 static ssize_t write_enabled_file_bool(struct file *file,
2309  const char __user *user_buf, size_t count, loff_t *ppos)
2310 {
2311  char buf[32];
2312  size_t buf_size;
2313 
2314  buf_size = min(count, (sizeof(buf)-1));
2315  if (copy_from_user(buf, user_buf, buf_size))
2316  return -EFAULT;
2317 
2318  switch (buf[0]) {
2319  case 'y':
2320  case 'Y':
2321  case '1':
2322  arm_all_kprobes();
2323  break;
2324  case 'n':
2325  case 'N':
2326  case '0':
2327  disarm_all_kprobes();
2328  break;
2329  }
2330 
2331  return count;
2332 }
2333 
2334 static const struct file_operations fops_kp = {
2335  .read = read_enabled_file_bool,
2336  .write = write_enabled_file_bool,
2337  .llseek = default_llseek,
2338 };
2339 
2340 static int __kprobes debugfs_kprobe_init(void)
2341 {
2342  struct dentry *dir, *file;
2343  unsigned int value = 1;
2344 
2345  dir = debugfs_create_dir("kprobes", NULL);
2346  if (!dir)
2347  return -ENOMEM;
2348 
2349  file = debugfs_create_file("list", 0444, dir, NULL,
2350  &debugfs_kprobes_operations);
2351  if (!file) {
2352  debugfs_remove(dir);
2353  return -ENOMEM;
2354  }
2355 
2356  file = debugfs_create_file("enabled", 0600, dir,
2357  &value, &fops_kp);
2358  if (!file) {
2359  debugfs_remove(dir);
2360  return -ENOMEM;
2361  }
2362 
2363  return 0;
2364 }
2365 
2366 late_initcall(debugfs_kprobe_init);
2367 #endif /* CONFIG_DEBUG_FS */
2368 
2369 module_init(init_kprobes);
2370 
2371 /* defined in arch/.../kernel/kprobes.c */