Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
kmemleak.c
Go to the documentation of this file.
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <[email protected]>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/kmemleak.txt.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  * accesses to the object_tree_root. The object_list is the main list
31  * holding the metadata (struct kmemleak_object) for the allocated memory
32  * blocks. The object_tree_root is a red black tree used to look-up
33  * metadata based on a pointer to the corresponding memory block. The
34  * kmemleak_object structures are added to the object_list and
35  * object_tree_root in the create_object() function called from the
36  * kmemleak_alloc() callback and removed in delete_object() called from the
37  * kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  * the metadata (e.g. count) are protected by this lock. Note that some
40  * members of this structure may be protected by other means (atomic or
41  * kmemleak_lock). This lock is also held when scanning the corresponding
42  * memory block to avoid the kernel freeing it via the kmemleak_free()
43  * callback. This is less heavyweight than holding a global lock like
44  * kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  * unreferenced objects at a time. The gray_list contains the objects which
47  * are already referenced or marked as false positives and need to be
48  * scanned. This list is only modified during a scanning episode when the
49  * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  * Note that the kmemleak_object.use_count is incremented when an object is
51  * added to the gray_list and therefore cannot be freed. This mutex also
52  * prevents multiple users of the "kmemleak" debugfs file together with
53  * modifications to the memory scanning parameters including the scan_thread
54  * pointer
55  *
56  * The kmemleak_object structures have a use_count incremented or decremented
57  * using the get_object()/put_object() functions. When the use_count becomes
58  * 0, this count can no longer be incremented and put_object() schedules the
59  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60  * function must be protected by rcu_read_lock() to avoid accessing a freed
61  * structure.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/export.h>
73 #include <linux/kthread.h>
74 #include <linux/rbtree.h>
75 #include <linux/fs.h>
76 #include <linux/debugfs.h>
77 #include <linux/seq_file.h>
78 #include <linux/cpumask.h>
79 #include <linux/spinlock.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/cache.h>
84 #include <linux/percpu.h>
85 #include <linux/hardirq.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96 
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100 
101 #include <linux/kmemcheck.h>
102 #include <linux/kmemleak.h>
103 #include <linux/memory_hotplug.h>
104 
105 /*
106  * Kmemleak configuration and common defines.
107  */
108 #define MAX_TRACE 16 /* stack trace length */
109 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
110 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
111 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
112 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
113 
114 #define BYTES_PER_POINTER sizeof(void *)
115 
116 /* GFP bitmask for kmemleak internal allocations */
117 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
118  __GFP_NORETRY | __GFP_NOMEMALLOC | \
119  __GFP_NOWARN)
120 
121 /* scanning area inside a memory block */
123  struct hlist_node node;
124  unsigned long start;
125  size_t size;
126 };
127 
128 #define KMEMLEAK_GREY 0
129 #define KMEMLEAK_BLACK -1
130 
131 /*
132  * Structure holding the metadata for each allocated memory block.
133  * Modifications to such objects should be made while holding the
134  * object->lock. Insertions or deletions from object_list, gray_list or
135  * rb_node are already protected by the corresponding locks or mutex (see
136  * the notes on locking above). These objects are reference-counted
137  * (use_count) and freed using the RCU mechanism.
138  */
141  unsigned long flags; /* object status flags */
144  struct rb_node rb_node;
145  struct rcu_head rcu; /* object_list lockless traversal */
146  /* object usage count; object freed when use_count == 0 */
148  unsigned long pointer;
149  size_t size;
150  /* minimum number of a pointers found before it is considered leak */
152  /* the total number of pointers found pointing to this object */
153  int count;
154  /* checksum for detecting modified objects */
156  /* memory ranges to be scanned inside an object (empty for all) */
158  unsigned long trace[MAX_TRACE];
159  unsigned int trace_len;
160  unsigned long jiffies; /* creation timestamp */
161  pid_t pid; /* pid of the current task */
162  char comm[TASK_COMM_LEN]; /* executable name */
163 };
164 
165 /* flag representing the memory block allocation status */
166 #define OBJECT_ALLOCATED (1 << 0)
167 /* flag set after the first reporting of an unreference object */
168 #define OBJECT_REPORTED (1 << 1)
169 /* flag set to not scan the object */
170 #define OBJECT_NO_SCAN (1 << 2)
171 
172 /* number of bytes to print per line; must be 16 or 32 */
173 #define HEX_ROW_SIZE 16
174 /* number of bytes to print at a time (1, 2, 4, 8) */
175 #define HEX_GROUP_SIZE 1
176 /* include ASCII after the hex output */
177 #define HEX_ASCII 1
178 /* max number of lines to be printed */
179 #define HEX_MAX_LINES 2
180 
181 /* the list of all allocated objects */
182 static LIST_HEAD(object_list);
183 /* the list of gray-colored objects (see color_gray comment below) */
184 static LIST_HEAD(gray_list);
185 /* search tree for object boundaries */
186 static struct rb_root object_tree_root = RB_ROOT;
187 /* rw_lock protecting the access to object_list and object_tree_root */
188 static DEFINE_RWLOCK(kmemleak_lock);
189 
190 /* allocation caches for kmemleak internal data */
191 static struct kmem_cache *object_cache;
192 static struct kmem_cache *scan_area_cache;
193 
194 /* set if tracing memory operations is enabled */
195 static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
196 /* set in the late_initcall if there were no errors */
197 static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
198 /* enables or disables early logging of the memory operations */
199 static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
200 /* set if a kmemleak warning was issued */
201 static atomic_t kmemleak_warning = ATOMIC_INIT(0);
202 /* set if a fatal kmemleak error has occurred */
203 static atomic_t kmemleak_error = ATOMIC_INIT(0);
204 
205 /* minimum and maximum address that may be valid pointers */
206 static unsigned long min_addr = ULONG_MAX;
207 static unsigned long max_addr;
208 
209 static struct task_struct *scan_thread;
210 /* used to avoid reporting of recently allocated objects */
211 static unsigned long jiffies_min_age;
212 static unsigned long jiffies_last_scan;
213 /* delay between automatic memory scannings */
214 static signed long jiffies_scan_wait;
215 /* enables or disables the task stacks scanning */
216 static int kmemleak_stack_scan = 1;
217 /* protects the memory scanning, parameters and debug/kmemleak file access */
218 static DEFINE_MUTEX(scan_mutex);
219 /* setting kmemleak=on, will set this var, skipping the disable */
220 static int kmemleak_skip_disable;
221 
222 
223 /*
224  * Early object allocation/freeing logging. Kmemleak is initialized after the
225  * kernel allocator. However, both the kernel allocator and kmemleak may
226  * allocate memory blocks which need to be tracked. Kmemleak defines an
227  * arbitrary buffer to hold the allocation/freeing information before it is
228  * fully initialized.
229  */
230 
231 /* kmemleak operation type for early logging */
232 enum {
242 };
243 
244 /*
245  * Structure holding the information passed to kmemleak callbacks during the
246  * early logging.
247  */
248 struct early_log {
249  int op_type; /* kmemleak operation type */
250  const void *ptr; /* allocated/freed memory block */
251  size_t size; /* memory block size */
252  int min_count; /* minimum reference count */
253  unsigned long trace[MAX_TRACE]; /* stack trace */
254  unsigned int trace_len; /* stack trace length */
255 };
256 
257 /* early logging buffer and current position */
258 static struct early_log
259  early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
260 static int crt_early_log __initdata;
261 
262 static void kmemleak_disable(void);
263 
264 /*
265  * Print a warning and dump the stack trace.
266  */
267 #define kmemleak_warn(x...) do { \
268  pr_warning(x); \
269  dump_stack(); \
270  atomic_set(&kmemleak_warning, 1); \
271 } while (0)
272 
273 /*
274  * Macro invoked when a serious kmemleak condition occurred and cannot be
275  * recovered from. Kmemleak will be disabled and further allocation/freeing
276  * tracing no longer available.
277  */
278 #define kmemleak_stop(x...) do { \
279  kmemleak_warn(x); \
280  kmemleak_disable(); \
281 } while (0)
282 
283 /*
284  * Printing of the objects hex dump to the seq file. The number of lines to be
285  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
286  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
287  * with the object->lock held.
288  */
289 static void hex_dump_object(struct seq_file *seq,
290  struct kmemleak_object *object)
291 {
292  const u8 *ptr = (const u8 *)object->pointer;
293  int i, len, remaining;
294  unsigned char linebuf[HEX_ROW_SIZE * 5];
295 
296  /* limit the number of lines to HEX_MAX_LINES */
297  remaining = len =
298  min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
299 
300  seq_printf(seq, " hex dump (first %d bytes):\n", len);
301  for (i = 0; i < len; i += HEX_ROW_SIZE) {
302  int linelen = min(remaining, HEX_ROW_SIZE);
303 
304  remaining -= HEX_ROW_SIZE;
305  hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
306  HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
307  HEX_ASCII);
308  seq_printf(seq, " %s\n", linebuf);
309  }
310 }
311 
312 /*
313  * Object colors, encoded with count and min_count:
314  * - white - orphan object, not enough references to it (count < min_count)
315  * - gray - not orphan, not marked as false positive (min_count == 0) or
316  * sufficient references to it (count >= min_count)
317  * - black - ignore, it doesn't contain references (e.g. text section)
318  * (min_count == -1). No function defined for this color.
319  * Newly created objects don't have any color assigned (object->count == -1)
320  * before the next memory scan when they become white.
321  */
322 static bool color_white(const struct kmemleak_object *object)
323 {
324  return object->count != KMEMLEAK_BLACK &&
325  object->count < object->min_count;
326 }
327 
328 static bool color_gray(const struct kmemleak_object *object)
329 {
330  return object->min_count != KMEMLEAK_BLACK &&
331  object->count >= object->min_count;
332 }
333 
334 /*
335  * Objects are considered unreferenced only if their color is white, they have
336  * not be deleted and have a minimum age to avoid false positives caused by
337  * pointers temporarily stored in CPU registers.
338  */
339 static bool unreferenced_object(struct kmemleak_object *object)
340 {
341  return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
342  time_before_eq(object->jiffies + jiffies_min_age,
343  jiffies_last_scan);
344 }
345 
346 /*
347  * Printing of the unreferenced objects information to the seq file. The
348  * print_unreferenced function must be called with the object->lock held.
349  */
350 static void print_unreferenced(struct seq_file *seq,
351  struct kmemleak_object *object)
352 {
353  int i;
354  unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
355 
356  seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
357  object->pointer, object->size);
358  seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
359  object->comm, object->pid, object->jiffies,
360  msecs_age / 1000, msecs_age % 1000);
361  hex_dump_object(seq, object);
362  seq_printf(seq, " backtrace:\n");
363 
364  for (i = 0; i < object->trace_len; i++) {
365  void *ptr = (void *)object->trace[i];
366  seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
367  }
368 }
369 
370 /*
371  * Print the kmemleak_object information. This function is used mainly for
372  * debugging special cases when kmemleak operations. It must be called with
373  * the object->lock held.
374  */
375 static void dump_object_info(struct kmemleak_object *object)
376 {
377  struct stack_trace trace;
378 
379  trace.nr_entries = object->trace_len;
380  trace.entries = object->trace;
381 
382  pr_notice("Object 0x%08lx (size %zu):\n",
383  object->pointer, object->size);
384  pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
385  object->comm, object->pid, object->jiffies);
386  pr_notice(" min_count = %d\n", object->min_count);
387  pr_notice(" count = %d\n", object->count);
388  pr_notice(" flags = 0x%lx\n", object->flags);
389  pr_notice(" checksum = %d\n", object->checksum);
390  pr_notice(" backtrace:\n");
392 }
393 
394 /*
395  * Look-up a memory block metadata (kmemleak_object) in the object search
396  * tree based on a pointer value. If alias is 0, only values pointing to the
397  * beginning of the memory block are allowed. The kmemleak_lock must be held
398  * when calling this function.
399  */
400 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
401 {
402  struct rb_node *rb = object_tree_root.rb_node;
403 
404  while (rb) {
405  struct kmemleak_object *object =
406  rb_entry(rb, struct kmemleak_object, rb_node);
407  if (ptr < object->pointer)
408  rb = object->rb_node.rb_left;
409  else if (object->pointer + object->size <= ptr)
410  rb = object->rb_node.rb_right;
411  else if (object->pointer == ptr || alias)
412  return object;
413  else {
414  kmemleak_warn("Found object by alias at 0x%08lx\n",
415  ptr);
416  dump_object_info(object);
417  break;
418  }
419  }
420  return NULL;
421 }
422 
423 /*
424  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
425  * that once an object's use_count reached 0, the RCU freeing was already
426  * registered and the object should no longer be used. This function must be
427  * called under the protection of rcu_read_lock().
428  */
429 static int get_object(struct kmemleak_object *object)
430 {
431  return atomic_inc_not_zero(&object->use_count);
432 }
433 
434 /*
435  * RCU callback to free a kmemleak_object.
436  */
437 static void free_object_rcu(struct rcu_head *rcu)
438 {
439  struct hlist_node *elem, *tmp;
440  struct kmemleak_scan_area *area;
441  struct kmemleak_object *object =
442  container_of(rcu, struct kmemleak_object, rcu);
443 
444  /*
445  * Once use_count is 0 (guaranteed by put_object), there is no other
446  * code accessing this object, hence no need for locking.
447  */
448  hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
449  hlist_del(elem);
450  kmem_cache_free(scan_area_cache, area);
451  }
452  kmem_cache_free(object_cache, object);
453 }
454 
455 /*
456  * Decrement the object use_count. Once the count is 0, free the object using
457  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
458  * delete_object() path, the delayed RCU freeing ensures that there is no
459  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
460  * is also possible.
461  */
462 static void put_object(struct kmemleak_object *object)
463 {
464  if (!atomic_dec_and_test(&object->use_count))
465  return;
466 
467  /* should only get here after delete_object was called */
468  WARN_ON(object->flags & OBJECT_ALLOCATED);
469 
470  call_rcu(&object->rcu, free_object_rcu);
471 }
472 
473 /*
474  * Look up an object in the object search tree and increase its use_count.
475  */
476 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
477 {
478  unsigned long flags;
479  struct kmemleak_object *object = NULL;
480 
481  rcu_read_lock();
482  read_lock_irqsave(&kmemleak_lock, flags);
483  if (ptr >= min_addr && ptr < max_addr)
484  object = lookup_object(ptr, alias);
485  read_unlock_irqrestore(&kmemleak_lock, flags);
486 
487  /* check whether the object is still available */
488  if (object && !get_object(object))
489  object = NULL;
490  rcu_read_unlock();
491 
492  return object;
493 }
494 
495 /*
496  * Save stack trace to the given array of MAX_TRACE size.
497  */
498 static int __save_stack_trace(unsigned long *trace)
499 {
500  struct stack_trace stack_trace;
501 
502  stack_trace.max_entries = MAX_TRACE;
503  stack_trace.nr_entries = 0;
504  stack_trace.entries = trace;
505  stack_trace.skip = 2;
506  save_stack_trace(&stack_trace);
507 
508  return stack_trace.nr_entries;
509 }
510 
511 /*
512  * Create the metadata (struct kmemleak_object) corresponding to an allocated
513  * memory block and add it to the object_list and object_tree_root.
514  */
515 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
516  int min_count, gfp_t gfp)
517 {
518  unsigned long flags;
519  struct kmemleak_object *object, *parent;
520  struct rb_node **link, *rb_parent;
521 
522  object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
523  if (!object) {
524  pr_warning("Cannot allocate a kmemleak_object structure\n");
525  kmemleak_disable();
526  return NULL;
527  }
528 
529  INIT_LIST_HEAD(&object->object_list);
530  INIT_LIST_HEAD(&object->gray_list);
531  INIT_HLIST_HEAD(&object->area_list);
532  spin_lock_init(&object->lock);
533  atomic_set(&object->use_count, 1);
534  object->flags = OBJECT_ALLOCATED;
535  object->pointer = ptr;
536  object->size = size;
537  object->min_count = min_count;
538  object->count = 0; /* white color initially */
539  object->jiffies = jiffies;
540  object->checksum = 0;
541 
542  /* task information */
543  if (in_irq()) {
544  object->pid = 0;
545  strncpy(object->comm, "hardirq", sizeof(object->comm));
546  } else if (in_softirq()) {
547  object->pid = 0;
548  strncpy(object->comm, "softirq", sizeof(object->comm));
549  } else {
550  object->pid = current->pid;
551  /*
552  * There is a small chance of a race with set_task_comm(),
553  * however using get_task_comm() here may cause locking
554  * dependency issues with current->alloc_lock. In the worst
555  * case, the command line is not correct.
556  */
557  strncpy(object->comm, current->comm, sizeof(object->comm));
558  }
559 
560  /* kernel backtrace */
561  object->trace_len = __save_stack_trace(object->trace);
562 
563  write_lock_irqsave(&kmemleak_lock, flags);
564 
565  min_addr = min(min_addr, ptr);
566  max_addr = max(max_addr, ptr + size);
567  link = &object_tree_root.rb_node;
568  rb_parent = NULL;
569  while (*link) {
570  rb_parent = *link;
571  parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
572  if (ptr + size <= parent->pointer)
573  link = &parent->rb_node.rb_left;
574  else if (parent->pointer + parent->size <= ptr)
575  link = &parent->rb_node.rb_right;
576  else {
577  kmemleak_stop("Cannot insert 0x%lx into the object "
578  "search tree (overlaps existing)\n",
579  ptr);
580  kmem_cache_free(object_cache, object);
581  object = parent;
582  spin_lock(&object->lock);
583  dump_object_info(object);
584  spin_unlock(&object->lock);
585  goto out;
586  }
587  }
588  rb_link_node(&object->rb_node, rb_parent, link);
589  rb_insert_color(&object->rb_node, &object_tree_root);
590 
591  list_add_tail_rcu(&object->object_list, &object_list);
592 out:
593  write_unlock_irqrestore(&kmemleak_lock, flags);
594  return object;
595 }
596 
597 /*
598  * Remove the metadata (struct kmemleak_object) for a memory block from the
599  * object_list and object_tree_root and decrement its use_count.
600  */
601 static void __delete_object(struct kmemleak_object *object)
602 {
603  unsigned long flags;
604 
605  write_lock_irqsave(&kmemleak_lock, flags);
606  rb_erase(&object->rb_node, &object_tree_root);
607  list_del_rcu(&object->object_list);
608  write_unlock_irqrestore(&kmemleak_lock, flags);
609 
610  WARN_ON(!(object->flags & OBJECT_ALLOCATED));
611  WARN_ON(atomic_read(&object->use_count) < 2);
612 
613  /*
614  * Locking here also ensures that the corresponding memory block
615  * cannot be freed when it is being scanned.
616  */
617  spin_lock_irqsave(&object->lock, flags);
618  object->flags &= ~OBJECT_ALLOCATED;
619  spin_unlock_irqrestore(&object->lock, flags);
620  put_object(object);
621 }
622 
623 /*
624  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
625  * delete it.
626  */
627 static void delete_object_full(unsigned long ptr)
628 {
629  struct kmemleak_object *object;
630 
631  object = find_and_get_object(ptr, 0);
632  if (!object) {
633 #ifdef DEBUG
634  kmemleak_warn("Freeing unknown object at 0x%08lx\n",
635  ptr);
636 #endif
637  return;
638  }
639  __delete_object(object);
640  put_object(object);
641 }
642 
643 /*
644  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
645  * delete it. If the memory block is partially freed, the function may create
646  * additional metadata for the remaining parts of the block.
647  */
648 static void delete_object_part(unsigned long ptr, size_t size)
649 {
650  struct kmemleak_object *object;
651  unsigned long start, end;
652 
653  object = find_and_get_object(ptr, 1);
654  if (!object) {
655 #ifdef DEBUG
656  kmemleak_warn("Partially freeing unknown object at 0x%08lx "
657  "(size %zu)\n", ptr, size);
658 #endif
659  return;
660  }
661  __delete_object(object);
662 
663  /*
664  * Create one or two objects that may result from the memory block
665  * split. Note that partial freeing is only done by free_bootmem() and
666  * this happens before kmemleak_init() is called. The path below is
667  * only executed during early log recording in kmemleak_init(), so
668  * GFP_KERNEL is enough.
669  */
670  start = object->pointer;
671  end = object->pointer + object->size;
672  if (ptr > start)
673  create_object(start, ptr - start, object->min_count,
674  GFP_KERNEL);
675  if (ptr + size < end)
676  create_object(ptr + size, end - ptr - size, object->min_count,
677  GFP_KERNEL);
678 
679  put_object(object);
680 }
681 
682 static void __paint_it(struct kmemleak_object *object, int color)
683 {
684  object->min_count = color;
685  if (color == KMEMLEAK_BLACK)
686  object->flags |= OBJECT_NO_SCAN;
687 }
688 
689 static void paint_it(struct kmemleak_object *object, int color)
690 {
691  unsigned long flags;
692 
693  spin_lock_irqsave(&object->lock, flags);
694  __paint_it(object, color);
695  spin_unlock_irqrestore(&object->lock, flags);
696 }
697 
698 static void paint_ptr(unsigned long ptr, int color)
699 {
700  struct kmemleak_object *object;
701 
702  object = find_and_get_object(ptr, 0);
703  if (!object) {
704  kmemleak_warn("Trying to color unknown object "
705  "at 0x%08lx as %s\n", ptr,
706  (color == KMEMLEAK_GREY) ? "Grey" :
707  (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
708  return;
709  }
710  paint_it(object, color);
711  put_object(object);
712 }
713 
714 /*
715  * Mark an object permanently as gray-colored so that it can no longer be
716  * reported as a leak. This is used in general to mark a false positive.
717  */
718 static void make_gray_object(unsigned long ptr)
719 {
720  paint_ptr(ptr, KMEMLEAK_GREY);
721 }
722 
723 /*
724  * Mark the object as black-colored so that it is ignored from scans and
725  * reporting.
726  */
727 static void make_black_object(unsigned long ptr)
728 {
729  paint_ptr(ptr, KMEMLEAK_BLACK);
730 }
731 
732 /*
733  * Add a scanning area to the object. If at least one such area is added,
734  * kmemleak will only scan these ranges rather than the whole memory block.
735  */
736 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
737 {
738  unsigned long flags;
739  struct kmemleak_object *object;
740  struct kmemleak_scan_area *area;
741 
742  object = find_and_get_object(ptr, 1);
743  if (!object) {
744  kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
745  ptr);
746  return;
747  }
748 
749  area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
750  if (!area) {
751  pr_warning("Cannot allocate a scan area\n");
752  goto out;
753  }
754 
755  spin_lock_irqsave(&object->lock, flags);
756  if (ptr + size > object->pointer + object->size) {
757  kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
758  dump_object_info(object);
759  kmem_cache_free(scan_area_cache, area);
760  goto out_unlock;
761  }
762 
763  INIT_HLIST_NODE(&area->node);
764  area->start = ptr;
765  area->size = size;
766 
767  hlist_add_head(&area->node, &object->area_list);
768 out_unlock:
769  spin_unlock_irqrestore(&object->lock, flags);
770 out:
771  put_object(object);
772 }
773 
774 /*
775  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
776  * pointer. Such object will not be scanned by kmemleak but references to it
777  * are searched.
778  */
779 static void object_no_scan(unsigned long ptr)
780 {
781  unsigned long flags;
782  struct kmemleak_object *object;
783 
784  object = find_and_get_object(ptr, 0);
785  if (!object) {
786  kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
787  return;
788  }
789 
790  spin_lock_irqsave(&object->lock, flags);
791  object->flags |= OBJECT_NO_SCAN;
792  spin_unlock_irqrestore(&object->lock, flags);
793  put_object(object);
794 }
795 
796 /*
797  * Log an early kmemleak_* call to the early_log buffer. These calls will be
798  * processed later once kmemleak is fully initialized.
799  */
800 static void __init log_early(int op_type, const void *ptr, size_t size,
801  int min_count)
802 {
803  unsigned long flags;
804  struct early_log *log;
805 
806  if (atomic_read(&kmemleak_error)) {
807  /* kmemleak stopped recording, just count the requests */
808  crt_early_log++;
809  return;
810  }
811 
812  if (crt_early_log >= ARRAY_SIZE(early_log)) {
813  kmemleak_disable();
814  return;
815  }
816 
817  /*
818  * There is no need for locking since the kernel is still in UP mode
819  * at this stage. Disabling the IRQs is enough.
820  */
821  local_irq_save(flags);
822  log = &early_log[crt_early_log];
823  log->op_type = op_type;
824  log->ptr = ptr;
825  log->size = size;
826  log->min_count = min_count;
827  log->trace_len = __save_stack_trace(log->trace);
828  crt_early_log++;
829  local_irq_restore(flags);
830 }
831 
832 /*
833  * Log an early allocated block and populate the stack trace.
834  */
835 static void early_alloc(struct early_log *log)
836 {
837  struct kmemleak_object *object;
838  unsigned long flags;
839  int i;
840 
841  if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
842  return;
843 
844  /*
845  * RCU locking needed to ensure object is not freed via put_object().
846  */
847  rcu_read_lock();
848  object = create_object((unsigned long)log->ptr, log->size,
849  log->min_count, GFP_ATOMIC);
850  if (!object)
851  goto out;
852  spin_lock_irqsave(&object->lock, flags);
853  for (i = 0; i < log->trace_len; i++)
854  object->trace[i] = log->trace[i];
855  object->trace_len = log->trace_len;
856  spin_unlock_irqrestore(&object->lock, flags);
857 out:
858  rcu_read_unlock();
859 }
860 
861 /*
862  * Log an early allocated block and populate the stack trace.
863  */
864 static void early_alloc_percpu(struct early_log *log)
865 {
866  unsigned int cpu;
867  const void __percpu *ptr = log->ptr;
868 
869  for_each_possible_cpu(cpu) {
870  log->ptr = per_cpu_ptr(ptr, cpu);
871  early_alloc(log);
872  }
873 }
874 
889 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
890  gfp_t gfp)
891 {
892  pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
893 
894  if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
895  create_object((unsigned long)ptr, size, min_count, gfp);
896  else if (atomic_read(&kmemleak_early_log))
897  log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
898 }
900 
910 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size)
911 {
912  unsigned int cpu;
913 
914  pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
915 
916  /*
917  * Percpu allocations are only scanned and not reported as leaks
918  * (min_count is set to 0).
919  */
920  if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
922  create_object((unsigned long)per_cpu_ptr(ptr, cpu),
923  size, 0, GFP_KERNEL);
924  else if (atomic_read(&kmemleak_early_log))
925  log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
926 }
928 
936 void __ref kmemleak_free(const void *ptr)
937 {
938  pr_debug("%s(0x%p)\n", __func__, ptr);
939 
940  if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
941  delete_object_full((unsigned long)ptr);
942  else if (atomic_read(&kmemleak_early_log))
943  log_early(KMEMLEAK_FREE, ptr, 0, 0);
944 }
946 
956 void __ref kmemleak_free_part(const void *ptr, size_t size)
957 {
958  pr_debug("%s(0x%p)\n", __func__, ptr);
959 
960  if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
961  delete_object_part((unsigned long)ptr, size);
962  else if (atomic_read(&kmemleak_early_log))
963  log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
964 }
966 
974 void __ref kmemleak_free_percpu(const void __percpu *ptr)
975 {
976  unsigned int cpu;
977 
978  pr_debug("%s(0x%p)\n", __func__, ptr);
979 
980  if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
982  delete_object_full((unsigned long)per_cpu_ptr(ptr,
983  cpu));
984  else if (atomic_read(&kmemleak_early_log))
985  log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
986 }
988 
996 void __ref kmemleak_not_leak(const void *ptr)
997 {
998  pr_debug("%s(0x%p)\n", __func__, ptr);
999 
1000  if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
1001  make_gray_object((unsigned long)ptr);
1002  else if (atomic_read(&kmemleak_early_log))
1003  log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1004 }
1006 
1016 void __ref kmemleak_ignore(const void *ptr)
1017 {
1018  pr_debug("%s(0x%p)\n", __func__, ptr);
1019 
1020  if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
1021  make_black_object((unsigned long)ptr);
1022  else if (atomic_read(&kmemleak_early_log))
1023  log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1024 }
1026 
1038 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1039 {
1040  pr_debug("%s(0x%p)\n", __func__, ptr);
1041 
1042  if (atomic_read(&kmemleak_enabled) && ptr && size && !IS_ERR(ptr))
1043  add_scan_area((unsigned long)ptr, size, gfp);
1044  else if (atomic_read(&kmemleak_early_log))
1045  log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1046 }
1048 
1058 void __ref kmemleak_no_scan(const void *ptr)
1059 {
1060  pr_debug("%s(0x%p)\n", __func__, ptr);
1061 
1062  if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
1063  object_no_scan((unsigned long)ptr);
1064  else if (atomic_read(&kmemleak_early_log))
1065  log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1066 }
1068 
1069 /*
1070  * Update an object's checksum and return true if it was modified.
1071  */
1072 static bool update_checksum(struct kmemleak_object *object)
1073 {
1074  u32 old_csum = object->checksum;
1075 
1076  if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1077  return false;
1078 
1079  object->checksum = crc32(0, (void *)object->pointer, object->size);
1080  return object->checksum != old_csum;
1081 }
1082 
1083 /*
1084  * Memory scanning is a long process and it needs to be interruptable. This
1085  * function checks whether such interrupt condition occurred.
1086  */
1087 static int scan_should_stop(void)
1088 {
1089  if (!atomic_read(&kmemleak_enabled))
1090  return 1;
1091 
1092  /*
1093  * This function may be called from either process or kthread context,
1094  * hence the need to check for both stop conditions.
1095  */
1096  if (current->mm)
1097  return signal_pending(current);
1098  else
1099  return kthread_should_stop();
1100 
1101  return 0;
1102 }
1103 
1104 /*
1105  * Scan a memory block (exclusive range) for valid pointers and add those
1106  * found to the gray list.
1107  */
1108 static void scan_block(void *_start, void *_end,
1109  struct kmemleak_object *scanned, int allow_resched)
1110 {
1111  unsigned long *ptr;
1112  unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1113  unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1114 
1115  for (ptr = start; ptr < end; ptr++) {
1116  struct kmemleak_object *object;
1117  unsigned long flags;
1118  unsigned long pointer;
1119 
1120  if (allow_resched)
1121  cond_resched();
1122  if (scan_should_stop())
1123  break;
1124 
1125  /* don't scan uninitialized memory */
1126  if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1128  continue;
1129 
1130  pointer = *ptr;
1131 
1132  object = find_and_get_object(pointer, 1);
1133  if (!object)
1134  continue;
1135  if (object == scanned) {
1136  /* self referenced, ignore */
1137  put_object(object);
1138  continue;
1139  }
1140 
1141  /*
1142  * Avoid the lockdep recursive warning on object->lock being
1143  * previously acquired in scan_object(). These locks are
1144  * enclosed by scan_mutex.
1145  */
1146  spin_lock_irqsave_nested(&object->lock, flags,
1148  if (!color_white(object)) {
1149  /* non-orphan, ignored or new */
1150  spin_unlock_irqrestore(&object->lock, flags);
1151  put_object(object);
1152  continue;
1153  }
1154 
1155  /*
1156  * Increase the object's reference count (number of pointers
1157  * to the memory block). If this count reaches the required
1158  * minimum, the object's color will become gray and it will be
1159  * added to the gray_list.
1160  */
1161  object->count++;
1162  if (color_gray(object)) {
1163  list_add_tail(&object->gray_list, &gray_list);
1164  spin_unlock_irqrestore(&object->lock, flags);
1165  continue;
1166  }
1167 
1168  spin_unlock_irqrestore(&object->lock, flags);
1169  put_object(object);
1170  }
1171 }
1172 
1173 /*
1174  * Scan a memory block corresponding to a kmemleak_object. A condition is
1175  * that object->use_count >= 1.
1176  */
1177 static void scan_object(struct kmemleak_object *object)
1178 {
1179  struct kmemleak_scan_area *area;
1180  struct hlist_node *elem;
1181  unsigned long flags;
1182 
1183  /*
1184  * Once the object->lock is acquired, the corresponding memory block
1185  * cannot be freed (the same lock is acquired in delete_object).
1186  */
1187  spin_lock_irqsave(&object->lock, flags);
1188  if (object->flags & OBJECT_NO_SCAN)
1189  goto out;
1190  if (!(object->flags & OBJECT_ALLOCATED))
1191  /* already freed object */
1192  goto out;
1193  if (hlist_empty(&object->area_list)) {
1194  void *start = (void *)object->pointer;
1195  void *end = (void *)(object->pointer + object->size);
1196 
1197  while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1198  !(object->flags & OBJECT_NO_SCAN)) {
1199  scan_block(start, min(start + MAX_SCAN_SIZE, end),
1200  object, 0);
1201  start += MAX_SCAN_SIZE;
1202 
1203  spin_unlock_irqrestore(&object->lock, flags);
1204  cond_resched();
1205  spin_lock_irqsave(&object->lock, flags);
1206  }
1207  } else
1208  hlist_for_each_entry(area, elem, &object->area_list, node)
1209  scan_block((void *)area->start,
1210  (void *)(area->start + area->size),
1211  object, 0);
1212 out:
1213  spin_unlock_irqrestore(&object->lock, flags);
1214 }
1215 
1216 /*
1217  * Scan the objects already referenced (gray objects). More objects will be
1218  * referenced and, if there are no memory leaks, all the objects are scanned.
1219  */
1220 static void scan_gray_list(void)
1221 {
1222  struct kmemleak_object *object, *tmp;
1223 
1224  /*
1225  * The list traversal is safe for both tail additions and removals
1226  * from inside the loop. The kmemleak objects cannot be freed from
1227  * outside the loop because their use_count was incremented.
1228  */
1229  object = list_entry(gray_list.next, typeof(*object), gray_list);
1230  while (&object->gray_list != &gray_list) {
1231  cond_resched();
1232 
1233  /* may add new objects to the list */
1234  if (!scan_should_stop())
1235  scan_object(object);
1236 
1237  tmp = list_entry(object->gray_list.next, typeof(*object),
1238  gray_list);
1239 
1240  /* remove the object from the list and release it */
1241  list_del(&object->gray_list);
1242  put_object(object);
1243 
1244  object = tmp;
1245  }
1246  WARN_ON(!list_empty(&gray_list));
1247 }
1248 
1249 /*
1250  * Scan data sections and all the referenced memory blocks allocated via the
1251  * kernel's standard allocators. This function must be called with the
1252  * scan_mutex held.
1253  */
1254 static void kmemleak_scan(void)
1255 {
1256  unsigned long flags;
1257  struct kmemleak_object *object;
1258  int i;
1259  int new_leaks = 0;
1260 
1261  jiffies_last_scan = jiffies;
1262 
1263  /* prepare the kmemleak_object's */
1264  rcu_read_lock();
1265  list_for_each_entry_rcu(object, &object_list, object_list) {
1266  spin_lock_irqsave(&object->lock, flags);
1267 #ifdef DEBUG
1268  /*
1269  * With a few exceptions there should be a maximum of
1270  * 1 reference to any object at this point.
1271  */
1272  if (atomic_read(&object->use_count) > 1) {
1273  pr_debug("object->use_count = %d\n",
1274  atomic_read(&object->use_count));
1275  dump_object_info(object);
1276  }
1277 #endif
1278  /* reset the reference count (whiten the object) */
1279  object->count = 0;
1280  if (color_gray(object) && get_object(object))
1281  list_add_tail(&object->gray_list, &gray_list);
1282 
1283  spin_unlock_irqrestore(&object->lock, flags);
1284  }
1285  rcu_read_unlock();
1286 
1287  /* data/bss scanning */
1288  scan_block(_sdata, _edata, NULL, 1);
1289  scan_block(__bss_start, __bss_stop, NULL, 1);
1290 
1291 #ifdef CONFIG_SMP
1292  /* per-cpu sections scanning */
1294  scan_block(__per_cpu_start + per_cpu_offset(i),
1295  __per_cpu_end + per_cpu_offset(i), NULL, 1);
1296 #endif
1297 
1298  /*
1299  * Struct page scanning for each node.
1300  */
1303  pg_data_t *pgdat = NODE_DATA(i);
1304  unsigned long start_pfn = pgdat->node_start_pfn;
1305  unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1306  unsigned long pfn;
1307 
1308  for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1309  struct page *page;
1310 
1311  if (!pfn_valid(pfn))
1312  continue;
1313  page = pfn_to_page(pfn);
1314  /* only scan if page is in use */
1315  if (page_count(page) == 0)
1316  continue;
1317  scan_block(page, page + 1, NULL, 1);
1318  }
1319  }
1321 
1322  /*
1323  * Scanning the task stacks (may introduce false negatives).
1324  */
1325  if (kmemleak_stack_scan) {
1326  struct task_struct *p, *g;
1327 
1328  read_lock(&tasklist_lock);
1329  do_each_thread(g, p) {
1330  scan_block(task_stack_page(p), task_stack_page(p) +
1331  THREAD_SIZE, NULL, 0);
1332  } while_each_thread(g, p);
1333  read_unlock(&tasklist_lock);
1334  }
1335 
1336  /*
1337  * Scan the objects already referenced from the sections scanned
1338  * above.
1339  */
1340  scan_gray_list();
1341 
1342  /*
1343  * Check for new or unreferenced objects modified since the previous
1344  * scan and color them gray until the next scan.
1345  */
1346  rcu_read_lock();
1347  list_for_each_entry_rcu(object, &object_list, object_list) {
1348  spin_lock_irqsave(&object->lock, flags);
1349  if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1350  && update_checksum(object) && get_object(object)) {
1351  /* color it gray temporarily */
1352  object->count = object->min_count;
1353  list_add_tail(&object->gray_list, &gray_list);
1354  }
1355  spin_unlock_irqrestore(&object->lock, flags);
1356  }
1357  rcu_read_unlock();
1358 
1359  /*
1360  * Re-scan the gray list for modified unreferenced objects.
1361  */
1362  scan_gray_list();
1363 
1364  /*
1365  * If scanning was stopped do not report any new unreferenced objects.
1366  */
1367  if (scan_should_stop())
1368  return;
1369 
1370  /*
1371  * Scanning result reporting.
1372  */
1373  rcu_read_lock();
1374  list_for_each_entry_rcu(object, &object_list, object_list) {
1375  spin_lock_irqsave(&object->lock, flags);
1376  if (unreferenced_object(object) &&
1377  !(object->flags & OBJECT_REPORTED)) {
1378  object->flags |= OBJECT_REPORTED;
1379  new_leaks++;
1380  }
1381  spin_unlock_irqrestore(&object->lock, flags);
1382  }
1383  rcu_read_unlock();
1384 
1385  if (new_leaks)
1386  pr_info("%d new suspected memory leaks (see "
1387  "/sys/kernel/debug/kmemleak)\n", new_leaks);
1388 
1389 }
1390 
1391 /*
1392  * Thread function performing automatic memory scanning. Unreferenced objects
1393  * at the end of a memory scan are reported but only the first time.
1394  */
1395 static int kmemleak_scan_thread(void *arg)
1396 {
1397  static int first_run = 1;
1398 
1399  pr_info("Automatic memory scanning thread started\n");
1400  set_user_nice(current, 10);
1401 
1402  /*
1403  * Wait before the first scan to allow the system to fully initialize.
1404  */
1405  if (first_run) {
1406  first_run = 0;
1407  ssleep(SECS_FIRST_SCAN);
1408  }
1409 
1410  while (!kthread_should_stop()) {
1411  signed long timeout = jiffies_scan_wait;
1412 
1413  mutex_lock(&scan_mutex);
1414  kmemleak_scan();
1415  mutex_unlock(&scan_mutex);
1416 
1417  /* wait before the next scan */
1418  while (timeout && !kthread_should_stop())
1419  timeout = schedule_timeout_interruptible(timeout);
1420  }
1421 
1422  pr_info("Automatic memory scanning thread ended\n");
1423 
1424  return 0;
1425 }
1426 
1427 /*
1428  * Start the automatic memory scanning thread. This function must be called
1429  * with the scan_mutex held.
1430  */
1431 static void start_scan_thread(void)
1432 {
1433  if (scan_thread)
1434  return;
1435  scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1436  if (IS_ERR(scan_thread)) {
1437  pr_warning("Failed to create the scan thread\n");
1438  scan_thread = NULL;
1439  }
1440 }
1441 
1442 /*
1443  * Stop the automatic memory scanning thread. This function must be called
1444  * with the scan_mutex held.
1445  */
1446 static void stop_scan_thread(void)
1447 {
1448  if (scan_thread) {
1449  kthread_stop(scan_thread);
1450  scan_thread = NULL;
1451  }
1452 }
1453 
1454 /*
1455  * Iterate over the object_list and return the first valid object at or after
1456  * the required position with its use_count incremented. The function triggers
1457  * a memory scanning when the pos argument points to the first position.
1458  */
1459 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1460 {
1461  struct kmemleak_object *object;
1462  loff_t n = *pos;
1463  int err;
1464 
1465  err = mutex_lock_interruptible(&scan_mutex);
1466  if (err < 0)
1467  return ERR_PTR(err);
1468 
1469  rcu_read_lock();
1470  list_for_each_entry_rcu(object, &object_list, object_list) {
1471  if (n-- > 0)
1472  continue;
1473  if (get_object(object))
1474  goto out;
1475  }
1476  object = NULL;
1477 out:
1478  return object;
1479 }
1480 
1481 /*
1482  * Return the next object in the object_list. The function decrements the
1483  * use_count of the previous object and increases that of the next one.
1484  */
1485 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1486 {
1487  struct kmemleak_object *prev_obj = v;
1488  struct kmemleak_object *next_obj = NULL;
1489  struct kmemleak_object *obj = prev_obj;
1490 
1491  ++(*pos);
1492 
1493  list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1494  if (get_object(obj)) {
1495  next_obj = obj;
1496  break;
1497  }
1498  }
1499 
1500  put_object(prev_obj);
1501  return next_obj;
1502 }
1503 
1504 /*
1505  * Decrement the use_count of the last object required, if any.
1506  */
1507 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1508 {
1509  if (!IS_ERR(v)) {
1510  /*
1511  * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1512  * waiting was interrupted, so only release it if !IS_ERR.
1513  */
1514  rcu_read_unlock();
1515  mutex_unlock(&scan_mutex);
1516  if (v)
1517  put_object(v);
1518  }
1519 }
1520 
1521 /*
1522  * Print the information for an unreferenced object to the seq file.
1523  */
1524 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1525 {
1526  struct kmemleak_object *object = v;
1527  unsigned long flags;
1528 
1529  spin_lock_irqsave(&object->lock, flags);
1530  if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1531  print_unreferenced(seq, object);
1532  spin_unlock_irqrestore(&object->lock, flags);
1533  return 0;
1534 }
1535 
1536 static const struct seq_operations kmemleak_seq_ops = {
1537  .start = kmemleak_seq_start,
1538  .next = kmemleak_seq_next,
1539  .stop = kmemleak_seq_stop,
1540  .show = kmemleak_seq_show,
1541 };
1542 
1543 static int kmemleak_open(struct inode *inode, struct file *file)
1544 {
1545  return seq_open(file, &kmemleak_seq_ops);
1546 }
1547 
1548 static int kmemleak_release(struct inode *inode, struct file *file)
1549 {
1550  return seq_release(inode, file);
1551 }
1552 
1553 static int dump_str_object_info(const char *str)
1554 {
1555  unsigned long flags;
1556  struct kmemleak_object *object;
1557  unsigned long addr;
1558 
1559  addr= simple_strtoul(str, NULL, 0);
1560  object = find_and_get_object(addr, 0);
1561  if (!object) {
1562  pr_info("Unknown object at 0x%08lx\n", addr);
1563  return -EINVAL;
1564  }
1565 
1566  spin_lock_irqsave(&object->lock, flags);
1567  dump_object_info(object);
1568  spin_unlock_irqrestore(&object->lock, flags);
1569 
1570  put_object(object);
1571  return 0;
1572 }
1573 
1574 /*
1575  * We use grey instead of black to ensure we can do future scans on the same
1576  * objects. If we did not do future scans these black objects could
1577  * potentially contain references to newly allocated objects in the future and
1578  * we'd end up with false positives.
1579  */
1580 static void kmemleak_clear(void)
1581 {
1582  struct kmemleak_object *object;
1583  unsigned long flags;
1584 
1585  rcu_read_lock();
1586  list_for_each_entry_rcu(object, &object_list, object_list) {
1587  spin_lock_irqsave(&object->lock, flags);
1588  if ((object->flags & OBJECT_REPORTED) &&
1589  unreferenced_object(object))
1590  __paint_it(object, KMEMLEAK_GREY);
1591  spin_unlock_irqrestore(&object->lock, flags);
1592  }
1593  rcu_read_unlock();
1594 }
1595 
1596 /*
1597  * File write operation to configure kmemleak at run-time. The following
1598  * commands can be written to the /sys/kernel/debug/kmemleak file:
1599  * off - disable kmemleak (irreversible)
1600  * stack=on - enable the task stacks scanning
1601  * stack=off - disable the tasks stacks scanning
1602  * scan=on - start the automatic memory scanning thread
1603  * scan=off - stop the automatic memory scanning thread
1604  * scan=... - set the automatic memory scanning period in seconds (0 to
1605  * disable it)
1606  * scan - trigger a memory scan
1607  * clear - mark all current reported unreferenced kmemleak objects as
1608  * grey to ignore printing them
1609  * dump=... - dump information about the object found at the given address
1610  */
1611 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1612  size_t size, loff_t *ppos)
1613 {
1614  char buf[64];
1615  int buf_size;
1616  int ret;
1617 
1618  if (!atomic_read(&kmemleak_enabled))
1619  return -EBUSY;
1620 
1621  buf_size = min(size, (sizeof(buf) - 1));
1622  if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1623  return -EFAULT;
1624  buf[buf_size] = 0;
1625 
1626  ret = mutex_lock_interruptible(&scan_mutex);
1627  if (ret < 0)
1628  return ret;
1629 
1630  if (strncmp(buf, "off", 3) == 0)
1631  kmemleak_disable();
1632  else if (strncmp(buf, "stack=on", 8) == 0)
1633  kmemleak_stack_scan = 1;
1634  else if (strncmp(buf, "stack=off", 9) == 0)
1635  kmemleak_stack_scan = 0;
1636  else if (strncmp(buf, "scan=on", 7) == 0)
1637  start_scan_thread();
1638  else if (strncmp(buf, "scan=off", 8) == 0)
1639  stop_scan_thread();
1640  else if (strncmp(buf, "scan=", 5) == 0) {
1641  unsigned long secs;
1642 
1643  ret = strict_strtoul(buf + 5, 0, &secs);
1644  if (ret < 0)
1645  goto out;
1646  stop_scan_thread();
1647  if (secs) {
1648  jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1649  start_scan_thread();
1650  }
1651  } else if (strncmp(buf, "scan", 4) == 0)
1652  kmemleak_scan();
1653  else if (strncmp(buf, "clear", 5) == 0)
1654  kmemleak_clear();
1655  else if (strncmp(buf, "dump=", 5) == 0)
1656  ret = dump_str_object_info(buf + 5);
1657  else
1658  ret = -EINVAL;
1659 
1660 out:
1661  mutex_unlock(&scan_mutex);
1662  if (ret < 0)
1663  return ret;
1664 
1665  /* ignore the rest of the buffer, only one command at a time */
1666  *ppos += size;
1667  return size;
1668 }
1669 
1670 static const struct file_operations kmemleak_fops = {
1671  .owner = THIS_MODULE,
1672  .open = kmemleak_open,
1673  .read = seq_read,
1674  .write = kmemleak_write,
1675  .llseek = seq_lseek,
1676  .release = kmemleak_release,
1677 };
1678 
1679 /*
1680  * Stop the memory scanning thread and free the kmemleak internal objects if
1681  * no previous scan thread (otherwise, kmemleak may still have some useful
1682  * information on memory leaks).
1683  */
1684 static void kmemleak_do_cleanup(struct work_struct *work)
1685 {
1686  struct kmemleak_object *object;
1687  bool cleanup = scan_thread == NULL;
1688 
1689  mutex_lock(&scan_mutex);
1690  stop_scan_thread();
1691 
1692  if (cleanup) {
1693  rcu_read_lock();
1694  list_for_each_entry_rcu(object, &object_list, object_list)
1695  delete_object_full(object->pointer);
1696  rcu_read_unlock();
1697  }
1698  mutex_unlock(&scan_mutex);
1699 }
1700 
1701 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1702 
1703 /*
1704  * Disable kmemleak. No memory allocation/freeing will be traced once this
1705  * function is called. Disabling kmemleak is an irreversible operation.
1706  */
1707 static void kmemleak_disable(void)
1708 {
1709  /* atomically check whether it was already invoked */
1710  if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1711  return;
1712 
1713  /* stop any memory operation tracing */
1714  atomic_set(&kmemleak_enabled, 0);
1715 
1716  /* check whether it is too early for a kernel thread */
1717  if (atomic_read(&kmemleak_initialized))
1718  schedule_work(&cleanup_work);
1719 
1720  pr_info("Kernel memory leak detector disabled\n");
1721 }
1722 
1723 /*
1724  * Allow boot-time kmemleak disabling (enabled by default).
1725  */
1726 static int kmemleak_boot_config(char *str)
1727 {
1728  if (!str)
1729  return -EINVAL;
1730  if (strcmp(str, "off") == 0)
1731  kmemleak_disable();
1732  else if (strcmp(str, "on") == 0)
1733  kmemleak_skip_disable = 1;
1734  else
1735  return -EINVAL;
1736  return 0;
1737 }
1738 early_param("kmemleak", kmemleak_boot_config);
1739 
1740 static void __init print_log_trace(struct early_log *log)
1741 {
1742  struct stack_trace trace;
1743 
1744  trace.nr_entries = log->trace_len;
1745  trace.entries = log->trace;
1746 
1747  pr_notice("Early log backtrace:\n");
1748  print_stack_trace(&trace, 2);
1749 }
1750 
1751 /*
1752  * Kmemleak initialization.
1753  */
1755 {
1756  int i;
1757  unsigned long flags;
1758 
1759 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1760  if (!kmemleak_skip_disable) {
1761  atomic_set(&kmemleak_early_log, 0);
1762  kmemleak_disable();
1763  return;
1764  }
1765 #endif
1766 
1767  jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1768  jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1769 
1770  object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1771  scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1772 
1773  if (crt_early_log >= ARRAY_SIZE(early_log))
1774  pr_warning("Early log buffer exceeded (%d), please increase "
1775  "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
1776 
1777  /* the kernel is still in UP mode, so disabling the IRQs is enough */
1778  local_irq_save(flags);
1779  atomic_set(&kmemleak_early_log, 0);
1780  if (atomic_read(&kmemleak_error)) {
1781  local_irq_restore(flags);
1782  return;
1783  } else
1784  atomic_set(&kmemleak_enabled, 1);
1785  local_irq_restore(flags);
1786 
1787  /*
1788  * This is the point where tracking allocations is safe. Automatic
1789  * scanning is started during the late initcall. Add the early logged
1790  * callbacks to the kmemleak infrastructure.
1791  */
1792  for (i = 0; i < crt_early_log; i++) {
1793  struct early_log *log = &early_log[i];
1794 
1795  switch (log->op_type) {
1796  case KMEMLEAK_ALLOC:
1797  early_alloc(log);
1798  break;
1799  case KMEMLEAK_ALLOC_PERCPU:
1800  early_alloc_percpu(log);
1801  break;
1802  case KMEMLEAK_FREE:
1803  kmemleak_free(log->ptr);
1804  break;
1805  case KMEMLEAK_FREE_PART:
1806  kmemleak_free_part(log->ptr, log->size);
1807  break;
1808  case KMEMLEAK_FREE_PERCPU:
1809  kmemleak_free_percpu(log->ptr);
1810  break;
1811  case KMEMLEAK_NOT_LEAK:
1812  kmemleak_not_leak(log->ptr);
1813  break;
1814  case KMEMLEAK_IGNORE:
1815  kmemleak_ignore(log->ptr);
1816  break;
1817  case KMEMLEAK_SCAN_AREA:
1818  kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1819  break;
1820  case KMEMLEAK_NO_SCAN:
1821  kmemleak_no_scan(log->ptr);
1822  break;
1823  default:
1824  kmemleak_warn("Unknown early log operation: %d\n",
1825  log->op_type);
1826  }
1827 
1828  if (atomic_read(&kmemleak_warning)) {
1829  print_log_trace(log);
1830  atomic_set(&kmemleak_warning, 0);
1831  }
1832  }
1833 }
1834 
1835 /*
1836  * Late initialization function.
1837  */
1838 static int __init kmemleak_late_init(void)
1839 {
1840  struct dentry *dentry;
1841 
1842  atomic_set(&kmemleak_initialized, 1);
1843 
1844  if (atomic_read(&kmemleak_error)) {
1845  /*
1846  * Some error occurred and kmemleak was disabled. There is a
1847  * small chance that kmemleak_disable() was called immediately
1848  * after setting kmemleak_initialized and we may end up with
1849  * two clean-up threads but serialized by scan_mutex.
1850  */
1851  schedule_work(&cleanup_work);
1852  return -ENOMEM;
1853  }
1854 
1855  dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1856  &kmemleak_fops);
1857  if (!dentry)
1858  pr_warning("Failed to create the debugfs kmemleak file\n");
1859  mutex_lock(&scan_mutex);
1860  start_scan_thread();
1861  mutex_unlock(&scan_mutex);
1862 
1863  pr_info("Kernel memory leak detector initialized\n");
1864 
1865  return 0;
1866 }
1867 late_initcall(kmemleak_late_init);