Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
perfmon.c
Go to the documentation of this file.
1 /*
2  * This file implements the perfmon-2 subsystem which is used
3  * to program the IA-64 Performance Monitoring Unit (PMU).
4  *
5  * The initial version of perfmon.c was written by
6  * Ganesh Venkitachalam, IBM Corp.
7  *
8  * Then it was modified for perfmon-1.x by Stephane Eranian and
9  * David Mosberger, Hewlett Packard Co.
10  *
11  * Version Perfmon-2.x is a rewrite of perfmon-1.x
12  * by Stephane Eranian, Hewlett Packard Co.
13  *
14  * Copyright (C) 1999-2005 Hewlett Packard Co
15  * Stephane Eranian <[email protected]>
16  * David Mosberger-Tang <[email protected]>
17  *
18  * More information about perfmon available at:
19  * http://www.hpl.hp.com/research/linux/perfmon
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
30 #include <linux/mm.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
43 #include <linux/tracehook.h>
44 #include <linux/slab.h>
45 
46 #include <asm/errno.h>
47 #include <asm/intrinsics.h>
48 #include <asm/page.h>
49 #include <asm/perfmon.h>
50 #include <asm/processor.h>
51 #include <asm/signal.h>
52 #include <asm/uaccess.h>
53 #include <asm/delay.h>
54 
55 #ifdef CONFIG_PERFMON
56 /*
57  * perfmon context state
58  */
59 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
60 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
61 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
62 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
63 
64 #define PFM_INVALID_ACTIVATION (~0UL)
65 
66 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
67 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
68 
69 /*
70  * depth of message queue
71  */
72 #define PFM_MAX_MSGS 32
73 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
74 
75 /*
76  * type of a PMU register (bitmask).
77  * bitmask structure:
78  * bit0 : register implemented
79  * bit1 : end marker
80  * bit2-3 : reserved
81  * bit4 : pmc has pmc.pm
82  * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
83  * bit6-7 : register type
84  * bit8-31: reserved
85  */
86 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
87 #define PFM_REG_IMPL 0x1 /* register implemented */
88 #define PFM_REG_END 0x2 /* end marker */
89 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
90 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
91 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
92 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
93 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
94 
95 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
96 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
97 
98 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
99 
100 /* i assumed unsigned */
101 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
102 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
103 
104 /* XXX: these assume that register i is implemented */
105 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
108 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
109 
110 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
111 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
112 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
113 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
114 
115 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
116 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
117 
118 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
119 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
120 #define PFM_CTX_TASK(h) (h)->ctx_task
121 
122 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
123 
124 /* XXX: does not support more than 64 PMDs */
125 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
126 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
127 
128 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
129 
130 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
131 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
132 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
133 #define PFM_CODE_RR 0 /* requesting code range restriction */
134 #define PFM_DATA_RR 1 /* requestion data range restriction */
135 
136 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
137 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
138 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
139 
140 #define RDEP(x) (1UL<<(x))
141 
142 /*
143  * context protection macros
144  * in SMP:
145  * - we need to protect against CPU concurrency (spin_lock)
146  * - we need to protect against PMU overflow interrupts (local_irq_disable)
147  * in UP:
148  * - we need to protect against PMU overflow interrupts (local_irq_disable)
149  *
150  * spin_lock_irqsave()/spin_unlock_irqrestore():
151  * in SMP: local_irq_disable + spin_lock
152  * in UP : local_irq_disable
153  *
154  * spin_lock()/spin_lock():
155  * in UP : removed automatically
156  * in SMP: protect against context accesses from other CPU. interrupts
157  * are not masked. This is useful for the PMU interrupt handler
158  * because we know we will not get PMU concurrency in that code.
159  */
160 #define PROTECT_CTX(c, f) \
161  do { \
162  DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
163  spin_lock_irqsave(&(c)->ctx_lock, f); \
164  DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
165  } while(0)
166 
167 #define UNPROTECT_CTX(c, f) \
168  do { \
169  DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
170  spin_unlock_irqrestore(&(c)->ctx_lock, f); \
171  } while(0)
172 
173 #define PROTECT_CTX_NOPRINT(c, f) \
174  do { \
175  spin_lock_irqsave(&(c)->ctx_lock, f); \
176  } while(0)
177 
178 
179 #define UNPROTECT_CTX_NOPRINT(c, f) \
180  do { \
181  spin_unlock_irqrestore(&(c)->ctx_lock, f); \
182  } while(0)
183 
184 
185 #define PROTECT_CTX_NOIRQ(c) \
186  do { \
187  spin_lock(&(c)->ctx_lock); \
188  } while(0)
189 
190 #define UNPROTECT_CTX_NOIRQ(c) \
191  do { \
192  spin_unlock(&(c)->ctx_lock); \
193  } while(0)
194 
195 
196 #ifdef CONFIG_SMP
197 
198 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
199 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
200 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
201 
202 #else /* !CONFIG_SMP */
203 #define SET_ACTIVATION(t) do {} while(0)
204 #define GET_ACTIVATION(t) do {} while(0)
205 #define INC_ACTIVATION(t) do {} while(0)
206 #endif /* CONFIG_SMP */
207 
208 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
209 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
210 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
211 
212 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
213 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
214 
215 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
216 
217 /*
218  * cmp0 must be the value of pmc0
219  */
220 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
221 
222 #define PFMFS_MAGIC 0xa0b4d889
223 
224 /*
225  * debugging
226  */
227 #define PFM_DEBUGGING 1
228 #ifdef PFM_DEBUGGING
229 #define DPRINT(a) \
230  do { \
231  if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
232  } while (0)
233 
234 #define DPRINT_ovfl(a) \
235  do { \
236  if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
237  } while (0)
238 #endif
239 
240 /*
241  * 64-bit software counter structure
242  *
243  * the next_reset_type is applied to the next call to pfm_reset_regs()
244  */
245 typedef struct {
246  unsigned long val; /* virtual 64bit counter value */
247  unsigned long lval; /* last reset value */
248  unsigned long long_reset; /* reset value on sampling overflow */
249  unsigned long short_reset; /* reset value on overflow */
250  unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
251  unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
252  unsigned long seed; /* seed for random-number generator */
253  unsigned long mask; /* mask for random-number generator */
254  unsigned int flags; /* notify/do not notify */
255  unsigned long eventid; /* overflow event identifier */
256 } pfm_counter_t;
257 
258 /*
259  * context flags
260  */
261 typedef struct {
262  unsigned int block:1; /* when 1, task will blocked on user notifications */
263  unsigned int system:1; /* do system wide monitoring */
264  unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
265  unsigned int is_sampling:1; /* true if using a custom format */
266  unsigned int excl_idle:1; /* exclude idle task in system wide session */
267  unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
268  unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
269  unsigned int no_msg:1; /* no message sent on overflow */
270  unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
271  unsigned int reserved:22;
272 } pfm_context_flags_t;
273 
274 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
275 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
276 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
277 
278 
279 /*
280  * perfmon context: encapsulates all the state of a monitoring session
281  */
282 
283 typedef struct pfm_context {
284  spinlock_t ctx_lock; /* context protection */
285 
286  pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
287  unsigned int ctx_state; /* state: active/inactive (no bitfield) */
288 
289  struct task_struct *ctx_task; /* task to which context is attached */
290 
291  unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
292 
293  struct completion ctx_restart_done; /* use for blocking notification mode */
294 
295  unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
296  unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
297  unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
298 
299  unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
300  unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
301  unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
302 
303  unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
304 
305  unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
306  unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
307  unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
308  unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
309 
310  pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
311 
312  unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
313  unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
314 
315  unsigned long ctx_saved_psr_up; /* only contains psr.up value */
316 
317  unsigned long ctx_last_activation; /* context last activation number for last_cpu */
318  unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
319  unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
320 
321  int ctx_fd; /* file descriptor used my this context */
322  pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
323 
324  pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
325  void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
326  unsigned long ctx_smpl_size; /* size of sampling buffer */
327  void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
328 
329  wait_queue_head_t ctx_msgq_wait;
330  pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
331  int ctx_msgq_head;
332  int ctx_msgq_tail;
333  struct fasync_struct *ctx_async_queue;
334 
335  wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
336 } pfm_context_t;
337 
338 /*
339  * magic number used to verify that structure is really
340  * a perfmon context
341  */
342 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
343 
344 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
345 
346 #ifdef CONFIG_SMP
347 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
348 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
349 #else
350 #define SET_LAST_CPU(ctx, v) do {} while(0)
351 #define GET_LAST_CPU(ctx) do {} while(0)
352 #endif
353 
354 
355 #define ctx_fl_block ctx_flags.block
356 #define ctx_fl_system ctx_flags.system
357 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
358 #define ctx_fl_is_sampling ctx_flags.is_sampling
359 #define ctx_fl_excl_idle ctx_flags.excl_idle
360 #define ctx_fl_going_zombie ctx_flags.going_zombie
361 #define ctx_fl_trap_reason ctx_flags.trap_reason
362 #define ctx_fl_no_msg ctx_flags.no_msg
363 #define ctx_fl_can_restart ctx_flags.can_restart
364 
365 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
366 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
367 
368 /*
369  * global information about all sessions
370  * mostly used to synchronize between system wide and per-process
371  */
372 typedef struct {
373  spinlock_t pfs_lock; /* lock the structure */
374 
375  unsigned int pfs_task_sessions; /* number of per task sessions */
376  unsigned int pfs_sys_sessions; /* number of per system wide sessions */
377  unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
378  unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
379  struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
380 } pfm_session_t;
381 
382 /*
383  * information about a PMC or PMD.
384  * dep_pmd[]: a bitmask of dependent PMD registers
385  * dep_pmc[]: a bitmask of dependent PMC registers
386  */
387 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
388 typedef struct {
389  unsigned int type;
390  int pm_pos;
391  unsigned long default_value; /* power-on default value */
392  unsigned long reserved_mask; /* bitmask of reserved bits */
393  pfm_reg_check_t read_check;
394  pfm_reg_check_t write_check;
395  unsigned long dep_pmd[4];
396  unsigned long dep_pmc[4];
397 } pfm_reg_desc_t;
398 
399 /* assume cnum is a valid monitor */
400 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
401 
402 /*
403  * This structure is initialized at boot time and contains
404  * a description of the PMU main characteristics.
405  *
406  * If the probe function is defined, detection is based
407  * on its return value:
408  * - 0 means recognized PMU
409  * - anything else means not supported
410  * When the probe function is not defined, then the pmu_family field
411  * is used and it must match the host CPU family such that:
412  * - cpu->family & config->pmu_family != 0
413  */
414 typedef struct {
415  unsigned long ovfl_val; /* overflow value for counters */
416 
417  pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
418  pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
419 
420  unsigned int num_pmcs; /* number of PMCS: computed at init time */
421  unsigned int num_pmds; /* number of PMDS: computed at init time */
422  unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
423  unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
424 
425  char *pmu_name; /* PMU family name */
426  unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
427  unsigned int flags; /* pmu specific flags */
428  unsigned int num_ibrs; /* number of IBRS: computed at init time */
429  unsigned int num_dbrs; /* number of DBRS: computed at init time */
430  unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
431  int (*probe)(void); /* customized probe routine */
432  unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
433 } pmu_config_t;
434 /*
435  * PMU specific flags
436  */
437 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
438 
439 /*
440  * debug register related type definitions
441  */
442 typedef struct {
443  unsigned long ibr_mask:56;
444  unsigned long ibr_plm:4;
445  unsigned long ibr_ig:3;
446  unsigned long ibr_x:1;
447 } ibr_mask_reg_t;
448 
449 typedef struct {
450  unsigned long dbr_mask:56;
451  unsigned long dbr_plm:4;
452  unsigned long dbr_ig:2;
453  unsigned long dbr_w:1;
454  unsigned long dbr_r:1;
455 } dbr_mask_reg_t;
456 
457 typedef union {
458  unsigned long val;
459  ibr_mask_reg_t ibr;
460  dbr_mask_reg_t dbr;
461 } dbreg_t;
462 
463 
464 /*
465  * perfmon command descriptions
466  */
467 typedef struct {
468  int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
469  char *cmd_name;
470  int cmd_flags;
471  unsigned int cmd_narg;
472  size_t cmd_argsize;
473  int (*cmd_getsize)(void *arg, size_t *sz);
474 } pfm_cmd_desc_t;
475 
476 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
477 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
478 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
479 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
480 
481 
482 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
483 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
484 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
485 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
486 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
487 
488 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
489 
490 typedef struct {
491  unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
492  unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
493  unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
494  unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
495  unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
496  unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
497  unsigned long pfm_smpl_handler_calls;
498  unsigned long pfm_smpl_handler_cycles;
500 } pfm_stats_t;
501 
502 /*
503  * perfmon internal variables
504  */
505 static pfm_stats_t pfm_stats[NR_CPUS];
506 static pfm_session_t pfm_sessions; /* global sessions information */
507 
508 static DEFINE_SPINLOCK(pfm_alt_install_check);
509 static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
510 
511 static struct proc_dir_entry *perfmon_dir;
512 static pfm_uuid_t pfm_null_uuid = {0,};
513 
514 static spinlock_t pfm_buffer_fmt_lock;
515 static LIST_HEAD(pfm_buffer_fmt_list);
516 
517 static pmu_config_t *pmu_conf;
518 
519 /* sysctl() controls */
521 EXPORT_SYMBOL(pfm_sysctl);
522 
523 static ctl_table pfm_ctl_table[]={
524  {
525  .procname = "debug",
526  .data = &pfm_sysctl.debug,
527  .maxlen = sizeof(int),
528  .mode = 0666,
530  },
531  {
532  .procname = "debug_ovfl",
533  .data = &pfm_sysctl.debug_ovfl,
534  .maxlen = sizeof(int),
535  .mode = 0666,
537  },
538  {
539  .procname = "fastctxsw",
540  .data = &pfm_sysctl.fastctxsw,
541  .maxlen = sizeof(int),
542  .mode = 0600,
544  },
545  {
546  .procname = "expert_mode",
547  .data = &pfm_sysctl.expert_mode,
548  .maxlen = sizeof(int),
549  .mode = 0600,
551  },
552  {}
553 };
554 static ctl_table pfm_sysctl_dir[] = {
555  {
556  .procname = "perfmon",
557  .mode = 0555,
558  .child = pfm_ctl_table,
559  },
560  {}
561 };
562 static ctl_table pfm_sysctl_root[] = {
563  {
564  .procname = "kernel",
565  .mode = 0555,
566  .child = pfm_sysctl_dir,
567  },
568  {}
569 };
570 static struct ctl_table_header *pfm_sysctl_header;
571 
572 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
573 
574 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
575 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
576 
577 static inline void
578 pfm_put_task(struct task_struct *task)
579 {
580  if (task != current) put_task_struct(task);
581 }
582 
583 static inline void
584 pfm_reserve_page(unsigned long a)
585 {
586  SetPageReserved(vmalloc_to_page((void *)a));
587 }
588 static inline void
589 pfm_unreserve_page(unsigned long a)
590 {
591  ClearPageReserved(vmalloc_to_page((void*)a));
592 }
593 
594 static inline unsigned long
595 pfm_protect_ctx_ctxsw(pfm_context_t *x)
596 {
597  spin_lock(&(x)->ctx_lock);
598  return 0UL;
599 }
600 
601 static inline void
602 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
603 {
604  spin_unlock(&(x)->ctx_lock);
605 }
606 
607 /* forward declaration */
608 static const struct dentry_operations pfmfs_dentry_operations;
609 
610 static struct dentry *
611 pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
612 {
613  return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
614  PFMFS_MAGIC);
615 }
616 
617 static struct file_system_type pfm_fs_type = {
618  .name = "pfmfs",
619  .mount = pfmfs_mount,
620  .kill_sb = kill_anon_super,
621 };
622 
623 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
624 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
625 DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
626 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
627 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
628 
629 
630 /* forward declaration */
631 static const struct file_operations pfm_file_ops;
632 
633 /*
634  * forward declarations
635  */
636 #ifndef CONFIG_SMP
637 static void pfm_lazy_save_regs (struct task_struct *ta);
638 #endif
639 
640 void dump_pmu_state(const char *);
641 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
642 
643 #include "perfmon_itanium.h"
644 #include "perfmon_mckinley.h"
645 #include "perfmon_montecito.h"
646 #include "perfmon_generic.h"
647 
648 static pmu_config_t *pmu_confs[]={
649  &pmu_conf_mont,
650  &pmu_conf_mck,
651  &pmu_conf_ita,
652  &pmu_conf_gen, /* must be last */
653  NULL
654 };
655 
656 
657 static int pfm_end_notify_user(pfm_context_t *ctx);
658 
659 static inline void
660 pfm_clear_psr_pp(void)
661 {
663  ia64_srlz_i();
664 }
665 
666 static inline void
667 pfm_set_psr_pp(void)
668 {
670  ia64_srlz_i();
671 }
672 
673 static inline void
674 pfm_clear_psr_up(void)
675 {
677  ia64_srlz_i();
678 }
679 
680 static inline void
681 pfm_set_psr_up(void)
682 {
684  ia64_srlz_i();
685 }
686 
687 static inline unsigned long
688 pfm_get_psr(void)
689 {
690  unsigned long tmp;
691  tmp = ia64_getreg(_IA64_REG_PSR);
692  ia64_srlz_i();
693  return tmp;
694 }
695 
696 static inline void
697 pfm_set_psr_l(unsigned long val)
698 {
700  ia64_srlz_i();
701 }
702 
703 static inline void
704 pfm_freeze_pmu(void)
705 {
706  ia64_set_pmc(0,1UL);
707  ia64_srlz_d();
708 }
709 
710 static inline void
711 pfm_unfreeze_pmu(void)
712 {
713  ia64_set_pmc(0,0UL);
714  ia64_srlz_d();
715 }
716 
717 static inline void
718 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
719 {
720  int i;
721 
722  for (i=0; i < nibrs; i++) {
723  ia64_set_ibr(i, ibrs[i]);
725  }
726  ia64_srlz_i();
727 }
728 
729 static inline void
730 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
731 {
732  int i;
733 
734  for (i=0; i < ndbrs; i++) {
735  ia64_set_dbr(i, dbrs[i]);
737  }
738  ia64_srlz_d();
739 }
740 
741 /*
742  * PMD[i] must be a counter. no check is made
743  */
744 static inline unsigned long
745 pfm_read_soft_counter(pfm_context_t *ctx, int i)
746 {
747  return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
748 }
749 
750 /*
751  * PMD[i] must be a counter. no check is made
752  */
753 static inline void
754 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
755 {
756  unsigned long ovfl_val = pmu_conf->ovfl_val;
757 
758  ctx->ctx_pmds[i].val = val & ~ovfl_val;
759  /*
760  * writing to unimplemented part is ignore, so we do not need to
761  * mask off top part
762  */
763  ia64_set_pmd(i, val & ovfl_val);
764 }
765 
766 static pfm_msg_t *
767 pfm_get_new_msg(pfm_context_t *ctx)
768 {
769  int idx, next;
770 
771  next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
772 
773  DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
774  if (next == ctx->ctx_msgq_head) return NULL;
775 
776  idx = ctx->ctx_msgq_tail;
777  ctx->ctx_msgq_tail = next;
778 
779  DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
780 
781  return ctx->ctx_msgq+idx;
782 }
783 
784 static pfm_msg_t *
785 pfm_get_next_msg(pfm_context_t *ctx)
786 {
787  pfm_msg_t *msg;
788 
789  DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
790 
791  if (PFM_CTXQ_EMPTY(ctx)) return NULL;
792 
793  /*
794  * get oldest message
795  */
796  msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
797 
798  /*
799  * and move forward
800  */
801  ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
802 
803  DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
804 
805  return msg;
806 }
807 
808 static void
809 pfm_reset_msgq(pfm_context_t *ctx)
810 {
811  ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
812  DPRINT(("ctx=%p msgq reset\n", ctx));
813 }
814 
815 static void *
816 pfm_rvmalloc(unsigned long size)
817 {
818  void *mem;
819  unsigned long addr;
820 
821  size = PAGE_ALIGN(size);
822  mem = vzalloc(size);
823  if (mem) {
824  //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
825  addr = (unsigned long)mem;
826  while (size > 0) {
827  pfm_reserve_page(addr);
828  addr+=PAGE_SIZE;
829  size-=PAGE_SIZE;
830  }
831  }
832  return mem;
833 }
834 
835 static void
836 pfm_rvfree(void *mem, unsigned long size)
837 {
838  unsigned long addr;
839 
840  if (mem) {
841  DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
842  addr = (unsigned long) mem;
843  while ((long) size > 0) {
844  pfm_unreserve_page(addr);
845  addr+=PAGE_SIZE;
846  size-=PAGE_SIZE;
847  }
848  vfree(mem);
849  }
850  return;
851 }
852 
853 static pfm_context_t *
854 pfm_context_alloc(int ctx_flags)
855 {
856  pfm_context_t *ctx;
857 
858  /*
859  * allocate context descriptor
860  * must be able to free with interrupts disabled
861  */
862  ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
863  if (ctx) {
864  DPRINT(("alloc ctx @%p\n", ctx));
865 
866  /*
867  * init context protection lock
868  */
869  spin_lock_init(&ctx->ctx_lock);
870 
871  /*
872  * context is unloaded
873  */
874  ctx->ctx_state = PFM_CTX_UNLOADED;
875 
876  /*
877  * initialization of context's flags
878  */
879  ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
880  ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
881  ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
882  /*
883  * will move to set properties
884  * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
885  */
886 
887  /*
888  * init restart semaphore to locked
889  */
890  init_completion(&ctx->ctx_restart_done);
891 
892  /*
893  * activation is used in SMP only
894  */
895  ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
896  SET_LAST_CPU(ctx, -1);
897 
898  /*
899  * initialize notification message queue
900  */
901  ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
902  init_waitqueue_head(&ctx->ctx_msgq_wait);
903  init_waitqueue_head(&ctx->ctx_zombieq);
904 
905  }
906  return ctx;
907 }
908 
909 static void
910 pfm_context_free(pfm_context_t *ctx)
911 {
912  if (ctx) {
913  DPRINT(("free ctx @%p\n", ctx));
914  kfree(ctx);
915  }
916 }
917 
918 static void
919 pfm_mask_monitoring(struct task_struct *task)
920 {
921  pfm_context_t *ctx = PFM_GET_CTX(task);
922  unsigned long mask, val, ovfl_mask;
923  int i;
924 
925  DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
926 
927  ovfl_mask = pmu_conf->ovfl_val;
928  /*
929  * monitoring can only be masked as a result of a valid
930  * counter overflow. In UP, it means that the PMU still
931  * has an owner. Note that the owner can be different
932  * from the current task. However the PMU state belongs
933  * to the owner.
934  * In SMP, a valid overflow only happens when task is
935  * current. Therefore if we come here, we know that
936  * the PMU state belongs to the current task, therefore
937  * we can access the live registers.
938  *
939  * So in both cases, the live register contains the owner's
940  * state. We can ONLY touch the PMU registers and NOT the PSR.
941  *
942  * As a consequence to this call, the ctx->th_pmds[] array
943  * contains stale information which must be ignored
944  * when context is reloaded AND monitoring is active (see
945  * pfm_restart).
946  */
947  mask = ctx->ctx_used_pmds[0];
948  for (i = 0; mask; i++, mask>>=1) {
949  /* skip non used pmds */
950  if ((mask & 0x1) == 0) continue;
951  val = ia64_get_pmd(i);
952 
953  if (PMD_IS_COUNTING(i)) {
954  /*
955  * we rebuild the full 64 bit value of the counter
956  */
957  ctx->ctx_pmds[i].val += (val & ovfl_mask);
958  } else {
959  ctx->ctx_pmds[i].val = val;
960  }
961  DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
962  i,
963  ctx->ctx_pmds[i].val,
964  val & ovfl_mask));
965  }
966  /*
967  * mask monitoring by setting the privilege level to 0
968  * we cannot use psr.pp/psr.up for this, it is controlled by
969  * the user
970  *
971  * if task is current, modify actual registers, otherwise modify
972  * thread save state, i.e., what will be restored in pfm_load_regs()
973  */
974  mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
975  for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
976  if ((mask & 0x1) == 0UL) continue;
977  ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
978  ctx->th_pmcs[i] &= ~0xfUL;
979  DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
980  }
981  /*
982  * make all of this visible
983  */
984  ia64_srlz_d();
985 }
986 
987 /*
988  * must always be done with task == current
989  *
990  * context must be in MASKED state when calling
991  */
992 static void
993 pfm_restore_monitoring(struct task_struct *task)
994 {
995  pfm_context_t *ctx = PFM_GET_CTX(task);
996  unsigned long mask, ovfl_mask;
997  unsigned long psr, val;
998  int i, is_system;
999 
1000  is_system = ctx->ctx_fl_system;
1001  ovfl_mask = pmu_conf->ovfl_val;
1002 
1003  if (task != current) {
1004  printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1005  return;
1006  }
1007  if (ctx->ctx_state != PFM_CTX_MASKED) {
1008  printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1009  task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1010  return;
1011  }
1012  psr = pfm_get_psr();
1013  /*
1014  * monitoring is masked via the PMC.
1015  * As we restore their value, we do not want each counter to
1016  * restart right away. We stop monitoring using the PSR,
1017  * restore the PMC (and PMD) and then re-establish the psr
1018  * as it was. Note that there can be no pending overflow at
1019  * this point, because monitoring was MASKED.
1020  *
1021  * system-wide session are pinned and self-monitoring
1022  */
1023  if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1024  /* disable dcr pp */
1026  pfm_clear_psr_pp();
1027  } else {
1028  pfm_clear_psr_up();
1029  }
1030  /*
1031  * first, we restore the PMD
1032  */
1033  mask = ctx->ctx_used_pmds[0];
1034  for (i = 0; mask; i++, mask>>=1) {
1035  /* skip non used pmds */
1036  if ((mask & 0x1) == 0) continue;
1037 
1038  if (PMD_IS_COUNTING(i)) {
1039  /*
1040  * we split the 64bit value according to
1041  * counter width
1042  */
1043  val = ctx->ctx_pmds[i].val & ovfl_mask;
1044  ctx->ctx_pmds[i].val &= ~ovfl_mask;
1045  } else {
1046  val = ctx->ctx_pmds[i].val;
1047  }
1048  ia64_set_pmd(i, val);
1049 
1050  DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1051  i,
1052  ctx->ctx_pmds[i].val,
1053  val));
1054  }
1055  /*
1056  * restore the PMCs
1057  */
1058  mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1059  for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1060  if ((mask & 0x1) == 0UL) continue;
1061  ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1062  ia64_set_pmc(i, ctx->th_pmcs[i]);
1063  DPRINT(("[%d] pmc[%d]=0x%lx\n",
1064  task_pid_nr(task), i, ctx->th_pmcs[i]));
1065  }
1066  ia64_srlz_d();
1067 
1068  /*
1069  * must restore DBR/IBR because could be modified while masked
1070  * XXX: need to optimize
1071  */
1072  if (ctx->ctx_fl_using_dbreg) {
1073  pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1074  pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1075  }
1076 
1077  /*
1078  * now restore PSR
1079  */
1080  if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1081  /* enable dcr pp */
1083  ia64_srlz_i();
1084  }
1085  pfm_set_psr_l(psr);
1086 }
1087 
1088 static inline void
1089 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1090 {
1091  int i;
1092 
1093  ia64_srlz_d();
1094 
1095  for (i=0; mask; i++, mask>>=1) {
1096  if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1097  }
1098 }
1099 
1100 /*
1101  * reload from thread state (used for ctxw only)
1102  */
1103 static inline void
1104 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1105 {
1106  int i;
1107  unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1108 
1109  for (i=0; mask; i++, mask>>=1) {
1110  if ((mask & 0x1) == 0) continue;
1111  val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1112  ia64_set_pmd(i, val);
1113  }
1114  ia64_srlz_d();
1115 }
1116 
1117 /*
1118  * propagate PMD from context to thread-state
1119  */
1120 static inline void
1121 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1122 {
1123  unsigned long ovfl_val = pmu_conf->ovfl_val;
1124  unsigned long mask = ctx->ctx_all_pmds[0];
1125  unsigned long val;
1126  int i;
1127 
1128  DPRINT(("mask=0x%lx\n", mask));
1129 
1130  for (i=0; mask; i++, mask>>=1) {
1131 
1132  val = ctx->ctx_pmds[i].val;
1133 
1134  /*
1135  * We break up the 64 bit value into 2 pieces
1136  * the lower bits go to the machine state in the
1137  * thread (will be reloaded on ctxsw in).
1138  * The upper part stays in the soft-counter.
1139  */
1140  if (PMD_IS_COUNTING(i)) {
1141  ctx->ctx_pmds[i].val = val & ~ovfl_val;
1142  val &= ovfl_val;
1143  }
1144  ctx->th_pmds[i] = val;
1145 
1146  DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1147  i,
1148  ctx->th_pmds[i],
1149  ctx->ctx_pmds[i].val));
1150  }
1151 }
1152 
1153 /*
1154  * propagate PMC from context to thread-state
1155  */
1156 static inline void
1157 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1158 {
1159  unsigned long mask = ctx->ctx_all_pmcs[0];
1160  int i;
1161 
1162  DPRINT(("mask=0x%lx\n", mask));
1163 
1164  for (i=0; mask; i++, mask>>=1) {
1165  /* masking 0 with ovfl_val yields 0 */
1166  ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1167  DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1168  }
1169 }
1170 
1171 
1172 
1173 static inline void
1174 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1175 {
1176  int i;
1177 
1178  for (i=0; mask; i++, mask>>=1) {
1179  if ((mask & 0x1) == 0) continue;
1180  ia64_set_pmc(i, pmcs[i]);
1181  }
1182  ia64_srlz_d();
1183 }
1184 
1185 static inline int
1186 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1187 {
1188  return memcmp(a, b, sizeof(pfm_uuid_t));
1189 }
1190 
1191 static inline int
1192 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1193 {
1194  int ret = 0;
1195  if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1196  return ret;
1197 }
1198 
1199 static inline int
1200 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1201 {
1202  int ret = 0;
1203  if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1204  return ret;
1205 }
1206 
1207 
1208 static inline int
1209 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1210  int cpu, void *arg)
1211 {
1212  int ret = 0;
1213  if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1214  return ret;
1215 }
1216 
1217 static inline int
1218 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1219  int cpu, void *arg)
1220 {
1221  int ret = 0;
1222  if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1223  return ret;
1224 }
1225 
1226 static inline int
1227 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1228 {
1229  int ret = 0;
1230  if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1231  return ret;
1232 }
1233 
1234 static inline int
1235 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1236 {
1237  int ret = 0;
1238  if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1239  return ret;
1240 }
1241 
1242 static pfm_buffer_fmt_t *
1243 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1244 {
1245  struct list_head * pos;
1247 
1248  list_for_each(pos, &pfm_buffer_fmt_list) {
1249  entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1250  if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1251  return entry;
1252  }
1253  return NULL;
1254 }
1255 
1256 /*
1257  * find a buffer format based on its uuid
1258  */
1259 static pfm_buffer_fmt_t *
1260 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1261 {
1263  spin_lock(&pfm_buffer_fmt_lock);
1264  fmt = __pfm_find_buffer_fmt(uuid);
1265  spin_unlock(&pfm_buffer_fmt_lock);
1266  return fmt;
1267 }
1268 
1269 int
1271 {
1272  int ret = 0;
1273 
1274  /* some sanity checks */
1275  if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1276 
1277  /* we need at least a handler */
1278  if (fmt->fmt_handler == NULL) return -EINVAL;
1279 
1280  /*
1281  * XXX: need check validity of fmt_arg_size
1282  */
1283 
1284  spin_lock(&pfm_buffer_fmt_lock);
1285 
1286  if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1287  printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1288  ret = -EBUSY;
1289  goto out;
1290  }
1291  list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1292  printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1293 
1294 out:
1295  spin_unlock(&pfm_buffer_fmt_lock);
1296  return ret;
1297 }
1299 
1300 int
1302 {
1304  int ret = 0;
1305 
1306  spin_lock(&pfm_buffer_fmt_lock);
1307 
1308  fmt = __pfm_find_buffer_fmt(uuid);
1309  if (!fmt) {
1310  printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1311  ret = -EINVAL;
1312  goto out;
1313  }
1314  list_del_init(&fmt->fmt_list);
1315  printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1316 
1317 out:
1318  spin_unlock(&pfm_buffer_fmt_lock);
1319  return ret;
1320 
1321 }
1323 
1324 extern void update_pal_halt_status(int);
1325 
1326 static int
1327 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1328 {
1329  unsigned long flags;
1330  /*
1331  * validity checks on cpu_mask have been done upstream
1332  */
1333  LOCK_PFS(flags);
1334 
1335  DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1336  pfm_sessions.pfs_sys_sessions,
1337  pfm_sessions.pfs_task_sessions,
1338  pfm_sessions.pfs_sys_use_dbregs,
1339  is_syswide,
1340  cpu));
1341 
1342  if (is_syswide) {
1343  /*
1344  * cannot mix system wide and per-task sessions
1345  */
1346  if (pfm_sessions.pfs_task_sessions > 0UL) {
1347  DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1348  pfm_sessions.pfs_task_sessions));
1349  goto abort;
1350  }
1351 
1352  if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1353 
1354  DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1355 
1356  pfm_sessions.pfs_sys_session[cpu] = task;
1357 
1358  pfm_sessions.pfs_sys_sessions++ ;
1359 
1360  } else {
1361  if (pfm_sessions.pfs_sys_sessions) goto abort;
1362  pfm_sessions.pfs_task_sessions++;
1363  }
1364 
1365  DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1366  pfm_sessions.pfs_sys_sessions,
1367  pfm_sessions.pfs_task_sessions,
1368  pfm_sessions.pfs_sys_use_dbregs,
1369  is_syswide,
1370  cpu));
1371 
1372  /*
1373  * disable default_idle() to go to PAL_HALT
1374  */
1376 
1377  UNLOCK_PFS(flags);
1378 
1379  return 0;
1380 
1381 error_conflict:
1382  DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1383  task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1384  cpu));
1385 abort:
1386  UNLOCK_PFS(flags);
1387 
1388  return -EBUSY;
1389 
1390 }
1391 
1392 static int
1393 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1394 {
1395  unsigned long flags;
1396  /*
1397  * validity checks on cpu_mask have been done upstream
1398  */
1399  LOCK_PFS(flags);
1400 
1401  DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1402  pfm_sessions.pfs_sys_sessions,
1403  pfm_sessions.pfs_task_sessions,
1404  pfm_sessions.pfs_sys_use_dbregs,
1405  is_syswide,
1406  cpu));
1407 
1408 
1409  if (is_syswide) {
1410  pfm_sessions.pfs_sys_session[cpu] = NULL;
1411  /*
1412  * would not work with perfmon+more than one bit in cpu_mask
1413  */
1414  if (ctx && ctx->ctx_fl_using_dbreg) {
1415  if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1416  printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1417  } else {
1418  pfm_sessions.pfs_sys_use_dbregs--;
1419  }
1420  }
1421  pfm_sessions.pfs_sys_sessions--;
1422  } else {
1423  pfm_sessions.pfs_task_sessions--;
1424  }
1425  DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1426  pfm_sessions.pfs_sys_sessions,
1427  pfm_sessions.pfs_task_sessions,
1428  pfm_sessions.pfs_sys_use_dbregs,
1429  is_syswide,
1430  cpu));
1431 
1432  /*
1433  * if possible, enable default_idle() to go into PAL_HALT
1434  */
1435  if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1437 
1438  UNLOCK_PFS(flags);
1439 
1440  return 0;
1441 }
1442 
1443 /*
1444  * removes virtual mapping of the sampling buffer.
1445  * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1446  * a PROTECT_CTX() section.
1447  */
1448 static int
1449 pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1450 {
1451  struct task_struct *task = current;
1452  int r;
1453 
1454  /* sanity checks */
1455  if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1456  printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1457  return -EINVAL;
1458  }
1459 
1460  DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1461 
1462  /*
1463  * does the actual unmapping
1464  */
1465  r = vm_munmap((unsigned long)vaddr, size);
1466 
1467  if (r !=0) {
1468  printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1469  }
1470 
1471  DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1472 
1473  return 0;
1474 }
1475 
1476 /*
1477  * free actual physical storage used by sampling buffer
1478  */
1479 #if 0
1480 static int
1481 pfm_free_smpl_buffer(pfm_context_t *ctx)
1482 {
1484 
1485  if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1486 
1487  /*
1488  * we won't use the buffer format anymore
1489  */
1490  fmt = ctx->ctx_buf_fmt;
1491 
1492  DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1493  ctx->ctx_smpl_hdr,
1494  ctx->ctx_smpl_size,
1495  ctx->ctx_smpl_vaddr));
1496 
1497  pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1498 
1499  /*
1500  * free the buffer
1501  */
1502  pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1503 
1504  ctx->ctx_smpl_hdr = NULL;
1505  ctx->ctx_smpl_size = 0UL;
1506 
1507  return 0;
1508 
1509 invalid_free:
1510  printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1511  return -EINVAL;
1512 }
1513 #endif
1514 
1515 static inline void
1516 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1517 {
1518  if (fmt == NULL) return;
1519 
1520  pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1521 
1522 }
1523 
1524 /*
1525  * pfmfs should _never_ be mounted by userland - too much of security hassle,
1526  * no real gain from having the whole whorehouse mounted. So we don't need
1527  * any operations on the root directory. However, we need a non-trivial
1528  * d_name - pfm: will go nicely and kill the special-casing in procfs.
1529  */
1530 static struct vfsmount *pfmfs_mnt __read_mostly;
1531 
1532 static int __init
1533 init_pfm_fs(void)
1534 {
1535  int err = register_filesystem(&pfm_fs_type);
1536  if (!err) {
1537  pfmfs_mnt = kern_mount(&pfm_fs_type);
1538  err = PTR_ERR(pfmfs_mnt);
1539  if (IS_ERR(pfmfs_mnt))
1540  unregister_filesystem(&pfm_fs_type);
1541  else
1542  err = 0;
1543  }
1544  return err;
1545 }
1546 
1547 static ssize_t
1548 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1549 {
1550  pfm_context_t *ctx;
1551  pfm_msg_t *msg;
1552  ssize_t ret;
1553  unsigned long flags;
1555  if (PFM_IS_FILE(filp) == 0) {
1556  printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1557  return -EINVAL;
1558  }
1559 
1560  ctx = filp->private_data;
1561  if (ctx == NULL) {
1562  printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1563  return -EINVAL;
1564  }
1565 
1566  /*
1567  * check even when there is no message
1568  */
1569  if (size < sizeof(pfm_msg_t)) {
1570  DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1571  return -EINVAL;
1572  }
1573 
1574  PROTECT_CTX(ctx, flags);
1575 
1576  /*
1577  * put ourselves on the wait queue
1578  */
1579  add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1580 
1581 
1582  for(;;) {
1583  /*
1584  * check wait queue
1585  */
1586 
1588 
1589  DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1590 
1591  ret = 0;
1592  if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1593 
1594  UNPROTECT_CTX(ctx, flags);
1595 
1596  /*
1597  * check non-blocking read
1598  */
1599  ret = -EAGAIN;
1600  if(filp->f_flags & O_NONBLOCK) break;
1601 
1602  /*
1603  * check pending signals
1604  */
1605  if(signal_pending(current)) {
1606  ret = -EINTR;
1607  break;
1608  }
1609  /*
1610  * no message, so wait
1611  */
1612  schedule();
1613 
1614  PROTECT_CTX(ctx, flags);
1615  }
1616  DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1618  remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1619 
1620  if (ret < 0) goto abort;
1621 
1622  ret = -EINVAL;
1623  msg = pfm_get_next_msg(ctx);
1624  if (msg == NULL) {
1625  printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1626  goto abort_locked;
1627  }
1628 
1629  DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1630 
1631  ret = -EFAULT;
1632  if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1633 
1634 abort_locked:
1635  UNPROTECT_CTX(ctx, flags);
1636 abort:
1637  return ret;
1638 }
1639 
1640 static ssize_t
1641 pfm_write(struct file *file, const char __user *ubuf,
1642  size_t size, loff_t *ppos)
1643 {
1644  DPRINT(("pfm_write called\n"));
1645  return -EINVAL;
1646 }
1647 
1648 static unsigned int
1649 pfm_poll(struct file *filp, poll_table * wait)
1650 {
1651  pfm_context_t *ctx;
1652  unsigned long flags;
1653  unsigned int mask = 0;
1654 
1655  if (PFM_IS_FILE(filp) == 0) {
1656  printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1657  return 0;
1658  }
1659 
1660  ctx = filp->private_data;
1661  if (ctx == NULL) {
1662  printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1663  return 0;
1664  }
1665 
1666 
1667  DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1668 
1669  poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1670 
1671  PROTECT_CTX(ctx, flags);
1672 
1673  if (PFM_CTXQ_EMPTY(ctx) == 0)
1674  mask = POLLIN | POLLRDNORM;
1675 
1676  UNPROTECT_CTX(ctx, flags);
1677 
1678  DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1679 
1680  return mask;
1681 }
1682 
1683 static long
1684 pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1685 {
1686  DPRINT(("pfm_ioctl called\n"));
1687  return -EINVAL;
1688 }
1689 
1690 /*
1691  * interrupt cannot be masked when coming here
1692  */
1693 static inline int
1694 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1695 {
1696  int ret;
1697 
1698  ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1699 
1700  DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1701  task_pid_nr(current),
1702  fd,
1703  on,
1704  ctx->ctx_async_queue, ret));
1705 
1706  return ret;
1707 }
1708 
1709 static int
1710 pfm_fasync(int fd, struct file *filp, int on)
1711 {
1712  pfm_context_t *ctx;
1713  int ret;
1714 
1715  if (PFM_IS_FILE(filp) == 0) {
1716  printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1717  return -EBADF;
1718  }
1719 
1720  ctx = filp->private_data;
1721  if (ctx == NULL) {
1722  printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1723  return -EBADF;
1724  }
1725  /*
1726  * we cannot mask interrupts during this call because this may
1727  * may go to sleep if memory is not readily avalaible.
1728  *
1729  * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1730  * done in caller. Serialization of this function is ensured by caller.
1731  */
1732  ret = pfm_do_fasync(fd, filp, ctx, on);
1733 
1734 
1735  DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1736  fd,
1737  on,
1738  ctx->ctx_async_queue, ret));
1739 
1740  return ret;
1741 }
1742 
1743 #ifdef CONFIG_SMP
1744 /*
1745  * this function is exclusively called from pfm_close().
1746  * The context is not protected at that time, nor are interrupts
1747  * on the remote CPU. That's necessary to avoid deadlocks.
1748  */
1749 static void
1750 pfm_syswide_force_stop(void *info)
1751 {
1752  pfm_context_t *ctx = (pfm_context_t *)info;
1753  struct pt_regs *regs = task_pt_regs(current);
1754  struct task_struct *owner;
1755  unsigned long flags;
1756  int ret;
1757 
1758  if (ctx->ctx_cpu != smp_processor_id()) {
1759  printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1760  ctx->ctx_cpu,
1761  smp_processor_id());
1762  return;
1763  }
1764  owner = GET_PMU_OWNER();
1765  if (owner != ctx->ctx_task) {
1766  printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1767  smp_processor_id(),
1768  task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1769  return;
1770  }
1771  if (GET_PMU_CTX() != ctx) {
1772  printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1773  smp_processor_id(),
1774  GET_PMU_CTX(), ctx);
1775  return;
1776  }
1777 
1778  DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1779  /*
1780  * the context is already protected in pfm_close(), we simply
1781  * need to mask interrupts to avoid a PMU interrupt race on
1782  * this CPU
1783  */
1784  local_irq_save(flags);
1785 
1786  ret = pfm_context_unload(ctx, NULL, 0, regs);
1787  if (ret) {
1788  DPRINT(("context_unload returned %d\n", ret));
1789  }
1790 
1791  /*
1792  * unmask interrupts, PMU interrupts are now spurious here
1793  */
1794  local_irq_restore(flags);
1795 }
1796 
1797 static void
1798 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1799 {
1800  int ret;
1801 
1802  DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1803  ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1804  DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1805 }
1806 #endif /* CONFIG_SMP */
1807 
1808 /*
1809  * called for each close(). Partially free resources.
1810  * When caller is self-monitoring, the context is unloaded.
1811  */
1812 static int
1813 pfm_flush(struct file *filp, fl_owner_t id)
1814 {
1815  pfm_context_t *ctx;
1816  struct task_struct *task;
1817  struct pt_regs *regs;
1818  unsigned long flags;
1819  unsigned long smpl_buf_size = 0UL;
1820  void *smpl_buf_vaddr = NULL;
1821  int state, is_system;
1822 
1823  if (PFM_IS_FILE(filp) == 0) {
1824  DPRINT(("bad magic for\n"));
1825  return -EBADF;
1826  }
1827 
1828  ctx = filp->private_data;
1829  if (ctx == NULL) {
1830  printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1831  return -EBADF;
1832  }
1833 
1834  /*
1835  * remove our file from the async queue, if we use this mode.
1836  * This can be done without the context being protected. We come
1837  * here when the context has become unreachable by other tasks.
1838  *
1839  * We may still have active monitoring at this point and we may
1840  * end up in pfm_overflow_handler(). However, fasync_helper()
1841  * operates with interrupts disabled and it cleans up the
1842  * queue. If the PMU handler is called prior to entering
1843  * fasync_helper() then it will send a signal. If it is
1844  * invoked after, it will find an empty queue and no
1845  * signal will be sent. In both case, we are safe
1846  */
1847  PROTECT_CTX(ctx, flags);
1848 
1849  state = ctx->ctx_state;
1850  is_system = ctx->ctx_fl_system;
1851 
1852  task = PFM_CTX_TASK(ctx);
1853  regs = task_pt_regs(task);
1854 
1855  DPRINT(("ctx_state=%d is_current=%d\n",
1856  state,
1857  task == current ? 1 : 0));
1858 
1859  /*
1860  * if state == UNLOADED, then task is NULL
1861  */
1862 
1863  /*
1864  * we must stop and unload because we are losing access to the context.
1865  */
1866  if (task == current) {
1867 #ifdef CONFIG_SMP
1868  /*
1869  * the task IS the owner but it migrated to another CPU: that's bad
1870  * but we must handle this cleanly. Unfortunately, the kernel does
1871  * not provide a mechanism to block migration (while the context is loaded).
1872  *
1873  * We need to release the resource on the ORIGINAL cpu.
1874  */
1875  if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1876 
1877  DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1878  /*
1879  * keep context protected but unmask interrupt for IPI
1880  */
1881  local_irq_restore(flags);
1882 
1883  pfm_syswide_cleanup_other_cpu(ctx);
1884 
1885  /*
1886  * restore interrupt masking
1887  */
1888  local_irq_save(flags);
1889 
1890  /*
1891  * context is unloaded at this point
1892  */
1893  } else
1894 #endif /* CONFIG_SMP */
1895  {
1896 
1897  DPRINT(("forcing unload\n"));
1898  /*
1899  * stop and unload, returning with state UNLOADED
1900  * and session unreserved.
1901  */
1902  pfm_context_unload(ctx, NULL, 0, regs);
1903 
1904  DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1905  }
1906  }
1907 
1908  /*
1909  * remove virtual mapping, if any, for the calling task.
1910  * cannot reset ctx field until last user is calling close().
1911  *
1912  * ctx_smpl_vaddr must never be cleared because it is needed
1913  * by every task with access to the context
1914  *
1915  * When called from do_exit(), the mm context is gone already, therefore
1916  * mm is NULL, i.e., the VMA is already gone and we do not have to
1917  * do anything here
1918  */
1919  if (ctx->ctx_smpl_vaddr && current->mm) {
1920  smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1921  smpl_buf_size = ctx->ctx_smpl_size;
1922  }
1923 
1924  UNPROTECT_CTX(ctx, flags);
1925 
1926  /*
1927  * if there was a mapping, then we systematically remove it
1928  * at this point. Cannot be done inside critical section
1929  * because some VM function reenables interrupts.
1930  *
1931  */
1932  if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1933 
1934  return 0;
1935 }
1936 /*
1937  * called either on explicit close() or from exit_files().
1938  * Only the LAST user of the file gets to this point, i.e., it is
1939  * called only ONCE.
1940  *
1941  * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1942  * (fput()),i.e, last task to access the file. Nobody else can access the
1943  * file at this point.
1944  *
1945  * When called from exit_files(), the VMA has been freed because exit_mm()
1946  * is executed before exit_files().
1947  *
1948  * When called from exit_files(), the current task is not yet ZOMBIE but we
1949  * flush the PMU state to the context.
1950  */
1951 static int
1952 pfm_close(struct inode *inode, struct file *filp)
1953 {
1954  pfm_context_t *ctx;
1955  struct task_struct *task;
1956  struct pt_regs *regs;
1957  DECLARE_WAITQUEUE(wait, current);
1958  unsigned long flags;
1959  unsigned long smpl_buf_size = 0UL;
1960  void *smpl_buf_addr = NULL;
1961  int free_possible = 1;
1962  int state, is_system;
1963 
1964  DPRINT(("pfm_close called private=%p\n", filp->private_data));
1965 
1966  if (PFM_IS_FILE(filp) == 0) {
1967  DPRINT(("bad magic\n"));
1968  return -EBADF;
1969  }
1970 
1971  ctx = filp->private_data;
1972  if (ctx == NULL) {
1973  printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1974  return -EBADF;
1975  }
1976 
1977  PROTECT_CTX(ctx, flags);
1978 
1979  state = ctx->ctx_state;
1980  is_system = ctx->ctx_fl_system;
1981 
1982  task = PFM_CTX_TASK(ctx);
1983  regs = task_pt_regs(task);
1984 
1985  DPRINT(("ctx_state=%d is_current=%d\n",
1986  state,
1987  task == current ? 1 : 0));
1988 
1989  /*
1990  * if task == current, then pfm_flush() unloaded the context
1991  */
1992  if (state == PFM_CTX_UNLOADED) goto doit;
1993 
1994  /*
1995  * context is loaded/masked and task != current, we need to
1996  * either force an unload or go zombie
1997  */
1998 
1999  /*
2000  * The task is currently blocked or will block after an overflow.
2001  * we must force it to wakeup to get out of the
2002  * MASKED state and transition to the unloaded state by itself.
2003  *
2004  * This situation is only possible for per-task mode
2005  */
2006  if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2007 
2008  /*
2009  * set a "partial" zombie state to be checked
2010  * upon return from down() in pfm_handle_work().
2011  *
2012  * We cannot use the ZOMBIE state, because it is checked
2013  * by pfm_load_regs() which is called upon wakeup from down().
2014  * In such case, it would free the context and then we would
2015  * return to pfm_handle_work() which would access the
2016  * stale context. Instead, we set a flag invisible to pfm_load_regs()
2017  * but visible to pfm_handle_work().
2018  *
2019  * For some window of time, we have a zombie context with
2020  * ctx_state = MASKED and not ZOMBIE
2021  */
2022  ctx->ctx_fl_going_zombie = 1;
2023 
2024  /*
2025  * force task to wake up from MASKED state
2026  */
2027  complete(&ctx->ctx_restart_done);
2028 
2029  DPRINT(("waking up ctx_state=%d\n", state));
2030 
2031  /*
2032  * put ourself to sleep waiting for the other
2033  * task to report completion
2034  *
2035  * the context is protected by mutex, therefore there
2036  * is no risk of being notified of completion before
2037  * begin actually on the waitq.
2038  */
2040  add_wait_queue(&ctx->ctx_zombieq, &wait);
2041 
2042  UNPROTECT_CTX(ctx, flags);
2043 
2044  /*
2045  * XXX: check for signals :
2046  * - ok for explicit close
2047  * - not ok when coming from exit_files()
2048  */
2049  schedule();
2050 
2051 
2052  PROTECT_CTX(ctx, flags);
2053 
2054 
2055  remove_wait_queue(&ctx->ctx_zombieq, &wait);
2057 
2058  /*
2059  * context is unloaded at this point
2060  */
2061  DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2062  }
2063  else if (task != current) {
2064 #ifdef CONFIG_SMP
2065  /*
2066  * switch context to zombie state
2067  */
2068  ctx->ctx_state = PFM_CTX_ZOMBIE;
2069 
2070  DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2071  /*
2072  * cannot free the context on the spot. deferred until
2073  * the task notices the ZOMBIE state
2074  */
2075  free_possible = 0;
2076 #else
2077  pfm_context_unload(ctx, NULL, 0, regs);
2078 #endif
2079  }
2080 
2081 doit:
2082  /* reload state, may have changed during opening of critical section */
2083  state = ctx->ctx_state;
2084 
2085  /*
2086  * the context is still attached to a task (possibly current)
2087  * we cannot destroy it right now
2088  */
2089 
2090  /*
2091  * we must free the sampling buffer right here because
2092  * we cannot rely on it being cleaned up later by the
2093  * monitored task. It is not possible to free vmalloc'ed
2094  * memory in pfm_load_regs(). Instead, we remove the buffer
2095  * now. should there be subsequent PMU overflow originally
2096  * meant for sampling, the will be converted to spurious
2097  * and that's fine because the monitoring tools is gone anyway.
2098  */
2099  if (ctx->ctx_smpl_hdr) {
2100  smpl_buf_addr = ctx->ctx_smpl_hdr;
2101  smpl_buf_size = ctx->ctx_smpl_size;
2102  /* no more sampling */
2103  ctx->ctx_smpl_hdr = NULL;
2104  ctx->ctx_fl_is_sampling = 0;
2105  }
2106 
2107  DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2108  state,
2109  free_possible,
2110  smpl_buf_addr,
2111  smpl_buf_size));
2112 
2113  if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2114 
2115  /*
2116  * UNLOADED that the session has already been unreserved.
2117  */
2118  if (state == PFM_CTX_ZOMBIE) {
2119  pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2120  }
2121 
2122  /*
2123  * disconnect file descriptor from context must be done
2124  * before we unlock.
2125  */
2126  filp->private_data = NULL;
2127 
2128  /*
2129  * if we free on the spot, the context is now completely unreachable
2130  * from the callers side. The monitored task side is also cut, so we
2131  * can freely cut.
2132  *
2133  * If we have a deferred free, only the caller side is disconnected.
2134  */
2135  UNPROTECT_CTX(ctx, flags);
2136 
2137  /*
2138  * All memory free operations (especially for vmalloc'ed memory)
2139  * MUST be done with interrupts ENABLED.
2140  */
2141  if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2142 
2143  /*
2144  * return the memory used by the context
2145  */
2146  if (free_possible) pfm_context_free(ctx);
2147 
2148  return 0;
2149 }
2150 
2151 static int
2152 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2153 {
2154  DPRINT(("pfm_no_open called\n"));
2155  return -ENXIO;
2156 }
2157 
2158 
2159 
2160 static const struct file_operations pfm_file_ops = {
2161  .llseek = no_llseek,
2162  .read = pfm_read,
2163  .write = pfm_write,
2164  .poll = pfm_poll,
2165  .unlocked_ioctl = pfm_ioctl,
2166  .open = pfm_no_open, /* special open code to disallow open via /proc */
2167  .fasync = pfm_fasync,
2168  .release = pfm_close,
2169  .flush = pfm_flush
2170 };
2171 
2172 static int
2173 pfmfs_delete_dentry(const struct dentry *dentry)
2174 {
2175  return 1;
2176 }
2177 
2178 static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2179 {
2180  return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2181  dentry->d_inode->i_ino);
2182 }
2183 
2184 static const struct dentry_operations pfmfs_dentry_operations = {
2185  .d_delete = pfmfs_delete_dentry,
2186  .d_dname = pfmfs_dname,
2187 };
2188 
2189 
2190 static struct file *
2191 pfm_alloc_file(pfm_context_t *ctx)
2192 {
2193  struct file *file;
2194  struct inode *inode;
2195  struct path path;
2196  struct qstr this = { .name = "" };
2197 
2198  /*
2199  * allocate a new inode
2200  */
2201  inode = new_inode(pfmfs_mnt->mnt_sb);
2202  if (!inode)
2203  return ERR_PTR(-ENOMEM);
2204 
2205  DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2206 
2207  inode->i_mode = S_IFCHR|S_IRUGO;
2208  inode->i_uid = current_fsuid();
2209  inode->i_gid = current_fsgid();
2210 
2211  /*
2212  * allocate a new dcache entry
2213  */
2214  path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2215  if (!path.dentry) {
2216  iput(inode);
2217  return ERR_PTR(-ENOMEM);
2218  }
2219  path.mnt = mntget(pfmfs_mnt);
2220 
2221  d_add(path.dentry, inode);
2222 
2223  file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2224  if (!file) {
2225  path_put(&path);
2226  return ERR_PTR(-ENFILE);
2227  }
2228 
2229  file->f_flags = O_RDONLY;
2230  file->private_data = ctx;
2231 
2232  return file;
2233 }
2234 
2235 static int
2236 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2237 {
2238  DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2239 
2240  while (size > 0) {
2241  unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2242 
2243 
2244  if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2245  return -ENOMEM;
2246 
2247  addr += PAGE_SIZE;
2248  buf += PAGE_SIZE;
2249  size -= PAGE_SIZE;
2250  }
2251  return 0;
2252 }
2253 
2254 /*
2255  * allocate a sampling buffer and remaps it into the user address space of the task
2256  */
2257 static int
2258 pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2259 {
2260  struct mm_struct *mm = task->mm;
2261  struct vm_area_struct *vma = NULL;
2262  unsigned long size;
2263  void *smpl_buf;
2264 
2265 
2266  /*
2267  * the fixed header + requested size and align to page boundary
2268  */
2269  size = PAGE_ALIGN(rsize);
2270 
2271  DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2272 
2273  /*
2274  * check requested size to avoid Denial-of-service attacks
2275  * XXX: may have to refine this test
2276  * Check against address space limit.
2277  *
2278  * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2279  * return -ENOMEM;
2280  */
2281  if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2282  return -ENOMEM;
2283 
2284  /*
2285  * We do the easy to undo allocations first.
2286  *
2287  * pfm_rvmalloc(), clears the buffer, so there is no leak
2288  */
2289  smpl_buf = pfm_rvmalloc(size);
2290  if (smpl_buf == NULL) {
2291  DPRINT(("Can't allocate sampling buffer\n"));
2292  return -ENOMEM;
2293  }
2294 
2295  DPRINT(("smpl_buf @%p\n", smpl_buf));
2296 
2297  /* allocate vma */
2298  vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2299  if (!vma) {
2300  DPRINT(("Cannot allocate vma\n"));
2301  goto error_kmem;
2302  }
2303  INIT_LIST_HEAD(&vma->anon_vma_chain);
2304 
2305  /*
2306  * partially initialize the vma for the sampling buffer
2307  */
2308  vma->vm_mm = mm;
2309  vma->vm_file = get_file(filp);
2310  vma->vm_flags = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2311  vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2312 
2313  /*
2314  * Now we have everything we need and we can initialize
2315  * and connect all the data structures
2316  */
2317 
2318  ctx->ctx_smpl_hdr = smpl_buf;
2319  ctx->ctx_smpl_size = size; /* aligned size */
2320 
2321  /*
2322  * Let's do the difficult operations next.
2323  *
2324  * now we atomically find some area in the address space and
2325  * remap the buffer in it.
2326  */
2327  down_write(&task->mm->mmap_sem);
2328 
2329  /* find some free area in address space, must have mmap sem held */
2331  if (IS_ERR_VALUE(vma->vm_start)) {
2332  DPRINT(("Cannot find unmapped area for size %ld\n", size));
2333  up_write(&task->mm->mmap_sem);
2334  goto error;
2335  }
2336  vma->vm_end = vma->vm_start + size;
2337  vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2338 
2339  DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2340 
2341  /* can only be applied to current task, need to have the mm semaphore held when called */
2342  if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2343  DPRINT(("Can't remap buffer\n"));
2344  up_write(&task->mm->mmap_sem);
2345  goto error;
2346  }
2347 
2348  /*
2349  * now insert the vma in the vm list for the process, must be
2350  * done with mmap lock held
2351  */
2352  insert_vm_struct(mm, vma);
2353 
2354  vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2355  vma_pages(vma));
2356  up_write(&task->mm->mmap_sem);
2357 
2358  /*
2359  * keep track of user level virtual address
2360  */
2361  ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2362  *(unsigned long *)user_vaddr = vma->vm_start;
2363 
2364  return 0;
2365 
2366 error:
2368 error_kmem:
2369  pfm_rvfree(smpl_buf, size);
2370 
2371  return -ENOMEM;
2372 }
2373 
2374 /*
2375  * XXX: do something better here
2376  */
2377 static int
2378 pfm_bad_permissions(struct task_struct *task)
2379 {
2380  const struct cred *tcred;
2381  kuid_t uid = current_uid();
2382  kgid_t gid = current_gid();
2383  int ret;
2384 
2385  rcu_read_lock();
2386  tcred = __task_cred(task);
2387 
2388  /* inspired by ptrace_attach() */
2389  DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2390  from_kuid(&init_user_ns, uid),
2391  from_kgid(&init_user_ns, gid),
2392  from_kuid(&init_user_ns, tcred->euid),
2393  from_kuid(&init_user_ns, tcred->suid),
2394  from_kuid(&init_user_ns, tcred->uid),
2395  from_kgid(&init_user_ns, tcred->egid),
2396  from_kgid(&init_user_ns, tcred->sgid)));
2397 
2398  ret = ((!uid_eq(uid, tcred->euid))
2399  || (!uid_eq(uid, tcred->suid))
2400  || (!uid_eq(uid, tcred->uid))
2401  || (!gid_eq(gid, tcred->egid))
2402  || (!gid_eq(gid, tcred->sgid))
2403  || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2404 
2405  rcu_read_unlock();
2406  return ret;
2407 }
2408 
2409 static int
2410 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2411 {
2412  int ctx_flags;
2413 
2414  /* valid signal */
2415 
2416  ctx_flags = pfx->ctx_flags;
2417 
2418  if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2419 
2420  /*
2421  * cannot block in this mode
2422  */
2423  if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2424  DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2425  return -EINVAL;
2426  }
2427  } else {
2428  }
2429  /* probably more to add here */
2430 
2431  return 0;
2432 }
2433 
2434 static int
2435 pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2436  unsigned int cpu, pfarg_context_t *arg)
2437 {
2438  pfm_buffer_fmt_t *fmt = NULL;
2439  unsigned long size = 0UL;
2440  void *uaddr = NULL;
2441  void *fmt_arg = NULL;
2442  int ret = 0;
2443 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2444 
2445  /* invoke and lock buffer format, if found */
2446  fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2447  if (fmt == NULL) {
2448  DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2449  return -EINVAL;
2450  }
2451 
2452  /*
2453  * buffer argument MUST be contiguous to pfarg_context_t
2454  */
2455  if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2456 
2457  ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2458 
2459  DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2460 
2461  if (ret) goto error;
2462 
2463  /* link buffer format and context */
2464  ctx->ctx_buf_fmt = fmt;
2465  ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2466 
2467  /*
2468  * check if buffer format wants to use perfmon buffer allocation/mapping service
2469  */
2470  ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2471  if (ret) goto error;
2472 
2473  if (size) {
2474  /*
2475  * buffer is always remapped into the caller's address space
2476  */
2477  ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2478  if (ret) goto error;
2479 
2480  /* keep track of user address of buffer */
2481  arg->ctx_smpl_vaddr = uaddr;
2482  }
2483  ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2484 
2485 error:
2486  return ret;
2487 }
2488 
2489 static void
2490 pfm_reset_pmu_state(pfm_context_t *ctx)
2491 {
2492  int i;
2493 
2494  /*
2495  * install reset values for PMC.
2496  */
2497  for (i=1; PMC_IS_LAST(i) == 0; i++) {
2498  if (PMC_IS_IMPL(i) == 0) continue;
2499  ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2500  DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2501  }
2502  /*
2503  * PMD registers are set to 0UL when the context in memset()
2504  */
2505 
2506  /*
2507  * On context switched restore, we must restore ALL pmc and ALL pmd even
2508  * when they are not actively used by the task. In UP, the incoming process
2509  * may otherwise pick up left over PMC, PMD state from the previous process.
2510  * As opposed to PMD, stale PMC can cause harm to the incoming
2511  * process because they may change what is being measured.
2512  * Therefore, we must systematically reinstall the entire
2513  * PMC state. In SMP, the same thing is possible on the
2514  * same CPU but also on between 2 CPUs.
2515  *
2516  * The problem with PMD is information leaking especially
2517  * to user level when psr.sp=0
2518  *
2519  * There is unfortunately no easy way to avoid this problem
2520  * on either UP or SMP. This definitively slows down the
2521  * pfm_load_regs() function.
2522  */
2523 
2524  /*
2525  * bitmask of all PMCs accessible to this context
2526  *
2527  * PMC0 is treated differently.
2528  */
2529  ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2530 
2531  /*
2532  * bitmask of all PMDs that are accessible to this context
2533  */
2534  ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2535 
2536  DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2537 
2538  /*
2539  * useful in case of re-enable after disable
2540  */
2541  ctx->ctx_used_ibrs[0] = 0UL;
2542  ctx->ctx_used_dbrs[0] = 0UL;
2543 }
2544 
2545 static int
2546 pfm_ctx_getsize(void *arg, size_t *sz)
2547 {
2550 
2551  *sz = 0;
2552 
2553  if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2554 
2555  fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2556  if (fmt == NULL) {
2557  DPRINT(("cannot find buffer format\n"));
2558  return -EINVAL;
2559  }
2560  /* get just enough to copy in user parameters */
2561  *sz = fmt->fmt_arg_size;
2562  DPRINT(("arg_size=%lu\n", *sz));
2563 
2564  return 0;
2565 }
2566 
2567 
2568 
2569 /*
2570  * cannot attach if :
2571  * - kernel task
2572  * - task not owned by caller
2573  * - task incompatible with context mode
2574  */
2575 static int
2576 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2577 {
2578  /*
2579  * no kernel task or task not owner by caller
2580  */
2581  if (task->mm == NULL) {
2582  DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2583  return -EPERM;
2584  }
2585  if (pfm_bad_permissions(task)) {
2586  DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task)));
2587  return -EPERM;
2588  }
2589  /*
2590  * cannot block in self-monitoring mode
2591  */
2592  if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2593  DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2594  return -EINVAL;
2595  }
2596 
2597  if (task->exit_state == EXIT_ZOMBIE) {
2598  DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task)));
2599  return -EBUSY;
2600  }
2601 
2602  /*
2603  * always ok for self
2604  */
2605  if (task == current) return 0;
2606 
2607  if (!task_is_stopped_or_traced(task)) {
2608  DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2609  return -EBUSY;
2610  }
2611  /*
2612  * make sure the task is off any CPU
2613  */
2614  wait_task_inactive(task, 0);
2615 
2616  /* more to come... */
2617 
2618  return 0;
2619 }
2620 
2621 static int
2622 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2623 {
2624  struct task_struct *p = current;
2625  int ret;
2626 
2627  /* XXX: need to add more checks here */
2628  if (pid < 2) return -EPERM;
2629 
2630  if (pid != task_pid_vnr(current)) {
2631 
2632  read_lock(&tasklist_lock);
2633 
2634  p = find_task_by_vpid(pid);
2635 
2636  /* make sure task cannot go away while we operate on it */
2637  if (p) get_task_struct(p);
2638 
2639  read_unlock(&tasklist_lock);
2640 
2641  if (p == NULL) return -ESRCH;
2642  }
2643 
2644  ret = pfm_task_incompatible(ctx, p);
2645  if (ret == 0) {
2646  *task = p;
2647  } else if (p != current) {
2648  pfm_put_task(p);
2649  }
2650  return ret;
2651 }
2652 
2653 
2654 
2655 static int
2656 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2657 {
2658  pfarg_context_t *req = (pfarg_context_t *)arg;
2659  struct file *filp;
2660  struct path path;
2661  int ctx_flags;
2662  int fd;
2663  int ret;
2664 
2665  /* let's check the arguments first */
2666  ret = pfarg_is_sane(current, req);
2667  if (ret < 0)
2668  return ret;
2669 
2670  ctx_flags = req->ctx_flags;
2671 
2672  ret = -ENOMEM;
2673 
2674  fd = get_unused_fd();
2675  if (fd < 0)
2676  return fd;
2677 
2678  ctx = pfm_context_alloc(ctx_flags);
2679  if (!ctx)
2680  goto error;
2681 
2682  filp = pfm_alloc_file(ctx);
2683  if (IS_ERR(filp)) {
2684  ret = PTR_ERR(filp);
2685  goto error_file;
2686  }
2687 
2688  req->ctx_fd = ctx->ctx_fd = fd;
2689 
2690  /*
2691  * does the user want to sample?
2692  */
2693  if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2694  ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2695  if (ret)
2696  goto buffer_error;
2697  }
2698 
2699  DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2700  ctx,
2701  ctx_flags,
2702  ctx->ctx_fl_system,
2703  ctx->ctx_fl_block,
2704  ctx->ctx_fl_excl_idle,
2705  ctx->ctx_fl_no_msg,
2706  ctx->ctx_fd));
2707 
2708  /*
2709  * initialize soft PMU state
2710  */
2711  pfm_reset_pmu_state(ctx);
2712 
2713  fd_install(fd, filp);
2714 
2715  return 0;
2716 
2717 buffer_error:
2718  path = filp->f_path;
2719  put_filp(filp);
2720  path_put(&path);
2721 
2722  if (ctx->ctx_buf_fmt) {
2723  pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2724  }
2725 error_file:
2726  pfm_context_free(ctx);
2727 
2728 error:
2729  put_unused_fd(fd);
2730  return ret;
2731 }
2732 
2733 static inline unsigned long
2734 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2735 {
2736  unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2737  unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2738  extern unsigned long carta_random32 (unsigned long seed);
2739 
2740  if (reg->flags & PFM_REGFL_RANDOM) {
2741  new_seed = carta_random32(old_seed);
2742  val -= (old_seed & mask); /* counter values are negative numbers! */
2743  if ((mask >> 32) != 0)
2744  /* construct a full 64-bit random value: */
2745  new_seed |= carta_random32(old_seed >> 32) << 32;
2746  reg->seed = new_seed;
2747  }
2748  reg->lval = val;
2749  return val;
2750 }
2751 
2752 static void
2753 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2754 {
2755  unsigned long mask = ovfl_regs[0];
2756  unsigned long reset_others = 0UL;
2757  unsigned long val;
2758  int i;
2759 
2760  /*
2761  * now restore reset value on sampling overflowed counters
2762  */
2763  mask >>= PMU_FIRST_COUNTER;
2764  for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2765 
2766  if ((mask & 0x1UL) == 0UL) continue;
2767 
2768  ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2769  reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2770 
2771  DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2772  }
2773 
2774  /*
2775  * Now take care of resetting the other registers
2776  */
2777  for(i = 0; reset_others; i++, reset_others >>= 1) {
2778 
2779  if ((reset_others & 0x1) == 0) continue;
2780 
2781  ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2782 
2783  DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2784  is_long_reset ? "long" : "short", i, val));
2785  }
2786 }
2787 
2788 static void
2789 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2790 {
2791  unsigned long mask = ovfl_regs[0];
2792  unsigned long reset_others = 0UL;
2793  unsigned long val;
2794  int i;
2795 
2796  DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2797 
2798  if (ctx->ctx_state == PFM_CTX_MASKED) {
2799  pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2800  return;
2801  }
2802 
2803  /*
2804  * now restore reset value on sampling overflowed counters
2805  */
2806  mask >>= PMU_FIRST_COUNTER;
2807  for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2808 
2809  if ((mask & 0x1UL) == 0UL) continue;
2810 
2811  val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2812  reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2813 
2814  DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2815 
2816  pfm_write_soft_counter(ctx, i, val);
2817  }
2818 
2819  /*
2820  * Now take care of resetting the other registers
2821  */
2822  for(i = 0; reset_others; i++, reset_others >>= 1) {
2823 
2824  if ((reset_others & 0x1) == 0) continue;
2825 
2826  val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2827 
2828  if (PMD_IS_COUNTING(i)) {
2829  pfm_write_soft_counter(ctx, i, val);
2830  } else {
2831  ia64_set_pmd(i, val);
2832  }
2833  DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2834  is_long_reset ? "long" : "short", i, val));
2835  }
2836  ia64_srlz_d();
2837 }
2838 
2839 static int
2840 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2841 {
2842  struct task_struct *task;
2843  pfarg_reg_t *req = (pfarg_reg_t *)arg;
2844  unsigned long value, pmc_pm;
2845  unsigned long smpl_pmds, reset_pmds, impl_pmds;
2846  unsigned int cnum, reg_flags, flags, pmc_type;
2847  int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2848  int is_monitor, is_counting, state;
2849  int ret = -EINVAL;
2850  pfm_reg_check_t wr_func;
2851 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2852 
2853  state = ctx->ctx_state;
2854  is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2855  is_system = ctx->ctx_fl_system;
2856  task = ctx->ctx_task;
2857  impl_pmds = pmu_conf->impl_pmds[0];
2858 
2859  if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2860 
2861  if (is_loaded) {
2862  /*
2863  * In system wide and when the context is loaded, access can only happen
2864  * when the caller is running on the CPU being monitored by the session.
2865  * It does not have to be the owner (ctx_task) of the context per se.
2866  */
2867  if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2868  DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2869  return -EBUSY;
2870  }
2871  can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2872  }
2873  expert_mode = pfm_sysctl.expert_mode;
2874 
2875  for (i = 0; i < count; i++, req++) {
2876 
2877  cnum = req->reg_num;
2878  reg_flags = req->reg_flags;
2879  value = req->reg_value;
2880  smpl_pmds = req->reg_smpl_pmds[0];
2881  reset_pmds = req->reg_reset_pmds[0];
2882  flags = 0;
2883 
2884 
2885  if (cnum >= PMU_MAX_PMCS) {
2886  DPRINT(("pmc%u is invalid\n", cnum));
2887  goto error;
2888  }
2889 
2890  pmc_type = pmu_conf->pmc_desc[cnum].type;
2891  pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2892  is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2893  is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2894 
2895  /*
2896  * we reject all non implemented PMC as well
2897  * as attempts to modify PMC[0-3] which are used
2898  * as status registers by the PMU
2899  */
2900  if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2901  DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2902  goto error;
2903  }
2904  wr_func = pmu_conf->pmc_desc[cnum].write_check;
2905  /*
2906  * If the PMC is a monitor, then if the value is not the default:
2907  * - system-wide session: PMCx.pm=1 (privileged monitor)
2908  * - per-task : PMCx.pm=0 (user monitor)
2909  */
2910  if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2911  DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2912  cnum,
2913  pmc_pm,
2914  is_system));
2915  goto error;
2916  }
2917 
2918  if (is_counting) {
2919  /*
2920  * enforce generation of overflow interrupt. Necessary on all
2921  * CPUs.
2922  */
2923  value |= 1 << PMU_PMC_OI;
2924 
2925  if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2926  flags |= PFM_REGFL_OVFL_NOTIFY;
2927  }
2928 
2929  if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2930 
2931  /* verify validity of smpl_pmds */
2932  if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2933  DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2934  goto error;
2935  }
2936 
2937  /* verify validity of reset_pmds */
2938  if ((reset_pmds & impl_pmds) != reset_pmds) {
2939  DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2940  goto error;
2941  }
2942  } else {
2943  if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2944  DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2945  goto error;
2946  }
2947  /* eventid on non-counting monitors are ignored */
2948  }
2949 
2950  /*
2951  * execute write checker, if any
2952  */
2953  if (likely(expert_mode == 0 && wr_func)) {
2954  ret = (*wr_func)(task, ctx, cnum, &value, regs);
2955  if (ret) goto error;
2956  ret = -EINVAL;
2957  }
2958 
2959  /*
2960  * no error on this register
2961  */
2962  PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2963 
2964  /*
2965  * Now we commit the changes to the software state
2966  */
2967 
2968  /*
2969  * update overflow information
2970  */
2971  if (is_counting) {
2972  /*
2973  * full flag update each time a register is programmed
2974  */
2975  ctx->ctx_pmds[cnum].flags = flags;
2976 
2977  ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2978  ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2979  ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
2980 
2981  /*
2982  * Mark all PMDS to be accessed as used.
2983  *
2984  * We do not keep track of PMC because we have to
2985  * systematically restore ALL of them.
2986  *
2987  * We do not update the used_monitors mask, because
2988  * if we have not programmed them, then will be in
2989  * a quiescent state, therefore we will not need to
2990  * mask/restore then when context is MASKED.
2991  */
2992  CTX_USED_PMD(ctx, reset_pmds);
2993  CTX_USED_PMD(ctx, smpl_pmds);
2994  /*
2995  * make sure we do not try to reset on
2996  * restart because we have established new values
2997  */
2998  if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2999  }
3000  /*
3001  * Needed in case the user does not initialize the equivalent
3002  * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3003  * possible leak here.
3004  */
3005  CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3006 
3007  /*
3008  * keep track of the monitor PMC that we are using.
3009  * we save the value of the pmc in ctx_pmcs[] and if
3010  * the monitoring is not stopped for the context we also
3011  * place it in the saved state area so that it will be
3012  * picked up later by the context switch code.
3013  *
3014  * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3015  *
3016  * The value in th_pmcs[] may be modified on overflow, i.e., when
3017  * monitoring needs to be stopped.
3018  */
3019  if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3020 
3021  /*
3022  * update context state
3023  */
3024  ctx->ctx_pmcs[cnum] = value;
3025 
3026  if (is_loaded) {
3027  /*
3028  * write thread state
3029  */
3030  if (is_system == 0) ctx->th_pmcs[cnum] = value;
3031 
3032  /*
3033  * write hardware register if we can
3034  */
3035  if (can_access_pmu) {
3036  ia64_set_pmc(cnum, value);
3037  }
3038 #ifdef CONFIG_SMP
3039  else {
3040  /*
3041  * per-task SMP only here
3042  *
3043  * we are guaranteed that the task is not running on the other CPU,
3044  * we indicate that this PMD will need to be reloaded if the task
3045  * is rescheduled on the CPU it ran last on.
3046  */
3047  ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3048  }
3049 #endif
3050  }
3051 
3052  DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3053  cnum,
3054  value,
3055  is_loaded,
3056  can_access_pmu,
3057  flags,
3058  ctx->ctx_all_pmcs[0],
3059  ctx->ctx_used_pmds[0],
3060  ctx->ctx_pmds[cnum].eventid,
3061  smpl_pmds,
3062  reset_pmds,
3063  ctx->ctx_reload_pmcs[0],
3064  ctx->ctx_used_monitors[0],
3065  ctx->ctx_ovfl_regs[0]));
3066  }
3067 
3068  /*
3069  * make sure the changes are visible
3070  */
3071  if (can_access_pmu) ia64_srlz_d();
3072 
3073  return 0;
3074 error:
3075  PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3076  return ret;
3077 }
3078 
3079 static int
3080 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3081 {
3082  struct task_struct *task;
3083  pfarg_reg_t *req = (pfarg_reg_t *)arg;
3084  unsigned long value, hw_value, ovfl_mask;
3085  unsigned int cnum;
3086  int i, can_access_pmu = 0, state;
3087  int is_counting, is_loaded, is_system, expert_mode;
3088  int ret = -EINVAL;
3089  pfm_reg_check_t wr_func;
3090 
3091 
3092  state = ctx->ctx_state;
3093  is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3094  is_system = ctx->ctx_fl_system;
3095  ovfl_mask = pmu_conf->ovfl_val;
3096  task = ctx->ctx_task;
3097 
3098  if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3099 
3100  /*
3101  * on both UP and SMP, we can only write to the PMC when the task is
3102  * the owner of the local PMU.
3103  */
3104  if (likely(is_loaded)) {
3105  /*
3106  * In system wide and when the context is loaded, access can only happen
3107  * when the caller is running on the CPU being monitored by the session.
3108  * It does not have to be the owner (ctx_task) of the context per se.
3109  */
3110  if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3111  DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3112  return -EBUSY;
3113  }
3114  can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3115  }
3116  expert_mode = pfm_sysctl.expert_mode;
3117 
3118  for (i = 0; i < count; i++, req++) {
3119 
3120  cnum = req->reg_num;
3121  value = req->reg_value;
3122 
3123  if (!PMD_IS_IMPL(cnum)) {
3124  DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3125  goto abort_mission;
3126  }
3127  is_counting = PMD_IS_COUNTING(cnum);
3128  wr_func = pmu_conf->pmd_desc[cnum].write_check;
3129 
3130  /*
3131  * execute write checker, if any
3132  */
3133  if (unlikely(expert_mode == 0 && wr_func)) {
3134  unsigned long v = value;
3135 
3136  ret = (*wr_func)(task, ctx, cnum, &v, regs);
3137  if (ret) goto abort_mission;
3138 
3139  value = v;
3140  ret = -EINVAL;
3141  }
3142 
3143  /*
3144  * no error on this register
3145  */
3146  PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3147 
3148  /*
3149  * now commit changes to software state
3150  */
3151  hw_value = value;
3152 
3153  /*
3154  * update virtualized (64bits) counter
3155  */
3156  if (is_counting) {
3157  /*
3158  * write context state
3159  */
3160  ctx->ctx_pmds[cnum].lval = value;
3161 
3162  /*
3163  * when context is load we use the split value
3164  */
3165  if (is_loaded) {
3166  hw_value = value & ovfl_mask;
3167  value = value & ~ovfl_mask;
3168  }
3169  }
3170  /*
3171  * update reset values (not just for counters)
3172  */
3173  ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3174  ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3175 
3176  /*
3177  * update randomization parameters (not just for counters)
3178  */
3179  ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3180  ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3181 
3182  /*
3183  * update context value
3184  */
3185  ctx->ctx_pmds[cnum].val = value;
3186 
3187  /*
3188  * Keep track of what we use
3189  *
3190  * We do not keep track of PMC because we have to
3191  * systematically restore ALL of them.
3192  */
3193  CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3194 
3195  /*
3196  * mark this PMD register used as well
3197  */
3198  CTX_USED_PMD(ctx, RDEP(cnum));
3199 
3200  /*
3201  * make sure we do not try to reset on
3202  * restart because we have established new values
3203  */
3204  if (is_counting && state == PFM_CTX_MASKED) {
3205  ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3206  }
3207 
3208  if (is_loaded) {
3209  /*
3210  * write thread state
3211  */
3212  if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3213 
3214  /*
3215  * write hardware register if we can
3216  */
3217  if (can_access_pmu) {
3218  ia64_set_pmd(cnum, hw_value);
3219  } else {
3220 #ifdef CONFIG_SMP
3221  /*
3222  * we are guaranteed that the task is not running on the other CPU,
3223  * we indicate that this PMD will need to be reloaded if the task
3224  * is rescheduled on the CPU it ran last on.
3225  */
3226  ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3227 #endif
3228  }
3229  }
3230 
3231  DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3232  "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3233  cnum,
3234  value,
3235  is_loaded,
3236  can_access_pmu,
3237  hw_value,
3238  ctx->ctx_pmds[cnum].val,
3239  ctx->ctx_pmds[cnum].short_reset,
3240  ctx->ctx_pmds[cnum].long_reset,
3241  PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3242  ctx->ctx_pmds[cnum].seed,
3243  ctx->ctx_pmds[cnum].mask,
3244  ctx->ctx_used_pmds[0],
3245  ctx->ctx_pmds[cnum].reset_pmds[0],
3246  ctx->ctx_reload_pmds[0],
3247  ctx->ctx_all_pmds[0],
3248  ctx->ctx_ovfl_regs[0]));
3249  }
3250 
3251  /*
3252  * make changes visible
3253  */
3254  if (can_access_pmu) ia64_srlz_d();
3255 
3256  return 0;
3257 
3258 abort_mission:
3259  /*
3260  * for now, we have only one possibility for error
3261  */
3262  PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3263  return ret;
3264 }
3265 
3266 /*
3267  * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3268  * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3269  * interrupt is delivered during the call, it will be kept pending until we leave, making
3270  * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3271  * guaranteed to return consistent data to the user, it may simply be old. It is not
3272  * trivial to treat the overflow while inside the call because you may end up in
3273  * some module sampling buffer code causing deadlocks.
3274  */
3275 static int
3276 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3277 {
3278  struct task_struct *task;
3279  unsigned long val = 0UL, lval, ovfl_mask, sval;
3280  pfarg_reg_t *req = (pfarg_reg_t *)arg;
3281  unsigned int cnum, reg_flags = 0;
3282  int i, can_access_pmu = 0, state;
3283  int is_loaded, is_system, is_counting, expert_mode;
3284  int ret = -EINVAL;
3285  pfm_reg_check_t rd_func;
3286 
3287  /*
3288  * access is possible when loaded only for
3289  * self-monitoring tasks or in UP mode
3290  */
3291 
3292  state = ctx->ctx_state;
3293  is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3294  is_system = ctx->ctx_fl_system;
3295  ovfl_mask = pmu_conf->ovfl_val;
3296  task = ctx->ctx_task;
3297 
3298  if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3299 
3300  if (likely(is_loaded)) {
3301  /*
3302  * In system wide and when the context is loaded, access can only happen
3303  * when the caller is running on the CPU being monitored by the session.
3304  * It does not have to be the owner (ctx_task) of the context per se.
3305  */
3306  if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3307  DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3308  return -EBUSY;
3309  }
3310  /*
3311  * this can be true when not self-monitoring only in UP
3312  */
3313  can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3314 
3315  if (can_access_pmu) ia64_srlz_d();
3316  }
3317  expert_mode = pfm_sysctl.expert_mode;
3318 
3319  DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3320  is_loaded,
3321  can_access_pmu,
3322  state));
3323 
3324  /*
3325  * on both UP and SMP, we can only read the PMD from the hardware register when
3326  * the task is the owner of the local PMU.
3327  */
3328 
3329  for (i = 0; i < count; i++, req++) {
3330 
3331  cnum = req->reg_num;
3332  reg_flags = req->reg_flags;
3333 
3334  if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3335  /*
3336  * we can only read the register that we use. That includes
3337  * the one we explicitly initialize AND the one we want included
3338  * in the sampling buffer (smpl_regs).
3339  *
3340  * Having this restriction allows optimization in the ctxsw routine
3341  * without compromising security (leaks)
3342  */
3343  if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3344 
3345  sval = ctx->ctx_pmds[cnum].val;
3346  lval = ctx->ctx_pmds[cnum].lval;
3347  is_counting = PMD_IS_COUNTING(cnum);
3348 
3349  /*
3350  * If the task is not the current one, then we check if the
3351  * PMU state is still in the local live register due to lazy ctxsw.
3352  * If true, then we read directly from the registers.
3353  */
3354  if (can_access_pmu){
3355  val = ia64_get_pmd(cnum);
3356  } else {
3357  /*
3358  * context has been saved
3359  * if context is zombie, then task does not exist anymore.
3360  * In this case, we use the full value saved in the context (pfm_flush_regs()).
3361  */
3362  val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3363  }
3364  rd_func = pmu_conf->pmd_desc[cnum].read_check;
3365 
3366  if (is_counting) {
3367  /*
3368  * XXX: need to check for overflow when loaded
3369  */
3370  val &= ovfl_mask;
3371  val += sval;
3372  }
3373 
3374  /*
3375  * execute read checker, if any
3376  */
3377  if (unlikely(expert_mode == 0 && rd_func)) {
3378  unsigned long v = val;
3379  ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3380  if (ret) goto error;
3381  val = v;
3382  ret = -EINVAL;
3383  }
3384 
3385  PFM_REG_RETFLAG_SET(reg_flags, 0);
3386 
3387  DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3388 
3389  /*
3390  * update register return value, abort all if problem during copy.
3391  * we only modify the reg_flags field. no check mode is fine because
3392  * access has been verified upfront in sys_perfmonctl().
3393  */
3394  req->reg_value = val;
3395  req->reg_flags = reg_flags;
3396  req->reg_last_reset_val = lval;
3397  }
3398 
3399  return 0;
3400 
3401 error:
3402  PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3403  return ret;
3404 }
3405 
3406 int
3407 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3408 {
3409  pfm_context_t *ctx;
3410 
3411  if (req == NULL) return -EINVAL;
3412 
3413  ctx = GET_PMU_CTX();
3414 
3415  if (ctx == NULL) return -EINVAL;
3416 
3417  /*
3418  * for now limit to current task, which is enough when calling
3419  * from overflow handler
3420  */
3421  if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3422 
3423  return pfm_write_pmcs(ctx, req, nreq, regs);
3424 }
3426 
3427 int
3428 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3429 {
3430  pfm_context_t *ctx;
3431 
3432  if (req == NULL) return -EINVAL;
3433 
3434  ctx = GET_PMU_CTX();
3435 
3436  if (ctx == NULL) return -EINVAL;
3437 
3438  /*
3439  * for now limit to current task, which is enough when calling
3440  * from overflow handler
3441  */
3442  if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3443 
3444  return pfm_read_pmds(ctx, req, nreq, regs);
3445 }
3447 
3448 /*
3449  * Only call this function when a process it trying to
3450  * write the debug registers (reading is always allowed)
3451  */
3452 int
3454 {
3455  pfm_context_t *ctx = task->thread.pfm_context;
3456  unsigned long flags;
3457  int ret = 0;
3458 
3459  if (pmu_conf->use_rr_dbregs == 0) return 0;
3460 
3461  DPRINT(("called for [%d]\n", task_pid_nr(task)));
3462 
3463  /*
3464  * do it only once
3465  */
3466  if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3467 
3468  /*
3469  * Even on SMP, we do not need to use an atomic here because
3470  * the only way in is via ptrace() and this is possible only when the
3471  * process is stopped. Even in the case where the ctxsw out is not totally
3472  * completed by the time we come here, there is no way the 'stopped' process
3473  * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3474  * So this is always safe.
3475  */
3476  if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3477 
3478  LOCK_PFS(flags);
3479 
3480  /*
3481  * We cannot allow setting breakpoints when system wide monitoring
3482  * sessions are using the debug registers.
3483  */
3484  if (pfm_sessions.pfs_sys_use_dbregs> 0)
3485  ret = -1;
3486  else
3487  pfm_sessions.pfs_ptrace_use_dbregs++;
3488 
3489  DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3490  pfm_sessions.pfs_ptrace_use_dbregs,
3491  pfm_sessions.pfs_sys_use_dbregs,
3492  task_pid_nr(task), ret));
3493 
3494  UNLOCK_PFS(flags);
3495 
3496  return ret;
3497 }
3498 
3499 /*
3500  * This function is called for every task that exits with the
3501  * IA64_THREAD_DBG_VALID set. This indicates a task which was
3502  * able to use the debug registers for debugging purposes via
3503  * ptrace(). Therefore we know it was not using them for
3504  * performance monitoring, so we only decrement the number
3505  * of "ptraced" debug register users to keep the count up to date
3506  */
3507 int
3509 {
3510  unsigned long flags;
3511  int ret;
3512 
3513  if (pmu_conf->use_rr_dbregs == 0) return 0;
3514 
3515  LOCK_PFS(flags);
3516  if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3517  printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3518  ret = -1;
3519  } else {
3520  pfm_sessions.pfs_ptrace_use_dbregs--;
3521  ret = 0;
3522  }
3523  UNLOCK_PFS(flags);
3524 
3525  return ret;
3526 }
3527 
3528 static int
3529 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3530 {
3531  struct task_struct *task;
3533  pfm_ovfl_ctrl_t rst_ctrl;
3534  int state, is_system;
3535  int ret = 0;
3536 
3537  state = ctx->ctx_state;
3538  fmt = ctx->ctx_buf_fmt;
3539  is_system = ctx->ctx_fl_system;
3540  task = PFM_CTX_TASK(ctx);
3541 
3542  switch(state) {
3543  case PFM_CTX_MASKED:
3544  break;
3545  case PFM_CTX_LOADED:
3546  if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3547  /* fall through */
3548  case PFM_CTX_UNLOADED:
3549  case PFM_CTX_ZOMBIE:
3550  DPRINT(("invalid state=%d\n", state));
3551  return -EBUSY;
3552  default:
3553  DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3554  return -EINVAL;
3555  }
3556 
3557  /*
3558  * In system wide and when the context is loaded, access can only happen
3559  * when the caller is running on the CPU being monitored by the session.
3560  * It does not have to be the owner (ctx_task) of the context per se.
3561  */
3562  if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3563  DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3564  return -EBUSY;
3565  }
3566 
3567  /* sanity check */
3568  if (unlikely(task == NULL)) {
3569  printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3570  return -EINVAL;
3571  }
3572 
3573  if (task == current || is_system) {
3574 
3575  fmt = ctx->ctx_buf_fmt;
3576 
3577  DPRINT(("restarting self %d ovfl=0x%lx\n",
3578  task_pid_nr(task),
3579  ctx->ctx_ovfl_regs[0]));
3580 
3581  if (CTX_HAS_SMPL(ctx)) {
3582 
3583  prefetch(ctx->ctx_smpl_hdr);
3584 
3585  rst_ctrl.bits.mask_monitoring = 0;
3586  rst_ctrl.bits.reset_ovfl_pmds = 0;
3587 
3588  if (state == PFM_CTX_LOADED)
3589  ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3590  else
3591  ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3592  } else {
3593  rst_ctrl.bits.mask_monitoring = 0;
3594  rst_ctrl.bits.reset_ovfl_pmds = 1;
3595  }
3596 
3597  if (ret == 0) {
3598  if (rst_ctrl.bits.reset_ovfl_pmds)
3599  pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3600 
3601  if (rst_ctrl.bits.mask_monitoring == 0) {
3602  DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3603 
3604  if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3605  } else {
3606  DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3607 
3608  // cannot use pfm_stop_monitoring(task, regs);
3609  }
3610  }
3611  /*
3612  * clear overflowed PMD mask to remove any stale information
3613  */
3614  ctx->ctx_ovfl_regs[0] = 0UL;
3615 
3616  /*
3617  * back to LOADED state
3618  */
3619  ctx->ctx_state = PFM_CTX_LOADED;
3620 
3621  /*
3622  * XXX: not really useful for self monitoring
3623  */
3624  ctx->ctx_fl_can_restart = 0;
3625 
3626  return 0;
3627  }
3628 
3629  /*
3630  * restart another task
3631  */
3632 
3633  /*
3634  * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3635  * one is seen by the task.
3636  */
3637  if (state == PFM_CTX_MASKED) {
3638  if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3639  /*
3640  * will prevent subsequent restart before this one is
3641  * seen by other task
3642  */
3643  ctx->ctx_fl_can_restart = 0;
3644  }
3645 
3646  /*
3647  * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3648  * the task is blocked or on its way to block. That's the normal
3649  * restart path. If the monitoring is not masked, then the task
3650  * can be actively monitoring and we cannot directly intervene.
3651  * Therefore we use the trap mechanism to catch the task and
3652  * force it to reset the buffer/reset PMDs.
3653  *
3654  * if non-blocking, then we ensure that the task will go into
3655  * pfm_handle_work() before returning to user mode.
3656  *
3657  * We cannot explicitly reset another task, it MUST always
3658  * be done by the task itself. This works for system wide because
3659  * the tool that is controlling the session is logically doing
3660  * "self-monitoring".
3661  */
3662  if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3663  DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3664  complete(&ctx->ctx_restart_done);
3665  } else {
3666  DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3667 
3668  ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3669 
3670  PFM_SET_WORK_PENDING(task, 1);
3671 
3672  set_notify_resume(task);
3673 
3674  /*
3675  * XXX: send reschedule if task runs on another CPU
3676  */
3677  }
3678  return 0;
3679 }
3680 
3681 static int
3682 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3683 {
3684  unsigned int m = *(unsigned int *)arg;
3685 
3686  pfm_sysctl.debug = m == 0 ? 0 : 1;
3687 
3688  printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3689 
3690  if (m == 0) {
3691  memset(pfm_stats, 0, sizeof(pfm_stats));
3692  for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3693  }
3694  return 0;
3695 }
3696 
3697 /*
3698  * arg can be NULL and count can be zero for this function
3699  */
3700 static int
3701 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3702 {
3703  struct thread_struct *thread = NULL;
3704  struct task_struct *task;
3705  pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3706  unsigned long flags;
3707  dbreg_t dbreg;
3708  unsigned int rnum;
3709  int first_time;
3710  int ret = 0, state;
3711  int i, can_access_pmu = 0;
3712  int is_system, is_loaded;
3713 
3714  if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3715 
3716  state = ctx->ctx_state;
3717  is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3718  is_system = ctx->ctx_fl_system;
3719  task = ctx->ctx_task;
3720 
3721  if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3722 
3723  /*
3724  * on both UP and SMP, we can only write to the PMC when the task is
3725  * the owner of the local PMU.
3726  */
3727  if (is_loaded) {
3728  thread = &task->thread;
3729  /*
3730  * In system wide and when the context is loaded, access can only happen
3731  * when the caller is running on the CPU being monitored by the session.
3732  * It does not have to be the owner (ctx_task) of the context per se.
3733  */
3734  if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3735  DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3736  return -EBUSY;
3737  }
3738  can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3739  }
3740 
3741  /*
3742  * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3743  * ensuring that no real breakpoint can be installed via this call.
3744  *
3745  * IMPORTANT: regs can be NULL in this function
3746  */
3747 
3748  first_time = ctx->ctx_fl_using_dbreg == 0;
3749 
3750  /*
3751  * don't bother if we are loaded and task is being debugged
3752  */
3753  if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3754  DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3755  return -EBUSY;
3756  }
3757 
3758  /*
3759  * check for debug registers in system wide mode
3760  *
3761  * If though a check is done in pfm_context_load(),
3762  * we must repeat it here, in case the registers are
3763  * written after the context is loaded
3764  */
3765  if (is_loaded) {
3766  LOCK_PFS(flags);
3767 
3768  if (first_time && is_system) {
3769  if (pfm_sessions.pfs_ptrace_use_dbregs)
3770  ret = -EBUSY;
3771  else
3772  pfm_sessions.pfs_sys_use_dbregs++;
3773  }
3774  UNLOCK_PFS(flags);
3775  }
3776 
3777  if (ret != 0) return ret;
3778 
3779  /*
3780  * mark ourself as user of the debug registers for
3781  * perfmon purposes.
3782  */
3783  ctx->ctx_fl_using_dbreg = 1;
3784 
3785  /*
3786  * clear hardware registers to make sure we don't
3787  * pick up stale state.
3788  *
3789  * for a system wide session, we do not use
3790  * thread.dbr, thread.ibr because this process
3791  * never leaves the current CPU and the state
3792  * is shared by all processes running on it
3793  */
3794  if (first_time && can_access_pmu) {
3795  DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3796  for (i=0; i < pmu_conf->num_ibrs; i++) {
3797  ia64_set_ibr(i, 0UL);
3799  }
3800  ia64_srlz_i();
3801  for (i=0; i < pmu_conf->num_dbrs; i++) {
3802  ia64_set_dbr(i, 0UL);
3804  }
3805  ia64_srlz_d();
3806  }
3807 
3808  /*
3809  * Now install the values into the registers
3810  */
3811  for (i = 0; i < count; i++, req++) {
3812 
3813  rnum = req->dbreg_num;
3814  dbreg.val = req->dbreg_value;
3815 
3816  ret = -EINVAL;
3817 
3818  if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3819  DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3820  rnum, dbreg.val, mode, i, count));
3821 
3822  goto abort_mission;
3823  }
3824 
3825  /*
3826  * make sure we do not install enabled breakpoint
3827  */
3828  if (rnum & 0x1) {
3829  if (mode == PFM_CODE_RR)
3830  dbreg.ibr.ibr_x = 0;
3831  else
3832  dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3833  }
3834 
3835  PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3836 
3837  /*
3838  * Debug registers, just like PMC, can only be modified
3839  * by a kernel call. Moreover, perfmon() access to those
3840  * registers are centralized in this routine. The hardware
3841  * does not modify the value of these registers, therefore,
3842  * if we save them as they are written, we can avoid having
3843  * to save them on context switch out. This is made possible
3844  * by the fact that when perfmon uses debug registers, ptrace()
3845  * won't be able to modify them concurrently.
3846  */
3847  if (mode == PFM_CODE_RR) {
3848  CTX_USED_IBR(ctx, rnum);
3849 
3850  if (can_access_pmu) {
3851  ia64_set_ibr(rnum, dbreg.val);
3853  }
3854 
3855  ctx->ctx_ibrs[rnum] = dbreg.val;
3856 
3857  DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3858  rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3859  } else {
3860  CTX_USED_DBR(ctx, rnum);
3861 
3862  if (can_access_pmu) {
3863  ia64_set_dbr(rnum, dbreg.val);
3865  }
3866  ctx->ctx_dbrs[rnum] = dbreg.val;
3867 
3868  DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3869  rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3870  }
3871  }
3872 
3873  return 0;
3874 
3875 abort_mission:
3876  /*
3877  * in case it was our first attempt, we undo the global modifications
3878  */
3879  if (first_time) {
3880  LOCK_PFS(flags);
3881  if (ctx->ctx_fl_system) {
3882  pfm_sessions.pfs_sys_use_dbregs--;
3883  }
3884  UNLOCK_PFS(flags);
3885  ctx->ctx_fl_using_dbreg = 0;
3886  }
3887  /*
3888  * install error return flag
3889  */
3890  PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3891 
3892  return ret;
3893 }
3894 
3895 static int
3896 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3897 {
3898  return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3899 }
3900 
3901 static int
3902 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3903 {
3904  return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3905 }
3906 
3907 int
3908 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3909 {
3910  pfm_context_t *ctx;
3911 
3912  if (req == NULL) return -EINVAL;
3913 
3914  ctx = GET_PMU_CTX();
3915 
3916  if (ctx == NULL) return -EINVAL;
3917 
3918  /*
3919  * for now limit to current task, which is enough when calling
3920  * from overflow handler
3921  */
3922  if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3923 
3924  return pfm_write_ibrs(ctx, req, nreq, regs);
3925 }
3927 
3928 int
3929 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3930 {
3931  pfm_context_t *ctx;
3932 
3933  if (req == NULL) return -EINVAL;
3934 
3935  ctx = GET_PMU_CTX();
3936 
3937  if (ctx == NULL) return -EINVAL;
3938 
3939  /*
3940  * for now limit to current task, which is enough when calling
3941  * from overflow handler
3942  */
3943  if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3944 
3945  return pfm_write_dbrs(ctx, req, nreq, regs);
3946 }
3948 
3949 
3950 static int
3951 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3952 {
3953  pfarg_features_t *req = (pfarg_features_t *)arg;
3954 
3955  req->ft_version = PFM_VERSION;
3956  return 0;
3957 }
3958 
3959 static int
3960 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3961 {
3962  struct pt_regs *tregs;
3963  struct task_struct *task = PFM_CTX_TASK(ctx);
3964  int state, is_system;
3965 
3966  state = ctx->ctx_state;
3967  is_system = ctx->ctx_fl_system;
3968 
3969  /*
3970  * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3971  */
3972  if (state == PFM_CTX_UNLOADED) return -EINVAL;
3973 
3974  /*
3975  * In system wide and when the context is loaded, access can only happen
3976  * when the caller is running on the CPU being monitored by the session.
3977  * It does not have to be the owner (ctx_task) of the context per se.
3978  */
3979  if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3980  DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3981  return -EBUSY;
3982  }
3983  DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3984  task_pid_nr(PFM_CTX_TASK(ctx)),
3985  state,
3986  is_system));
3987  /*
3988  * in system mode, we need to update the PMU directly
3989  * and the user level state of the caller, which may not
3990  * necessarily be the creator of the context.
3991  */
3992  if (is_system) {
3993  /*
3994  * Update local PMU first
3995  *
3996  * disable dcr pp
3997  */
3999  ia64_srlz_i();
4000 
4001  /*
4002  * update local cpuinfo
4003  */
4004  PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4005 
4006  /*
4007  * stop monitoring, does srlz.i
4008  */
4009  pfm_clear_psr_pp();
4010 
4011  /*
4012  * stop monitoring in the caller
4013  */
4014  ia64_psr(regs)->pp = 0;
4015 
4016  return 0;
4017  }
4018  /*
4019  * per-task mode
4020  */
4021 
4022  if (task == current) {
4023  /* stop monitoring at kernel level */
4024  pfm_clear_psr_up();
4025 
4026  /*
4027  * stop monitoring at the user level
4028  */
4029  ia64_psr(regs)->up = 0;
4030  } else {
4031  tregs = task_pt_regs(task);
4032 
4033  /*
4034  * stop monitoring at the user level
4035  */
4036  ia64_psr(tregs)->up = 0;
4037 
4038  /*
4039  * monitoring disabled in kernel at next reschedule
4040  */
4041  ctx->ctx_saved_psr_up = 0;
4042  DPRINT(("task=[%d]\n", task_pid_nr(task)));
4043  }
4044  return 0;
4045 }
4046 
4047 
4048 static int
4049 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4050 {
4051  struct pt_regs *tregs;
4052  int state, is_system;
4053 
4054  state = ctx->ctx_state;
4055  is_system = ctx->ctx_fl_system;
4056 
4057  if (state != PFM_CTX_LOADED) return -EINVAL;
4058 
4059  /*
4060  * In system wide and when the context is loaded, access can only happen
4061  * when the caller is running on the CPU being monitored by the session.
4062  * It does not have to be the owner (ctx_task) of the context per se.
4063  */
4064  if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4065  DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4066  return -EBUSY;
4067  }
4068 
4069  /*
4070  * in system mode, we need to update the PMU directly
4071  * and the user level state of the caller, which may not
4072  * necessarily be the creator of the context.
4073  */
4074  if (is_system) {
4075 
4076  /*
4077  * set user level psr.pp for the caller
4078  */
4079  ia64_psr(regs)->pp = 1;
4080 
4081  /*
4082  * now update the local PMU and cpuinfo
4083  */
4084  PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4085 
4086  /*
4087  * start monitoring at kernel level
4088  */
4089  pfm_set_psr_pp();
4090 
4091  /* enable dcr pp */
4093  ia64_srlz_i();
4094 
4095  return 0;
4096  }
4097 
4098  /*
4099  * per-process mode
4100  */
4101 
4102  if (ctx->ctx_task == current) {
4103 
4104  /* start monitoring at kernel level */
4105  pfm_set_psr_up();
4106 
4107  /*
4108  * activate monitoring at user level
4109  */
4110  ia64_psr(regs)->up = 1;
4111 
4112  } else {
4113  tregs = task_pt_regs(ctx->ctx_task);
4114 
4115  /*
4116  * start monitoring at the kernel level the next
4117  * time the task is scheduled
4118  */
4119  ctx->ctx_saved_psr_up = IA64_PSR_UP;
4120 
4121  /*
4122  * activate monitoring at user level
4123  */
4124  ia64_psr(tregs)->up = 1;
4125  }
4126  return 0;
4127 }
4128 
4129 static int
4130 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4131 {
4132  pfarg_reg_t *req = (pfarg_reg_t *)arg;
4133  unsigned int cnum;
4134  int i;
4135  int ret = -EINVAL;
4136 
4137  for (i = 0; i < count; i++, req++) {
4138 
4139  cnum = req->reg_num;
4140 
4141  if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4142 
4143  req->reg_value = PMC_DFL_VAL(cnum);
4144 
4145  PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4146 
4147  DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4148  }
4149  return 0;
4150 
4151 abort_mission:
4152  PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4153  return ret;
4154 }
4155 
4156 static int
4157 pfm_check_task_exist(pfm_context_t *ctx)
4158 {
4159  struct task_struct *g, *t;
4160  int ret = -ESRCH;
4161 
4162  read_lock(&tasklist_lock);
4163 
4164  do_each_thread (g, t) {
4165  if (t->thread.pfm_context == ctx) {
4166  ret = 0;
4167  goto out;
4168  }
4169  } while_each_thread (g, t);
4170 out:
4171  read_unlock(&tasklist_lock);
4172 
4173  DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4174 
4175  return ret;
4176 }
4177 
4178 static int
4179 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4180 {
4181  struct task_struct *task;
4182  struct thread_struct *thread;
4183  struct pfm_context_t *old;
4184  unsigned long flags;
4185 #ifndef CONFIG_SMP
4186  struct task_struct *owner_task = NULL;
4187 #endif
4188  pfarg_load_t *req = (pfarg_load_t *)arg;
4189  unsigned long *pmcs_source, *pmds_source;
4190  int the_cpu;
4191  int ret = 0;
4192  int state, is_system, set_dbregs = 0;
4193 
4194  state = ctx->ctx_state;
4195  is_system = ctx->ctx_fl_system;
4196  /*
4197  * can only load from unloaded or terminated state
4198  */
4199  if (state != PFM_CTX_UNLOADED) {
4200  DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4201  req->load_pid,
4202  ctx->ctx_state));
4203  return -EBUSY;
4204  }
4205 
4206  DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4207 
4208  if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4209  DPRINT(("cannot use blocking mode on self\n"));
4210  return -EINVAL;
4211  }
4212 
4213  ret = pfm_get_task(ctx, req->load_pid, &task);
4214  if (ret) {
4215  DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4216  return ret;
4217  }
4218 
4219  ret = -EINVAL;
4220 
4221  /*
4222  * system wide is self monitoring only
4223  */
4224  if (is_system && task != current) {
4225  DPRINT(("system wide is self monitoring only load_pid=%d\n",
4226  req->load_pid));
4227  goto error;
4228  }
4229 
4230  thread = &task->thread;
4231 
4232  ret = 0;
4233  /*
4234  * cannot load a context which is using range restrictions,
4235  * into a task that is being debugged.
4236  */
4237  if (ctx->ctx_fl_using_dbreg) {
4238  if (thread->flags & IA64_THREAD_DBG_VALID) {
4239  ret = -EBUSY;
4240  DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4241  goto error;
4242  }
4243  LOCK_PFS(flags);
4244 
4245  if (is_system) {
4246  if (pfm_sessions.pfs_ptrace_use_dbregs) {
4247  DPRINT(("cannot load [%d] dbregs in use\n",
4248  task_pid_nr(task)));
4249  ret = -EBUSY;
4250  } else {
4251  pfm_sessions.pfs_sys_use_dbregs++;
4252  DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4253  set_dbregs = 1;
4254  }
4255  }
4256 
4257  UNLOCK_PFS(flags);
4258 
4259  if (ret) goto error;
4260  }
4261 
4262  /*
4263  * SMP system-wide monitoring implies self-monitoring.
4264  *
4265  * The programming model expects the task to
4266  * be pinned on a CPU throughout the session.
4267  * Here we take note of the current CPU at the
4268  * time the context is loaded. No call from
4269  * another CPU will be allowed.
4270  *
4271  * The pinning via shed_setaffinity()
4272  * must be done by the calling task prior
4273  * to this call.
4274  *
4275  * systemwide: keep track of CPU this session is supposed to run on
4276  */
4277  the_cpu = ctx->ctx_cpu = smp_processor_id();
4278 
4279  ret = -EBUSY;
4280  /*
4281  * now reserve the session
4282  */
4283  ret = pfm_reserve_session(current, is_system, the_cpu);
4284  if (ret) goto error;
4285 
4286  /*
4287  * task is necessarily stopped at this point.
4288  *
4289  * If the previous context was zombie, then it got removed in
4290  * pfm_save_regs(). Therefore we should not see it here.
4291  * If we see a context, then this is an active context
4292  *
4293  * XXX: needs to be atomic
4294  */
4295  DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4296  thread->pfm_context, ctx));
4297 
4298  ret = -EBUSY;
4299  old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4300  if (old != NULL) {
4301  DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4302  goto error_unres;
4303  }
4304 
4305  pfm_reset_msgq(ctx);
4306 
4307  ctx->ctx_state = PFM_CTX_LOADED;
4308 
4309  /*
4310  * link context to task
4311  */
4312  ctx->ctx_task = task;
4313 
4314  if (is_system) {
4315  /*
4316  * we load as stopped
4317  */
4318  PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4319  PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4320 
4321  if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4322  } else {
4323  thread->flags |= IA64_THREAD_PM_VALID;
4324  }
4325 
4326  /*
4327  * propagate into thread-state
4328  */
4329  pfm_copy_pmds(task, ctx);
4330  pfm_copy_pmcs(task, ctx);
4331 
4332  pmcs_source = ctx->th_pmcs;
4333  pmds_source = ctx->th_pmds;
4334 
4335  /*
4336  * always the case for system-wide
4337  */
4338  if (task == current) {
4339 
4340  if (is_system == 0) {
4341 
4342  /* allow user level control */
4343  ia64_psr(regs)->sp = 0;
4344  DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4345 
4346  SET_LAST_CPU(ctx, smp_processor_id());
4347  INC_ACTIVATION();
4348  SET_ACTIVATION(ctx);
4349 #ifndef CONFIG_SMP
4350  /*
4351  * push the other task out, if any
4352  */
4353  owner_task = GET_PMU_OWNER();
4354  if (owner_task) pfm_lazy_save_regs(owner_task);
4355 #endif
4356  }
4357  /*
4358  * load all PMD from ctx to PMU (as opposed to thread state)
4359  * restore all PMC from ctx to PMU
4360  */
4361  pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4362  pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4363 
4364  ctx->ctx_reload_pmcs[0] = 0UL;
4365  ctx->ctx_reload_pmds[0] = 0UL;
4366 
4367  /*
4368  * guaranteed safe by earlier check against DBG_VALID
4369  */
4370  if (ctx->ctx_fl_using_dbreg) {
4371  pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4372  pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4373  }
4374  /*
4375  * set new ownership
4376  */
4377  SET_PMU_OWNER(task, ctx);
4378 
4379  DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4380  } else {
4381  /*
4382  * when not current, task MUST be stopped, so this is safe
4383  */
4384  regs = task_pt_regs(task);
4385 
4386  /* force a full reload */
4387  ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4388  SET_LAST_CPU(ctx, -1);
4389 
4390  /* initial saved psr (stopped) */
4391  ctx->ctx_saved_psr_up = 0UL;
4392  ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4393  }
4394 
4395  ret = 0;
4396 
4397 error_unres:
4398  if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4399 error:
4400  /*
4401  * we must undo the dbregs setting (for system-wide)
4402  */
4403  if (ret && set_dbregs) {
4404  LOCK_PFS(flags);
4405  pfm_sessions.pfs_sys_use_dbregs--;
4406  UNLOCK_PFS(flags);
4407  }
4408  /*
4409  * release task, there is now a link with the context
4410  */
4411  if (is_system == 0 && task != current) {
4412  pfm_put_task(task);
4413 
4414  if (ret == 0) {
4415  ret = pfm_check_task_exist(ctx);
4416  if (ret) {
4417  ctx->ctx_state = PFM_CTX_UNLOADED;
4418  ctx->ctx_task = NULL;
4419  }
4420  }
4421  }
4422  return ret;
4423 }
4424 
4425 /*
4426  * in this function, we do not need to increase the use count
4427  * for the task via get_task_struct(), because we hold the
4428  * context lock. If the task were to disappear while having
4429  * a context attached, it would go through pfm_exit_thread()
4430  * which also grabs the context lock and would therefore be blocked
4431  * until we are here.
4432  */
4433 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4434 
4435 static int
4436 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4437 {
4438  struct task_struct *task = PFM_CTX_TASK(ctx);
4439  struct pt_regs *tregs;
4440  int prev_state, is_system;
4441  int ret;
4442 
4443  DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4444 
4445  prev_state = ctx->ctx_state;
4446  is_system = ctx->ctx_fl_system;
4447 
4448  /*
4449  * unload only when necessary
4450  */
4451  if (prev_state == PFM_CTX_UNLOADED) {
4452  DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4453  return 0;
4454  }
4455 
4456  /*
4457  * clear psr and dcr bits
4458  */
4459  ret = pfm_stop(ctx, NULL, 0, regs);
4460  if (ret) return ret;
4461 
4462  ctx->ctx_state = PFM_CTX_UNLOADED;
4463 
4464  /*
4465  * in system mode, we need to update the PMU directly
4466  * and the user level state of the caller, which may not
4467  * necessarily be the creator of the context.
4468  */
4469  if (is_system) {
4470 
4471  /*
4472  * Update cpuinfo
4473  *
4474  * local PMU is taken care of in pfm_stop()
4475  */
4476  PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4477  PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4478 
4479  /*
4480  * save PMDs in context
4481  * release ownership
4482  */
4483  pfm_flush_pmds(current, ctx);
4484 
4485  /*
4486  * at this point we are done with the PMU
4487  * so we can unreserve the resource.
4488  */
4489  if (prev_state != PFM_CTX_ZOMBIE)
4490  pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4491 
4492  /*
4493  * disconnect context from task
4494  */
4495  task->thread.pfm_context = NULL;
4496  /*
4497  * disconnect task from context
4498  */
4499  ctx->ctx_task = NULL;
4500 
4501  /*
4502  * There is nothing more to cleanup here.
4503  */
4504  return 0;
4505  }
4506 
4507  /*
4508  * per-task mode
4509  */
4510  tregs = task == current ? regs : task_pt_regs(task);
4511 
4512  if (task == current) {
4513  /*
4514  * cancel user level control
4515  */
4516  ia64_psr(regs)->sp = 1;
4517 
4518  DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4519  }
4520  /*
4521  * save PMDs to context
4522  * release ownership
4523  */
4524  pfm_flush_pmds(task, ctx);
4525 
4526  /*
4527  * at this point we are done with the PMU
4528  * so we can unreserve the resource.
4529  *
4530  * when state was ZOMBIE, we have already unreserved.
4531  */
4532  if (prev_state != PFM_CTX_ZOMBIE)
4533  pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4534 
4535  /*
4536  * reset activation counter and psr
4537  */
4538  ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4539  SET_LAST_CPU(ctx, -1);
4540 
4541  /*
4542  * PMU state will not be restored
4543  */
4544  task->thread.flags &= ~IA64_THREAD_PM_VALID;
4545 
4546  /*
4547  * break links between context and task
4548  */
4549  task->thread.pfm_context = NULL;
4550  ctx->ctx_task = NULL;
4551 
4552  PFM_SET_WORK_PENDING(task, 0);
4553 
4554  ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4555  ctx->ctx_fl_can_restart = 0;
4556  ctx->ctx_fl_going_zombie = 0;
4557 
4558  DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4559 
4560  return 0;
4561 }
4562 
4563 
4564 /*
4565  * called only from exit_thread(): task == current
4566  * we come here only if current has a context attached (loaded or masked)
4567  */
4568 void
4569 pfm_exit_thread(struct task_struct *task)
4570 {
4571  pfm_context_t *ctx;
4572  unsigned long flags;
4573  struct pt_regs *regs = task_pt_regs(task);
4574  int ret, state;
4575  int free_ok = 0;
4576 
4577  ctx = PFM_GET_CTX(task);
4578 
4579  PROTECT_CTX(ctx, flags);
4580 
4581  DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4582 
4583  state = ctx->ctx_state;
4584  switch(state) {
4585  case PFM_CTX_UNLOADED:
4586  /*
4587  * only comes to this function if pfm_context is not NULL, i.e., cannot
4588  * be in unloaded state
4589  */
4590  printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4591  break;
4592  case PFM_CTX_LOADED:
4593  case PFM_CTX_MASKED:
4594  ret = pfm_context_unload(ctx, NULL, 0, regs);
4595  if (ret) {
4596  printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4597  }
4598  DPRINT(("ctx unloaded for current state was %d\n", state));
4599 
4600  pfm_end_notify_user(ctx);
4601  break;
4602  case PFM_CTX_ZOMBIE:
4603  ret = pfm_context_unload(ctx, NULL, 0, regs);
4604  if (ret) {
4605  printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4606  }
4607  free_ok = 1;
4608  break;
4609  default:
4610  printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4611  break;
4612  }
4613  UNPROTECT_CTX(ctx, flags);
4614 
4615  { u64 psr = pfm_get_psr();
4616  BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4617  BUG_ON(GET_PMU_OWNER());
4618  BUG_ON(ia64_psr(regs)->up);
4619  BUG_ON(ia64_psr(regs)->pp);
4620  }
4621 
4622  /*
4623  * All memory free operations (especially for vmalloc'ed memory)
4624  * MUST be done with interrupts ENABLED.
4625  */
4626  if (free_ok) pfm_context_free(ctx);
4627 }
4628 
4629 /*
4630  * functions MUST be listed in the increasing order of their index (see permfon.h)
4631  */
4632 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4633 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4634 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4635 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4636 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4637 
4638 static pfm_cmd_desc_t pfm_cmd_tab[]={
4639 /* 0 */PFM_CMD_NONE,
4640 /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4641 /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4642 /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4643 /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4644 /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4645 /* 6 */PFM_CMD_NONE,
4646 /* 7 */PFM_CMD_NONE,
4647 /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4648 /* 9 */PFM_CMD_NONE,
4649 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4650 /* 11 */PFM_CMD_NONE,
4651 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4652 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4653 /* 14 */PFM_CMD_NONE,
4654 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4655 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4656 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4657 /* 18 */PFM_CMD_NONE,
4658 /* 19 */PFM_CMD_NONE,
4659 /* 20 */PFM_CMD_NONE,
4660 /* 21 */PFM_CMD_NONE,
4661 /* 22 */PFM_CMD_NONE,
4662 /* 23 */PFM_CMD_NONE,
4663 /* 24 */PFM_CMD_NONE,
4664 /* 25 */PFM_CMD_NONE,
4665 /* 26 */PFM_CMD_NONE,
4666 /* 27 */PFM_CMD_NONE,
4667 /* 28 */PFM_CMD_NONE,
4668 /* 29 */PFM_CMD_NONE,
4669 /* 30 */PFM_CMD_NONE,
4670 /* 31 */PFM_CMD_NONE,
4671 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4672 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4673 };
4674 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4675 
4676 static int
4677 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4678 {
4679  struct task_struct *task;
4680  int state, old_state;
4681 
4682 recheck:
4683  state = ctx->ctx_state;
4684  task = ctx->ctx_task;
4685 
4686  if (task == NULL) {
4687  DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4688  return 0;
4689  }
4690 
4691  DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4692  ctx->ctx_fd,
4693  state,
4694  task_pid_nr(task),
4695  task->state, PFM_CMD_STOPPED(cmd)));
4696 
4697  /*
4698  * self-monitoring always ok.
4699  *
4700  * for system-wide the caller can either be the creator of the
4701  * context (to one to which the context is attached to) OR
4702  * a task running on the same CPU as the session.
4703  */
4704  if (task == current || ctx->ctx_fl_system) return 0;
4705 
4706  /*
4707  * we are monitoring another thread
4708  */
4709  switch(state) {
4710  case PFM_CTX_UNLOADED:
4711  /*
4712  * if context is UNLOADED we are safe to go
4713  */
4714  return 0;
4715  case PFM_CTX_ZOMBIE:
4716  /*
4717  * no command can operate on a zombie context
4718  */
4719  DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4720  return -EINVAL;
4721  case PFM_CTX_MASKED:
4722  /*
4723  * PMU state has been saved to software even though
4724  * the thread may still be running.
4725  */
4726  if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4727  }
4728 
4729  /*
4730  * context is LOADED or MASKED. Some commands may need to have
4731  * the task stopped.
4732  *
4733  * We could lift this restriction for UP but it would mean that
4734  * the user has no guarantee the task would not run between
4735  * two successive calls to perfmonctl(). That's probably OK.
4736  * If this user wants to ensure the task does not run, then
4737  * the task must be stopped.
4738  */
4739  if (PFM_CMD_STOPPED(cmd)) {
4740  if (!task_is_stopped_or_traced(task)) {
4741  DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4742  return -EBUSY;
4743  }
4744  /*
4745  * task is now stopped, wait for ctxsw out
4746  *
4747  * This is an interesting point in the code.
4748  * We need to unprotect the context because
4749  * the pfm_save_regs() routines needs to grab
4750  * the same lock. There are danger in doing
4751  * this because it leaves a window open for
4752  * another task to get access to the context
4753  * and possibly change its state. The one thing
4754  * that is not possible is for the context to disappear
4755  * because we are protected by the VFS layer, i.e.,
4756  * get_fd()/put_fd().
4757  */
4758  old_state = state;
4759 
4760  UNPROTECT_CTX(ctx, flags);
4761 
4762  wait_task_inactive(task, 0);
4763 
4764  PROTECT_CTX(ctx, flags);
4765 
4766  /*
4767  * we must recheck to verify if state has changed
4768  */
4769  if (ctx->ctx_state != old_state) {
4770  DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4771  goto recheck;
4772  }
4773  }
4774  return 0;
4775 }
4776 
4777 /*
4778  * system-call entry point (must return long)
4779  */
4780 asmlinkage long
4781 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4782 {
4783  struct fd f = {NULL, 0};
4784  pfm_context_t *ctx = NULL;
4785  unsigned long flags = 0UL;
4786  void *args_k = NULL;
4787  long ret; /* will expand int return types */
4788  size_t base_sz, sz, xtra_sz = 0;
4789  int narg, completed_args = 0, call_made = 0, cmd_flags;
4790  int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4791  int (*getsize)(void *arg, size_t *sz);
4792 #define PFM_MAX_ARGSIZE 4096
4793 
4794  /*
4795  * reject any call if perfmon was disabled at initialization
4796  */
4797  if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4798 
4799  if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4800  DPRINT(("invalid cmd=%d\n", cmd));
4801  return -EINVAL;
4802  }
4803 
4804  func = pfm_cmd_tab[cmd].cmd_func;
4805  narg = pfm_cmd_tab[cmd].cmd_narg;
4806  base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4807  getsize = pfm_cmd_tab[cmd].cmd_getsize;
4808  cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4809 
4810  if (unlikely(func == NULL)) {
4811  DPRINT(("invalid cmd=%d\n", cmd));
4812  return -EINVAL;
4813  }
4814 
4815  DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4816  PFM_CMD_NAME(cmd),
4817  cmd,
4818  narg,
4819  base_sz,
4820  count));
4821 
4822  /*
4823  * check if number of arguments matches what the command expects
4824  */
4825  if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4826  return -EINVAL;
4827 
4828 restart_args:
4829  sz = xtra_sz + base_sz*count;
4830  /*
4831  * limit abuse to min page size
4832  */
4833  if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4834  printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4835  return -E2BIG;
4836  }
4837 
4838  /*
4839  * allocate default-sized argument buffer
4840  */
4841  if (likely(count && args_k == NULL)) {
4842  args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4843  if (args_k == NULL) return -ENOMEM;
4844  }
4845 
4846  ret = -EFAULT;
4847 
4848  /*
4849  * copy arguments
4850  *
4851  * assume sz = 0 for command without parameters
4852  */
4853  if (sz && copy_from_user(args_k, arg, sz)) {
4854  DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4855  goto error_args;
4856  }
4857 
4858  /*
4859  * check if command supports extra parameters
4860  */
4861  if (completed_args == 0 && getsize) {
4862  /*
4863  * get extra parameters size (based on main argument)
4864  */
4865  ret = (*getsize)(args_k, &xtra_sz);
4866  if (ret) goto error_args;
4867 
4868  completed_args = 1;
4869 
4870  DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4871 
4872  /* retry if necessary */
4873  if (likely(xtra_sz)) goto restart_args;
4874  }
4875 
4876  if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4877 
4878  ret = -EBADF;
4879 
4880  f = fdget(fd);
4881  if (unlikely(f.file == NULL)) {
4882  DPRINT(("invalid fd %d\n", fd));
4883  goto error_args;
4884  }
4885  if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4886  DPRINT(("fd %d not related to perfmon\n", fd));
4887  goto error_args;
4888  }
4889 
4890  ctx = f.file->private_data;
4891  if (unlikely(ctx == NULL)) {
4892  DPRINT(("no context for fd %d\n", fd));
4893  goto error_args;
4894  }
4895  prefetch(&ctx->ctx_state);
4896 
4897  PROTECT_CTX(ctx, flags);
4898 
4899  /*
4900  * check task is stopped
4901  */
4902  ret = pfm_check_task_state(ctx, cmd, flags);
4903  if (unlikely(ret)) goto abort_locked;
4904 
4905 skip_fd:
4906  ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4907 
4908  call_made = 1;
4909 
4910 abort_locked:
4911  if (likely(ctx)) {
4912  DPRINT(("context unlocked\n"));
4913  UNPROTECT_CTX(ctx, flags);
4914  }
4915 
4916  /* copy argument back to user, if needed */
4917  if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4918 
4919 error_args:
4920  if (f.file)
4921  fdput(f);
4922 
4923  kfree(args_k);
4924 
4925  DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4926 
4927  return ret;
4928 }
4929 
4930 static void
4931 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4932 {
4933  pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4934  pfm_ovfl_ctrl_t rst_ctrl;
4935  int state;
4936  int ret = 0;
4937 
4938  state = ctx->ctx_state;
4939  /*
4940  * Unlock sampling buffer and reset index atomically
4941  * XXX: not really needed when blocking
4942  */
4943  if (CTX_HAS_SMPL(ctx)) {
4944 
4945  rst_ctrl.bits.mask_monitoring = 0;
4946  rst_ctrl.bits.reset_ovfl_pmds = 0;
4947 
4948  if (state == PFM_CTX_LOADED)
4949  ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4950  else
4951  ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4952  } else {
4953  rst_ctrl.bits.mask_monitoring = 0;
4954  rst_ctrl.bits.reset_ovfl_pmds = 1;
4955  }
4956 
4957  if (ret == 0) {
4958  if (rst_ctrl.bits.reset_ovfl_pmds) {
4959  pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4960  }
4961  if (rst_ctrl.bits.mask_monitoring == 0) {
4962  DPRINT(("resuming monitoring\n"));
4963  if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4964  } else {
4965  DPRINT(("stopping monitoring\n"));
4966  //pfm_stop_monitoring(current, regs);
4967  }
4968  ctx->ctx_state = PFM_CTX_LOADED;
4969  }
4970 }
4971 
4972 /*
4973  * context MUST BE LOCKED when calling
4974  * can only be called for current
4975  */
4976 static void
4977 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4978 {
4979  int ret;
4980 
4981  DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4982 
4983  ret = pfm_context_unload(ctx, NULL, 0, regs);
4984  if (ret) {
4985  printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4986  }
4987 
4988  /*
4989  * and wakeup controlling task, indicating we are now disconnected
4990  */
4991  wake_up_interruptible(&ctx->ctx_zombieq);
4992 
4993  /*
4994  * given that context is still locked, the controlling
4995  * task will only get access when we return from
4996  * pfm_handle_work().
4997  */
4998 }
4999 
5000 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
5001 
5002  /*
5003  * pfm_handle_work() can be called with interrupts enabled
5004  * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5005  * call may sleep, therefore we must re-enable interrupts
5006  * to avoid deadlocks. It is safe to do so because this function
5007  * is called ONLY when returning to user level (pUStk=1), in which case
5008  * there is no risk of kernel stack overflow due to deep
5009  * interrupt nesting.
5010  */
5011 void
5012 pfm_handle_work(void)
5013 {
5014  pfm_context_t *ctx;
5015  struct pt_regs *regs;
5016  unsigned long flags, dummy_flags;
5017  unsigned long ovfl_regs;
5018  unsigned int reason;
5019  int ret;
5020 
5021  ctx = PFM_GET_CTX(current);
5022  if (ctx == NULL) {
5023  printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5024  task_pid_nr(current));
5025  return;
5026  }
5027 
5028  PROTECT_CTX(ctx, flags);
5029 
5030  PFM_SET_WORK_PENDING(current, 0);
5031 
5032  regs = task_pt_regs(current);
5033 
5034  /*
5035  * extract reason for being here and clear
5036  */
5037  reason = ctx->ctx_fl_trap_reason;
5038  ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5039  ovfl_regs = ctx->ctx_ovfl_regs[0];
5040 
5041  DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5042 
5043  /*
5044  * must be done before we check for simple-reset mode
5045  */
5046  if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5047  goto do_zombie;
5048 
5049  //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5050  if (reason == PFM_TRAP_REASON_RESET)
5051  goto skip_blocking;
5052 
5053  /*
5054  * restore interrupt mask to what it was on entry.
5055  * Could be enabled/diasbled.
5056  */
5057  UNPROTECT_CTX(ctx, flags);
5058 
5059  /*
5060  * force interrupt enable because of down_interruptible()
5061  */
5062  local_irq_enable();
5063 
5064  DPRINT(("before block sleeping\n"));
5065 
5066  /*
5067  * may go through without blocking on SMP systems
5068  * if restart has been received already by the time we call down()
5069  */
5070  ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5071 
5072  DPRINT(("after block sleeping ret=%d\n", ret));
5073 
5074  /*
5075  * lock context and mask interrupts again
5076  * We save flags into a dummy because we may have
5077  * altered interrupts mask compared to entry in this
5078  * function.
5079  */
5080  PROTECT_CTX(ctx, dummy_flags);
5081 
5082  /*
5083  * we need to read the ovfl_regs only after wake-up
5084  * because we may have had pfm_write_pmds() in between
5085  * and that can changed PMD values and therefore
5086  * ovfl_regs is reset for these new PMD values.
5087  */
5088  ovfl_regs = ctx->ctx_ovfl_regs[0];
5089 
5090  if (ctx->ctx_fl_going_zombie) {
5091 do_zombie:
5092  DPRINT(("context is zombie, bailing out\n"));
5093  pfm_context_force_terminate(ctx, regs);
5094  goto nothing_to_do;
5095  }
5096  /*
5097  * in case of interruption of down() we don't restart anything
5098  */
5099  if (ret < 0)
5100  goto nothing_to_do;
5101 
5102 skip_blocking:
5103  pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5104  ctx->ctx_ovfl_regs[0] = 0UL;
5105 
5106 nothing_to_do:
5107  /*
5108  * restore flags as they were upon entry
5109  */
5110  UNPROTECT_CTX(ctx, flags);
5111 }
5112 
5113 static int
5114 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5115 {
5116  if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5117  DPRINT(("ignoring overflow notification, owner is zombie\n"));
5118  return 0;
5119  }
5120 
5121  DPRINT(("waking up somebody\n"));
5122 
5123  if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5124 
5125  /*
5126  * safe, we are not in intr handler, nor in ctxsw when
5127  * we come here
5128  */
5129  kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5130 
5131  return 0;
5132 }
5133 
5134 static int
5135 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5136 {
5137  pfm_msg_t *msg = NULL;
5138 
5139  if (ctx->ctx_fl_no_msg == 0) {
5140  msg = pfm_get_new_msg(ctx);
5141  if (msg == NULL) {
5142  printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5143  return -1;
5144  }
5145 
5147  msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5148  msg->pfm_ovfl_msg.msg_active_set = 0;
5149  msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5150  msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5151  msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5152  msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5153  msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5154  }
5155 
5156  DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5157  msg,
5158  ctx->ctx_fl_no_msg,
5159  ctx->ctx_fd,
5160  ovfl_pmds));
5161 
5162  return pfm_notify_user(ctx, msg);
5163 }
5164 
5165 static int
5166 pfm_end_notify_user(pfm_context_t *ctx)
5167 {
5168  pfm_msg_t *msg;
5169 
5170  msg = pfm_get_new_msg(ctx);
5171  if (msg == NULL) {
5172  printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5173  return -1;
5174  }
5175  /* no leak */
5176  memset(msg, 0, sizeof(*msg));
5177 
5179  msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5180  msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5181 
5182  DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5183  msg,
5184  ctx->ctx_fl_no_msg,
5185  ctx->ctx_fd));
5186 
5187  return pfm_notify_user(ctx, msg);
5188 }
5189 
5190 /*
5191  * main overflow processing routine.
5192  * it can be called from the interrupt path or explicitly during the context switch code
5193  */
5194 static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5195  unsigned long pmc0, struct pt_regs *regs)
5196 {
5197  pfm_ovfl_arg_t *ovfl_arg;
5198  unsigned long mask;
5199  unsigned long old_val, ovfl_val, new_val;
5200  unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5201  unsigned long tstamp;
5202  pfm_ovfl_ctrl_t ovfl_ctrl;
5203  unsigned int i, has_smpl;
5204  int must_notify = 0;
5205 
5206  if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5207 
5208  /*
5209  * sanity test. Should never happen
5210  */
5211  if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5212 
5213  tstamp = ia64_get_itc();
5214  mask = pmc0 >> PMU_FIRST_COUNTER;
5215  ovfl_val = pmu_conf->ovfl_val;
5216  has_smpl = CTX_HAS_SMPL(ctx);
5217 
5218  DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5219  "used_pmds=0x%lx\n",
5220  pmc0,
5221  task ? task_pid_nr(task): -1,
5222  (regs ? regs->cr_iip : 0),
5223  CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5224  ctx->ctx_used_pmds[0]));
5225 
5226 
5227  /*
5228  * first we update the virtual counters
5229  * assume there was a prior ia64_srlz_d() issued
5230  */
5231  for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5232 
5233  /* skip pmd which did not overflow */
5234  if ((mask & 0x1) == 0) continue;
5235 
5236  /*
5237  * Note that the pmd is not necessarily 0 at this point as qualified events
5238  * may have happened before the PMU was frozen. The residual count is not
5239  * taken into consideration here but will be with any read of the pmd via
5240  * pfm_read_pmds().
5241  */
5242  old_val = new_val = ctx->ctx_pmds[i].val;
5243  new_val += 1 + ovfl_val;
5244  ctx->ctx_pmds[i].val = new_val;
5245 
5246  /*
5247  * check for overflow condition
5248  */
5249  if (likely(old_val > new_val)) {
5250  ovfl_pmds |= 1UL << i;
5251  if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5252  }
5253 
5254  DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5255  i,
5256  new_val,
5257  old_val,
5258  ia64_get_pmd(i) & ovfl_val,
5259  ovfl_pmds,
5260  ovfl_notify));
5261  }
5262 
5263  /*
5264  * there was no 64-bit overflow, nothing else to do
5265  */
5266  if (ovfl_pmds == 0UL) return;
5267 
5268  /*
5269  * reset all control bits
5270  */
5271  ovfl_ctrl.val = 0;
5272  reset_pmds = 0UL;
5273 
5274  /*
5275  * if a sampling format module exists, then we "cache" the overflow by
5276  * calling the module's handler() routine.
5277  */
5278  if (has_smpl) {
5279  unsigned long start_cycles, end_cycles;
5280  unsigned long pmd_mask;
5281  int j, k, ret = 0;
5282  int this_cpu = smp_processor_id();
5283 
5284  pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5285  ovfl_arg = &ctx->ctx_ovfl_arg;
5286 
5287  prefetch(ctx->ctx_smpl_hdr);
5288 
5289  for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5290 
5291  mask = 1UL << i;
5292 
5293  if ((pmd_mask & 0x1) == 0) continue;
5294 
5295  ovfl_arg->ovfl_pmd = (unsigned char )i;
5296  ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5297  ovfl_arg->active_set = 0;
5298  ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5299  ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5300 
5301  ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5302  ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5303  ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5304 
5305  /*
5306  * copy values of pmds of interest. Sampling format may copy them
5307  * into sampling buffer.
5308  */
5309  if (smpl_pmds) {
5310  for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5311  if ((smpl_pmds & 0x1) == 0) continue;
5312  ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5313  DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5314  }
5315  }
5316 
5317  pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5318 
5319  start_cycles = ia64_get_itc();
5320 
5321  /*
5322  * call custom buffer format record (handler) routine
5323  */
5324  ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5325 
5326  end_cycles = ia64_get_itc();
5327 
5328  /*
5329  * For those controls, we take the union because they have
5330  * an all or nothing behavior.
5331  */
5332  ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5333  ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5334  ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5335  /*
5336  * build the bitmask of pmds to reset now
5337  */
5338  if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5339 
5340  pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5341  }
5342  /*
5343  * when the module cannot handle the rest of the overflows, we abort right here
5344  */
5345  if (ret && pmd_mask) {
5346  DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5347  pmd_mask<<PMU_FIRST_COUNTER));
5348  }
5349  /*
5350  * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5351  */
5352  ovfl_pmds &= ~reset_pmds;
5353  } else {
5354  /*
5355  * when no sampling module is used, then the default
5356  * is to notify on overflow if requested by user
5357  */
5358  ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5359  ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5360  ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5361  ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5362  /*
5363  * if needed, we reset all overflowed pmds
5364  */
5365  if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5366  }
5367 
5368  DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5369 
5370  /*
5371  * reset the requested PMD registers using the short reset values
5372  */
5373  if (reset_pmds) {
5374  unsigned long bm = reset_pmds;
5375  pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5376  }
5377 
5378  if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5379  /*
5380  * keep track of what to reset when unblocking
5381  */
5382  ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5383 
5384  /*
5385  * check for blocking context
5386  */
5387  if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5388 
5389  ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5390 
5391  /*
5392  * set the perfmon specific checking pending work for the task
5393  */
5394  PFM_SET_WORK_PENDING(task, 1);
5395 
5396  /*
5397  * when coming from ctxsw, current still points to the
5398  * previous task, therefore we must work with task and not current.
5399  */
5400  set_notify_resume(task);
5401  }
5402  /*
5403  * defer until state is changed (shorten spin window). the context is locked
5404  * anyway, so the signal receiver would come spin for nothing.
5405  */
5406  must_notify = 1;
5407  }
5408 
5409  DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5410  GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5411  PFM_GET_WORK_PENDING(task),
5412  ctx->ctx_fl_trap_reason,
5413  ovfl_pmds,
5414  ovfl_notify,
5415  ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5416  /*
5417  * in case monitoring must be stopped, we toggle the psr bits
5418  */
5419  if (ovfl_ctrl.bits.mask_monitoring) {
5420  pfm_mask_monitoring(task);
5421  ctx->ctx_state = PFM_CTX_MASKED;
5422  ctx->ctx_fl_can_restart = 1;
5423  }
5424 
5425  /*
5426  * send notification now
5427  */
5428  if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5429 
5430  return;
5431 
5432 sanity_check:
5433  printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5434  smp_processor_id(),
5435  task ? task_pid_nr(task) : -1,
5436  pmc0);
5437  return;
5438 
5439 stop_monitoring:
5440  /*
5441  * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5442  * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5443  * come here as zombie only if the task is the current task. In which case, we
5444  * can access the PMU hardware directly.
5445  *
5446  * Note that zombies do have PM_VALID set. So here we do the minimal.
5447  *
5448  * In case the context was zombified it could not be reclaimed at the time
5449  * the monitoring program exited. At this point, the PMU reservation has been
5450  * returned, the sampiing buffer has been freed. We must convert this call
5451  * into a spurious interrupt. However, we must also avoid infinite overflows
5452  * by stopping monitoring for this task. We can only come here for a per-task
5453  * context. All we need to do is to stop monitoring using the psr bits which
5454  * are always task private. By re-enabling secure montioring, we ensure that
5455  * the monitored task will not be able to re-activate monitoring.
5456  * The task will eventually be context switched out, at which point the context
5457  * will be reclaimed (that includes releasing ownership of the PMU).
5458  *
5459  * So there might be a window of time where the number of per-task session is zero
5460  * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5461  * context. This is safe because if a per-task session comes in, it will push this one
5462  * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5463  * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5464  * also push our zombie context out.
5465  *
5466  * Overall pretty hairy stuff....
5467  */
5468  DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5469  pfm_clear_psr_up();
5470  ia64_psr(regs)->up = 0;
5471  ia64_psr(regs)->sp = 1;
5472  return;
5473 }
5474 
5475 static int
5476 pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5477 {
5478  struct task_struct *task;
5479  pfm_context_t *ctx;
5480  unsigned long flags;
5481  u64 pmc0;
5482  int this_cpu = smp_processor_id();
5483  int retval = 0;
5484 
5485  pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5486 
5487  /*
5488  * srlz.d done before arriving here
5489  */
5490  pmc0 = ia64_get_pmc(0);
5491 
5492  task = GET_PMU_OWNER();
5493  ctx = GET_PMU_CTX();
5494 
5495  /*
5496  * if we have some pending bits set
5497  * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5498  */
5499  if (PMC0_HAS_OVFL(pmc0) && task) {
5500  /*
5501  * we assume that pmc0.fr is always set here
5502  */
5503 
5504  /* sanity check */
5505  if (!ctx) goto report_spurious1;
5506 
5507  if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5508  goto report_spurious2;
5509 
5510  PROTECT_CTX_NOPRINT(ctx, flags);
5511 
5512  pfm_overflow_handler(task, ctx, pmc0, regs);
5513 
5514  UNPROTECT_CTX_NOPRINT(ctx, flags);
5515 
5516  } else {
5517  pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5518  retval = -1;
5519  }
5520  /*
5521  * keep it unfrozen at all times
5522  */
5523  pfm_unfreeze_pmu();
5524 
5525  return retval;
5526 
5527 report_spurious1:
5528  printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5529  this_cpu, task_pid_nr(task));
5530  pfm_unfreeze_pmu();
5531  return -1;
5532 report_spurious2:
5533  printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5534  this_cpu,
5535  task_pid_nr(task));
5536  pfm_unfreeze_pmu();
5537  return -1;
5538 }
5539 
5540 static irqreturn_t
5541 pfm_interrupt_handler(int irq, void *arg)
5542 {
5543  unsigned long start_cycles, total_cycles;
5544  unsigned long min, max;
5545  int this_cpu;
5546  int ret;
5547  struct pt_regs *regs = get_irq_regs();
5548 
5549  this_cpu = get_cpu();
5550  if (likely(!pfm_alt_intr_handler)) {
5551  min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5552  max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5553 
5554  start_cycles = ia64_get_itc();
5555 
5556  ret = pfm_do_interrupt_handler(arg, regs);
5557 
5558  total_cycles = ia64_get_itc();
5559 
5560  /*
5561  * don't measure spurious interrupts
5562  */
5563  if (likely(ret == 0)) {
5564  total_cycles -= start_cycles;
5565 
5566  if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5567  if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5568 
5569  pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5570  }
5571  }
5572  else {
5573  (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5574  }
5575 
5576  put_cpu();
5577  return IRQ_HANDLED;
5578 }
5579 
5580 /*
5581  * /proc/perfmon interface, for debug only
5582  */
5583 
5584 #define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
5585 
5586 static void *
5587 pfm_proc_start(struct seq_file *m, loff_t *pos)
5588 {
5589  if (*pos == 0) {
5590  return PFM_PROC_SHOW_HEADER;
5591  }
5592 
5593  while (*pos <= nr_cpu_ids) {
5594  if (cpu_online(*pos - 1)) {
5595  return (void *)*pos;
5596  }
5597  ++*pos;
5598  }
5599  return NULL;
5600 }
5601 
5602 static void *
5603 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5604 {
5605  ++*pos;
5606  return pfm_proc_start(m, pos);
5607 }
5608 
5609 static void
5610 pfm_proc_stop(struct seq_file *m, void *v)
5611 {
5612 }
5613 
5614 static void
5615 pfm_proc_show_header(struct seq_file *m)
5616 {
5617  struct list_head * pos;
5619  unsigned long flags;
5620 
5621  seq_printf(m,
5622  "perfmon version : %u.%u\n"
5623  "model : %s\n"
5624  "fastctxsw : %s\n"
5625  "expert mode : %s\n"
5626  "ovfl_mask : 0x%lx\n"
5627  "PMU flags : 0x%x\n",
5629  pmu_conf->pmu_name,
5630  pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5631  pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5632  pmu_conf->ovfl_val,
5633  pmu_conf->flags);
5634 
5635  LOCK_PFS(flags);
5636 
5637  seq_printf(m,
5638  "proc_sessions : %u\n"
5639  "sys_sessions : %u\n"
5640  "sys_use_dbregs : %u\n"
5641  "ptrace_use_dbregs : %u\n",
5642  pfm_sessions.pfs_task_sessions,
5643  pfm_sessions.pfs_sys_sessions,
5644  pfm_sessions.pfs_sys_use_dbregs,
5645  pfm_sessions.pfs_ptrace_use_dbregs);
5646 
5647  UNLOCK_PFS(flags);
5648 
5649  spin_lock(&pfm_buffer_fmt_lock);
5650 
5651  list_for_each(pos, &pfm_buffer_fmt_list) {
5652  entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5653  seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5654  entry->fmt_uuid[0],
5655  entry->fmt_uuid[1],
5656  entry->fmt_uuid[2],
5657  entry->fmt_uuid[3],
5658  entry->fmt_uuid[4],
5659  entry->fmt_uuid[5],
5660  entry->fmt_uuid[6],
5661  entry->fmt_uuid[7],
5662  entry->fmt_uuid[8],
5663  entry->fmt_uuid[9],
5664  entry->fmt_uuid[10],
5665  entry->fmt_uuid[11],
5666  entry->fmt_uuid[12],
5667  entry->fmt_uuid[13],
5668  entry->fmt_uuid[14],
5669  entry->fmt_uuid[15],
5670  entry->fmt_name);
5671  }
5672  spin_unlock(&pfm_buffer_fmt_lock);
5673 
5674 }
5675 
5676 static int
5677 pfm_proc_show(struct seq_file *m, void *v)
5678 {
5679  unsigned long psr;
5680  unsigned int i;
5681  int cpu;
5682 
5683  if (v == PFM_PROC_SHOW_HEADER) {
5684  pfm_proc_show_header(m);
5685  return 0;
5686  }
5687 
5688  /* show info for CPU (v - 1) */
5689 
5690  cpu = (long)v - 1;
5691  seq_printf(m,
5692  "CPU%-2d overflow intrs : %lu\n"
5693  "CPU%-2d overflow cycles : %lu\n"
5694  "CPU%-2d overflow min : %lu\n"
5695  "CPU%-2d overflow max : %lu\n"
5696  "CPU%-2d smpl handler calls : %lu\n"
5697  "CPU%-2d smpl handler cycles : %lu\n"
5698  "CPU%-2d spurious intrs : %lu\n"
5699  "CPU%-2d replay intrs : %lu\n"
5700  "CPU%-2d syst_wide : %d\n"
5701  "CPU%-2d dcr_pp : %d\n"
5702  "CPU%-2d exclude idle : %d\n"
5703  "CPU%-2d owner : %d\n"
5704  "CPU%-2d context : %p\n"
5705  "CPU%-2d activations : %lu\n",
5706  cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5707  cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5708  cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5709  cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5710  cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5711  cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5712  cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5713  cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5714  cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5715  cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5716  cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5717  cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5718  cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5719  cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5720 
5721  if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5722 
5723  psr = pfm_get_psr();
5724 
5725  ia64_srlz_d();
5726 
5727  seq_printf(m,
5728  "CPU%-2d psr : 0x%lx\n"
5729  "CPU%-2d pmc0 : 0x%lx\n",
5730  cpu, psr,
5731  cpu, ia64_get_pmc(0));
5732 
5733  for (i=0; PMC_IS_LAST(i) == 0; i++) {
5734  if (PMC_IS_COUNTING(i) == 0) continue;
5735  seq_printf(m,
5736  "CPU%-2d pmc%u : 0x%lx\n"
5737  "CPU%-2d pmd%u : 0x%lx\n",
5738  cpu, i, ia64_get_pmc(i),
5739  cpu, i, ia64_get_pmd(i));
5740  }
5741  }
5742  return 0;
5743 }
5744 
5745 const struct seq_operations pfm_seq_ops = {
5746  .start = pfm_proc_start,
5747  .next = pfm_proc_next,
5748  .stop = pfm_proc_stop,
5749  .show = pfm_proc_show
5750 };
5751 
5752 static int
5753 pfm_proc_open(struct inode *inode, struct file *file)
5754 {
5755  return seq_open(file, &pfm_seq_ops);
5756 }
5757 
5758 
5759 /*
5760  * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5761  * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5762  * is active or inactive based on mode. We must rely on the value in
5763  * local_cpu_data->pfm_syst_info
5764  */
5765 void
5766 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5767 {
5768  struct pt_regs *regs;
5769  unsigned long dcr;
5770  unsigned long dcr_pp;
5771 
5772  dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5773 
5774  /*
5775  * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5776  * on every CPU, so we can rely on the pid to identify the idle task.
5777  */
5778  if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5779  regs = task_pt_regs(task);
5780  ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5781  return;
5782  }
5783  /*
5784  * if monitoring has started
5785  */
5786  if (dcr_pp) {
5788  /*
5789  * context switching in?
5790  */
5791  if (is_ctxswin) {
5792  /* mask monitoring for the idle task */
5794  pfm_clear_psr_pp();
5795  ia64_srlz_i();
5796  return;
5797  }
5798  /*
5799  * context switching out
5800  * restore monitoring for next task
5801  *
5802  * Due to inlining this odd if-then-else construction generates
5803  * better code.
5804  */
5806  pfm_set_psr_pp();
5807  ia64_srlz_i();
5808  }
5809 }
5810 
5811 #ifdef CONFIG_SMP
5812 
5813 static void
5814 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5815 {
5816  struct task_struct *task = ctx->ctx_task;
5817 
5818  ia64_psr(regs)->up = 0;
5819  ia64_psr(regs)->sp = 1;
5820 
5821  if (GET_PMU_OWNER() == task) {
5822  DPRINT(("cleared ownership for [%d]\n",
5823  task_pid_nr(ctx->ctx_task)));
5824  SET_PMU_OWNER(NULL, NULL);
5825  }
5826 
5827  /*
5828  * disconnect the task from the context and vice-versa
5829  */
5830  PFM_SET_WORK_PENDING(task, 0);
5831 
5832  task->thread.pfm_context = NULL;
5833  task->thread.flags &= ~IA64_THREAD_PM_VALID;
5834 
5835  DPRINT(("force cleanup for [%d]\n", task_pid_nr(task)));
5836 }
5837 
5838 
5839 /*
5840  * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5841  */
5842 void
5843 pfm_save_regs(struct task_struct *task)
5844 {
5845  pfm_context_t *ctx;
5846  unsigned long flags;
5847  u64 psr;
5848 
5849 
5850  ctx = PFM_GET_CTX(task);
5851  if (ctx == NULL) return;
5852 
5853  /*
5854  * we always come here with interrupts ALREADY disabled by
5855  * the scheduler. So we simply need to protect against concurrent
5856  * access, not CPU concurrency.
5857  */
5858  flags = pfm_protect_ctx_ctxsw(ctx);
5859 
5860  if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5861  struct pt_regs *regs = task_pt_regs(task);
5862 
5863  pfm_clear_psr_up();
5864 
5865  pfm_force_cleanup(ctx, regs);
5866 
5867  BUG_ON(ctx->ctx_smpl_hdr);
5868 
5869  pfm_unprotect_ctx_ctxsw(ctx, flags);
5870 
5871  pfm_context_free(ctx);
5872  return;
5873  }
5874 
5875  /*
5876  * save current PSR: needed because we modify it
5877  */
5878  ia64_srlz_d();
5879  psr = pfm_get_psr();
5880 
5881  BUG_ON(psr & (IA64_PSR_I));
5882 
5883  /*
5884  * stop monitoring:
5885  * This is the last instruction which may generate an overflow
5886  *
5887  * We do not need to set psr.sp because, it is irrelevant in kernel.
5888  * It will be restored from ipsr when going back to user level
5889  */
5890  pfm_clear_psr_up();
5891 
5892  /*
5893  * keep a copy of psr.up (for reload)
5894  */
5895  ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5896 
5897  /*
5898  * release ownership of this PMU.
5899  * PM interrupts are masked, so nothing
5900  * can happen.
5901  */
5902  SET_PMU_OWNER(NULL, NULL);
5903 
5904  /*
5905  * we systematically save the PMD as we have no
5906  * guarantee we will be schedule at that same
5907  * CPU again.
5908  */
5909  pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5910 
5911  /*
5912  * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5913  * we will need it on the restore path to check
5914  * for pending overflow.
5915  */
5916  ctx->th_pmcs[0] = ia64_get_pmc(0);
5917 
5918  /*
5919  * unfreeze PMU if had pending overflows
5920  */
5921  if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5922 
5923  /*
5924  * finally, allow context access.
5925  * interrupts will still be masked after this call.
5926  */
5927  pfm_unprotect_ctx_ctxsw(ctx, flags);
5928 }
5929 
5930 #else /* !CONFIG_SMP */
5931 void
5932 pfm_save_regs(struct task_struct *task)
5933 {
5934  pfm_context_t *ctx;
5935  u64 psr;
5936 
5937  ctx = PFM_GET_CTX(task);
5938  if (ctx == NULL) return;
5939 
5940  /*
5941  * save current PSR: needed because we modify it
5942  */
5943  psr = pfm_get_psr();
5944 
5945  BUG_ON(psr & (IA64_PSR_I));
5946 
5947  /*
5948  * stop monitoring:
5949  * This is the last instruction which may generate an overflow
5950  *
5951  * We do not need to set psr.sp because, it is irrelevant in kernel.
5952  * It will be restored from ipsr when going back to user level
5953  */
5954  pfm_clear_psr_up();
5955 
5956  /*
5957  * keep a copy of psr.up (for reload)
5958  */
5959  ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5960 }
5961 
5962 static void
5963 pfm_lazy_save_regs (struct task_struct *task)
5964 {
5965  pfm_context_t *ctx;
5966  unsigned long flags;
5967 
5968  { u64 psr = pfm_get_psr();
5969  BUG_ON(psr & IA64_PSR_UP);
5970  }
5971 
5972  ctx = PFM_GET_CTX(task);
5973 
5974  /*
5975  * we need to mask PMU overflow here to
5976  * make sure that we maintain pmc0 until
5977  * we save it. overflow interrupts are
5978  * treated as spurious if there is no
5979  * owner.
5980  *
5981  * XXX: I don't think this is necessary
5982  */
5983  PROTECT_CTX(ctx,flags);
5984 
5985  /*
5986  * release ownership of this PMU.
5987  * must be done before we save the registers.
5988  *
5989  * after this call any PMU interrupt is treated
5990  * as spurious.
5991  */
5992  SET_PMU_OWNER(NULL, NULL);
5993 
5994  /*
5995  * save all the pmds we use
5996  */
5997  pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5998 
5999  /*
6000  * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6001  * it is needed to check for pended overflow
6002  * on the restore path
6003  */
6004  ctx->th_pmcs[0] = ia64_get_pmc(0);
6005 
6006  /*
6007  * unfreeze PMU if had pending overflows
6008  */
6009  if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6010 
6011  /*
6012  * now get can unmask PMU interrupts, they will
6013  * be treated as purely spurious and we will not
6014  * lose any information
6015  */
6016  UNPROTECT_CTX(ctx,flags);
6017 }
6018 #endif /* CONFIG_SMP */
6019 
6020 #ifdef CONFIG_SMP
6021 /*
6022  * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6023  */
6024 void
6025 pfm_load_regs (struct task_struct *task)
6026 {
6027  pfm_context_t *ctx;
6028  unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6029  unsigned long flags;
6030  u64 psr, psr_up;
6031  int need_irq_resend;
6032 
6033  ctx = PFM_GET_CTX(task);
6034  if (unlikely(ctx == NULL)) return;
6035 
6036  BUG_ON(GET_PMU_OWNER());
6037 
6038  /*
6039  * possible on unload
6040  */
6041  if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6042 
6043  /*
6044  * we always come here with interrupts ALREADY disabled by
6045  * the scheduler. So we simply need to protect against concurrent
6046  * access, not CPU concurrency.
6047  */
6048  flags = pfm_protect_ctx_ctxsw(ctx);
6049  psr = pfm_get_psr();
6050 
6051  need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6052 
6053  BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6054  BUG_ON(psr & IA64_PSR_I);
6055 
6056  if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6057  struct pt_regs *regs = task_pt_regs(task);
6058 
6059  BUG_ON(ctx->ctx_smpl_hdr);
6060 
6061  pfm_force_cleanup(ctx, regs);
6062 
6063  pfm_unprotect_ctx_ctxsw(ctx, flags);
6064 
6065  /*
6066  * this one (kmalloc'ed) is fine with interrupts disabled
6067  */
6068  pfm_context_free(ctx);
6069 
6070  return;
6071  }
6072 
6073  /*
6074  * we restore ALL the debug registers to avoid picking up
6075  * stale state.
6076  */
6077  if (ctx->ctx_fl_using_dbreg) {
6078  pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6079  pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6080  }
6081  /*
6082  * retrieve saved psr.up
6083  */
6084  psr_up = ctx->ctx_saved_psr_up;
6085 
6086  /*
6087  * if we were the last user of the PMU on that CPU,
6088  * then nothing to do except restore psr
6089  */
6090  if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6091 
6092  /*
6093  * retrieve partial reload masks (due to user modifications)
6094  */
6095  pmc_mask = ctx->ctx_reload_pmcs[0];
6096  pmd_mask = ctx->ctx_reload_pmds[0];
6097 
6098  } else {
6099  /*
6100  * To avoid leaking information to the user level when psr.sp=0,
6101  * we must reload ALL implemented pmds (even the ones we don't use).
6102  * In the kernel we only allow PFM_READ_PMDS on registers which
6103  * we initialized or requested (sampling) so there is no risk there.
6104  */
6105  pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6106 
6107  /*
6108  * ALL accessible PMCs are systematically reloaded, unused registers
6109  * get their default (from pfm_reset_pmu_state()) values to avoid picking
6110  * up stale configuration.
6111  *
6112  * PMC0 is never in the mask. It is always restored separately.
6113  */
6114  pmc_mask = ctx->ctx_all_pmcs[0];
6115  }
6116  /*
6117  * when context is MASKED, we will restore PMC with plm=0
6118  * and PMD with stale information, but that's ok, nothing
6119  * will be captured.
6120  *
6121  * XXX: optimize here
6122  */
6123  if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6124  if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6125 
6126  /*
6127  * check for pending overflow at the time the state
6128  * was saved.
6129  */
6130  if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6131  /*
6132  * reload pmc0 with the overflow information
6133  * On McKinley PMU, this will trigger a PMU interrupt
6134  */
6135  ia64_set_pmc(0, ctx->th_pmcs[0]);
6136  ia64_srlz_d();
6137  ctx->th_pmcs[0] = 0UL;
6138 
6139  /*
6140  * will replay the PMU interrupt
6141  */
6142  if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6143 
6144  pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6145  }
6146 
6147  /*
6148  * we just did a reload, so we reset the partial reload fields
6149  */
6150  ctx->ctx_reload_pmcs[0] = 0UL;
6151  ctx->ctx_reload_pmds[0] = 0UL;
6152 
6153  SET_LAST_CPU(ctx, smp_processor_id());
6154 
6155  /*
6156  * dump activation value for this PMU
6157  */
6158  INC_ACTIVATION();
6159  /*
6160  * record current activation for this context
6161  */
6162  SET_ACTIVATION(ctx);
6163 
6164  /*
6165  * establish new ownership.
6166  */
6167  SET_PMU_OWNER(task, ctx);
6168 
6169  /*
6170  * restore the psr.up bit. measurement
6171  * is active again.
6172  * no PMU interrupt can happen at this point
6173  * because we still have interrupts disabled.
6174  */
6175  if (likely(psr_up)) pfm_set_psr_up();
6176 
6177  /*
6178  * allow concurrent access to context
6179  */
6180  pfm_unprotect_ctx_ctxsw(ctx, flags);
6181 }
6182 #else /* !CONFIG_SMP */
6183 /*
6184  * reload PMU state for UP kernels
6185  * in 2.5 we come here with interrupts disabled
6186  */
6187 void
6188 pfm_load_regs (struct task_struct *task)
6189 {
6190  pfm_context_t *ctx;
6191  struct task_struct *owner;
6192  unsigned long pmd_mask, pmc_mask;
6193  u64 psr, psr_up;
6194  int need_irq_resend;
6195 
6196  owner = GET_PMU_OWNER();
6197  ctx = PFM_GET_CTX(task);
6198  psr = pfm_get_psr();
6199 
6200  BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6201  BUG_ON(psr & IA64_PSR_I);
6202 
6203  /*
6204  * we restore ALL the debug registers to avoid picking up
6205  * stale state.
6206  *
6207  * This must be done even when the task is still the owner
6208  * as the registers may have been modified via ptrace()
6209  * (not perfmon) by the previous task.
6210  */
6211  if (ctx->ctx_fl_using_dbreg) {
6212  pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6213  pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6214  }
6215 
6216  /*
6217  * retrieved saved psr.up
6218  */
6219  psr_up = ctx->ctx_saved_psr_up;
6220  need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6221 
6222  /*
6223  * short path, our state is still there, just
6224  * need to restore psr and we go
6225  *
6226  * we do not touch either PMC nor PMD. the psr is not touched
6227  * by the overflow_handler. So we are safe w.r.t. to interrupt
6228  * concurrency even without interrupt masking.
6229  */
6230  if (likely(owner == task)) {
6231  if (likely(psr_up)) pfm_set_psr_up();
6232  return;
6233  }
6234 
6235  /*
6236  * someone else is still using the PMU, first push it out and
6237  * then we'll be able to install our stuff !
6238  *
6239  * Upon return, there will be no owner for the current PMU
6240  */
6241  if (owner) pfm_lazy_save_regs(owner);
6242 
6243  /*
6244  * To avoid leaking information to the user level when psr.sp=0,
6245  * we must reload ALL implemented pmds (even the ones we don't use).
6246  * In the kernel we only allow PFM_READ_PMDS on registers which
6247  * we initialized or requested (sampling) so there is no risk there.
6248  */
6249  pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6250 
6251  /*
6252  * ALL accessible PMCs are systematically reloaded, unused registers
6253  * get their default (from pfm_reset_pmu_state()) values to avoid picking
6254  * up stale configuration.
6255  *
6256  * PMC0 is never in the mask. It is always restored separately
6257  */
6258  pmc_mask = ctx->ctx_all_pmcs[0];
6259 
6260  pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6261  pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6262 
6263  /*
6264  * check for pending overflow at the time the state
6265  * was saved.
6266  */
6267  if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6268  /*
6269  * reload pmc0 with the overflow information
6270  * On McKinley PMU, this will trigger a PMU interrupt
6271  */
6272  ia64_set_pmc(0, ctx->th_pmcs[0]);
6273  ia64_srlz_d();
6274 
6275  ctx->th_pmcs[0] = 0UL;
6276 
6277  /*
6278  * will replay the PMU interrupt
6279  */
6280  if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6281 
6282  pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6283  }
6284 
6285  /*
6286  * establish new ownership.
6287  */
6288  SET_PMU_OWNER(task, ctx);
6289 
6290  /*
6291  * restore the psr.up bit. measurement
6292  * is active again.
6293  * no PMU interrupt can happen at this point
6294  * because we still have interrupts disabled.
6295  */
6296  if (likely(psr_up)) pfm_set_psr_up();
6297 }
6298 #endif /* CONFIG_SMP */
6299 
6300 /*
6301  * this function assumes monitoring is stopped
6302  */
6303 static void
6304 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6305 {
6306  u64 pmc0;
6307  unsigned long mask2, val, pmd_val, ovfl_val;
6308  int i, can_access_pmu = 0;
6309  int is_self;
6310 
6311  /*
6312  * is the caller the task being monitored (or which initiated the
6313  * session for system wide measurements)
6314  */
6315  is_self = ctx->ctx_task == task ? 1 : 0;
6316 
6317  /*
6318  * can access PMU is task is the owner of the PMU state on the current CPU
6319  * or if we are running on the CPU bound to the context in system-wide mode
6320  * (that is not necessarily the task the context is attached to in this mode).
6321  * In system-wide we always have can_access_pmu true because a task running on an
6322  * invalid processor is flagged earlier in the call stack (see pfm_stop).
6323  */
6324  can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6325  if (can_access_pmu) {
6326  /*
6327  * Mark the PMU as not owned
6328  * This will cause the interrupt handler to do nothing in case an overflow
6329  * interrupt was in-flight
6330  * This also guarantees that pmc0 will contain the final state
6331  * It virtually gives us full control on overflow processing from that point
6332  * on.
6333  */
6334  SET_PMU_OWNER(NULL, NULL);
6335  DPRINT(("releasing ownership\n"));
6336 
6337  /*
6338  * read current overflow status:
6339  *
6340  * we are guaranteed to read the final stable state
6341  */
6342  ia64_srlz_d();
6343  pmc0 = ia64_get_pmc(0); /* slow */
6344 
6345  /*
6346  * reset freeze bit, overflow status information destroyed
6347  */
6348  pfm_unfreeze_pmu();
6349  } else {
6350  pmc0 = ctx->th_pmcs[0];
6351  /*
6352  * clear whatever overflow status bits there were
6353  */
6354  ctx->th_pmcs[0] = 0;
6355  }
6356  ovfl_val = pmu_conf->ovfl_val;
6357  /*
6358  * we save all the used pmds
6359  * we take care of overflows for counting PMDs
6360  *
6361  * XXX: sampling situation is not taken into account here
6362  */
6363  mask2 = ctx->ctx_used_pmds[0];
6364 
6365  DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6366 
6367  for (i = 0; mask2; i++, mask2>>=1) {
6368 
6369  /* skip non used pmds */
6370  if ((mask2 & 0x1) == 0) continue;
6371 
6372  /*
6373  * can access PMU always true in system wide mode
6374  */
6375  val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6376 
6377  if (PMD_IS_COUNTING(i)) {
6378  DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6379  task_pid_nr(task),
6380  i,
6381  ctx->ctx_pmds[i].val,
6382  val & ovfl_val));
6383 
6384  /*
6385  * we rebuild the full 64 bit value of the counter
6386  */
6387  val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6388 
6389  /*
6390  * now everything is in ctx_pmds[] and we need
6391  * to clear the saved context from save_regs() such that
6392  * pfm_read_pmds() gets the correct value
6393  */
6394  pmd_val = 0UL;
6395 
6396  /*
6397  * take care of overflow inline
6398  */
6399  if (pmc0 & (1UL << i)) {
6400  val += 1 + ovfl_val;
6401  DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6402  }
6403  }
6404 
6405  DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6406 
6407  if (is_self) ctx->th_pmds[i] = pmd_val;
6408 
6409  ctx->ctx_pmds[i].val = val;
6410  }
6411 }
6412 
6413 static struct irqaction perfmon_irqaction = {
6414  .handler = pfm_interrupt_handler,
6415  .flags = IRQF_DISABLED,
6416  .name = "perfmon"
6417 };
6418 
6419 static void
6420 pfm_alt_save_pmu_state(void *data)
6421 {
6422  struct pt_regs *regs;
6423 
6424  regs = task_pt_regs(current);
6425 
6426  DPRINT(("called\n"));
6427 
6428  /*
6429  * should not be necessary but
6430  * let's take not risk
6431  */
6432  pfm_clear_psr_up();
6433  pfm_clear_psr_pp();
6434  ia64_psr(regs)->pp = 0;
6435 
6436  /*
6437  * This call is required
6438  * May cause a spurious interrupt on some processors
6439  */
6440  pfm_freeze_pmu();
6441 
6442  ia64_srlz_d();
6443 }
6444 
6445 void
6446 pfm_alt_restore_pmu_state(void *data)
6447 {
6448  struct pt_regs *regs;
6449 
6450  regs = task_pt_regs(current);
6451 
6452  DPRINT(("called\n"));
6453 
6454  /*
6455  * put PMU back in state expected
6456  * by perfmon
6457  */
6458  pfm_clear_psr_up();
6459  pfm_clear_psr_pp();
6460  ia64_psr(regs)->pp = 0;
6461 
6462  /*
6463  * perfmon runs with PMU unfrozen at all times
6464  */
6465  pfm_unfreeze_pmu();
6466 
6467  ia64_srlz_d();
6468 }
6469 
6470 int
6472 {
6473  int ret, i;
6474  int reserve_cpu;
6475 
6476  /* some sanity checks */
6477  if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6478 
6479  /* do the easy test first */
6480  if (pfm_alt_intr_handler) return -EBUSY;
6481 
6482  /* one at a time in the install or remove, just fail the others */
6483  if (!spin_trylock(&pfm_alt_install_check)) {
6484  return -EBUSY;
6485  }
6486 
6487  /* reserve our session */
6488  for_each_online_cpu(reserve_cpu) {
6489  ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6490  if (ret) goto cleanup_reserve;
6491  }
6492 
6493  /* save the current system wide pmu states */
6494  ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6495  if (ret) {
6496  DPRINT(("on_each_cpu() failed: %d\n", ret));
6497  goto cleanup_reserve;
6498  }
6499 
6500  /* officially change to the alternate interrupt handler */
6501  pfm_alt_intr_handler = hdl;
6502 
6503  spin_unlock(&pfm_alt_install_check);
6504 
6505  return 0;
6506 
6507 cleanup_reserve:
6508  for_each_online_cpu(i) {
6509  /* don't unreserve more than we reserved */
6510  if (i >= reserve_cpu) break;
6511 
6512  pfm_unreserve_session(NULL, 1, i);
6513  }
6514 
6515  spin_unlock(&pfm_alt_install_check);
6516 
6517  return ret;
6518 }
6520 
6521 int
6523 {
6524  int i;
6525  int ret;
6526 
6527  if (hdl == NULL) return -EINVAL;
6528 
6529  /* cannot remove someone else's handler! */
6530  if (pfm_alt_intr_handler != hdl) return -EINVAL;
6531 
6532  /* one at a time in the install or remove, just fail the others */
6533  if (!spin_trylock(&pfm_alt_install_check)) {
6534  return -EBUSY;
6535  }
6536 
6537  pfm_alt_intr_handler = NULL;
6538 
6539  ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6540  if (ret) {
6541  DPRINT(("on_each_cpu() failed: %d\n", ret));
6542  }
6543 
6544  for_each_online_cpu(i) {
6545  pfm_unreserve_session(NULL, 1, i);
6546  }
6547 
6548  spin_unlock(&pfm_alt_install_check);
6549 
6550  return 0;
6551 }
6553 
6554 /*
6555  * perfmon initialization routine, called from the initcall() table
6556  */
6557 static int init_pfm_fs(void);
6558 
6559 static int __init
6560 pfm_probe_pmu(void)
6561 {
6562  pmu_config_t **p;
6563  int family;
6564 
6565  family = local_cpu_data->family;
6566  p = pmu_confs;
6567 
6568  while(*p) {
6569  if ((*p)->probe) {
6570  if ((*p)->probe() == 0) goto found;
6571  } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6572  goto found;
6573  }
6574  p++;
6575  }
6576  return -1;
6577 found:
6578  pmu_conf = *p;
6579  return 0;
6580 }
6581 
6582 static const struct file_operations pfm_proc_fops = {
6583  .open = pfm_proc_open,
6584  .read = seq_read,
6585  .llseek = seq_lseek,
6586  .release = seq_release,
6587 };
6588 
6589 int __init
6590 pfm_init(void)
6591 {
6592  unsigned int n, n_counters, i;
6593 
6594  printk("perfmon: version %u.%u IRQ %u\n",
6598 
6599  if (pfm_probe_pmu()) {
6600  printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6601  local_cpu_data->family);
6602  return -ENODEV;
6603  }
6604 
6605  /*
6606  * compute the number of implemented PMD/PMC from the
6607  * description tables
6608  */
6609  n = 0;
6610  for (i=0; PMC_IS_LAST(i) == 0; i++) {
6611  if (PMC_IS_IMPL(i) == 0) continue;
6612  pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6613  n++;
6614  }
6615  pmu_conf->num_pmcs = n;
6616 
6617  n = 0; n_counters = 0;
6618  for (i=0; PMD_IS_LAST(i) == 0; i++) {
6619  if (PMD_IS_IMPL(i) == 0) continue;
6620  pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6621  n++;
6622  if (PMD_IS_COUNTING(i)) n_counters++;
6623  }
6624  pmu_conf->num_pmds = n;
6625  pmu_conf->num_counters = n_counters;
6626 
6627  /*
6628  * sanity checks on the number of debug registers
6629  */
6630  if (pmu_conf->use_rr_dbregs) {
6631  if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6632  printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6633  pmu_conf = NULL;
6634  return -1;
6635  }
6636  if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6637  printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6638  pmu_conf = NULL;
6639  return -1;
6640  }
6641  }
6642 
6643  printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6644  pmu_conf->pmu_name,
6645  pmu_conf->num_pmcs,
6646  pmu_conf->num_pmds,
6647  pmu_conf->num_counters,
6648  ffz(pmu_conf->ovfl_val));
6649 
6650  /* sanity check */
6651  if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6652  printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6653  pmu_conf = NULL;
6654  return -1;
6655  }
6656 
6657  /*
6658  * create /proc/perfmon (mostly for debugging purposes)
6659  */
6660  perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6661  if (perfmon_dir == NULL) {
6662  printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6663  pmu_conf = NULL;
6664  return -1;
6665  }
6666 
6667  /*
6668  * create /proc/sys/kernel/perfmon (for debugging purposes)
6669  */
6670  pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6671 
6672  /*
6673  * initialize all our spinlocks
6674  */
6675  spin_lock_init(&pfm_sessions.pfs_lock);
6676  spin_lock_init(&pfm_buffer_fmt_lock);
6677 
6678  init_pfm_fs();
6679 
6680  for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6681 
6682  return 0;
6683 }
6684 
6685 __initcall(pfm_init);
6686 
6687 /*
6688  * this function is called before pfm_init()
6689  */
6690 void
6691 pfm_init_percpu (void)
6692 {
6693  static int first_time=1;
6694  /*
6695  * make sure no measurement is active
6696  * (may inherit programmed PMCs from EFI).
6697  */
6698  pfm_clear_psr_pp();
6699  pfm_clear_psr_up();
6700 
6701  /*
6702  * we run with the PMU not frozen at all times
6703  */
6704  pfm_unfreeze_pmu();
6705 
6706  if (first_time) {
6707  register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6708  first_time=0;
6709  }
6710 
6712  ia64_srlz_d();
6713 }
6714 
6715 /*
6716  * used for debug purposes only
6717  */
6718 void
6719 dump_pmu_state(const char *from)
6720 {
6721  struct task_struct *task;
6722  struct pt_regs *regs;
6723  pfm_context_t *ctx;
6724  unsigned long psr, dcr, info, flags;
6725  int i, this_cpu;
6726 
6727  local_irq_save(flags);
6728 
6729  this_cpu = smp_processor_id();
6730  regs = task_pt_regs(current);
6731  info = PFM_CPUINFO_GET();
6733 
6734  if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6735  local_irq_restore(flags);
6736  return;
6737  }
6738 
6739  printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6740  this_cpu,
6741  from,
6742  task_pid_nr(current),
6743  regs->cr_iip,
6744  current->comm);
6745 
6746  task = GET_PMU_OWNER();
6747  ctx = GET_PMU_CTX();
6748 
6749  printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6750 
6751  psr = pfm_get_psr();
6752 
6753  printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6754  this_cpu,
6755  ia64_get_pmc(0),
6756  psr & IA64_PSR_PP ? 1 : 0,
6757  psr & IA64_PSR_UP ? 1 : 0,
6758  dcr & IA64_DCR_PP ? 1 : 0,
6759  info,
6760  ia64_psr(regs)->up,
6761  ia64_psr(regs)->pp);
6762 
6763  ia64_psr(regs)->up = 0;
6764  ia64_psr(regs)->pp = 0;
6765 
6766  for (i=1; PMC_IS_LAST(i) == 0; i++) {
6767  if (PMC_IS_IMPL(i) == 0) continue;
6768  printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6769  }
6770 
6771  for (i=1; PMD_IS_LAST(i) == 0; i++) {
6772  if (PMD_IS_IMPL(i) == 0) continue;
6773  printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6774  }
6775 
6776  if (ctx) {
6777  printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6778  this_cpu,
6779  ctx->ctx_state,
6780  ctx->ctx_smpl_vaddr,
6781  ctx->ctx_smpl_hdr,
6782  ctx->ctx_msgq_head,
6783  ctx->ctx_msgq_tail,
6784  ctx->ctx_saved_psr_up);
6785  }
6786  local_irq_restore(flags);
6787 }
6788 
6789 /*
6790  * called from process.c:copy_thread(). task is new child.
6791  */
6792 void
6793 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6794 {
6795  struct thread_struct *thread;
6796 
6797  DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6798 
6799  thread = &task->thread;
6800 
6801  /*
6802  * cut links inherited from parent (current)
6803  */
6804  thread->pfm_context = NULL;
6805 
6806  PFM_SET_WORK_PENDING(task, 0);
6807 
6808  /*
6809  * the psr bits are already set properly in copy_threads()
6810  */
6811 }
6812 #else /* !CONFIG_PERFMON */
6813 asmlinkage long
6814 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6815 {
6816  return -ENOSYS;
6817 }
6818 #endif /* CONFIG_PERFMON */