Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
module.c
Go to the documentation of this file.
1 /*
2  Copyright (C) 2002 Richard Henderson
3  Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4 
5  This program is free software; you can redistribute it and/or modify
6  it under the terms of the GNU General Public License as published by
7  the Free Software Foundation; either version 2 of the License, or
8  (at your option) any later version.
9 
10  This program is distributed in the hope that it will be useful,
11  but WITHOUT ANY WARRANTY; without even the implied warranty of
12  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  GNU General Public License for more details.
14 
15  You should have received a copy of the GNU General Public License
16  along with this program; if not, write to the Free Software
17  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/ftrace_event.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/fs.h>
25 #include <linux/sysfs.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/elf.h>
30 #include <linux/proc_fs.h>
31 #include <linux/seq_file.h>
32 #include <linux/syscalls.h>
33 #include <linux/fcntl.h>
34 #include <linux/rcupdate.h>
35 #include <linux/capability.h>
36 #include <linux/cpu.h>
37 #include <linux/moduleparam.h>
38 #include <linux/errno.h>
39 #include <linux/err.h>
40 #include <linux/vermagic.h>
41 #include <linux/notifier.h>
42 #include <linux/sched.h>
43 #include <linux/stop_machine.h>
44 #include <linux/device.h>
45 #include <linux/string.h>
46 #include <linux/mutex.h>
47 #include <linux/rculist.h>
48 #include <asm/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/mmu_context.h>
51 #include <linux/license.h>
52 #include <asm/sections.h>
53 #include <linux/tracepoint.h>
54 #include <linux/ftrace.h>
55 #include <linux/async.h>
56 #include <linux/percpu.h>
57 #include <linux/kmemleak.h>
58 #include <linux/jump_label.h>
59 #include <linux/pfn.h>
60 #include <linux/bsearch.h>
61 #include <linux/fips.h>
62 #include "module-internal.h"
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/module.h>
66 
67 #ifndef ARCH_SHF_SMALL
68 #define ARCH_SHF_SMALL 0
69 #endif
70 
71 /*
72  * Modules' sections will be aligned on page boundaries
73  * to ensure complete separation of code and data, but
74  * only when CONFIG_DEBUG_SET_MODULE_RONX=y
75  */
76 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
77 # define debug_align(X) ALIGN(X, PAGE_SIZE)
78 #else
79 # define debug_align(X) (X)
80 #endif
81 
82 /*
83  * Given BASE and SIZE this macro calculates the number of pages the
84  * memory regions occupies
85  */
86 #define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ? \
87  (PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) - \
88  PFN_DOWN((unsigned long)BASE) + 1) \
89  : (0UL))
90 
91 /* If this is set, the section belongs in the init part of the module */
92 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
93 
94 /*
95  * Mutex protects:
96  * 1) List of modules (also safely readable with preempt_disable),
97  * 2) module_use links,
98  * 3) module_addr_min/module_addr_max.
99  * (delete uses stop_machine/add uses RCU list operations). */
100 DEFINE_MUTEX(module_mutex);
101 EXPORT_SYMBOL_GPL(module_mutex);
102 static LIST_HEAD(modules);
103 #ifdef CONFIG_KGDB_KDB
104 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
105 #endif /* CONFIG_KGDB_KDB */
106 
107 #ifdef CONFIG_MODULE_SIG
108 #ifdef CONFIG_MODULE_SIG_FORCE
109 static bool sig_enforce = true;
110 #else
111 static bool sig_enforce = false;
112 
113 static int param_set_bool_enable_only(const char *val,
114  const struct kernel_param *kp)
115 {
116  int err;
117  bool test;
118  struct kernel_param dummy_kp = *kp;
119 
120  dummy_kp.arg = &test;
121 
122  err = param_set_bool(val, &dummy_kp);
123  if (err)
124  return err;
125 
126  /* Don't let them unset it once it's set! */
127  if (!test && sig_enforce)
128  return -EROFS;
129 
130  if (test)
131  sig_enforce = true;
132  return 0;
133 }
134 
135 static const struct kernel_param_ops param_ops_bool_enable_only = {
136  .set = param_set_bool_enable_only,
137  .get = param_get_bool,
138 };
139 #define param_check_bool_enable_only param_check_bool
140 
141 module_param(sig_enforce, bool_enable_only, 0644);
142 #endif /* !CONFIG_MODULE_SIG_FORCE */
143 #endif /* CONFIG_MODULE_SIG */
144 
145 /* Block module loading/unloading? */
147 core_param(nomodule, modules_disabled, bint, 0);
148 
149 /* Waiting for a module to finish initializing? */
150 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
151 
152 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
153 
154 /* Bounds of module allocation, for speeding __module_address.
155  * Protected by module_mutex. */
156 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
157 
159 {
160  return blocking_notifier_chain_register(&module_notify_list, nb);
161 }
163 
165 {
166  return blocking_notifier_chain_unregister(&module_notify_list, nb);
167 }
169 
170 struct load_info {
172  unsigned long len;
175  unsigned long symoffs, stroffs;
176  struct _ddebug *debug;
177  unsigned int num_debug;
178  bool sig_ok;
179  struct {
180  unsigned int sym, str, mod, vers, info, pcpu;
181  } index;
182 };
183 
184 /* We require a truly strong try_module_get(): 0 means failure due to
185  ongoing or failed initialization etc. */
186 static inline int strong_try_module_get(struct module *mod)
187 {
188  if (mod && mod->state == MODULE_STATE_COMING)
189  return -EBUSY;
190  if (try_module_get(mod))
191  return 0;
192  else
193  return -ENOENT;
194 }
195 
196 static inline void add_taint_module(struct module *mod, unsigned flag)
197 {
198  add_taint(flag);
199  mod->taints |= (1U << flag);
200 }
201 
202 /*
203  * A thread that wants to hold a reference to a module only while it
204  * is running can call this to safely exit. nfsd and lockd use this.
205  */
207 {
208  module_put(mod);
209  do_exit(code);
210 }
212 
213 /* Find a module section: 0 means not found. */
214 static unsigned int find_sec(const struct load_info *info, const char *name)
215 {
216  unsigned int i;
217 
218  for (i = 1; i < info->hdr->e_shnum; i++) {
219  Elf_Shdr *shdr = &info->sechdrs[i];
220  /* Alloc bit cleared means "ignore it." */
221  if ((shdr->sh_flags & SHF_ALLOC)
222  && strcmp(info->secstrings + shdr->sh_name, name) == 0)
223  return i;
224  }
225  return 0;
226 }
227 
228 /* Find a module section, or NULL. */
229 static void *section_addr(const struct load_info *info, const char *name)
230 {
231  /* Section 0 has sh_addr 0. */
232  return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
233 }
234 
235 /* Find a module section, or NULL. Fill in number of "objects" in section. */
236 static void *section_objs(const struct load_info *info,
237  const char *name,
238  size_t object_size,
239  unsigned int *num)
240 {
241  unsigned int sec = find_sec(info, name);
242 
243  /* Section 0 has sh_addr 0 and sh_size 0. */
244  *num = info->sechdrs[sec].sh_size / object_size;
245  return (void *)info->sechdrs[sec].sh_addr;
246 }
247 
248 /* Provided by the linker */
249 extern const struct kernel_symbol __start___ksymtab[];
250 extern const struct kernel_symbol __stop___ksymtab[];
251 extern const struct kernel_symbol __start___ksymtab_gpl[];
252 extern const struct kernel_symbol __stop___ksymtab_gpl[];
253 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
254 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
255 extern const unsigned long __start___kcrctab[];
256 extern const unsigned long __start___kcrctab_gpl[];
257 extern const unsigned long __start___kcrctab_gpl_future[];
258 #ifdef CONFIG_UNUSED_SYMBOLS
259 extern const struct kernel_symbol __start___ksymtab_unused[];
260 extern const struct kernel_symbol __stop___ksymtab_unused[];
261 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
262 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
263 extern const unsigned long __start___kcrctab_unused[];
264 extern const unsigned long __start___kcrctab_unused_gpl[];
265 #endif
266 
267 #ifndef CONFIG_MODVERSIONS
268 #define symversion(base, idx) NULL
269 #else
270 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
271 #endif
272 
273 static bool each_symbol_in_section(const struct symsearch *arr,
274  unsigned int arrsize,
275  struct module *owner,
276  bool (*fn)(const struct symsearch *syms,
277  struct module *owner,
278  void *data),
279  void *data)
280 {
281  unsigned int j;
282 
283  for (j = 0; j < arrsize; j++) {
284  if (fn(&arr[j], owner, data))
285  return true;
286  }
287 
288  return false;
289 }
290 
291 /* Returns true as soon as fn returns true, otherwise false. */
292 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
293  struct module *owner,
294  void *data),
295  void *data)
296 {
297  struct module *mod;
298  static const struct symsearch arr[] = {
299  { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
300  NOT_GPL_ONLY, false },
302  __start___kcrctab_gpl,
303  GPL_ONLY, false },
305  __start___kcrctab_gpl_future,
306  WILL_BE_GPL_ONLY, false },
307 #ifdef CONFIG_UNUSED_SYMBOLS
308  { __start___ksymtab_unused, __stop___ksymtab_unused,
309  __start___kcrctab_unused,
310  NOT_GPL_ONLY, true },
311  { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
312  __start___kcrctab_unused_gpl,
313  GPL_ONLY, true },
314 #endif
315  };
316 
317  if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
318  return true;
319 
320  list_for_each_entry_rcu(mod, &modules, list) {
321  struct symsearch arr[] = {
322  { mod->syms, mod->syms + mod->num_syms, mod->crcs,
323  NOT_GPL_ONLY, false },
324  { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
325  mod->gpl_crcs,
326  GPL_ONLY, false },
327  { mod->gpl_future_syms,
328  mod->gpl_future_syms + mod->num_gpl_future_syms,
329  mod->gpl_future_crcs,
330  WILL_BE_GPL_ONLY, false },
331 #ifdef CONFIG_UNUSED_SYMBOLS
332  { mod->unused_syms,
333  mod->unused_syms + mod->num_unused_syms,
334  mod->unused_crcs,
335  NOT_GPL_ONLY, true },
336  { mod->unused_gpl_syms,
337  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
338  mod->unused_gpl_crcs,
339  GPL_ONLY, true },
340 #endif
341  };
342 
343  if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
344  return true;
345  }
346  return false;
347 }
349 
351  /* Input */
352  const char *name;
353  bool gplok;
354  bool warn;
355 
356  /* Output */
357  struct module *owner;
358  const unsigned long *crc;
359  const struct kernel_symbol *sym;
360 };
361 
362 static bool check_symbol(const struct symsearch *syms,
363  struct module *owner,
364  unsigned int symnum, void *data)
365 {
366  struct find_symbol_arg *fsa = data;
367 
368  if (!fsa->gplok) {
369  if (syms->licence == GPL_ONLY)
370  return false;
371  if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
372  printk(KERN_WARNING "Symbol %s is being used "
373  "by a non-GPL module, which will not "
374  "be allowed in the future\n", fsa->name);
375  printk(KERN_WARNING "Please see the file "
376  "Documentation/feature-removal-schedule.txt "
377  "in the kernel source tree for more details.\n");
378  }
379  }
380 
381 #ifdef CONFIG_UNUSED_SYMBOLS
382  if (syms->unused && fsa->warn) {
383  printk(KERN_WARNING "Symbol %s is marked as UNUSED, "
384  "however this module is using it.\n", fsa->name);
386  "This symbol will go away in the future.\n");
388  "Please evalute if this is the right api to use and if "
389  "it really is, submit a report the linux kernel "
390  "mailinglist together with submitting your code for "
391  "inclusion.\n");
392  }
393 #endif
394 
395  fsa->owner = owner;
396  fsa->crc = symversion(syms->crcs, symnum);
397  fsa->sym = &syms->start[symnum];
398  return true;
399 }
400 
401 static int cmp_name(const void *va, const void *vb)
402 {
403  const char *a;
404  const struct kernel_symbol *b;
405  a = va; b = vb;
406  return strcmp(a, b->name);
407 }
408 
409 static bool find_symbol_in_section(const struct symsearch *syms,
410  struct module *owner,
411  void *data)
412 {
413  struct find_symbol_arg *fsa = data;
414  struct kernel_symbol *sym;
415 
416  sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
417  sizeof(struct kernel_symbol), cmp_name);
418 
419  if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
420  return true;
421 
422  return false;
423 }
424 
425 /* Find a symbol and return it, along with, (optional) crc and
426  * (optional) module which owns it. Needs preempt disabled or module_mutex. */
427 const struct kernel_symbol *find_symbol(const char *name,
428  struct module **owner,
429  const unsigned long **crc,
430  bool gplok,
431  bool warn)
432 {
433  struct find_symbol_arg fsa;
434 
435  fsa.name = name;
436  fsa.gplok = gplok;
437  fsa.warn = warn;
438 
439  if (each_symbol_section(find_symbol_in_section, &fsa)) {
440  if (owner)
441  *owner = fsa.owner;
442  if (crc)
443  *crc = fsa.crc;
444  return fsa.sym;
445  }
446 
447  pr_debug("Failed to find symbol %s\n", name);
448  return NULL;
449 }
451 
452 /* Search for module by name: must hold module_mutex. */
453 struct module *find_module(const char *name)
454 {
455  struct module *mod;
456 
457  list_for_each_entry(mod, &modules, list) {
458  if (strcmp(mod->name, name) == 0)
459  return mod;
460  }
461  return NULL;
462 }
464 
465 #ifdef CONFIG_SMP
466 
467 static inline void __percpu *mod_percpu(struct module *mod)
468 {
469  return mod->percpu;
470 }
471 
472 static int percpu_modalloc(struct module *mod,
473  unsigned long size, unsigned long align)
474 {
475  if (align > PAGE_SIZE) {
476  printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
477  mod->name, align, PAGE_SIZE);
478  align = PAGE_SIZE;
479  }
480 
481  mod->percpu = __alloc_reserved_percpu(size, align);
482  if (!mod->percpu) {
484  "%s: Could not allocate %lu bytes percpu data\n",
485  mod->name, size);
486  return -ENOMEM;
487  }
488  mod->percpu_size = size;
489  return 0;
490 }
491 
492 static void percpu_modfree(struct module *mod)
493 {
494  free_percpu(mod->percpu);
495 }
496 
497 static unsigned int find_pcpusec(struct load_info *info)
498 {
499  return find_sec(info, ".data..percpu");
500 }
501 
502 static void percpu_modcopy(struct module *mod,
503  const void *from, unsigned long size)
504 {
505  int cpu;
506 
508  memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
509 }
510 
520 bool is_module_percpu_address(unsigned long addr)
521 {
522  struct module *mod;
523  unsigned int cpu;
524 
525  preempt_disable();
526 
527  list_for_each_entry_rcu(mod, &modules, list) {
528  if (!mod->percpu_size)
529  continue;
530  for_each_possible_cpu(cpu) {
531  void *start = per_cpu_ptr(mod->percpu, cpu);
532 
533  if ((void *)addr >= start &&
534  (void *)addr < start + mod->percpu_size) {
535  preempt_enable();
536  return true;
537  }
538  }
539  }
540 
541  preempt_enable();
542  return false;
543 }
544 
545 #else /* ... !CONFIG_SMP */
546 
547 static inline void __percpu *mod_percpu(struct module *mod)
548 {
549  return NULL;
550 }
551 static inline int percpu_modalloc(struct module *mod,
552  unsigned long size, unsigned long align)
553 {
554  return -ENOMEM;
555 }
556 static inline void percpu_modfree(struct module *mod)
557 {
558 }
559 static unsigned int find_pcpusec(struct load_info *info)
560 {
561  return 0;
562 }
563 static inline void percpu_modcopy(struct module *mod,
564  const void *from, unsigned long size)
565 {
566  /* pcpusec should be 0, and size of that section should be 0. */
567  BUG_ON(size != 0);
568 }
569 bool is_module_percpu_address(unsigned long addr)
570 {
571  return false;
572 }
573 
574 #endif /* CONFIG_SMP */
575 
576 #define MODINFO_ATTR(field) \
577 static void setup_modinfo_##field(struct module *mod, const char *s) \
578 { \
579  mod->field = kstrdup(s, GFP_KERNEL); \
580 } \
581 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
582  struct module_kobject *mk, char *buffer) \
583 { \
584  return sprintf(buffer, "%s\n", mk->mod->field); \
585 } \
586 static int modinfo_##field##_exists(struct module *mod) \
587 { \
588  return mod->field != NULL; \
589 } \
590 static void free_modinfo_##field(struct module *mod) \
591 { \
592  kfree(mod->field); \
593  mod->field = NULL; \
594 } \
595 static struct module_attribute modinfo_##field = { \
596  .attr = { .name = __stringify(field), .mode = 0444 }, \
597  .show = show_modinfo_##field, \
598  .setup = setup_modinfo_##field, \
599  .test = modinfo_##field##_exists, \
600  .free = free_modinfo_##field, \
601 };
602 
605 
606 static char last_unloaded_module[MODULE_NAME_LEN+1];
607 
608 #ifdef CONFIG_MODULE_UNLOAD
609 
610 EXPORT_TRACEPOINT_SYMBOL(module_get);
611 
612 /* Init the unload section of the module. */
613 static int module_unload_init(struct module *mod)
614 {
615  mod->refptr = alloc_percpu(struct module_ref);
616  if (!mod->refptr)
617  return -ENOMEM;
618 
619  INIT_LIST_HEAD(&mod->source_list);
620  INIT_LIST_HEAD(&mod->target_list);
621 
622  /* Hold reference count during initialization. */
623  __this_cpu_write(mod->refptr->incs, 1);
624  /* Backwards compatibility macros put refcount during init. */
625  mod->waiter = current;
626 
627  return 0;
628 }
629 
630 /* Does a already use b? */
631 static int already_uses(struct module *a, struct module *b)
632 {
633  struct module_use *use;
634 
635  list_for_each_entry(use, &b->source_list, source_list) {
636  if (use->source == a) {
637  pr_debug("%s uses %s!\n", a->name, b->name);
638  return 1;
639  }
640  }
641  pr_debug("%s does not use %s!\n", a->name, b->name);
642  return 0;
643 }
644 
645 /*
646  * Module a uses b
647  * - we add 'a' as a "source", 'b' as a "target" of module use
648  * - the module_use is added to the list of 'b' sources (so
649  * 'b' can walk the list to see who sourced them), and of 'a'
650  * targets (so 'a' can see what modules it targets).
651  */
652 static int add_module_usage(struct module *a, struct module *b)
653 {
654  struct module_use *use;
655 
656  pr_debug("Allocating new usage for %s.\n", a->name);
657  use = kmalloc(sizeof(*use), GFP_ATOMIC);
658  if (!use) {
659  printk(KERN_WARNING "%s: out of memory loading\n", a->name);
660  return -ENOMEM;
661  }
662 
663  use->source = a;
664  use->target = b;
665  list_add(&use->source_list, &b->source_list);
666  list_add(&use->target_list, &a->target_list);
667  return 0;
668 }
669 
670 /* Module a uses b: caller needs module_mutex() */
671 int ref_module(struct module *a, struct module *b)
672 {
673  int err;
674 
675  if (b == NULL || already_uses(a, b))
676  return 0;
677 
678  /* If module isn't available, we fail. */
679  err = strong_try_module_get(b);
680  if (err)
681  return err;
682 
683  err = add_module_usage(a, b);
684  if (err) {
685  module_put(b);
686  return err;
687  }
688  return 0;
689 }
691 
692 /* Clear the unload stuff of the module. */
693 static void module_unload_free(struct module *mod)
694 {
695  struct module_use *use, *tmp;
696 
697  mutex_lock(&module_mutex);
698  list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
699  struct module *i = use->target;
700  pr_debug("%s unusing %s\n", mod->name, i->name);
701  module_put(i);
702  list_del(&use->source_list);
703  list_del(&use->target_list);
704  kfree(use);
705  }
706  mutex_unlock(&module_mutex);
707 
708  free_percpu(mod->refptr);
709 }
710 
711 #ifdef CONFIG_MODULE_FORCE_UNLOAD
712 static inline int try_force_unload(unsigned int flags)
713 {
714  int ret = (flags & O_TRUNC);
715  if (ret)
717  return ret;
718 }
719 #else
720 static inline int try_force_unload(unsigned int flags)
721 {
722  return 0;
723 }
724 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
725 
726 struct stopref
727 {
728  struct module *mod;
729  int flags;
730  int *forced;
731 };
732 
733 /* Whole machine is stopped with interrupts off when this runs. */
734 static int __try_stop_module(void *_sref)
735 {
736  struct stopref *sref = _sref;
737 
738  /* If it's not unused, quit unless we're forcing. */
739  if (module_refcount(sref->mod) != 0) {
740  if (!(*sref->forced = try_force_unload(sref->flags)))
741  return -EWOULDBLOCK;
742  }
743 
744  /* Mark it as dying. */
745  sref->mod->state = MODULE_STATE_GOING;
746  return 0;
747 }
748 
749 static int try_stop_module(struct module *mod, int flags, int *forced)
750 {
751  if (flags & O_NONBLOCK) {
752  struct stopref sref = { mod, flags, forced };
753 
754  return stop_machine(__try_stop_module, &sref, NULL);
755  } else {
756  /* We don't need to stop the machine for this. */
757  mod->state = MODULE_STATE_GOING;
759  return 0;
760  }
761 }
762 
763 unsigned long module_refcount(struct module *mod)
764 {
765  unsigned long incs = 0, decs = 0;
766  int cpu;
767 
769  decs += per_cpu_ptr(mod->refptr, cpu)->decs;
770  /*
771  * ensure the incs are added up after the decs.
772  * module_put ensures incs are visible before decs with smp_wmb.
773  *
774  * This 2-count scheme avoids the situation where the refcount
775  * for CPU0 is read, then CPU0 increments the module refcount,
776  * then CPU1 drops that refcount, then the refcount for CPU1 is
777  * read. We would record a decrement but not its corresponding
778  * increment so we would see a low count (disaster).
779  *
780  * Rare situation? But module_refcount can be preempted, and we
781  * might be tallying up 4096+ CPUs. So it is not impossible.
782  */
783  smp_rmb();
785  incs += per_cpu_ptr(mod->refptr, cpu)->incs;
786  return incs - decs;
787 }
788 EXPORT_SYMBOL(module_refcount);
789 
790 /* This exists whether we can unload or not */
791 static void free_module(struct module *mod);
792 
793 static void wait_for_zero_refcount(struct module *mod)
794 {
795  /* Since we might sleep for some time, release the mutex first */
796  mutex_unlock(&module_mutex);
797  for (;;) {
798  pr_debug("Looking at refcount...\n");
800  if (module_refcount(mod) == 0)
801  break;
802  schedule();
803  }
804  current->state = TASK_RUNNING;
805  mutex_lock(&module_mutex);
806 }
807 
808 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
809  unsigned int, flags)
810 {
811  struct module *mod;
812  char name[MODULE_NAME_LEN];
813  int ret, forced = 0;
814 
815  if (!capable(CAP_SYS_MODULE) || modules_disabled)
816  return -EPERM;
817 
818  if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
819  return -EFAULT;
820  name[MODULE_NAME_LEN-1] = '\0';
821 
822  if (mutex_lock_interruptible(&module_mutex) != 0)
823  return -EINTR;
824 
825  mod = find_module(name);
826  if (!mod) {
827  ret = -ENOENT;
828  goto out;
829  }
830 
831  if (!list_empty(&mod->source_list)) {
832  /* Other modules depend on us: get rid of them first. */
833  ret = -EWOULDBLOCK;
834  goto out;
835  }
836 
837  /* Doing init or already dying? */
838  if (mod->state != MODULE_STATE_LIVE) {
839  /* FIXME: if (force), slam module count and wake up
840  waiter --RR */
841  pr_debug("%s already dying\n", mod->name);
842  ret = -EBUSY;
843  goto out;
844  }
845 
846  /* If it has an init func, it must have an exit func to unload */
847  if (mod->init && !mod->exit) {
848  forced = try_force_unload(flags);
849  if (!forced) {
850  /* This module can't be removed */
851  ret = -EBUSY;
852  goto out;
853  }
854  }
855 
856  /* Set this up before setting mod->state */
857  mod->waiter = current;
858 
859  /* Stop the machine so refcounts can't move and disable module. */
860  ret = try_stop_module(mod, flags, &forced);
861  if (ret != 0)
862  goto out;
863 
864  /* Never wait if forced. */
865  if (!forced && module_refcount(mod) != 0)
866  wait_for_zero_refcount(mod);
867 
868  mutex_unlock(&module_mutex);
869  /* Final destruction now no one is using it. */
870  if (mod->exit != NULL)
871  mod->exit();
872  blocking_notifier_call_chain(&module_notify_list,
873  MODULE_STATE_GOING, mod);
875 
876  /* Store the name of the last unloaded module for diagnostic purposes */
877  strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
878 
879  free_module(mod);
880  return 0;
881 out:
882  mutex_unlock(&module_mutex);
883  return ret;
884 }
885 
886 static inline void print_unload_info(struct seq_file *m, struct module *mod)
887 {
888  struct module_use *use;
889  int printed_something = 0;
890 
891  seq_printf(m, " %lu ", module_refcount(mod));
892 
893  /* Always include a trailing , so userspace can differentiate
894  between this and the old multi-field proc format. */
895  list_for_each_entry(use, &mod->source_list, source_list) {
896  printed_something = 1;
897  seq_printf(m, "%s,", use->source->name);
898  }
899 
900  if (mod->init != NULL && mod->exit == NULL) {
901  printed_something = 1;
902  seq_printf(m, "[permanent],");
903  }
904 
905  if (!printed_something)
906  seq_printf(m, "-");
907 }
908 
909 void __symbol_put(const char *symbol)
910 {
911  struct module *owner;
912 
913  preempt_disable();
914  if (!find_symbol(symbol, &owner, NULL, true, false))
915  BUG();
916  module_put(owner);
917  preempt_enable();
918 }
919 EXPORT_SYMBOL(__symbol_put);
920 
921 /* Note this assumes addr is a function, which it currently always is. */
922 void symbol_put_addr(void *addr)
923 {
924  struct module *modaddr;
925  unsigned long a = (unsigned long)dereference_function_descriptor(addr);
926 
927  if (core_kernel_text(a))
928  return;
929 
930  /* module_text_address is safe here: we're supposed to have reference
931  * to module from symbol_get, so it can't go away. */
932  modaddr = __module_text_address(a);
933  BUG_ON(!modaddr);
934  module_put(modaddr);
935 }
937 
938 static ssize_t show_refcnt(struct module_attribute *mattr,
939  struct module_kobject *mk, char *buffer)
940 {
941  return sprintf(buffer, "%lu\n", module_refcount(mk->mod));
942 }
943 
944 static struct module_attribute modinfo_refcnt =
945  __ATTR(refcnt, 0444, show_refcnt, NULL);
946 
947 void __module_get(struct module *module)
948 {
949  if (module) {
950  preempt_disable();
951  __this_cpu_inc(module->refptr->incs);
952  trace_module_get(module, _RET_IP_);
953  preempt_enable();
954  }
955 }
956 EXPORT_SYMBOL(__module_get);
957 
958 bool try_module_get(struct module *module)
959 {
960  bool ret = true;
961 
962  if (module) {
963  preempt_disable();
964 
965  if (likely(module_is_live(module))) {
966  __this_cpu_inc(module->refptr->incs);
967  trace_module_get(module, _RET_IP_);
968  } else
969  ret = false;
970 
971  preempt_enable();
972  }
973  return ret;
974 }
975 EXPORT_SYMBOL(try_module_get);
976 
977 void module_put(struct module *module)
978 {
979  if (module) {
980  preempt_disable();
981  smp_wmb(); /* see comment in module_refcount */
982  __this_cpu_inc(module->refptr->decs);
983 
984  trace_module_put(module, _RET_IP_);
985  /* Maybe they're waiting for us to drop reference? */
986  if (unlikely(!module_is_live(module)))
987  wake_up_process(module->waiter);
988  preempt_enable();
989  }
990 }
991 EXPORT_SYMBOL(module_put);
992 
993 #else /* !CONFIG_MODULE_UNLOAD */
994 static inline void print_unload_info(struct seq_file *m, struct module *mod)
995 {
996  /* We don't know the usage count, or what modules are using. */
997  seq_printf(m, " - -");
998 }
999 
1000 static inline void module_unload_free(struct module *mod)
1001 {
1002 }
1003 
1004 int ref_module(struct module *a, struct module *b)
1005 {
1006  return strong_try_module_get(b);
1007 }
1009 
1010 static inline int module_unload_init(struct module *mod)
1011 {
1012  return 0;
1013 }
1014 #endif /* CONFIG_MODULE_UNLOAD */
1015 
1016 static size_t module_flags_taint(struct module *mod, char *buf)
1017 {
1018  size_t l = 0;
1019 
1020  if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1021  buf[l++] = 'P';
1022  if (mod->taints & (1 << TAINT_OOT_MODULE))
1023  buf[l++] = 'O';
1024  if (mod->taints & (1 << TAINT_FORCED_MODULE))
1025  buf[l++] = 'F';
1026  if (mod->taints & (1 << TAINT_CRAP))
1027  buf[l++] = 'C';
1028  /*
1029  * TAINT_FORCED_RMMOD: could be added.
1030  * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1031  * apply to modules.
1032  */
1033  return l;
1034 }
1035 
1036 static ssize_t show_initstate(struct module_attribute *mattr,
1037  struct module_kobject *mk, char *buffer)
1038 {
1039  const char *state = "unknown";
1040 
1041  switch (mk->mod->state) {
1042  case MODULE_STATE_LIVE:
1043  state = "live";
1044  break;
1045  case MODULE_STATE_COMING:
1046  state = "coming";
1047  break;
1048  case MODULE_STATE_GOING:
1049  state = "going";
1050  break;
1051  }
1052  return sprintf(buffer, "%s\n", state);
1053 }
1054 
1055 static struct module_attribute modinfo_initstate =
1056  __ATTR(initstate, 0444, show_initstate, NULL);
1057 
1058 static ssize_t store_uevent(struct module_attribute *mattr,
1059  struct module_kobject *mk,
1060  const char *buffer, size_t count)
1061 {
1062  enum kobject_action action;
1063 
1064  if (kobject_action_type(buffer, count, &action) == 0)
1065  kobject_uevent(&mk->kobj, action);
1066  return count;
1067 }
1068 
1070  __ATTR(uevent, 0200, NULL, store_uevent);
1071 
1072 static ssize_t show_coresize(struct module_attribute *mattr,
1073  struct module_kobject *mk, char *buffer)
1074 {
1075  return sprintf(buffer, "%u\n", mk->mod->core_size);
1076 }
1077 
1078 static struct module_attribute modinfo_coresize =
1079  __ATTR(coresize, 0444, show_coresize, NULL);
1080 
1081 static ssize_t show_initsize(struct module_attribute *mattr,
1082  struct module_kobject *mk, char *buffer)
1083 {
1084  return sprintf(buffer, "%u\n", mk->mod->init_size);
1085 }
1086 
1087 static struct module_attribute modinfo_initsize =
1088  __ATTR(initsize, 0444, show_initsize, NULL);
1089 
1090 static ssize_t show_taint(struct module_attribute *mattr,
1091  struct module_kobject *mk, char *buffer)
1092 {
1093  size_t l;
1094 
1095  l = module_flags_taint(mk->mod, buffer);
1096  buffer[l++] = '\n';
1097  return l;
1098 }
1099 
1100 static struct module_attribute modinfo_taint =
1101  __ATTR(taint, 0444, show_taint, NULL);
1102 
1103 static struct module_attribute *modinfo_attrs[] = {
1104  &module_uevent,
1105  &modinfo_version,
1106  &modinfo_srcversion,
1107  &modinfo_initstate,
1108  &modinfo_coresize,
1109  &modinfo_initsize,
1110  &modinfo_taint,
1111 #ifdef CONFIG_MODULE_UNLOAD
1112  &modinfo_refcnt,
1113 #endif
1114  NULL,
1115 };
1116 
1117 static const char vermagic[] = VERMAGIC_STRING;
1118 
1119 static int try_to_force_load(struct module *mod, const char *reason)
1120 {
1121 #ifdef CONFIG_MODULE_FORCE_LOAD
1123  printk(KERN_WARNING "%s: %s: kernel tainted.\n",
1124  mod->name, reason);
1125  add_taint_module(mod, TAINT_FORCED_MODULE);
1126  return 0;
1127 #else
1128  return -ENOEXEC;
1129 #endif
1130 }
1131 
1132 #ifdef CONFIG_MODVERSIONS
1133 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1134 static unsigned long maybe_relocated(unsigned long crc,
1135  const struct module *crc_owner)
1136 {
1137 #ifdef ARCH_RELOCATES_KCRCTAB
1138  if (crc_owner == NULL)
1139  return crc - (unsigned long)reloc_start;
1140 #endif
1141  return crc;
1142 }
1143 
1144 static int check_version(Elf_Shdr *sechdrs,
1145  unsigned int versindex,
1146  const char *symname,
1147  struct module *mod,
1148  const unsigned long *crc,
1149  const struct module *crc_owner)
1150 {
1151  unsigned int i, num_versions;
1152  struct modversion_info *versions;
1153 
1154  /* Exporting module didn't supply crcs? OK, we're already tainted. */
1155  if (!crc)
1156  return 1;
1157 
1158  /* No versions at all? modprobe --force does this. */
1159  if (versindex == 0)
1160  return try_to_force_load(mod, symname) == 0;
1161 
1162  versions = (void *) sechdrs[versindex].sh_addr;
1163  num_versions = sechdrs[versindex].sh_size
1164  / sizeof(struct modversion_info);
1165 
1166  for (i = 0; i < num_versions; i++) {
1167  if (strcmp(versions[i].name, symname) != 0)
1168  continue;
1169 
1170  if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1171  return 1;
1172  pr_debug("Found checksum %lX vs module %lX\n",
1173  maybe_relocated(*crc, crc_owner), versions[i].crc);
1174  goto bad_version;
1175  }
1176 
1177  printk(KERN_WARNING "%s: no symbol version for %s\n",
1178  mod->name, symname);
1179  return 0;
1180 
1181 bad_version:
1182  printk("%s: disagrees about version of symbol %s\n",
1183  mod->name, symname);
1184  return 0;
1185 }
1186 
1187 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1188  unsigned int versindex,
1189  struct module *mod)
1190 {
1191  const unsigned long *crc;
1192 
1193  /* Since this should be found in kernel (which can't be removed),
1194  * no locking is necessary. */
1195  if (!find_symbol(MODULE_SYMBOL_PREFIX "module_layout", NULL,
1196  &crc, true, false))
1197  BUG();
1198  return check_version(sechdrs, versindex, "module_layout", mod, crc,
1199  NULL);
1200 }
1201 
1202 /* First part is kernel version, which we ignore if module has crcs. */
1203 static inline int same_magic(const char *amagic, const char *bmagic,
1204  bool has_crcs)
1205 {
1206  if (has_crcs) {
1207  amagic += strcspn(amagic, " ");
1208  bmagic += strcspn(bmagic, " ");
1209  }
1210  return strcmp(amagic, bmagic) == 0;
1211 }
1212 #else
1213 static inline int check_version(Elf_Shdr *sechdrs,
1214  unsigned int versindex,
1215  const char *symname,
1216  struct module *mod,
1217  const unsigned long *crc,
1218  const struct module *crc_owner)
1219 {
1220  return 1;
1221 }
1222 
1223 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1224  unsigned int versindex,
1225  struct module *mod)
1226 {
1227  return 1;
1228 }
1229 
1230 static inline int same_magic(const char *amagic, const char *bmagic,
1231  bool has_crcs)
1232 {
1233  return strcmp(amagic, bmagic) == 0;
1234 }
1235 #endif /* CONFIG_MODVERSIONS */
1236 
1237 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1238 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1239  const struct load_info *info,
1240  const char *name,
1241  char ownername[])
1242 {
1243  struct module *owner;
1244  const struct kernel_symbol *sym;
1245  const unsigned long *crc;
1246  int err;
1247 
1248  mutex_lock(&module_mutex);
1249  sym = find_symbol(name, &owner, &crc,
1250  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1251  if (!sym)
1252  goto unlock;
1253 
1254  if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1255  owner)) {
1256  sym = ERR_PTR(-EINVAL);
1257  goto getname;
1258  }
1259 
1260  err = ref_module(mod, owner);
1261  if (err) {
1262  sym = ERR_PTR(err);
1263  goto getname;
1264  }
1265 
1266 getname:
1267  /* We must make copy under the lock if we failed to get ref. */
1268  strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1269 unlock:
1270  mutex_unlock(&module_mutex);
1271  return sym;
1272 }
1273 
1274 static const struct kernel_symbol *
1275 resolve_symbol_wait(struct module *mod,
1276  const struct load_info *info,
1277  const char *name)
1278 {
1279  const struct kernel_symbol *ksym;
1280  char owner[MODULE_NAME_LEN];
1281 
1282  if (wait_event_interruptible_timeout(module_wq,
1283  !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1284  || PTR_ERR(ksym) != -EBUSY,
1285  30 * HZ) <= 0) {
1286  printk(KERN_WARNING "%s: gave up waiting for init of module %s.\n",
1287  mod->name, owner);
1288  }
1289  return ksym;
1290 }
1291 
1292 /*
1293  * /sys/module/foo/sections stuff
1294  * J. Corbet <[email protected]>
1295  */
1296 #ifdef CONFIG_SYSFS
1297 
1298 #ifdef CONFIG_KALLSYMS
1299 static inline bool sect_empty(const Elf_Shdr *sect)
1300 {
1301  return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1302 }
1303 
1304 struct module_sect_attr
1305 {
1306  struct module_attribute mattr;
1307  char *name;
1308  unsigned long address;
1309 };
1310 
1311 struct module_sect_attrs
1312 {
1313  struct attribute_group grp;
1314  unsigned int nsections;
1315  struct module_sect_attr attrs[0];
1316 };
1317 
1318 static ssize_t module_sect_show(struct module_attribute *mattr,
1319  struct module_kobject *mk, char *buf)
1320 {
1321  struct module_sect_attr *sattr =
1322  container_of(mattr, struct module_sect_attr, mattr);
1323  return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1324 }
1325 
1326 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1327 {
1328  unsigned int section;
1329 
1330  for (section = 0; section < sect_attrs->nsections; section++)
1331  kfree(sect_attrs->attrs[section].name);
1332  kfree(sect_attrs);
1333 }
1334 
1335 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1336 {
1337  unsigned int nloaded = 0, i, size[2];
1338  struct module_sect_attrs *sect_attrs;
1339  struct module_sect_attr *sattr;
1340  struct attribute **gattr;
1341 
1342  /* Count loaded sections and allocate structures */
1343  for (i = 0; i < info->hdr->e_shnum; i++)
1344  if (!sect_empty(&info->sechdrs[i]))
1345  nloaded++;
1346  size[0] = ALIGN(sizeof(*sect_attrs)
1347  + nloaded * sizeof(sect_attrs->attrs[0]),
1348  sizeof(sect_attrs->grp.attrs[0]));
1349  size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1350  sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1351  if (sect_attrs == NULL)
1352  return;
1353 
1354  /* Setup section attributes. */
1355  sect_attrs->grp.name = "sections";
1356  sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1357 
1358  sect_attrs->nsections = 0;
1359  sattr = &sect_attrs->attrs[0];
1360  gattr = &sect_attrs->grp.attrs[0];
1361  for (i = 0; i < info->hdr->e_shnum; i++) {
1362  Elf_Shdr *sec = &info->sechdrs[i];
1363  if (sect_empty(sec))
1364  continue;
1365  sattr->address = sec->sh_addr;
1366  sattr->name = kstrdup(info->secstrings + sec->sh_name,
1367  GFP_KERNEL);
1368  if (sattr->name == NULL)
1369  goto out;
1370  sect_attrs->nsections++;
1371  sysfs_attr_init(&sattr->mattr.attr);
1372  sattr->mattr.show = module_sect_show;
1373  sattr->mattr.store = NULL;
1374  sattr->mattr.attr.name = sattr->name;
1375  sattr->mattr.attr.mode = S_IRUGO;
1376  *(gattr++) = &(sattr++)->mattr.attr;
1377  }
1378  *gattr = NULL;
1379 
1380  if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1381  goto out;
1382 
1383  mod->sect_attrs = sect_attrs;
1384  return;
1385  out:
1386  free_sect_attrs(sect_attrs);
1387 }
1388 
1389 static void remove_sect_attrs(struct module *mod)
1390 {
1391  if (mod->sect_attrs) {
1392  sysfs_remove_group(&mod->mkobj.kobj,
1393  &mod->sect_attrs->grp);
1394  /* We are positive that no one is using any sect attrs
1395  * at this point. Deallocate immediately. */
1396  free_sect_attrs(mod->sect_attrs);
1397  mod->sect_attrs = NULL;
1398  }
1399 }
1400 
1401 /*
1402  * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1403  */
1404 
1405 struct module_notes_attrs {
1406  struct kobject *dir;
1407  unsigned int notes;
1408  struct bin_attribute attrs[0];
1409 };
1410 
1411 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1412  struct bin_attribute *bin_attr,
1413  char *buf, loff_t pos, size_t count)
1414 {
1415  /*
1416  * The caller checked the pos and count against our size.
1417  */
1418  memcpy(buf, bin_attr->private + pos, count);
1419  return count;
1420 }
1421 
1422 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1423  unsigned int i)
1424 {
1425  if (notes_attrs->dir) {
1426  while (i-- > 0)
1427  sysfs_remove_bin_file(notes_attrs->dir,
1428  &notes_attrs->attrs[i]);
1429  kobject_put(notes_attrs->dir);
1430  }
1431  kfree(notes_attrs);
1432 }
1433 
1434 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1435 {
1436  unsigned int notes, loaded, i;
1437  struct module_notes_attrs *notes_attrs;
1438  struct bin_attribute *nattr;
1439 
1440  /* failed to create section attributes, so can't create notes */
1441  if (!mod->sect_attrs)
1442  return;
1443 
1444  /* Count notes sections and allocate structures. */
1445  notes = 0;
1446  for (i = 0; i < info->hdr->e_shnum; i++)
1447  if (!sect_empty(&info->sechdrs[i]) &&
1448  (info->sechdrs[i].sh_type == SHT_NOTE))
1449  ++notes;
1450 
1451  if (notes == 0)
1452  return;
1453 
1454  notes_attrs = kzalloc(sizeof(*notes_attrs)
1455  + notes * sizeof(notes_attrs->attrs[0]),
1456  GFP_KERNEL);
1457  if (notes_attrs == NULL)
1458  return;
1459 
1460  notes_attrs->notes = notes;
1461  nattr = &notes_attrs->attrs[0];
1462  for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1463  if (sect_empty(&info->sechdrs[i]))
1464  continue;
1465  if (info->sechdrs[i].sh_type == SHT_NOTE) {
1466  sysfs_bin_attr_init(nattr);
1467  nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1468  nattr->attr.mode = S_IRUGO;
1469  nattr->size = info->sechdrs[i].sh_size;
1470  nattr->private = (void *) info->sechdrs[i].sh_addr;
1471  nattr->read = module_notes_read;
1472  ++nattr;
1473  }
1474  ++loaded;
1475  }
1476 
1477  notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1478  if (!notes_attrs->dir)
1479  goto out;
1480 
1481  for (i = 0; i < notes; ++i)
1482  if (sysfs_create_bin_file(notes_attrs->dir,
1483  &notes_attrs->attrs[i]))
1484  goto out;
1485 
1486  mod->notes_attrs = notes_attrs;
1487  return;
1488 
1489  out:
1490  free_notes_attrs(notes_attrs, i);
1491 }
1492 
1493 static void remove_notes_attrs(struct module *mod)
1494 {
1495  if (mod->notes_attrs)
1496  free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1497 }
1498 
1499 #else
1500 
1501 static inline void add_sect_attrs(struct module *mod,
1502  const struct load_info *info)
1503 {
1504 }
1505 
1506 static inline void remove_sect_attrs(struct module *mod)
1507 {
1508 }
1509 
1510 static inline void add_notes_attrs(struct module *mod,
1511  const struct load_info *info)
1512 {
1513 }
1514 
1515 static inline void remove_notes_attrs(struct module *mod)
1516 {
1517 }
1518 #endif /* CONFIG_KALLSYMS */
1519 
1520 static void add_usage_links(struct module *mod)
1521 {
1522 #ifdef CONFIG_MODULE_UNLOAD
1523  struct module_use *use;
1524  int nowarn;
1525 
1526  mutex_lock(&module_mutex);
1527  list_for_each_entry(use, &mod->target_list, target_list) {
1528  nowarn = sysfs_create_link(use->target->holders_dir,
1529  &mod->mkobj.kobj, mod->name);
1530  }
1531  mutex_unlock(&module_mutex);
1532 #endif
1533 }
1534 
1535 static void del_usage_links(struct module *mod)
1536 {
1537 #ifdef CONFIG_MODULE_UNLOAD
1538  struct module_use *use;
1539 
1540  mutex_lock(&module_mutex);
1541  list_for_each_entry(use, &mod->target_list, target_list)
1542  sysfs_remove_link(use->target->holders_dir, mod->name);
1543  mutex_unlock(&module_mutex);
1544 #endif
1545 }
1546 
1547 static int module_add_modinfo_attrs(struct module *mod)
1548 {
1549  struct module_attribute *attr;
1550  struct module_attribute *temp_attr;
1551  int error = 0;
1552  int i;
1553 
1554  mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1555  (ARRAY_SIZE(modinfo_attrs) + 1)),
1556  GFP_KERNEL);
1557  if (!mod->modinfo_attrs)
1558  return -ENOMEM;
1559 
1560  temp_attr = mod->modinfo_attrs;
1561  for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1562  if (!attr->test ||
1563  (attr->test && attr->test(mod))) {
1564  memcpy(temp_attr, attr, sizeof(*temp_attr));
1565  sysfs_attr_init(&temp_attr->attr);
1566  error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
1567  ++temp_attr;
1568  }
1569  }
1570  return error;
1571 }
1572 
1573 static void module_remove_modinfo_attrs(struct module *mod)
1574 {
1575  struct module_attribute *attr;
1576  int i;
1577 
1578  for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1579  /* pick a field to test for end of list */
1580  if (!attr->attr.name)
1581  break;
1582  sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1583  if (attr->free)
1584  attr->free(mod);
1585  }
1586  kfree(mod->modinfo_attrs);
1587 }
1588 
1589 static int mod_sysfs_init(struct module *mod)
1590 {
1591  int err;
1592  struct kobject *kobj;
1593 
1594  if (!module_sysfs_initialized) {
1595  printk(KERN_ERR "%s: module sysfs not initialized\n",
1596  mod->name);
1597  err = -EINVAL;
1598  goto out;
1599  }
1600 
1601  kobj = kset_find_obj(module_kset, mod->name);
1602  if (kobj) {
1603  printk(KERN_ERR "%s: module is already loaded\n", mod->name);
1604  kobject_put(kobj);
1605  err = -EINVAL;
1606  goto out;
1607  }
1608 
1609  mod->mkobj.mod = mod;
1610 
1611  memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1612  mod->mkobj.kobj.kset = module_kset;
1613  err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1614  "%s", mod->name);
1615  if (err)
1616  kobject_put(&mod->mkobj.kobj);
1617 
1618  /* delay uevent until full sysfs population */
1619 out:
1620  return err;
1621 }
1622 
1623 static int mod_sysfs_setup(struct module *mod,
1624  const struct load_info *info,
1625  struct kernel_param *kparam,
1626  unsigned int num_params)
1627 {
1628  int err;
1629 
1630  err = mod_sysfs_init(mod);
1631  if (err)
1632  goto out;
1633 
1634  mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1635  if (!mod->holders_dir) {
1636  err = -ENOMEM;
1637  goto out_unreg;
1638  }
1639 
1640  err = module_param_sysfs_setup(mod, kparam, num_params);
1641  if (err)
1642  goto out_unreg_holders;
1643 
1644  err = module_add_modinfo_attrs(mod);
1645  if (err)
1646  goto out_unreg_param;
1647 
1648  add_usage_links(mod);
1649  add_sect_attrs(mod, info);
1650  add_notes_attrs(mod, info);
1651 
1652  kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1653  return 0;
1654 
1655 out_unreg_param:
1656  module_param_sysfs_remove(mod);
1657 out_unreg_holders:
1658  kobject_put(mod->holders_dir);
1659 out_unreg:
1660  kobject_put(&mod->mkobj.kobj);
1661 out:
1662  return err;
1663 }
1664 
1665 static void mod_sysfs_fini(struct module *mod)
1666 {
1667  remove_notes_attrs(mod);
1668  remove_sect_attrs(mod);
1669  kobject_put(&mod->mkobj.kobj);
1670 }
1671 
1672 #else /* !CONFIG_SYSFS */
1673 
1674 static int mod_sysfs_setup(struct module *mod,
1675  const struct load_info *info,
1676  struct kernel_param *kparam,
1677  unsigned int num_params)
1678 {
1679  return 0;
1680 }
1681 
1682 static void mod_sysfs_fini(struct module *mod)
1683 {
1684 }
1685 
1686 static void module_remove_modinfo_attrs(struct module *mod)
1687 {
1688 }
1689 
1690 static void del_usage_links(struct module *mod)
1691 {
1692 }
1693 
1694 #endif /* CONFIG_SYSFS */
1695 
1696 static void mod_sysfs_teardown(struct module *mod)
1697 {
1698  del_usage_links(mod);
1699  module_remove_modinfo_attrs(mod);
1700  module_param_sysfs_remove(mod);
1701  kobject_put(mod->mkobj.drivers_dir);
1702  kobject_put(mod->holders_dir);
1703  mod_sysfs_fini(mod);
1704 }
1705 
1706 /*
1707  * unlink the module with the whole machine is stopped with interrupts off
1708  * - this defends against kallsyms not taking locks
1709  */
1710 static int __unlink_module(void *_mod)
1711 {
1712  struct module *mod = _mod;
1713  list_del(&mod->list);
1714  module_bug_cleanup(mod);
1715  return 0;
1716 }
1717 
1718 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1719 /*
1720  * LKM RO/NX protection: protect module's text/ro-data
1721  * from modification and any data from execution.
1722  */
1723 void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1724 {
1725  unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1726  unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1727 
1728  if (end_pfn > begin_pfn)
1729  set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1730 }
1731 
1732 static void set_section_ro_nx(void *base,
1733  unsigned long text_size,
1734  unsigned long ro_size,
1735  unsigned long total_size)
1736 {
1737  /* begin and end PFNs of the current subsection */
1738  unsigned long begin_pfn;
1739  unsigned long end_pfn;
1740 
1741  /*
1742  * Set RO for module text and RO-data:
1743  * - Always protect first page.
1744  * - Do not protect last partial page.
1745  */
1746  if (ro_size > 0)
1747  set_page_attributes(base, base + ro_size, set_memory_ro);
1748 
1749  /*
1750  * Set NX permissions for module data:
1751  * - Do not protect first partial page.
1752  * - Always protect last page.
1753  */
1754  if (total_size > text_size) {
1755  begin_pfn = PFN_UP((unsigned long)base + text_size);
1756  end_pfn = PFN_UP((unsigned long)base + total_size);
1757  if (end_pfn > begin_pfn)
1758  set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1759  }
1760 }
1761 
1762 static void unset_module_core_ro_nx(struct module *mod)
1763 {
1764  set_page_attributes(mod->module_core + mod->core_text_size,
1765  mod->module_core + mod->core_size,
1766  set_memory_x);
1767  set_page_attributes(mod->module_core,
1768  mod->module_core + mod->core_ro_size,
1769  set_memory_rw);
1770 }
1771 
1772 static void unset_module_init_ro_nx(struct module *mod)
1773 {
1774  set_page_attributes(mod->module_init + mod->init_text_size,
1775  mod->module_init + mod->init_size,
1776  set_memory_x);
1777  set_page_attributes(mod->module_init,
1778  mod->module_init + mod->init_ro_size,
1779  set_memory_rw);
1780 }
1781 
1782 /* Iterate through all modules and set each module's text as RW */
1783 void set_all_modules_text_rw(void)
1784 {
1785  struct module *mod;
1786 
1787  mutex_lock(&module_mutex);
1788  list_for_each_entry_rcu(mod, &modules, list) {
1789  if ((mod->module_core) && (mod->core_text_size)) {
1790  set_page_attributes(mod->module_core,
1791  mod->module_core + mod->core_text_size,
1792  set_memory_rw);
1793  }
1794  if ((mod->module_init) && (mod->init_text_size)) {
1795  set_page_attributes(mod->module_init,
1796  mod->module_init + mod->init_text_size,
1797  set_memory_rw);
1798  }
1799  }
1800  mutex_unlock(&module_mutex);
1801 }
1802 
1803 /* Iterate through all modules and set each module's text as RO */
1804 void set_all_modules_text_ro(void)
1805 {
1806  struct module *mod;
1807 
1808  mutex_lock(&module_mutex);
1809  list_for_each_entry_rcu(mod, &modules, list) {
1810  if ((mod->module_core) && (mod->core_text_size)) {
1811  set_page_attributes(mod->module_core,
1812  mod->module_core + mod->core_text_size,
1813  set_memory_ro);
1814  }
1815  if ((mod->module_init) && (mod->init_text_size)) {
1816  set_page_attributes(mod->module_init,
1817  mod->module_init + mod->init_text_size,
1818  set_memory_ro);
1819  }
1820  }
1821  mutex_unlock(&module_mutex);
1822 }
1823 #else
1824 static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
1825 static void unset_module_core_ro_nx(struct module *mod) { }
1826 static void unset_module_init_ro_nx(struct module *mod) { }
1827 #endif
1828 
1829 void __weak module_free(struct module *mod, void *module_region)
1830 {
1831  vfree(module_region);
1832 }
1833 
1834 void __weak module_arch_cleanup(struct module *mod)
1835 {
1836 }
1837 
1838 /* Free a module, remove from lists, etc. */
1839 static void free_module(struct module *mod)
1840 {
1841  trace_module_free(mod);
1842 
1843  /* Delete from various lists */
1844  mutex_lock(&module_mutex);
1845  stop_machine(__unlink_module, mod, NULL);
1846  mutex_unlock(&module_mutex);
1847  mod_sysfs_teardown(mod);
1848 
1849  /* Remove dynamic debug info */
1850  ddebug_remove_module(mod->name);
1851 
1852  /* Arch-specific cleanup. */
1853  module_arch_cleanup(mod);
1854 
1855  /* Module unload stuff */
1856  module_unload_free(mod);
1857 
1858  /* Free any allocated parameters. */
1859  destroy_params(mod->kp, mod->num_kp);
1860 
1861  /* This may be NULL, but that's OK */
1862  unset_module_init_ro_nx(mod);
1863  module_free(mod, mod->module_init);
1864  kfree(mod->args);
1865  percpu_modfree(mod);
1866 
1867  /* Free lock-classes: */
1868  lockdep_free_key_range(mod->module_core, mod->core_size);
1869 
1870  /* Finally, free the core (containing the module structure) */
1871  unset_module_core_ro_nx(mod);
1872  module_free(mod, mod->module_core);
1873 
1874 #ifdef CONFIG_MPU
1875  update_protections(current->mm);
1876 #endif
1877 }
1878 
1879 void *__symbol_get(const char *symbol)
1880 {
1881  struct module *owner;
1882  const struct kernel_symbol *sym;
1883 
1884  preempt_disable();
1885  sym = find_symbol(symbol, &owner, NULL, true, true);
1886  if (sym && strong_try_module_get(owner))
1887  sym = NULL;
1888  preempt_enable();
1889 
1890  return sym ? (void *)sym->value : NULL;
1891 }
1893 
1894 /*
1895  * Ensure that an exported symbol [global namespace] does not already exist
1896  * in the kernel or in some other module's exported symbol table.
1897  *
1898  * You must hold the module_mutex.
1899  */
1900 static int verify_export_symbols(struct module *mod)
1901 {
1902  unsigned int i;
1903  struct module *owner;
1904  const struct kernel_symbol *s;
1905  struct {
1906  const struct kernel_symbol *sym;
1907  unsigned int num;
1908  } arr[] = {
1909  { mod->syms, mod->num_syms },
1910  { mod->gpl_syms, mod->num_gpl_syms },
1911  { mod->gpl_future_syms, mod->num_gpl_future_syms },
1912 #ifdef CONFIG_UNUSED_SYMBOLS
1913  { mod->unused_syms, mod->num_unused_syms },
1914  { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1915 #endif
1916  };
1917 
1918  for (i = 0; i < ARRAY_SIZE(arr); i++) {
1919  for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1920  if (find_symbol(s->name, &owner, NULL, true, false)) {
1922  "%s: exports duplicate symbol %s"
1923  " (owned by %s)\n",
1924  mod->name, s->name, module_name(owner));
1925  return -ENOEXEC;
1926  }
1927  }
1928  }
1929  return 0;
1930 }
1931 
1932 /* Change all symbols so that st_value encodes the pointer directly. */
1933 static int simplify_symbols(struct module *mod, const struct load_info *info)
1934 {
1935  Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1936  Elf_Sym *sym = (void *)symsec->sh_addr;
1937  unsigned long secbase;
1938  unsigned int i;
1939  int ret = 0;
1940  const struct kernel_symbol *ksym;
1941 
1942  for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1943  const char *name = info->strtab + sym[i].st_name;
1944 
1945  switch (sym[i].st_shndx) {
1946  case SHN_COMMON:
1947  /* We compiled with -fno-common. These are not
1948  supposed to happen. */
1949  pr_debug("Common symbol: %s\n", name);
1950  printk("%s: please compile with -fno-common\n",
1951  mod->name);
1952  ret = -ENOEXEC;
1953  break;
1954 
1955  case SHN_ABS:
1956  /* Don't need to do anything */
1957  pr_debug("Absolute symbol: 0x%08lx\n",
1958  (long)sym[i].st_value);
1959  break;
1960 
1961  case SHN_UNDEF:
1962  ksym = resolve_symbol_wait(mod, info, name);
1963  /* Ok if resolved. */
1964  if (ksym && !IS_ERR(ksym)) {
1965  sym[i].st_value = ksym->value;
1966  break;
1967  }
1968 
1969  /* Ok if weak. */
1970  if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
1971  break;
1972 
1973  printk(KERN_WARNING "%s: Unknown symbol %s (err %li)\n",
1974  mod->name, name, PTR_ERR(ksym));
1975  ret = PTR_ERR(ksym) ?: -ENOENT;
1976  break;
1977 
1978  default:
1979  /* Divert to percpu allocation if a percpu var. */
1980  if (sym[i].st_shndx == info->index.pcpu)
1981  secbase = (unsigned long)mod_percpu(mod);
1982  else
1983  secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1984  sym[i].st_value += secbase;
1985  break;
1986  }
1987  }
1988 
1989  return ret;
1990 }
1991 
1992 static int apply_relocations(struct module *mod, const struct load_info *info)
1993 {
1994  unsigned int i;
1995  int err = 0;
1996 
1997  /* Now do relocations. */
1998  for (i = 1; i < info->hdr->e_shnum; i++) {
1999  unsigned int infosec = info->sechdrs[i].sh_info;
2000 
2001  /* Not a valid relocation section? */
2002  if (infosec >= info->hdr->e_shnum)
2003  continue;
2004 
2005  /* Don't bother with non-allocated sections */
2006  if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2007  continue;
2008 
2009  if (info->sechdrs[i].sh_type == SHT_REL)
2010  err = apply_relocate(info->sechdrs, info->strtab,
2011  info->index.sym, i, mod);
2012  else if (info->sechdrs[i].sh_type == SHT_RELA)
2013  err = apply_relocate_add(info->sechdrs, info->strtab,
2014  info->index.sym, i, mod);
2015  if (err < 0)
2016  break;
2017  }
2018  return err;
2019 }
2020 
2021 /* Additional bytes needed by arch in front of individual sections */
2022 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2023  unsigned int section)
2024 {
2025  /* default implementation just returns zero */
2026  return 0;
2027 }
2028 
2029 /* Update size with this section: return offset. */
2030 static long get_offset(struct module *mod, unsigned int *size,
2031  Elf_Shdr *sechdr, unsigned int section)
2032 {
2033  long ret;
2034 
2035  *size += arch_mod_section_prepend(mod, section);
2036  ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2037  *size = ret + sechdr->sh_size;
2038  return ret;
2039 }
2040 
2041 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2042  might -- code, read-only data, read-write data, small data. Tally
2043  sizes, and place the offsets into sh_entsize fields: high bit means it
2044  belongs in init. */
2045 static void layout_sections(struct module *mod, struct load_info *info)
2046 {
2047  static unsigned long const masks[][2] = {
2048  /* NOTE: all executable code must be the first section
2049  * in this array; otherwise modify the text_size
2050  * finder in the two loops below */
2054  { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2055  };
2056  unsigned int m, i;
2057 
2058  for (i = 0; i < info->hdr->e_shnum; i++)
2059  info->sechdrs[i].sh_entsize = ~0UL;
2060 
2061  pr_debug("Core section allocation order:\n");
2062  for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2063  for (i = 0; i < info->hdr->e_shnum; ++i) {
2064  Elf_Shdr *s = &info->sechdrs[i];
2065  const char *sname = info->secstrings + s->sh_name;
2066 
2067  if ((s->sh_flags & masks[m][0]) != masks[m][0]
2068  || (s->sh_flags & masks[m][1])
2069  || s->sh_entsize != ~0UL
2070  || strstarts(sname, ".init"))
2071  continue;
2072  s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
2073  pr_debug("\t%s\n", sname);
2074  }
2075  switch (m) {
2076  case 0: /* executable */
2077  mod->core_size = debug_align(mod->core_size);
2078  mod->core_text_size = mod->core_size;
2079  break;
2080  case 1: /* RO: text and ro-data */
2081  mod->core_size = debug_align(mod->core_size);
2082  mod->core_ro_size = mod->core_size;
2083  break;
2084  case 3: /* whole core */
2085  mod->core_size = debug_align(mod->core_size);
2086  break;
2087  }
2088  }
2089 
2090  pr_debug("Init section allocation order:\n");
2091  for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2092  for (i = 0; i < info->hdr->e_shnum; ++i) {
2093  Elf_Shdr *s = &info->sechdrs[i];
2094  const char *sname = info->secstrings + s->sh_name;
2095 
2096  if ((s->sh_flags & masks[m][0]) != masks[m][0]
2097  || (s->sh_flags & masks[m][1])
2098  || s->sh_entsize != ~0UL
2099  || !strstarts(sname, ".init"))
2100  continue;
2101  s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2102  | INIT_OFFSET_MASK);
2103  pr_debug("\t%s\n", sname);
2104  }
2105  switch (m) {
2106  case 0: /* executable */
2107  mod->init_size = debug_align(mod->init_size);
2108  mod->init_text_size = mod->init_size;
2109  break;
2110  case 1: /* RO: text and ro-data */
2111  mod->init_size = debug_align(mod->init_size);
2112  mod->init_ro_size = mod->init_size;
2113  break;
2114  case 3: /* whole init */
2115  mod->init_size = debug_align(mod->init_size);
2116  break;
2117  }
2118  }
2119 }
2120 
2121 static void set_license(struct module *mod, const char *license)
2122 {
2123  if (!license)
2124  license = "unspecified";
2125 
2126  if (!license_is_gpl_compatible(license)) {
2128  printk(KERN_WARNING "%s: module license '%s' taints "
2129  "kernel.\n", mod->name, license);
2130  add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
2131  }
2132 }
2133 
2134 /* Parse tag=value strings from .modinfo section */
2135 static char *next_string(char *string, unsigned long *secsize)
2136 {
2137  /* Skip non-zero chars */
2138  while (string[0]) {
2139  string++;
2140  if ((*secsize)-- <= 1)
2141  return NULL;
2142  }
2143 
2144  /* Skip any zero padding. */
2145  while (!string[0]) {
2146  string++;
2147  if ((*secsize)-- <= 1)
2148  return NULL;
2149  }
2150  return string;
2151 }
2152 
2153 static char *get_modinfo(struct load_info *info, const char *tag)
2154 {
2155  char *p;
2156  unsigned int taglen = strlen(tag);
2157  Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2158  unsigned long size = infosec->sh_size;
2159 
2160  for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2161  if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2162  return p + taglen + 1;
2163  }
2164  return NULL;
2165 }
2166 
2167 static void setup_modinfo(struct module *mod, struct load_info *info)
2168 {
2169  struct module_attribute *attr;
2170  int i;
2171 
2172  for (i = 0; (attr = modinfo_attrs[i]); i++) {
2173  if (attr->setup)
2174  attr->setup(mod, get_modinfo(info, attr->attr.name));
2175  }
2176 }
2177 
2178 static void free_modinfo(struct module *mod)
2179 {
2180  struct module_attribute *attr;
2181  int i;
2182 
2183  for (i = 0; (attr = modinfo_attrs[i]); i++) {
2184  if (attr->free)
2185  attr->free(mod);
2186  }
2187 }
2188 
2189 #ifdef CONFIG_KALLSYMS
2190 
2191 /* lookup symbol in given range of kernel_symbols */
2192 static const struct kernel_symbol *lookup_symbol(const char *name,
2193  const struct kernel_symbol *start,
2194  const struct kernel_symbol *stop)
2195 {
2196  return bsearch(name, start, stop - start,
2197  sizeof(struct kernel_symbol), cmp_name);
2198 }
2199 
2200 static int is_exported(const char *name, unsigned long value,
2201  const struct module *mod)
2202 {
2203  const struct kernel_symbol *ks;
2204  if (!mod)
2205  ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2206  else
2207  ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2208  return ks != NULL && ks->value == value;
2209 }
2210 
2211 /* As per nm */
2212 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2213 {
2214  const Elf_Shdr *sechdrs = info->sechdrs;
2215 
2216  if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2217  if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2218  return 'v';
2219  else
2220  return 'w';
2221  }
2222  if (sym->st_shndx == SHN_UNDEF)
2223  return 'U';
2224  if (sym->st_shndx == SHN_ABS)
2225  return 'a';
2226  if (sym->st_shndx >= SHN_LORESERVE)
2227  return '?';
2228  if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2229  return 't';
2230  if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2231  && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2232  if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2233  return 'r';
2234  else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2235  return 'g';
2236  else
2237  return 'd';
2238  }
2239  if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2240  if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2241  return 's';
2242  else
2243  return 'b';
2244  }
2245  if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2246  ".debug")) {
2247  return 'n';
2248  }
2249  return '?';
2250 }
2251 
2252 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2253  unsigned int shnum)
2254 {
2255  const Elf_Shdr *sec;
2256 
2257  if (src->st_shndx == SHN_UNDEF
2258  || src->st_shndx >= shnum
2259  || !src->st_name)
2260  return false;
2261 
2262  sec = sechdrs + src->st_shndx;
2263  if (!(sec->sh_flags & SHF_ALLOC)
2264 #ifndef CONFIG_KALLSYMS_ALL
2265  || !(sec->sh_flags & SHF_EXECINSTR)
2266 #endif
2267  || (sec->sh_entsize & INIT_OFFSET_MASK))
2268  return false;
2269 
2270  return true;
2271 }
2272 
2273 /*
2274  * We only allocate and copy the strings needed by the parts of symtab
2275  * we keep. This is simple, but has the effect of making multiple
2276  * copies of duplicates. We could be more sophisticated, see
2277  * linux-kernel thread starting with
2278  * <73defb5e4bca04a6431392cc341112b1@localhost>.
2279  */
2280 static void layout_symtab(struct module *mod, struct load_info *info)
2281 {
2282  Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2283  Elf_Shdr *strsect = info->sechdrs + info->index.str;
2284  const Elf_Sym *src;
2285  unsigned int i, nsrc, ndst, strtab_size;
2286 
2287  /* Put symbol section at end of init part of module. */
2288  symsect->sh_flags |= SHF_ALLOC;
2289  symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2290  info->index.sym) | INIT_OFFSET_MASK;
2291  pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2292 
2293  src = (void *)info->hdr + symsect->sh_offset;
2294  nsrc = symsect->sh_size / sizeof(*src);
2295 
2296  /* strtab always starts with a nul, so offset 0 is the empty string. */
2297  strtab_size = 1;
2298 
2299  /* Compute total space required for the core symbols' strtab. */
2300  for (ndst = i = 0; i < nsrc; i++) {
2301  if (i == 0 ||
2302  is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2303  strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2304  ndst++;
2305  }
2306  }
2307 
2308  /* Append room for core symbols at end of core part. */
2309  info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2310  info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2311  mod->core_size += strtab_size;
2312 
2313  /* Put string table section at end of init part of module. */
2314  strsect->sh_flags |= SHF_ALLOC;
2315  strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2316  info->index.str) | INIT_OFFSET_MASK;
2317  pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2318 }
2319 
2320 static void add_kallsyms(struct module *mod, const struct load_info *info)
2321 {
2322  unsigned int i, ndst;
2323  const Elf_Sym *src;
2324  Elf_Sym *dst;
2325  char *s;
2326  Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2327 
2328  mod->symtab = (void *)symsec->sh_addr;
2329  mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2330  /* Make sure we get permanent strtab: don't use info->strtab. */
2331  mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2332 
2333  /* Set types up while we still have access to sections. */
2334  for (i = 0; i < mod->num_symtab; i++)
2335  mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
2336 
2337  mod->core_symtab = dst = mod->module_core + info->symoffs;
2338  mod->core_strtab = s = mod->module_core + info->stroffs;
2339  src = mod->symtab;
2340  *s++ = 0;
2341  for (ndst = i = 0; i < mod->num_symtab; i++) {
2342  if (i == 0 ||
2343  is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2344  dst[ndst] = src[i];
2345  dst[ndst++].st_name = s - mod->core_strtab;
2346  s += strlcpy(s, &mod->strtab[src[i].st_name],
2347  KSYM_NAME_LEN) + 1;
2348  }
2349  }
2350  mod->core_num_syms = ndst;
2351 }
2352 #else
2353 static inline void layout_symtab(struct module *mod, struct load_info *info)
2354 {
2355 }
2356 
2357 static void add_kallsyms(struct module *mod, const struct load_info *info)
2358 {
2359 }
2360 #endif /* CONFIG_KALLSYMS */
2361 
2362 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2363 {
2364  if (!debug)
2365  return;
2366 #ifdef CONFIG_DYNAMIC_DEBUG
2367  if (ddebug_add_module(debug, num, debug->modname))
2368  printk(KERN_ERR "dynamic debug error adding module: %s\n",
2369  debug->modname);
2370 #endif
2371 }
2372 
2373 static void dynamic_debug_remove(struct _ddebug *debug)
2374 {
2375  if (debug)
2376  ddebug_remove_module(debug->modname);
2377 }
2378 
2379 void * __weak module_alloc(unsigned long size)
2380 {
2381  return size == 0 ? NULL : vmalloc_exec(size);
2382 }
2383 
2384 static void *module_alloc_update_bounds(unsigned long size)
2385 {
2386  void *ret = module_alloc(size);
2387 
2388  if (ret) {
2389  mutex_lock(&module_mutex);
2390  /* Update module bounds. */
2391  if ((unsigned long)ret < module_addr_min)
2392  module_addr_min = (unsigned long)ret;
2393  if ((unsigned long)ret + size > module_addr_max)
2394  module_addr_max = (unsigned long)ret + size;
2395  mutex_unlock(&module_mutex);
2396  }
2397  return ret;
2398 }
2399 
2400 #ifdef CONFIG_DEBUG_KMEMLEAK
2401 static void kmemleak_load_module(const struct module *mod,
2402  const struct load_info *info)
2403 {
2404  unsigned int i;
2405 
2406  /* only scan the sections containing data */
2407  kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2408 
2409  for (i = 1; i < info->hdr->e_shnum; i++) {
2410  const char *name = info->secstrings + info->sechdrs[i].sh_name;
2411  if (!(info->sechdrs[i].sh_flags & SHF_ALLOC))
2412  continue;
2413  if (!strstarts(name, ".data") && !strstarts(name, ".bss"))
2414  continue;
2415 
2416  kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2417  info->sechdrs[i].sh_size, GFP_KERNEL);
2418  }
2419 }
2420 #else
2421 static inline void kmemleak_load_module(const struct module *mod,
2422  const struct load_info *info)
2423 {
2424 }
2425 #endif
2426 
2427 #ifdef CONFIG_MODULE_SIG
2428 static int module_sig_check(struct load_info *info,
2429  const void *mod, unsigned long *_len)
2430 {
2431  int err = -ENOKEY;
2432  unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2433  unsigned long len = *_len;
2434 
2435  if (len > markerlen &&
2436  memcmp(mod + len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2437  /* We truncate the module to discard the signature */
2438  *_len -= markerlen;
2439  err = mod_verify_sig(mod, _len);
2440  }
2441 
2442  if (!err) {
2443  info->sig_ok = true;
2444  return 0;
2445  }
2446 
2447  /* Not having a signature is only an error if we're strict. */
2448  if (err < 0 && fips_enabled)
2449  panic("Module verification failed with error %d in FIPS mode\n",
2450  err);
2451  if (err == -ENOKEY && !sig_enforce)
2452  err = 0;
2453 
2454  return err;
2455 }
2456 #else /* !CONFIG_MODULE_SIG */
2457 static int module_sig_check(struct load_info *info,
2458  void *mod, unsigned long *len)
2459 {
2460  return 0;
2461 }
2462 #endif /* !CONFIG_MODULE_SIG */
2463 
2464 /* Sets info->hdr, info->len and info->sig_ok. */
2465 static int copy_and_check(struct load_info *info,
2466  const void __user *umod, unsigned long len,
2467  const char __user *uargs)
2468 {
2469  int err;
2470  Elf_Ehdr *hdr;
2471 
2472  if (len < sizeof(*hdr))
2473  return -ENOEXEC;
2474 
2475  /* Suck in entire file: we'll want most of it. */
2476  if ((hdr = vmalloc(len)) == NULL)
2477  return -ENOMEM;
2478 
2479  if (copy_from_user(hdr, umod, len) != 0) {
2480  err = -EFAULT;
2481  goto free_hdr;
2482  }
2483 
2484  err = module_sig_check(info, hdr, &len);
2485  if (err)
2486  goto free_hdr;
2487 
2488  /* Sanity checks against insmoding binaries or wrong arch,
2489  weird elf version */
2490  if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
2491  || hdr->e_type != ET_REL
2492  || !elf_check_arch(hdr)
2493  || hdr->e_shentsize != sizeof(Elf_Shdr)) {
2494  err = -ENOEXEC;
2495  goto free_hdr;
2496  }
2497 
2498  if (hdr->e_shoff >= len ||
2499  hdr->e_shnum * sizeof(Elf_Shdr) > len - hdr->e_shoff) {
2500  err = -ENOEXEC;
2501  goto free_hdr;
2502  }
2503 
2504  info->hdr = hdr;
2505  info->len = len;
2506  return 0;
2507 
2508 free_hdr:
2509  vfree(hdr);
2510  return err;
2511 }
2512 
2513 static void free_copy(struct load_info *info)
2514 {
2515  vfree(info->hdr);
2516 }
2517 
2518 static int rewrite_section_headers(struct load_info *info)
2519 {
2520  unsigned int i;
2521 
2522  /* This should always be true, but let's be sure. */
2523  info->sechdrs[0].sh_addr = 0;
2524 
2525  for (i = 1; i < info->hdr->e_shnum; i++) {
2526  Elf_Shdr *shdr = &info->sechdrs[i];
2527  if (shdr->sh_type != SHT_NOBITS
2528  && info->len < shdr->sh_offset + shdr->sh_size) {
2529  printk(KERN_ERR "Module len %lu truncated\n",
2530  info->len);
2531  return -ENOEXEC;
2532  }
2533 
2534  /* Mark all sections sh_addr with their address in the
2535  temporary image. */
2536  shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2537 
2538 #ifndef CONFIG_MODULE_UNLOAD
2539  /* Don't load .exit sections */
2540  if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2541  shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2542 #endif
2543  }
2544 
2545  /* Track but don't keep modinfo and version sections. */
2546  info->index.vers = find_sec(info, "__versions");
2547  info->index.info = find_sec(info, ".modinfo");
2548  info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2549  info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2550  return 0;
2551 }
2552 
2553 /*
2554  * Set up our basic convenience variables (pointers to section headers,
2555  * search for module section index etc), and do some basic section
2556  * verification.
2557  *
2558  * Return the temporary module pointer (we'll replace it with the final
2559  * one when we move the module sections around).
2560  */
2561 static struct module *setup_load_info(struct load_info *info)
2562 {
2563  unsigned int i;
2564  int err;
2565  struct module *mod;
2566 
2567  /* Set up the convenience variables */
2568  info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2569  info->secstrings = (void *)info->hdr
2570  + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2571 
2572  err = rewrite_section_headers(info);
2573  if (err)
2574  return ERR_PTR(err);
2575 
2576  /* Find internal symbols and strings. */
2577  for (i = 1; i < info->hdr->e_shnum; i++) {
2578  if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2579  info->index.sym = i;
2580  info->index.str = info->sechdrs[i].sh_link;
2581  info->strtab = (char *)info->hdr
2582  + info->sechdrs[info->index.str].sh_offset;
2583  break;
2584  }
2585  }
2586 
2587  info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2588  if (!info->index.mod) {
2589  printk(KERN_WARNING "No module found in object\n");
2590  return ERR_PTR(-ENOEXEC);
2591  }
2592  /* This is temporary: point mod into copy of data. */
2593  mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2594 
2595  if (info->index.sym == 0) {
2596  printk(KERN_WARNING "%s: module has no symbols (stripped?)\n",
2597  mod->name);
2598  return ERR_PTR(-ENOEXEC);
2599  }
2600 
2601  info->index.pcpu = find_pcpusec(info);
2602 
2603  /* Check module struct version now, before we try to use module. */
2604  if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2605  return ERR_PTR(-ENOEXEC);
2606 
2607  return mod;
2608 }
2609 
2610 static int check_modinfo(struct module *mod, struct load_info *info)
2611 {
2612  const char *modmagic = get_modinfo(info, "vermagic");
2613  int err;
2614 
2615  /* This is allowed: modprobe --force will invalidate it. */
2616  if (!modmagic) {
2617  err = try_to_force_load(mod, "bad vermagic");
2618  if (err)
2619  return err;
2620  } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2621  printk(KERN_ERR "%s: version magic '%s' should be '%s'\n",
2622  mod->name, modmagic, vermagic);
2623  return -ENOEXEC;
2624  }
2625 
2626  if (!get_modinfo(info, "intree"))
2627  add_taint_module(mod, TAINT_OOT_MODULE);
2628 
2629  if (get_modinfo(info, "staging")) {
2630  add_taint_module(mod, TAINT_CRAP);
2631  printk(KERN_WARNING "%s: module is from the staging directory,"
2632  " the quality is unknown, you have been warned.\n",
2633  mod->name);
2634  }
2635 
2636  /* Set up license info based on the info section */
2637  set_license(mod, get_modinfo(info, "license"));
2638 
2639  return 0;
2640 }
2641 
2642 static void find_module_sections(struct module *mod, struct load_info *info)
2643 {
2644  mod->kp = section_objs(info, "__param",
2645  sizeof(*mod->kp), &mod->num_kp);
2646  mod->syms = section_objs(info, "__ksymtab",
2647  sizeof(*mod->syms), &mod->num_syms);
2648  mod->crcs = section_addr(info, "__kcrctab");
2649  mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2650  sizeof(*mod->gpl_syms),
2651  &mod->num_gpl_syms);
2652  mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2653  mod->gpl_future_syms = section_objs(info,
2654  "__ksymtab_gpl_future",
2655  sizeof(*mod->gpl_future_syms),
2656  &mod->num_gpl_future_syms);
2657  mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2658 
2659 #ifdef CONFIG_UNUSED_SYMBOLS
2660  mod->unused_syms = section_objs(info, "__ksymtab_unused",
2661  sizeof(*mod->unused_syms),
2662  &mod->num_unused_syms);
2663  mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2664  mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2665  sizeof(*mod->unused_gpl_syms),
2666  &mod->num_unused_gpl_syms);
2667  mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2668 #endif
2669 #ifdef CONFIG_CONSTRUCTORS
2670  mod->ctors = section_objs(info, ".ctors",
2671  sizeof(*mod->ctors), &mod->num_ctors);
2672 #endif
2673 
2674 #ifdef CONFIG_TRACEPOINTS
2675  mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2676  sizeof(*mod->tracepoints_ptrs),
2677  &mod->num_tracepoints);
2678 #endif
2679 #ifdef HAVE_JUMP_LABEL
2680  mod->jump_entries = section_objs(info, "__jump_table",
2681  sizeof(*mod->jump_entries),
2682  &mod->num_jump_entries);
2683 #endif
2684 #ifdef CONFIG_EVENT_TRACING
2685  mod->trace_events = section_objs(info, "_ftrace_events",
2686  sizeof(*mod->trace_events),
2687  &mod->num_trace_events);
2688  /*
2689  * This section contains pointers to allocated objects in the trace
2690  * code and not scanning it leads to false positives.
2691  */
2692  kmemleak_scan_area(mod->trace_events, sizeof(*mod->trace_events) *
2693  mod->num_trace_events, GFP_KERNEL);
2694 #endif
2695 #ifdef CONFIG_TRACING
2696  mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2697  sizeof(*mod->trace_bprintk_fmt_start),
2698  &mod->num_trace_bprintk_fmt);
2699  /*
2700  * This section contains pointers to allocated objects in the trace
2701  * code and not scanning it leads to false positives.
2702  */
2703  kmemleak_scan_area(mod->trace_bprintk_fmt_start,
2704  sizeof(*mod->trace_bprintk_fmt_start) *
2705  mod->num_trace_bprintk_fmt, GFP_KERNEL);
2706 #endif
2707 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2708  /* sechdrs[0].sh_size is always zero */
2709  mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2710  sizeof(*mod->ftrace_callsites),
2711  &mod->num_ftrace_callsites);
2712 #endif
2713 
2714  mod->extable = section_objs(info, "__ex_table",
2715  sizeof(*mod->extable), &mod->num_exentries);
2716 
2717  if (section_addr(info, "__obsparm"))
2718  printk(KERN_WARNING "%s: Ignoring obsolete parameters\n",
2719  mod->name);
2720 
2721  info->debug = section_objs(info, "__verbose",
2722  sizeof(*info->debug), &info->num_debug);
2723 }
2724 
2725 static int move_module(struct module *mod, struct load_info *info)
2726 {
2727  int i;
2728  void *ptr;
2729 
2730  /* Do the allocs. */
2731  ptr = module_alloc_update_bounds(mod->core_size);
2732  /*
2733  * The pointer to this block is stored in the module structure
2734  * which is inside the block. Just mark it as not being a
2735  * leak.
2736  */
2737  kmemleak_not_leak(ptr);
2738  if (!ptr)
2739  return -ENOMEM;
2740 
2741  memset(ptr, 0, mod->core_size);
2742  mod->module_core = ptr;
2743 
2744  ptr = module_alloc_update_bounds(mod->init_size);
2745  /*
2746  * The pointer to this block is stored in the module structure
2747  * which is inside the block. This block doesn't need to be
2748  * scanned as it contains data and code that will be freed
2749  * after the module is initialized.
2750  */
2751  kmemleak_ignore(ptr);
2752  if (!ptr && mod->init_size) {
2753  module_free(mod, mod->module_core);
2754  return -ENOMEM;
2755  }
2756  memset(ptr, 0, mod->init_size);
2757  mod->module_init = ptr;
2758 
2759  /* Transfer each section which specifies SHF_ALLOC */
2760  pr_debug("final section addresses:\n");
2761  for (i = 0; i < info->hdr->e_shnum; i++) {
2762  void *dest;
2763  Elf_Shdr *shdr = &info->sechdrs[i];
2764 
2765  if (!(shdr->sh_flags & SHF_ALLOC))
2766  continue;
2767 
2768  if (shdr->sh_entsize & INIT_OFFSET_MASK)
2769  dest = mod->module_init
2770  + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2771  else
2772  dest = mod->module_core + shdr->sh_entsize;
2773 
2774  if (shdr->sh_type != SHT_NOBITS)
2775  memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2776  /* Update sh_addr to point to copy in image. */
2777  shdr->sh_addr = (unsigned long)dest;
2778  pr_debug("\t0x%lx %s\n",
2779  (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2780  }
2781 
2782  return 0;
2783 }
2784 
2785 static int check_module_license_and_versions(struct module *mod)
2786 {
2787  /*
2788  * ndiswrapper is under GPL by itself, but loads proprietary modules.
2789  * Don't use add_taint_module(), as it would prevent ndiswrapper from
2790  * using GPL-only symbols it needs.
2791  */
2792  if (strcmp(mod->name, "ndiswrapper") == 0)
2794 
2795  /* driverloader was caught wrongly pretending to be under GPL */
2796  if (strcmp(mod->name, "driverloader") == 0)
2797  add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
2798 
2799  /* lve claims to be GPL but upstream won't provide source */
2800  if (strcmp(mod->name, "lve") == 0)
2801  add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
2802 
2803 #ifdef CONFIG_MODVERSIONS
2804  if ((mod->num_syms && !mod->crcs)
2805  || (mod->num_gpl_syms && !mod->gpl_crcs)
2806  || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2807 #ifdef CONFIG_UNUSED_SYMBOLS
2808  || (mod->num_unused_syms && !mod->unused_crcs)
2809  || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2810 #endif
2811  ) {
2812  return try_to_force_load(mod,
2813  "no versions for exported symbols");
2814  }
2815 #endif
2816  return 0;
2817 }
2818 
2819 static void flush_module_icache(const struct module *mod)
2820 {
2821  mm_segment_t old_fs;
2822 
2823  /* flush the icache in correct context */
2824  old_fs = get_fs();
2825  set_fs(KERNEL_DS);
2826 
2827  /*
2828  * Flush the instruction cache, since we've played with text.
2829  * Do it before processing of module parameters, so the module
2830  * can provide parameter accessor functions of its own.
2831  */
2832  if (mod->module_init)
2833  flush_icache_range((unsigned long)mod->module_init,
2834  (unsigned long)mod->module_init
2835  + mod->init_size);
2836  flush_icache_range((unsigned long)mod->module_core,
2837  (unsigned long)mod->module_core + mod->core_size);
2838 
2839  set_fs(old_fs);
2840 }
2841 
2843  Elf_Shdr *sechdrs,
2844  char *secstrings,
2845  struct module *mod)
2846 {
2847  return 0;
2848 }
2849 
2850 static struct module *layout_and_allocate(struct load_info *info)
2851 {
2852  /* Module within temporary copy. */
2853  struct module *mod;
2854  Elf_Shdr *pcpusec;
2855  int err;
2856 
2857  mod = setup_load_info(info);
2858  if (IS_ERR(mod))
2859  return mod;
2860 
2861  err = check_modinfo(mod, info);
2862  if (err)
2863  return ERR_PTR(err);
2864 
2865  /* Allow arches to frob section contents and sizes. */
2866  err = module_frob_arch_sections(info->hdr, info->sechdrs,
2867  info->secstrings, mod);
2868  if (err < 0)
2869  goto out;
2870 
2871  pcpusec = &info->sechdrs[info->index.pcpu];
2872  if (pcpusec->sh_size) {
2873  /* We have a special allocation for this section. */
2874  err = percpu_modalloc(mod,
2875  pcpusec->sh_size, pcpusec->sh_addralign);
2876  if (err)
2877  goto out;
2878  pcpusec->sh_flags &= ~(unsigned long)SHF_ALLOC;
2879  }
2880 
2881  /* Determine total sizes, and put offsets in sh_entsize. For now
2882  this is done generically; there doesn't appear to be any
2883  special cases for the architectures. */
2884  layout_sections(mod, info);
2885  layout_symtab(mod, info);
2886 
2887  /* Allocate and move to the final place */
2888  err = move_module(mod, info);
2889  if (err)
2890  goto free_percpu;
2891 
2892  /* Module has been copied to its final place now: return it. */
2893  mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2894  kmemleak_load_module(mod, info);
2895  return mod;
2896 
2897 free_percpu:
2898  percpu_modfree(mod);
2899 out:
2900  return ERR_PTR(err);
2901 }
2902 
2903 /* mod is no longer valid after this! */
2904 static void module_deallocate(struct module *mod, struct load_info *info)
2905 {
2906  percpu_modfree(mod);
2907  module_free(mod, mod->module_init);
2908  module_free(mod, mod->module_core);
2909 }
2910 
2912  const Elf_Shdr *sechdrs,
2913  struct module *me)
2914 {
2915  return 0;
2916 }
2917 
2918 static int post_relocation(struct module *mod, const struct load_info *info)
2919 {
2920  /* Sort exception table now relocations are done. */
2921  sort_extable(mod->extable, mod->extable + mod->num_exentries);
2922 
2923  /* Copy relocated percpu area over. */
2924  percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2925  info->sechdrs[info->index.pcpu].sh_size);
2926 
2927  /* Setup kallsyms-specific fields. */
2928  add_kallsyms(mod, info);
2929 
2930  /* Arch-specific module finalizing. */
2931  return module_finalize(info->hdr, info->sechdrs, mod);
2932 }
2933 
2934 /* Is this module of this name done loading? No locks held. */
2935 static bool finished_loading(const char *name)
2936 {
2937  struct module *mod;
2938  bool ret;
2939 
2940  mutex_lock(&module_mutex);
2941  mod = find_module(name);
2942  ret = !mod || mod->state != MODULE_STATE_COMING;
2943  mutex_unlock(&module_mutex);
2944 
2945  return ret;
2946 }
2947 
2948 /* Allocate and load the module: note that size of section 0 is always
2949  zero, and we rely on this for optional sections. */
2950 static struct module *load_module(void __user *umod,
2951  unsigned long len,
2952  const char __user *uargs)
2953 {
2954  struct load_info info = { NULL, };
2955  struct module *mod, *old;
2956  long err;
2957 
2958  pr_debug("load_module: umod=%p, len=%lu, uargs=%p\n",
2959  umod, len, uargs);
2960 
2961  /* Copy in the blobs from userspace, check they are vaguely sane. */
2962  err = copy_and_check(&info, umod, len, uargs);
2963  if (err)
2964  return ERR_PTR(err);
2965 
2966  /* Figure out module layout, and allocate all the memory. */
2967  mod = layout_and_allocate(&info);
2968  if (IS_ERR(mod)) {
2969  err = PTR_ERR(mod);
2970  goto free_copy;
2971  }
2972 
2973 #ifdef CONFIG_MODULE_SIG
2974  mod->sig_ok = info.sig_ok;
2975  if (!mod->sig_ok)
2976  add_taint_module(mod, TAINT_FORCED_MODULE);
2977 #endif
2978 
2979  /* Now module is in final location, initialize linked lists, etc. */
2980  err = module_unload_init(mod);
2981  if (err)
2982  goto free_module;
2983 
2984  /* Now we've got everything in the final locations, we can
2985  * find optional sections. */
2986  find_module_sections(mod, &info);
2987 
2988  err = check_module_license_and_versions(mod);
2989  if (err)
2990  goto free_unload;
2991 
2992  /* Set up MODINFO_ATTR fields */
2993  setup_modinfo(mod, &info);
2994 
2995  /* Fix up syms, so that st_value is a pointer to location. */
2996  err = simplify_symbols(mod, &info);
2997  if (err < 0)
2998  goto free_modinfo;
2999 
3000  err = apply_relocations(mod, &info);
3001  if (err < 0)
3002  goto free_modinfo;
3003 
3004  err = post_relocation(mod, &info);
3005  if (err < 0)
3006  goto free_modinfo;
3007 
3008  flush_module_icache(mod);
3009 
3010  /* Now copy in args */
3011  mod->args = strndup_user(uargs, ~0UL >> 1);
3012  if (IS_ERR(mod->args)) {
3013  err = PTR_ERR(mod->args);
3014  goto free_arch_cleanup;
3015  }
3016 
3017  /* Mark state as coming so strong_try_module_get() ignores us. */
3018  mod->state = MODULE_STATE_COMING;
3019 
3020  /* Now sew it into the lists so we can get lockdep and oops
3021  * info during argument parsing. No one should access us, since
3022  * strong_try_module_get() will fail.
3023  * lockdep/oops can run asynchronous, so use the RCU list insertion
3024  * function to insert in a way safe to concurrent readers.
3025  * The mutex protects against concurrent writers.
3026  */
3027 again:
3028  mutex_lock(&module_mutex);
3029  if ((old = find_module(mod->name)) != NULL) {
3030  if (old->state == MODULE_STATE_COMING) {
3031  /* Wait in case it fails to load. */
3032  mutex_unlock(&module_mutex);
3033  err = wait_event_interruptible(module_wq,
3034  finished_loading(mod->name));
3035  if (err)
3036  goto free_arch_cleanup;
3037  goto again;
3038  }
3039  err = -EEXIST;
3040  goto unlock;
3041  }
3042 
3043  /* This has to be done once we're sure module name is unique. */
3044  dynamic_debug_setup(info.debug, info.num_debug);
3045 
3046  /* Find duplicate symbols */
3047  err = verify_export_symbols(mod);
3048  if (err < 0)
3049  goto ddebug;
3050 
3051  module_bug_finalize(info.hdr, info.sechdrs, mod);
3052  list_add_rcu(&mod->list, &modules);
3053  mutex_unlock(&module_mutex);
3054 
3055  /* Module is ready to execute: parsing args may do that. */
3056  err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3057  -32768, 32767, &ddebug_dyndbg_module_param_cb);
3058  if (err < 0)
3059  goto unlink;
3060 
3061  /* Link in to syfs. */
3062  err = mod_sysfs_setup(mod, &info, mod->kp, mod->num_kp);
3063  if (err < 0)
3064  goto unlink;
3065 
3066  /* Get rid of temporary copy. */
3067  free_copy(&info);
3068 
3069  /* Done! */
3070  trace_module_load(mod);
3071  return mod;
3072 
3073  unlink:
3074  mutex_lock(&module_mutex);
3075  /* Unlink carefully: kallsyms could be walking list. */
3076  list_del_rcu(&mod->list);
3077  module_bug_cleanup(mod);
3078  wake_up_all(&module_wq);
3079  ddebug:
3080  dynamic_debug_remove(info.debug);
3081  unlock:
3082  mutex_unlock(&module_mutex);
3084  kfree(mod->args);
3085  free_arch_cleanup:
3086  module_arch_cleanup(mod);
3087  free_modinfo:
3088  free_modinfo(mod);
3089  free_unload:
3090  module_unload_free(mod);
3091  free_module:
3092  module_deallocate(mod, &info);
3093  free_copy:
3094  free_copy(&info);
3095  return ERR_PTR(err);
3096 }
3097 
3098 /* Call module constructors. */
3099 static void do_mod_ctors(struct module *mod)
3100 {
3101 #ifdef CONFIG_CONSTRUCTORS
3102  unsigned long i;
3103 
3104  for (i = 0; i < mod->num_ctors; i++)
3105  mod->ctors[i]();
3106 #endif
3107 }
3108 
3109 /* This is where the real work happens */
3110 SYSCALL_DEFINE3(init_module, void __user *, umod,
3111  unsigned long, len, const char __user *, uargs)
3112 {
3113  struct module *mod;
3114  int ret = 0;
3115 
3116  /* Must have permission */
3117  if (!capable(CAP_SYS_MODULE) || modules_disabled)
3118  return -EPERM;
3119 
3120  /* Do all the hard work */
3121  mod = load_module(umod, len, uargs);
3122  if (IS_ERR(mod))
3123  return PTR_ERR(mod);
3124 
3125  blocking_notifier_call_chain(&module_notify_list,
3126  MODULE_STATE_COMING, mod);
3127 
3128  /* Set RO and NX regions for core */
3129  set_section_ro_nx(mod->module_core,
3130  mod->core_text_size,
3131  mod->core_ro_size,
3132  mod->core_size);
3133 
3134  /* Set RO and NX regions for init */
3135  set_section_ro_nx(mod->module_init,
3136  mod->init_text_size,
3137  mod->init_ro_size,
3138  mod->init_size);
3139 
3140  do_mod_ctors(mod);
3141  /* Start the module */
3142  if (mod->init != NULL)
3143  ret = do_one_initcall(mod->init);
3144  if (ret < 0) {
3145  /* Init routine failed: abort. Try to protect us from
3146  buggy refcounters. */
3147  mod->state = MODULE_STATE_GOING;
3149  module_put(mod);
3150  blocking_notifier_call_chain(&module_notify_list,
3151  MODULE_STATE_GOING, mod);
3152  free_module(mod);
3153  wake_up_all(&module_wq);
3154  return ret;
3155  }
3156  if (ret > 0) {
3158 "%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n"
3159 "%s: loading module anyway...\n",
3160  __func__, mod->name, ret,
3161  __func__);
3162  dump_stack();
3163  }
3164 
3165  /* Now it's a first class citizen! */
3166  mod->state = MODULE_STATE_LIVE;
3167  blocking_notifier_call_chain(&module_notify_list,
3168  MODULE_STATE_LIVE, mod);
3169 
3170  /* We need to finish all async code before the module init sequence is done */
3172 
3173  mutex_lock(&module_mutex);
3174  /* Drop initial reference. */
3175  module_put(mod);
3176  trim_init_extable(mod);
3177 #ifdef CONFIG_KALLSYMS
3178  mod->num_symtab = mod->core_num_syms;
3179  mod->symtab = mod->core_symtab;
3180  mod->strtab = mod->core_strtab;
3181 #endif
3182  unset_module_init_ro_nx(mod);
3183  module_free(mod, mod->module_init);
3184  mod->module_init = NULL;
3185  mod->init_size = 0;
3186  mod->init_ro_size = 0;
3187  mod->init_text_size = 0;
3188  mutex_unlock(&module_mutex);
3189  wake_up_all(&module_wq);
3190 
3191  return 0;
3192 }
3193 
3194 static inline int within(unsigned long addr, void *start, unsigned long size)
3195 {
3196  return ((void *)addr >= start && (void *)addr < start + size);
3197 }
3198 
3199 #ifdef CONFIG_KALLSYMS
3200 /*
3201  * This ignores the intensely annoying "mapping symbols" found
3202  * in ARM ELF files: $a, $t and $d.
3203  */
3204 static inline int is_arm_mapping_symbol(const char *str)
3205 {
3206  return str[0] == '$' && strchr("atd", str[1])
3207  && (str[2] == '\0' || str[2] == '.');
3208 }
3209 
3210 static const char *get_ksymbol(struct module *mod,
3211  unsigned long addr,
3212  unsigned long *size,
3213  unsigned long *offset)
3214 {
3215  unsigned int i, best = 0;
3216  unsigned long nextval;
3217 
3218  /* At worse, next value is at end of module */
3219  if (within_module_init(addr, mod))
3220  nextval = (unsigned long)mod->module_init+mod->init_text_size;
3221  else
3222  nextval = (unsigned long)mod->module_core+mod->core_text_size;
3223 
3224  /* Scan for closest preceding symbol, and next symbol. (ELF
3225  starts real symbols at 1). */
3226  for (i = 1; i < mod->num_symtab; i++) {
3227  if (mod->symtab[i].st_shndx == SHN_UNDEF)
3228  continue;
3229 
3230  /* We ignore unnamed symbols: they're uninformative
3231  * and inserted at a whim. */
3232  if (mod->symtab[i].st_value <= addr
3233  && mod->symtab[i].st_value > mod->symtab[best].st_value
3234  && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3235  && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3236  best = i;
3237  if (mod->symtab[i].st_value > addr
3238  && mod->symtab[i].st_value < nextval
3239  && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3240  && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3241  nextval = mod->symtab[i].st_value;
3242  }
3243 
3244  if (!best)
3245  return NULL;
3246 
3247  if (size)
3248  *size = nextval - mod->symtab[best].st_value;
3249  if (offset)
3250  *offset = addr - mod->symtab[best].st_value;
3251  return mod->strtab + mod->symtab[best].st_name;
3252 }
3253 
3254 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3255  * not to lock to avoid deadlock on oopses, simply disable preemption. */
3256 const char *module_address_lookup(unsigned long addr,
3257  unsigned long *size,
3258  unsigned long *offset,
3259  char **modname,
3260  char *namebuf)
3261 {
3262  struct module *mod;
3263  const char *ret = NULL;
3264 
3265  preempt_disable();
3266  list_for_each_entry_rcu(mod, &modules, list) {
3267  if (within_module_init(addr, mod) ||
3268  within_module_core(addr, mod)) {
3269  if (modname)
3270  *modname = mod->name;
3271  ret = get_ksymbol(mod, addr, size, offset);
3272  break;
3273  }
3274  }
3275  /* Make a copy in here where it's safe */
3276  if (ret) {
3277  strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3278  ret = namebuf;
3279  }
3280  preempt_enable();
3281  return ret;
3282 }
3283 
3284 int lookup_module_symbol_name(unsigned long addr, char *symname)
3285 {
3286  struct module *mod;
3287 
3288  preempt_disable();
3289  list_for_each_entry_rcu(mod, &modules, list) {
3290  if (within_module_init(addr, mod) ||
3291  within_module_core(addr, mod)) {
3292  const char *sym;
3293 
3294  sym = get_ksymbol(mod, addr, NULL, NULL);
3295  if (!sym)
3296  goto out;
3297  strlcpy(symname, sym, KSYM_NAME_LEN);
3298  preempt_enable();
3299  return 0;
3300  }
3301  }
3302 out:
3303  preempt_enable();
3304  return -ERANGE;
3305 }
3306 
3307 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3308  unsigned long *offset, char *modname, char *name)
3309 {
3310  struct module *mod;
3311 
3312  preempt_disable();
3313  list_for_each_entry_rcu(mod, &modules, list) {
3314  if (within_module_init(addr, mod) ||
3315  within_module_core(addr, mod)) {
3316  const char *sym;
3317 
3318  sym = get_ksymbol(mod, addr, size, offset);
3319  if (!sym)
3320  goto out;
3321  if (modname)
3322  strlcpy(modname, mod->name, MODULE_NAME_LEN);
3323  if (name)
3324  strlcpy(name, sym, KSYM_NAME_LEN);
3325  preempt_enable();
3326  return 0;
3327  }
3328  }
3329 out:
3330  preempt_enable();
3331  return -ERANGE;
3332 }
3333 
3334 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3335  char *name, char *module_name, int *exported)
3336 {
3337  struct module *mod;
3338 
3339  preempt_disable();
3340  list_for_each_entry_rcu(mod, &modules, list) {
3341  if (symnum < mod->num_symtab) {
3342  *value = mod->symtab[symnum].st_value;
3343  *type = mod->symtab[symnum].st_info;
3344  strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
3345  KSYM_NAME_LEN);
3346  strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3347  *exported = is_exported(name, *value, mod);
3348  preempt_enable();
3349  return 0;
3350  }
3351  symnum -= mod->num_symtab;
3352  }
3353  preempt_enable();
3354  return -ERANGE;
3355 }
3356 
3357 static unsigned long mod_find_symname(struct module *mod, const char *name)
3358 {
3359  unsigned int i;
3360 
3361  for (i = 0; i < mod->num_symtab; i++)
3362  if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
3363  mod->symtab[i].st_info != 'U')
3364  return mod->symtab[i].st_value;
3365  return 0;
3366 }
3367 
3368 /* Look for this name: can be of form module:name. */
3369 unsigned long module_kallsyms_lookup_name(const char *name)
3370 {
3371  struct module *mod;
3372  char *colon;
3373  unsigned long ret = 0;
3374 
3375  /* Don't lock: we're in enough trouble already. */
3376  preempt_disable();
3377  if ((colon = strchr(name, ':')) != NULL) {
3378  *colon = '\0';
3379  if ((mod = find_module(name)) != NULL)
3380  ret = mod_find_symname(mod, colon+1);
3381  *colon = ':';
3382  } else {
3383  list_for_each_entry_rcu(mod, &modules, list)
3384  if ((ret = mod_find_symname(mod, name)) != 0)
3385  break;
3386  }
3387  preempt_enable();
3388  return ret;
3389 }
3390 
3391 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3392  struct module *, unsigned long),
3393  void *data)
3394 {
3395  struct module *mod;
3396  unsigned int i;
3397  int ret;
3398 
3399  list_for_each_entry(mod, &modules, list) {
3400  for (i = 0; i < mod->num_symtab; i++) {
3401  ret = fn(data, mod->strtab + mod->symtab[i].st_name,
3402  mod, mod->symtab[i].st_value);
3403  if (ret != 0)
3404  return ret;
3405  }
3406  }
3407  return 0;
3408 }
3409 #endif /* CONFIG_KALLSYMS */
3410 
3411 static char *module_flags(struct module *mod, char *buf)
3412 {
3413  int bx = 0;
3414 
3415  if (mod->taints ||
3416  mod->state == MODULE_STATE_GOING ||
3417  mod->state == MODULE_STATE_COMING) {
3418  buf[bx++] = '(';
3419  bx += module_flags_taint(mod, buf + bx);
3420  /* Show a - for module-is-being-unloaded */
3421  if (mod->state == MODULE_STATE_GOING)
3422  buf[bx++] = '-';
3423  /* Show a + for module-is-being-loaded */
3424  if (mod->state == MODULE_STATE_COMING)
3425  buf[bx++] = '+';
3426  buf[bx++] = ')';
3427  }
3428  buf[bx] = '\0';
3429 
3430  return buf;
3431 }
3432 
3433 #ifdef CONFIG_PROC_FS
3434 /* Called by the /proc file system to return a list of modules. */
3435 static void *m_start(struct seq_file *m, loff_t *pos)
3436 {
3437  mutex_lock(&module_mutex);
3438  return seq_list_start(&modules, *pos);
3439 }
3440 
3441 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3442 {
3443  return seq_list_next(p, &modules, pos);
3444 }
3445 
3446 static void m_stop(struct seq_file *m, void *p)
3447 {
3448  mutex_unlock(&module_mutex);
3449 }
3450 
3451 static int m_show(struct seq_file *m, void *p)
3452 {
3453  struct module *mod = list_entry(p, struct module, list);
3454  char buf[8];
3455 
3456  seq_printf(m, "%s %u",
3457  mod->name, mod->init_size + mod->core_size);
3458  print_unload_info(m, mod);
3459 
3460  /* Informative for users. */
3461  seq_printf(m, " %s",
3462  mod->state == MODULE_STATE_GOING ? "Unloading":
3463  mod->state == MODULE_STATE_COMING ? "Loading":
3464  "Live");
3465  /* Used by oprofile and other similar tools. */
3466  seq_printf(m, " 0x%pK", mod->module_core);
3467 
3468  /* Taints info */
3469  if (mod->taints)
3470  seq_printf(m, " %s", module_flags(mod, buf));
3471 
3472  seq_printf(m, "\n");
3473  return 0;
3474 }
3475 
3476 /* Format: modulename size refcount deps address
3477 
3478  Where refcount is a number or -, and deps is a comma-separated list
3479  of depends or -.
3480 */
3481 static const struct seq_operations modules_op = {
3482  .start = m_start,
3483  .next = m_next,
3484  .stop = m_stop,
3485  .show = m_show
3486 };
3487 
3488 static int modules_open(struct inode *inode, struct file *file)
3489 {
3490  return seq_open(file, &modules_op);
3491 }
3492 
3493 static const struct file_operations proc_modules_operations = {
3494  .open = modules_open,
3495  .read = seq_read,
3496  .llseek = seq_lseek,
3497  .release = seq_release,
3498 };
3499 
3500 static int __init proc_modules_init(void)
3501 {
3502  proc_create("modules", 0, NULL, &proc_modules_operations);
3503  return 0;
3504 }
3505 module_init(proc_modules_init);
3506 #endif
3507 
3508 /* Given an address, look for it in the module exception tables. */
3509 const struct exception_table_entry *search_module_extables(unsigned long addr)
3510 {
3511  const struct exception_table_entry *e = NULL;
3512  struct module *mod;
3513 
3514  preempt_disable();
3515  list_for_each_entry_rcu(mod, &modules, list) {
3516  if (mod->num_exentries == 0)
3517  continue;
3518 
3519  e = search_extable(mod->extable,
3520  mod->extable + mod->num_exentries - 1,
3521  addr);
3522  if (e)
3523  break;
3524  }
3525  preempt_enable();
3526 
3527  /* Now, if we found one, we are running inside it now, hence
3528  we cannot unload the module, hence no refcnt needed. */
3529  return e;
3530 }
3531 
3532 /*
3533  * is_module_address - is this address inside a module?
3534  * @addr: the address to check.
3535  *
3536  * See is_module_text_address() if you simply want to see if the address
3537  * is code (not data).
3538  */
3539 bool is_module_address(unsigned long addr)
3540 {
3541  bool ret;
3542 
3543  preempt_disable();
3544  ret = __module_address(addr) != NULL;
3545  preempt_enable();
3546 
3547  return ret;
3548 }
3549 
3550 /*
3551  * __module_address - get the module which contains an address.
3552  * @addr: the address.
3553  *
3554  * Must be called with preempt disabled or module mutex held so that
3555  * module doesn't get freed during this.
3556  */
3557 struct module *__module_address(unsigned long addr)
3558 {
3559  struct module *mod;
3560 
3561  if (addr < module_addr_min || addr > module_addr_max)
3562  return NULL;
3563 
3564  list_for_each_entry_rcu(mod, &modules, list)
3565  if (within_module_core(addr, mod)
3566  || within_module_init(addr, mod))
3567  return mod;
3568  return NULL;
3569 }
3571 
3572 /*
3573  * is_module_text_address - is this address inside module code?
3574  * @addr: the address to check.
3575  *
3576  * See is_module_address() if you simply want to see if the address is
3577  * anywhere in a module. See kernel_text_address() for testing if an
3578  * address corresponds to kernel or module code.
3579  */
3580 bool is_module_text_address(unsigned long addr)
3581 {
3582  bool ret;
3583 
3584  preempt_disable();
3585  ret = __module_text_address(addr) != NULL;
3586  preempt_enable();
3587 
3588  return ret;
3589 }
3590 
3591 /*
3592  * __module_text_address - get the module whose code contains an address.
3593  * @addr: the address.
3594  *
3595  * Must be called with preempt disabled or module mutex held so that
3596  * module doesn't get freed during this.
3597  */
3598 struct module *__module_text_address(unsigned long addr)
3599 {
3600  struct module *mod = __module_address(addr);
3601  if (mod) {
3602  /* Make sure it's within the text section. */
3603  if (!within(addr, mod->module_init, mod->init_text_size)
3604  && !within(addr, mod->module_core, mod->core_text_size))
3605  mod = NULL;
3606  }
3607  return mod;
3608 }
3610 
3611 /* Don't grab lock, we're oopsing. */
3612 void print_modules(void)
3613 {
3614  struct module *mod;
3615  char buf[8];
3616 
3617  printk(KERN_DEFAULT "Modules linked in:");
3618  /* Most callers should already have preempt disabled, but make sure */
3619  preempt_disable();
3620  list_for_each_entry_rcu(mod, &modules, list)
3621  printk(" %s%s", mod->name, module_flags(mod, buf));
3622  preempt_enable();
3623  if (last_unloaded_module[0])
3624  printk(" [last unloaded: %s]", last_unloaded_module);
3625  printk("\n");
3626 }
3627 
3628 #ifdef CONFIG_MODVERSIONS
3629 /* Generate the signature for all relevant module structures here.
3630  * If these change, we don't want to try to parse the module. */
3631 void module_layout(struct module *mod,
3632  struct modversion_info *ver,
3633  struct kernel_param *kp,
3634  struct kernel_symbol *ks,
3635  struct tracepoint * const *tp)
3636 {
3637 }
3638 EXPORT_SYMBOL(module_layout);
3639 #endif