Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dm.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 #ifdef CONFIG_PRINTK
28 /*
29  * ratelimit state to be used in DMXXX_LIMIT().
30  */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 static const char *_name = DM_NAME;
45 
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48 
49 static DEFINE_IDR(_minor_idr);
50 
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53  * For bio-based dm.
54  * One of these is allocated per bio.
55  */
56 struct dm_io {
57  struct mapped_device *md;
58  int error;
60  struct bio *bio;
61  unsigned long start_time;
63 };
64 
65 /*
66  * For bio-based dm.
67  * One of these is allocated per target within a bio. Hopefully
68  * this will be simplified out one day.
69  */
70 struct dm_target_io {
71  struct dm_io *io;
72  struct dm_target *ti;
73  union map_info info;
74  struct bio clone;
75 };
76 
77 /*
78  * For request-based dm.
79  * One of these is allocated per request.
80  */
82  struct mapped_device *md;
83  struct dm_target *ti;
84  struct request *orig, clone;
85  int error;
86  union map_info info;
87 };
88 
89 /*
90  * For request-based dm - the bio clones we allocate are embedded in these
91  * structs.
92  *
93  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
94  * the bioset is created - this means the bio has to come at the end of the
95  * struct.
96  */
98  struct bio *orig;
100  struct bio clone;
101 };
102 
103 union map_info *dm_get_mapinfo(struct bio *bio)
104 {
105  if (bio && bio->bi_private)
106  return &((struct dm_target_io *)bio->bi_private)->info;
107  return NULL;
108 }
109 
111 {
112  if (rq && rq->end_io_data)
113  return &((struct dm_rq_target_io *)rq->end_io_data)->info;
114  return NULL;
115 }
117 
118 #define MINOR_ALLOCED ((void *)-1)
119 
120 /*
121  * Bits for the md->flags field.
122  */
123 #define DMF_BLOCK_IO_FOR_SUSPEND 0
124 #define DMF_SUSPENDED 1
125 #define DMF_FROZEN 2
126 #define DMF_FREEING 3
127 #define DMF_DELETING 4
128 #define DMF_NOFLUSH_SUSPENDING 5
129 #define DMF_MERGE_IS_OPTIONAL 6
130 
131 /*
132  * Work processed by per-device workqueue.
133  */
140 
141  unsigned long flags;
142 
144  unsigned type;
145  /* Protect queue and type against concurrent access. */
146  struct mutex type_lock;
147 
149 
150  struct gendisk *disk;
151  char name[16];
152 
154 
155  /*
156  * A list of ios that arrived while we were suspended.
157  */
163 
164  /*
165  * Processing queue (flush)
166  */
168 
169  /*
170  * The current mapping.
171  */
172  struct dm_table *map;
173 
174  /*
175  * io objects are allocated from here.
176  */
179 
180  struct bio_set *bs;
181 
182  /*
183  * Event handling.
184  */
189  spinlock_t uevent_lock; /* Protect access to uevent_list */
190 
191  /*
192  * freeze/thaw support require holding onto a super block
193  */
196 
197  /* forced geometry settings */
199 
200  /* sysfs handle */
201  struct kobject kobj;
202 
203  /* zero-length flush that will be cloned and submitted to targets */
204  struct bio flush_bio;
205 };
206 
207 /*
208  * For mempools pre-allocation at the table loading time.
209  */
213  struct bio_set *bs;
214 };
215 
216 #define MIN_IOS 256
217 static struct kmem_cache *_io_cache;
218 static struct kmem_cache *_rq_tio_cache;
219 
220 /*
221  * Unused now, and needs to be deleted. But since io_pool is overloaded and it's
222  * still used for _io_cache, I'm leaving this for a later cleanup
223  */
224 static struct kmem_cache *_rq_bio_info_cache;
225 
226 static int __init local_init(void)
227 {
228  int r = -ENOMEM;
229 
230  /* allocate a slab for the dm_ios */
231  _io_cache = KMEM_CACHE(dm_io, 0);
232  if (!_io_cache)
233  return r;
234 
235  _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
236  if (!_rq_tio_cache)
237  goto out_free_io_cache;
238 
239  _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
240  if (!_rq_bio_info_cache)
241  goto out_free_rq_tio_cache;
242 
243  r = dm_uevent_init();
244  if (r)
245  goto out_free_rq_bio_info_cache;
246 
247  _major = major;
248  r = register_blkdev(_major, _name);
249  if (r < 0)
250  goto out_uevent_exit;
251 
252  if (!_major)
253  _major = r;
254 
255  return 0;
256 
257 out_uevent_exit:
258  dm_uevent_exit();
259 out_free_rq_bio_info_cache:
260  kmem_cache_destroy(_rq_bio_info_cache);
261 out_free_rq_tio_cache:
262  kmem_cache_destroy(_rq_tio_cache);
263 out_free_io_cache:
264  kmem_cache_destroy(_io_cache);
265 
266  return r;
267 }
268 
269 static void local_exit(void)
270 {
271  kmem_cache_destroy(_rq_bio_info_cache);
272  kmem_cache_destroy(_rq_tio_cache);
273  kmem_cache_destroy(_io_cache);
274  unregister_blkdev(_major, _name);
275  dm_uevent_exit();
276 
277  _major = 0;
278 
279  DMINFO("cleaned up");
280 }
281 
282 static int (*_inits[])(void) __initdata = {
283  local_init,
287  dm_io_init,
290 };
291 
292 static void (*_exits[])(void) = {
293  local_exit,
297  dm_io_exit,
300 };
301 
302 static int __init dm_init(void)
303 {
304  const int count = ARRAY_SIZE(_inits);
305 
306  int r, i;
307 
308  for (i = 0; i < count; i++) {
309  r = _inits[i]();
310  if (r)
311  goto bad;
312  }
313 
314  return 0;
315 
316  bad:
317  while (i--)
318  _exits[i]();
319 
320  return r;
321 }
322 
323 static void __exit dm_exit(void)
324 {
325  int i = ARRAY_SIZE(_exits);
326 
327  while (i--)
328  _exits[i]();
329 
330  /*
331  * Should be empty by this point.
332  */
333  idr_remove_all(&_minor_idr);
334  idr_destroy(&_minor_idr);
335 }
336 
337 /*
338  * Block device functions
339  */
341 {
342  return test_bit(DMF_DELETING, &md->flags);
343 }
344 
345 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
346 {
347  struct mapped_device *md;
348 
349  spin_lock(&_minor_lock);
350 
351  md = bdev->bd_disk->private_data;
352  if (!md)
353  goto out;
354 
355  if (test_bit(DMF_FREEING, &md->flags) ||
356  dm_deleting_md(md)) {
357  md = NULL;
358  goto out;
359  }
360 
361  dm_get(md);
362  atomic_inc(&md->open_count);
363 
364 out:
365  spin_unlock(&_minor_lock);
366 
367  return md ? 0 : -ENXIO;
368 }
369 
370 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
371 {
372  struct mapped_device *md = disk->private_data;
373 
374  spin_lock(&_minor_lock);
375 
376  atomic_dec(&md->open_count);
377  dm_put(md);
378 
379  spin_unlock(&_minor_lock);
380 
381  return 0;
382 }
383 
385 {
386  return atomic_read(&md->open_count);
387 }
388 
389 /*
390  * Guarantees nothing is using the device before it's deleted.
391  */
393 {
394  int r = 0;
395 
396  spin_lock(&_minor_lock);
397 
398  if (dm_open_count(md))
399  r = -EBUSY;
400  else
401  set_bit(DMF_DELETING, &md->flags);
402 
403  spin_unlock(&_minor_lock);
404 
405  return r;
406 }
407 
408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
409 {
410  struct mapped_device *md = bdev->bd_disk->private_data;
411 
412  return dm_get_geometry(md, geo);
413 }
414 
415 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
416  unsigned int cmd, unsigned long arg)
417 {
418  struct mapped_device *md = bdev->bd_disk->private_data;
419  struct dm_table *map = dm_get_live_table(md);
420  struct dm_target *tgt;
421  int r = -ENOTTY;
422 
423  if (!map || !dm_table_get_size(map))
424  goto out;
425 
426  /* We only support devices that have a single target */
427  if (dm_table_get_num_targets(map) != 1)
428  goto out;
429 
430  tgt = dm_table_get_target(map, 0);
431 
432  if (dm_suspended_md(md)) {
433  r = -EAGAIN;
434  goto out;
435  }
436 
437  if (tgt->type->ioctl)
438  r = tgt->type->ioctl(tgt, cmd, arg);
439 
440 out:
441  dm_table_put(map);
442 
443  return r;
444 }
445 
446 static struct dm_io *alloc_io(struct mapped_device *md)
447 {
448  return mempool_alloc(md->io_pool, GFP_NOIO);
449 }
450 
451 static void free_io(struct mapped_device *md, struct dm_io *io)
452 {
453  mempool_free(io, md->io_pool);
454 }
455 
456 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
457 {
458  bio_put(&tio->clone);
459 }
460 
461 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
462  gfp_t gfp_mask)
463 {
464  return mempool_alloc(md->tio_pool, gfp_mask);
465 }
466 
467 static void free_rq_tio(struct dm_rq_target_io *tio)
468 {
469  mempool_free(tio, tio->md->tio_pool);
470 }
471 
472 static int md_in_flight(struct mapped_device *md)
473 {
474  return atomic_read(&md->pending[READ]) +
475  atomic_read(&md->pending[WRITE]);
476 }
477 
478 static void start_io_acct(struct dm_io *io)
479 {
480  struct mapped_device *md = io->md;
481  int cpu;
482  int rw = bio_data_dir(io->bio);
483 
484  io->start_time = jiffies;
485 
486  cpu = part_stat_lock();
487  part_round_stats(cpu, &dm_disk(md)->part0);
488  part_stat_unlock();
489  atomic_set(&dm_disk(md)->part0.in_flight[rw],
490  atomic_inc_return(&md->pending[rw]));
491 }
492 
493 static void end_io_acct(struct dm_io *io)
494 {
495  struct mapped_device *md = io->md;
496  struct bio *bio = io->bio;
497  unsigned long duration = jiffies - io->start_time;
498  int pending, cpu;
499  int rw = bio_data_dir(bio);
500 
501  cpu = part_stat_lock();
502  part_round_stats(cpu, &dm_disk(md)->part0);
503  part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
504  part_stat_unlock();
505 
506  /*
507  * After this is decremented the bio must not be touched if it is
508  * a flush.
509  */
510  pending = atomic_dec_return(&md->pending[rw]);
511  atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
512  pending += atomic_read(&md->pending[rw^0x1]);
513 
514  /* nudge anyone waiting on suspend queue */
515  if (!pending)
516  wake_up(&md->wait);
517 }
518 
519 /*
520  * Add the bio to the list of deferred io.
521  */
522 static void queue_io(struct mapped_device *md, struct bio *bio)
523 {
524  unsigned long flags;
525 
526  spin_lock_irqsave(&md->deferred_lock, flags);
527  bio_list_add(&md->deferred, bio);
528  spin_unlock_irqrestore(&md->deferred_lock, flags);
529  queue_work(md->wq, &md->work);
530 }
531 
532 /*
533  * Everyone (including functions in this file), should use this
534  * function to access the md->map field, and make sure they call
535  * dm_table_put() when finished.
536  */
538 {
539  struct dm_table *t;
540  unsigned long flags;
541 
542  read_lock_irqsave(&md->map_lock, flags);
543  t = md->map;
544  if (t)
545  dm_table_get(t);
546  read_unlock_irqrestore(&md->map_lock, flags);
547 
548  return t;
549 }
550 
551 /*
552  * Get the geometry associated with a dm device
553  */
554 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
555 {
556  *geo = md->geometry;
557 
558  return 0;
559 }
560 
561 /*
562  * Set the geometry of a device.
563  */
564 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
565 {
566  sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
567 
568  if (geo->start > sz) {
569  DMWARN("Start sector is beyond the geometry limits.");
570  return -EINVAL;
571  }
572 
573  md->geometry = *geo;
574 
575  return 0;
576 }
577 
578 /*-----------------------------------------------------------------
579  * CRUD START:
580  * A more elegant soln is in the works that uses the queue
581  * merge fn, unfortunately there are a couple of changes to
582  * the block layer that I want to make for this. So in the
583  * interests of getting something for people to use I give
584  * you this clearly demarcated crap.
585  *---------------------------------------------------------------*/
586 
587 static int __noflush_suspending(struct mapped_device *md)
588 {
589  return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
590 }
591 
592 /*
593  * Decrements the number of outstanding ios that a bio has been
594  * cloned into, completing the original io if necc.
595  */
596 static void dec_pending(struct dm_io *io, int error)
597 {
598  unsigned long flags;
599  int io_error;
600  struct bio *bio;
601  struct mapped_device *md = io->md;
602 
603  /* Push-back supersedes any I/O errors */
604  if (unlikely(error)) {
605  spin_lock_irqsave(&io->endio_lock, flags);
606  if (!(io->error > 0 && __noflush_suspending(md)))
607  io->error = error;
608  spin_unlock_irqrestore(&io->endio_lock, flags);
609  }
610 
611  if (atomic_dec_and_test(&io->io_count)) {
612  if (io->error == DM_ENDIO_REQUEUE) {
613  /*
614  * Target requested pushing back the I/O.
615  */
616  spin_lock_irqsave(&md->deferred_lock, flags);
617  if (__noflush_suspending(md))
618  bio_list_add_head(&md->deferred, io->bio);
619  else
620  /* noflush suspend was interrupted. */
621  io->error = -EIO;
622  spin_unlock_irqrestore(&md->deferred_lock, flags);
623  }
624 
625  io_error = io->error;
626  bio = io->bio;
627  end_io_acct(io);
628  free_io(md, io);
629 
630  if (io_error == DM_ENDIO_REQUEUE)
631  return;
632 
633  if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
634  /*
635  * Preflush done for flush with data, reissue
636  * without REQ_FLUSH.
637  */
638  bio->bi_rw &= ~REQ_FLUSH;
639  queue_io(md, bio);
640  } else {
641  /* done with normal IO or empty flush */
642  trace_block_bio_complete(md->queue, bio, io_error);
643  bio_endio(bio, io_error);
644  }
645  }
646 }
647 
648 static void clone_endio(struct bio *bio, int error)
649 {
650  int r = 0;
651  struct dm_target_io *tio = bio->bi_private;
652  struct dm_io *io = tio->io;
653  struct mapped_device *md = tio->io->md;
654  dm_endio_fn endio = tio->ti->type->end_io;
655 
656  if (!bio_flagged(bio, BIO_UPTODATE) && !error)
657  error = -EIO;
658 
659  if (endio) {
660  r = endio(tio->ti, bio, error, &tio->info);
661  if (r < 0 || r == DM_ENDIO_REQUEUE)
662  /*
663  * error and requeue request are handled
664  * in dec_pending().
665  */
666  error = r;
667  else if (r == DM_ENDIO_INCOMPLETE)
668  /* The target will handle the io */
669  return;
670  else if (r) {
671  DMWARN("unimplemented target endio return value: %d", r);
672  BUG();
673  }
674  }
675 
676  free_tio(md, tio);
677  dec_pending(io, error);
678 }
679 
680 /*
681  * Partial completion handling for request-based dm
682  */
683 static void end_clone_bio(struct bio *clone, int error)
684 {
685  struct dm_rq_clone_bio_info *info = clone->bi_private;
686  struct dm_rq_target_io *tio = info->tio;
687  struct bio *bio = info->orig;
688  unsigned int nr_bytes = info->orig->bi_size;
689 
690  bio_put(clone);
691 
692  if (tio->error)
693  /*
694  * An error has already been detected on the request.
695  * Once error occurred, just let clone->end_io() handle
696  * the remainder.
697  */
698  return;
699  else if (error) {
700  /*
701  * Don't notice the error to the upper layer yet.
702  * The error handling decision is made by the target driver,
703  * when the request is completed.
704  */
705  tio->error = error;
706  return;
707  }
708 
709  /*
710  * I/O for the bio successfully completed.
711  * Notice the data completion to the upper layer.
712  */
713 
714  /*
715  * bios are processed from the head of the list.
716  * So the completing bio should always be rq->bio.
717  * If it's not, something wrong is happening.
718  */
719  if (tio->orig->bio != bio)
720  DMERR("bio completion is going in the middle of the request");
721 
722  /*
723  * Update the original request.
724  * Do not use blk_end_request() here, because it may complete
725  * the original request before the clone, and break the ordering.
726  */
727  blk_update_request(tio->orig, 0, nr_bytes);
728 }
729 
730 /*
731  * Don't touch any member of the md after calling this function because
732  * the md may be freed in dm_put() at the end of this function.
733  * Or do dm_get() before calling this function and dm_put() later.
734  */
735 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
736 {
737  atomic_dec(&md->pending[rw]);
738 
739  /* nudge anyone waiting on suspend queue */
740  if (!md_in_flight(md))
741  wake_up(&md->wait);
742 
743  /*
744  * Run this off this callpath, as drivers could invoke end_io while
745  * inside their request_fn (and holding the queue lock). Calling
746  * back into ->request_fn() could deadlock attempting to grab the
747  * queue lock again.
748  */
749  if (run_queue)
751 
752  /*
753  * dm_put() must be at the end of this function. See the comment above
754  */
755  dm_put(md);
756 }
757 
758 static void free_rq_clone(struct request *clone)
759 {
760  struct dm_rq_target_io *tio = clone->end_io_data;
761 
762  blk_rq_unprep_clone(clone);
763  free_rq_tio(tio);
764 }
765 
766 /*
767  * Complete the clone and the original request.
768  * Must be called without queue lock.
769  */
770 static void dm_end_request(struct request *clone, int error)
771 {
772  int rw = rq_data_dir(clone);
773  struct dm_rq_target_io *tio = clone->end_io_data;
774  struct mapped_device *md = tio->md;
775  struct request *rq = tio->orig;
776 
777  if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
778  rq->errors = clone->errors;
779  rq->resid_len = clone->resid_len;
780 
781  if (rq->sense)
782  /*
783  * We are using the sense buffer of the original
784  * request.
785  * So setting the length of the sense data is enough.
786  */
787  rq->sense_len = clone->sense_len;
788  }
789 
790  free_rq_clone(clone);
791  blk_end_request_all(rq, error);
792  rq_completed(md, rw, true);
793 }
794 
795 static void dm_unprep_request(struct request *rq)
796 {
797  struct request *clone = rq->special;
798 
799  rq->special = NULL;
800  rq->cmd_flags &= ~REQ_DONTPREP;
801 
802  free_rq_clone(clone);
803 }
804 
805 /*
806  * Requeue the original request of a clone.
807  */
809 {
810  int rw = rq_data_dir(clone);
811  struct dm_rq_target_io *tio = clone->end_io_data;
812  struct mapped_device *md = tio->md;
813  struct request *rq = tio->orig;
814  struct request_queue *q = rq->q;
815  unsigned long flags;
816 
817  dm_unprep_request(rq);
818 
819  spin_lock_irqsave(q->queue_lock, flags);
820  blk_requeue_request(q, rq);
821  spin_unlock_irqrestore(q->queue_lock, flags);
822 
823  rq_completed(md, rw, 0);
824 }
826 
827 static void __stop_queue(struct request_queue *q)
828 {
829  blk_stop_queue(q);
830 }
831 
832 static void stop_queue(struct request_queue *q)
833 {
834  unsigned long flags;
835 
836  spin_lock_irqsave(q->queue_lock, flags);
837  __stop_queue(q);
838  spin_unlock_irqrestore(q->queue_lock, flags);
839 }
840 
841 static void __start_queue(struct request_queue *q)
842 {
843  if (blk_queue_stopped(q))
844  blk_start_queue(q);
845 }
846 
847 static void start_queue(struct request_queue *q)
848 {
849  unsigned long flags;
850 
851  spin_lock_irqsave(q->queue_lock, flags);
852  __start_queue(q);
853  spin_unlock_irqrestore(q->queue_lock, flags);
854 }
855 
856 static void dm_done(struct request *clone, int error, bool mapped)
857 {
858  int r = error;
859  struct dm_rq_target_io *tio = clone->end_io_data;
860  dm_request_endio_fn rq_end_io = NULL;
861 
862  if (tio->ti) {
863  rq_end_io = tio->ti->type->rq_end_io;
864 
865  if (mapped && rq_end_io)
866  r = rq_end_io(tio->ti, clone, error, &tio->info);
867  }
868 
869  if (r <= 0)
870  /* The target wants to complete the I/O */
871  dm_end_request(clone, r);
872  else if (r == DM_ENDIO_INCOMPLETE)
873  /* The target will handle the I/O */
874  return;
875  else if (r == DM_ENDIO_REQUEUE)
876  /* The target wants to requeue the I/O */
878  else {
879  DMWARN("unimplemented target endio return value: %d", r);
880  BUG();
881  }
882 }
883 
884 /*
885  * Request completion handler for request-based dm
886  */
887 static void dm_softirq_done(struct request *rq)
888 {
889  bool mapped = true;
890  struct request *clone = rq->completion_data;
891  struct dm_rq_target_io *tio = clone->end_io_data;
892 
893  if (rq->cmd_flags & REQ_FAILED)
894  mapped = false;
895 
896  dm_done(clone, tio->error, mapped);
897 }
898 
899 /*
900  * Complete the clone and the original request with the error status
901  * through softirq context.
902  */
903 static void dm_complete_request(struct request *clone, int error)
904 {
905  struct dm_rq_target_io *tio = clone->end_io_data;
906  struct request *rq = tio->orig;
907 
908  tio->error = error;
909  rq->completion_data = clone;
911 }
912 
913 /*
914  * Complete the not-mapped clone and the original request with the error status
915  * through softirq context.
916  * Target's rq_end_io() function isn't called.
917  * This may be used when the target's map_rq() function fails.
918  */
919 void dm_kill_unmapped_request(struct request *clone, int error)
920 {
921  struct dm_rq_target_io *tio = clone->end_io_data;
922  struct request *rq = tio->orig;
923 
924  rq->cmd_flags |= REQ_FAILED;
925  dm_complete_request(clone, error);
926 }
928 
929 /*
930  * Called with the queue lock held
931  */
932 static void end_clone_request(struct request *clone, int error)
933 {
934  /*
935  * For just cleaning up the information of the queue in which
936  * the clone was dispatched.
937  * The clone is *NOT* freed actually here because it is alloced from
938  * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
939  */
940  __blk_put_request(clone->q, clone);
941 
942  /*
943  * Actual request completion is done in a softirq context which doesn't
944  * hold the queue lock. Otherwise, deadlock could occur because:
945  * - another request may be submitted by the upper level driver
946  * of the stacking during the completion
947  * - the submission which requires queue lock may be done
948  * against this queue
949  */
950  dm_complete_request(clone, error);
951 }
952 
953 /*
954  * Return maximum size of I/O possible at the supplied sector up to the current
955  * target boundary.
956  */
957 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
958 {
959  sector_t target_offset = dm_target_offset(ti, sector);
960 
961  return ti->len - target_offset;
962 }
963 
964 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
965 {
966  sector_t len = max_io_len_target_boundary(sector, ti);
967  sector_t offset, max_len;
968 
969  /*
970  * Does the target need to split even further?
971  */
972  if (ti->max_io_len) {
973  offset = dm_target_offset(ti, sector);
974  if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
975  max_len = sector_div(offset, ti->max_io_len);
976  else
977  max_len = offset & (ti->max_io_len - 1);
978  max_len = ti->max_io_len - max_len;
979 
980  if (len > max_len)
981  len = max_len;
982  }
983 
984  return len;
985 }
986 
988 {
989  if (len > UINT_MAX) {
990  DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
991  (unsigned long long)len, UINT_MAX);
992  ti->error = "Maximum size of target IO is too large";
993  return -EINVAL;
994  }
995 
996  ti->max_io_len = (uint32_t) len;
997 
998  return 0;
999 }
1001 
1002 static void __map_bio(struct dm_target *ti, struct dm_target_io *tio)
1003 {
1004  int r;
1005  sector_t sector;
1006  struct mapped_device *md;
1007  struct bio *clone = &tio->clone;
1008 
1009  clone->bi_end_io = clone_endio;
1010  clone->bi_private = tio;
1011 
1012  /*
1013  * Map the clone. If r == 0 we don't need to do
1014  * anything, the target has assumed ownership of
1015  * this io.
1016  */
1017  atomic_inc(&tio->io->io_count);
1018  sector = clone->bi_sector;
1019  r = ti->type->map(ti, clone, &tio->info);
1020  if (r == DM_MAPIO_REMAPPED) {
1021  /* the bio has been remapped so dispatch it */
1022 
1023  trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1024  tio->io->bio->bi_bdev->bd_dev, sector);
1025 
1026  generic_make_request(clone);
1027  } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1028  /* error the io and bail out, or requeue it if needed */
1029  md = tio->io->md;
1030  dec_pending(tio->io, r);
1031  free_tio(md, tio);
1032  } else if (r) {
1033  DMWARN("unimplemented target map return value: %d", r);
1034  BUG();
1035  }
1036 }
1037 
1038 struct clone_info {
1040  struct dm_table *map;
1041  struct bio *bio;
1042  struct dm_io *io;
1045  unsigned short idx;
1046 };
1047 
1048 /*
1049  * Creates a little bio that just does part of a bvec.
1050  */
1051 static void split_bvec(struct dm_target_io *tio, struct bio *bio,
1052  sector_t sector, unsigned short idx, unsigned int offset,
1053  unsigned int len, struct bio_set *bs)
1054 {
1055  struct bio *clone = &tio->clone;
1056  struct bio_vec *bv = bio->bi_io_vec + idx;
1057 
1058  *clone->bi_io_vec = *bv;
1059 
1060  clone->bi_sector = sector;
1061  clone->bi_bdev = bio->bi_bdev;
1062  clone->bi_rw = bio->bi_rw;
1063  clone->bi_vcnt = 1;
1064  clone->bi_size = to_bytes(len);
1065  clone->bi_io_vec->bv_offset = offset;
1066  clone->bi_io_vec->bv_len = clone->bi_size;
1067  clone->bi_flags |= 1 << BIO_CLONED;
1068 
1069  if (bio_integrity(bio)) {
1070  bio_integrity_clone(clone, bio, GFP_NOIO);
1071  bio_integrity_trim(clone,
1072  bio_sector_offset(bio, idx, offset), len);
1073  }
1074 }
1075 
1076 /*
1077  * Creates a bio that consists of range of complete bvecs.
1078  */
1079 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1080  sector_t sector, unsigned short idx,
1081  unsigned short bv_count, unsigned int len,
1082  struct bio_set *bs)
1083 {
1084  struct bio *clone = &tio->clone;
1085 
1086  __bio_clone(clone, bio);
1087  clone->bi_sector = sector;
1088  clone->bi_idx = idx;
1089  clone->bi_vcnt = idx + bv_count;
1090  clone->bi_size = to_bytes(len);
1091  clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1092 
1093  if (bio_integrity(bio)) {
1094  bio_integrity_clone(clone, bio, GFP_NOIO);
1095 
1096  if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1097  bio_integrity_trim(clone,
1098  bio_sector_offset(bio, idx, 0), len);
1099  }
1100 }
1101 
1102 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1103  struct dm_target *ti, int nr_iovecs)
1104 {
1105  struct dm_target_io *tio;
1106  struct bio *clone;
1107 
1108  clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1109  tio = container_of(clone, struct dm_target_io, clone);
1110 
1111  tio->io = ci->io;
1112  tio->ti = ti;
1113  memset(&tio->info, 0, sizeof(tio->info));
1114 
1115  return tio;
1116 }
1117 
1118 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1119  unsigned request_nr, sector_t len)
1120 {
1121  struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs);
1122  struct bio *clone = &tio->clone;
1123 
1124  tio->info.target_request_nr = request_nr;
1125 
1126  /*
1127  * Discard requests require the bio's inline iovecs be initialized.
1128  * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1129  * and discard, so no need for concern about wasted bvec allocations.
1130  */
1131 
1132  __bio_clone(clone, ci->bio);
1133  if (len) {
1134  clone->bi_sector = ci->sector;
1135  clone->bi_size = to_bytes(len);
1136  }
1137 
1138  __map_bio(ti, tio);
1139 }
1140 
1141 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1142  unsigned num_requests, sector_t len)
1143 {
1144  unsigned request_nr;
1145 
1146  for (request_nr = 0; request_nr < num_requests; request_nr++)
1147  __issue_target_request(ci, ti, request_nr, len);
1148 }
1149 
1150 static int __clone_and_map_empty_flush(struct clone_info *ci)
1151 {
1152  unsigned target_nr = 0;
1153  struct dm_target *ti;
1154 
1155  BUG_ON(bio_has_data(ci->bio));
1156  while ((ti = dm_table_get_target(ci->map, target_nr++)))
1157  __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1158 
1159  return 0;
1160 }
1161 
1162 /*
1163  * Perform all io with a single clone.
1164  */
1165 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1166 {
1167  struct bio *bio = ci->bio;
1168  struct dm_target_io *tio;
1169 
1170  tio = alloc_tio(ci, ti, bio->bi_max_vecs);
1171  clone_bio(tio, bio, ci->sector, ci->idx, bio->bi_vcnt - ci->idx,
1172  ci->sector_count, ci->md->bs);
1173  __map_bio(ti, tio);
1174  ci->sector_count = 0;
1175 }
1176 
1177 static int __clone_and_map_discard(struct clone_info *ci)
1178 {
1179  struct dm_target *ti;
1180  sector_t len;
1181 
1182  do {
1183  ti = dm_table_find_target(ci->map, ci->sector);
1184  if (!dm_target_is_valid(ti))
1185  return -EIO;
1186 
1187  /*
1188  * Even though the device advertised discard support,
1189  * that does not mean every target supports it, and
1190  * reconfiguration might also have changed that since the
1191  * check was performed.
1192  */
1193  if (!ti->num_discard_requests)
1194  return -EOPNOTSUPP;
1195 
1196  if (!ti->split_discard_requests)
1197  len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1198  else
1199  len = min(ci->sector_count, max_io_len(ci->sector, ti));
1200 
1201  __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1202 
1203  ci->sector += len;
1204  } while (ci->sector_count -= len);
1205 
1206  return 0;
1207 }
1208 
1209 static int __clone_and_map(struct clone_info *ci)
1210 {
1211  struct bio *bio = ci->bio;
1212  struct dm_target *ti;
1213  sector_t len = 0, max;
1214  struct dm_target_io *tio;
1215 
1216  if (unlikely(bio->bi_rw & REQ_DISCARD))
1217  return __clone_and_map_discard(ci);
1218 
1219  ti = dm_table_find_target(ci->map, ci->sector);
1220  if (!dm_target_is_valid(ti))
1221  return -EIO;
1222 
1223  max = max_io_len(ci->sector, ti);
1224 
1225  if (ci->sector_count <= max) {
1226  /*
1227  * Optimise for the simple case where we can do all of
1228  * the remaining io with a single clone.
1229  */
1230  __clone_and_map_simple(ci, ti);
1231 
1232  } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1233  /*
1234  * There are some bvecs that don't span targets.
1235  * Do as many of these as possible.
1236  */
1237  int i;
1238  sector_t remaining = max;
1239  sector_t bv_len;
1240 
1241  for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1242  bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1243 
1244  if (bv_len > remaining)
1245  break;
1246 
1247  remaining -= bv_len;
1248  len += bv_len;
1249  }
1250 
1251  tio = alloc_tio(ci, ti, bio->bi_max_vecs);
1252  clone_bio(tio, bio, ci->sector, ci->idx, i - ci->idx, len,
1253  ci->md->bs);
1254  __map_bio(ti, tio);
1255 
1256  ci->sector += len;
1257  ci->sector_count -= len;
1258  ci->idx = i;
1259 
1260  } else {
1261  /*
1262  * Handle a bvec that must be split between two or more targets.
1263  */
1264  struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1265  sector_t remaining = to_sector(bv->bv_len);
1266  unsigned int offset = 0;
1267 
1268  do {
1269  if (offset) {
1270  ti = dm_table_find_target(ci->map, ci->sector);
1271  if (!dm_target_is_valid(ti))
1272  return -EIO;
1273 
1274  max = max_io_len(ci->sector, ti);
1275  }
1276 
1277  len = min(remaining, max);
1278 
1279  tio = alloc_tio(ci, ti, 1);
1280  split_bvec(tio, bio, ci->sector, ci->idx,
1281  bv->bv_offset + offset, len, ci->md->bs);
1282 
1283  __map_bio(ti, tio);
1284 
1285  ci->sector += len;
1286  ci->sector_count -= len;
1287  offset += to_bytes(len);
1288  } while (remaining -= len);
1289 
1290  ci->idx++;
1291  }
1292 
1293  return 0;
1294 }
1295 
1296 /*
1297  * Split the bio into several clones and submit it to targets.
1298  */
1299 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1300 {
1301  struct clone_info ci;
1302  int error = 0;
1303 
1304  ci.map = dm_get_live_table(md);
1305  if (unlikely(!ci.map)) {
1306  bio_io_error(bio);
1307  return;
1308  }
1309 
1310  ci.md = md;
1311  ci.io = alloc_io(md);
1312  ci.io->error = 0;
1313  atomic_set(&ci.io->io_count, 1);
1314  ci.io->bio = bio;
1315  ci.io->md = md;
1316  spin_lock_init(&ci.io->endio_lock);
1317  ci.sector = bio->bi_sector;
1318  ci.idx = bio->bi_idx;
1319 
1320  start_io_acct(ci.io);
1321  if (bio->bi_rw & REQ_FLUSH) {
1322  ci.bio = &ci.md->flush_bio;
1323  ci.sector_count = 0;
1324  error = __clone_and_map_empty_flush(&ci);
1325  /* dec_pending submits any data associated with flush */
1326  } else {
1327  ci.bio = bio;
1328  ci.sector_count = bio_sectors(bio);
1329  while (ci.sector_count && !error)
1330  error = __clone_and_map(&ci);
1331  }
1332 
1333  /* drop the extra reference count */
1334  dec_pending(ci.io, error);
1335  dm_table_put(ci.map);
1336 }
1337 /*-----------------------------------------------------------------
1338  * CRUD END
1339  *---------------------------------------------------------------*/
1340 
1341 static int dm_merge_bvec(struct request_queue *q,
1342  struct bvec_merge_data *bvm,
1343  struct bio_vec *biovec)
1344 {
1345  struct mapped_device *md = q->queuedata;
1346  struct dm_table *map = dm_get_live_table(md);
1347  struct dm_target *ti;
1348  sector_t max_sectors;
1349  int max_size = 0;
1350 
1351  if (unlikely(!map))
1352  goto out;
1353 
1354  ti = dm_table_find_target(map, bvm->bi_sector);
1355  if (!dm_target_is_valid(ti))
1356  goto out_table;
1357 
1358  /*
1359  * Find maximum amount of I/O that won't need splitting
1360  */
1361  max_sectors = min(max_io_len(bvm->bi_sector, ti),
1362  (sector_t) BIO_MAX_SECTORS);
1363  max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1364  if (max_size < 0)
1365  max_size = 0;
1366 
1367  /*
1368  * merge_bvec_fn() returns number of bytes
1369  * it can accept at this offset
1370  * max is precomputed maximal io size
1371  */
1372  if (max_size && ti->type->merge)
1373  max_size = ti->type->merge(ti, bvm, biovec, max_size);
1374  /*
1375  * If the target doesn't support merge method and some of the devices
1376  * provided their merge_bvec method (we know this by looking at
1377  * queue_max_hw_sectors), then we can't allow bios with multiple vector
1378  * entries. So always set max_size to 0, and the code below allows
1379  * just one page.
1380  */
1381  else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1382 
1383  max_size = 0;
1384 
1385 out_table:
1386  dm_table_put(map);
1387 
1388 out:
1389  /*
1390  * Always allow an entire first page
1391  */
1392  if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1393  max_size = biovec->bv_len;
1394 
1395  return max_size;
1396 }
1397 
1398 /*
1399  * The request function that just remaps the bio built up by
1400  * dm_merge_bvec.
1401  */
1402 static void _dm_request(struct request_queue *q, struct bio *bio)
1403 {
1404  int rw = bio_data_dir(bio);
1405  struct mapped_device *md = q->queuedata;
1406  int cpu;
1407 
1408  down_read(&md->io_lock);
1409 
1410  cpu = part_stat_lock();
1411  part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1412  part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1413  part_stat_unlock();
1414 
1415  /* if we're suspended, we have to queue this io for later */
1417  up_read(&md->io_lock);
1418 
1419  if (bio_rw(bio) != READA)
1420  queue_io(md, bio);
1421  else
1422  bio_io_error(bio);
1423  return;
1424  }
1425 
1426  __split_and_process_bio(md, bio);
1427  up_read(&md->io_lock);
1428  return;
1429 }
1430 
1431 static int dm_request_based(struct mapped_device *md)
1432 {
1433  return blk_queue_stackable(md->queue);
1434 }
1435 
1436 static void dm_request(struct request_queue *q, struct bio *bio)
1437 {
1438  struct mapped_device *md = q->queuedata;
1439 
1440  if (dm_request_based(md))
1441  blk_queue_bio(q, bio);
1442  else
1443  _dm_request(q, bio);
1444 }
1445 
1447 {
1448  int r;
1449 
1450  if (blk_queue_io_stat(rq->q))
1451  rq->cmd_flags |= REQ_IO_STAT;
1452 
1453  rq->start_time = jiffies;
1454  r = blk_insert_cloned_request(rq->q, rq);
1455  if (r)
1456  dm_complete_request(rq, r);
1457 }
1459 
1460 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1461  void *data)
1462 {
1463  struct dm_rq_target_io *tio = data;
1464  struct dm_rq_clone_bio_info *info =
1465  container_of(bio, struct dm_rq_clone_bio_info, clone);
1466 
1467  info->orig = bio_orig;
1468  info->tio = tio;
1469  bio->bi_end_io = end_clone_bio;
1470  bio->bi_private = info;
1471 
1472  return 0;
1473 }
1474 
1475 static int setup_clone(struct request *clone, struct request *rq,
1476  struct dm_rq_target_io *tio)
1477 {
1478  int r;
1479 
1480  r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1481  dm_rq_bio_constructor, tio);
1482  if (r)
1483  return r;
1484 
1485  clone->cmd = rq->cmd;
1486  clone->cmd_len = rq->cmd_len;
1487  clone->sense = rq->sense;
1488  clone->buffer = rq->buffer;
1489  clone->end_io = end_clone_request;
1490  clone->end_io_data = tio;
1491 
1492  return 0;
1493 }
1494 
1495 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1496  gfp_t gfp_mask)
1497 {
1498  struct request *clone;
1499  struct dm_rq_target_io *tio;
1500 
1501  tio = alloc_rq_tio(md, gfp_mask);
1502  if (!tio)
1503  return NULL;
1504 
1505  tio->md = md;
1506  tio->ti = NULL;
1507  tio->orig = rq;
1508  tio->error = 0;
1509  memset(&tio->info, 0, sizeof(tio->info));
1510 
1511  clone = &tio->clone;
1512  if (setup_clone(clone, rq, tio)) {
1513  /* -ENOMEM */
1514  free_rq_tio(tio);
1515  return NULL;
1516  }
1517 
1518  return clone;
1519 }
1520 
1521 /*
1522  * Called with the queue lock held.
1523  */
1524 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1525 {
1526  struct mapped_device *md = q->queuedata;
1527  struct request *clone;
1528 
1529  if (unlikely(rq->special)) {
1530  DMWARN("Already has something in rq->special.");
1531  return BLKPREP_KILL;
1532  }
1533 
1534  clone = clone_rq(rq, md, GFP_ATOMIC);
1535  if (!clone)
1536  return BLKPREP_DEFER;
1537 
1538  rq->special = clone;
1539  rq->cmd_flags |= REQ_DONTPREP;
1540 
1541  return BLKPREP_OK;
1542 }
1543 
1544 /*
1545  * Returns:
1546  * 0 : the request has been processed (not requeued)
1547  * !0 : the request has been requeued
1548  */
1549 static int map_request(struct dm_target *ti, struct request *clone,
1550  struct mapped_device *md)
1551 {
1552  int r, requeued = 0;
1553  struct dm_rq_target_io *tio = clone->end_io_data;
1554 
1555  tio->ti = ti;
1556  r = ti->type->map_rq(ti, clone, &tio->info);
1557  switch (r) {
1558  case DM_MAPIO_SUBMITTED:
1559  /* The target has taken the I/O to submit by itself later */
1560  break;
1561  case DM_MAPIO_REMAPPED:
1562  /* The target has remapped the I/O so dispatch it */
1563  trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1564  blk_rq_pos(tio->orig));
1565  dm_dispatch_request(clone);
1566  break;
1567  case DM_MAPIO_REQUEUE:
1568  /* The target wants to requeue the I/O */
1570  requeued = 1;
1571  break;
1572  default:
1573  if (r > 0) {
1574  DMWARN("unimplemented target map return value: %d", r);
1575  BUG();
1576  }
1577 
1578  /* The target wants to complete the I/O */
1579  dm_kill_unmapped_request(clone, r);
1580  break;
1581  }
1582 
1583  return requeued;
1584 }
1585 
1586 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1587 {
1588  struct request *clone;
1589 
1590  blk_start_request(orig);
1591  clone = orig->special;
1592  atomic_inc(&md->pending[rq_data_dir(clone)]);
1593 
1594  /*
1595  * Hold the md reference here for the in-flight I/O.
1596  * We can't rely on the reference count by device opener,
1597  * because the device may be closed during the request completion
1598  * when all bios are completed.
1599  * See the comment in rq_completed() too.
1600  */
1601  dm_get(md);
1602 
1603  return clone;
1604 }
1605 
1606 /*
1607  * q->request_fn for request-based dm.
1608  * Called with the queue lock held.
1609  */
1610 static void dm_request_fn(struct request_queue *q)
1611 {
1612  struct mapped_device *md = q->queuedata;
1613  struct dm_table *map = dm_get_live_table(md);
1614  struct dm_target *ti;
1615  struct request *rq, *clone;
1616  sector_t pos;
1617 
1618  /*
1619  * For suspend, check blk_queue_stopped() and increment
1620  * ->pending within a single queue_lock not to increment the
1621  * number of in-flight I/Os after the queue is stopped in
1622  * dm_suspend().
1623  */
1624  while (!blk_queue_stopped(q)) {
1625  rq = blk_peek_request(q);
1626  if (!rq)
1627  goto delay_and_out;
1628 
1629  /* always use block 0 to find the target for flushes for now */
1630  pos = 0;
1631  if (!(rq->cmd_flags & REQ_FLUSH))
1632  pos = blk_rq_pos(rq);
1633 
1634  ti = dm_table_find_target(map, pos);
1635  if (!dm_target_is_valid(ti)) {
1636  /*
1637  * Must perform setup, that dm_done() requires,
1638  * before calling dm_kill_unmapped_request
1639  */
1640  DMERR_LIMIT("request attempted access beyond the end of device");
1641  clone = dm_start_request(md, rq);
1642  dm_kill_unmapped_request(clone, -EIO);
1643  continue;
1644  }
1645 
1646  if (ti->type->busy && ti->type->busy(ti))
1647  goto delay_and_out;
1648 
1649  clone = dm_start_request(md, rq);
1650 
1651  spin_unlock(q->queue_lock);
1652  if (map_request(ti, clone, md))
1653  goto requeued;
1654 
1655  BUG_ON(!irqs_disabled());
1656  spin_lock(q->queue_lock);
1657  }
1658 
1659  goto out;
1660 
1661 requeued:
1662  BUG_ON(!irqs_disabled());
1663  spin_lock(q->queue_lock);
1664 
1665 delay_and_out:
1666  blk_delay_queue(q, HZ / 10);
1667 out:
1668  dm_table_put(map);
1669 }
1670 
1672 {
1673  return blk_lld_busy(q);
1674 }
1676 
1677 static int dm_lld_busy(struct request_queue *q)
1678 {
1679  int r;
1680  struct mapped_device *md = q->queuedata;
1681  struct dm_table *map = dm_get_live_table(md);
1682 
1683  if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1684  r = 1;
1685  else
1686  r = dm_table_any_busy_target(map);
1687 
1688  dm_table_put(map);
1689 
1690  return r;
1691 }
1692 
1693 static int dm_any_congested(void *congested_data, int bdi_bits)
1694 {
1695  int r = bdi_bits;
1696  struct mapped_device *md = congested_data;
1697  struct dm_table *map;
1698 
1699  if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1700  map = dm_get_live_table(md);
1701  if (map) {
1702  /*
1703  * Request-based dm cares about only own queue for
1704  * the query about congestion status of request_queue
1705  */
1706  if (dm_request_based(md))
1707  r = md->queue->backing_dev_info.state &
1708  bdi_bits;
1709  else
1710  r = dm_table_any_congested(map, bdi_bits);
1711 
1712  dm_table_put(map);
1713  }
1714  }
1715 
1716  return r;
1717 }
1718 
1719 /*-----------------------------------------------------------------
1720  * An IDR is used to keep track of allocated minor numbers.
1721  *---------------------------------------------------------------*/
1722 static void free_minor(int minor)
1723 {
1724  spin_lock(&_minor_lock);
1725  idr_remove(&_minor_idr, minor);
1726  spin_unlock(&_minor_lock);
1727 }
1728 
1729 /*
1730  * See if the device with a specific minor # is free.
1731  */
1732 static int specific_minor(int minor)
1733 {
1734  int r, m;
1735 
1736  if (minor >= (1 << MINORBITS))
1737  return -EINVAL;
1738 
1739  r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1740  if (!r)
1741  return -ENOMEM;
1742 
1743  spin_lock(&_minor_lock);
1744 
1745  if (idr_find(&_minor_idr, minor)) {
1746  r = -EBUSY;
1747  goto out;
1748  }
1749 
1750  r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1751  if (r)
1752  goto out;
1753 
1754  if (m != minor) {
1755  idr_remove(&_minor_idr, m);
1756  r = -EBUSY;
1757  goto out;
1758  }
1759 
1760 out:
1761  spin_unlock(&_minor_lock);
1762  return r;
1763 }
1764 
1765 static int next_free_minor(int *minor)
1766 {
1767  int r, m;
1768 
1769  r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1770  if (!r)
1771  return -ENOMEM;
1772 
1773  spin_lock(&_minor_lock);
1774 
1775  r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1776  if (r)
1777  goto out;
1778 
1779  if (m >= (1 << MINORBITS)) {
1780  idr_remove(&_minor_idr, m);
1781  r = -ENOSPC;
1782  goto out;
1783  }
1784 
1785  *minor = m;
1786 
1787 out:
1788  spin_unlock(&_minor_lock);
1789  return r;
1790 }
1791 
1792 static const struct block_device_operations dm_blk_dops;
1793 
1794 static void dm_wq_work(struct work_struct *work);
1795 
1796 static void dm_init_md_queue(struct mapped_device *md)
1797 {
1798  /*
1799  * Request-based dm devices cannot be stacked on top of bio-based dm
1800  * devices. The type of this dm device has not been decided yet.
1801  * The type is decided at the first table loading time.
1802  * To prevent problematic device stacking, clear the queue flag
1803  * for request stacking support until then.
1804  *
1805  * This queue is new, so no concurrency on the queue_flags.
1806  */
1807  queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1808 
1809  md->queue->queuedata = md;
1810  md->queue->backing_dev_info.congested_fn = dm_any_congested;
1811  md->queue->backing_dev_info.congested_data = md;
1812  blk_queue_make_request(md->queue, dm_request);
1813  blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1814  blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1815 }
1816 
1817 /*
1818  * Allocate and initialise a blank device with a given minor.
1819  */
1820 static struct mapped_device *alloc_dev(int minor)
1821 {
1822  int r;
1823  struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1824  void *old_md;
1825 
1826  if (!md) {
1827  DMWARN("unable to allocate device, out of memory.");
1828  return NULL;
1829  }
1830 
1831  if (!try_module_get(THIS_MODULE))
1832  goto bad_module_get;
1833 
1834  /* get a minor number for the dev */
1835  if (minor == DM_ANY_MINOR)
1836  r = next_free_minor(&minor);
1837  else
1838  r = specific_minor(minor);
1839  if (r < 0)
1840  goto bad_minor;
1841 
1842  md->type = DM_TYPE_NONE;
1843  init_rwsem(&md->io_lock);
1844  mutex_init(&md->suspend_lock);
1845  mutex_init(&md->type_lock);
1847  rwlock_init(&md->map_lock);
1848  atomic_set(&md->holders, 1);
1849  atomic_set(&md->open_count, 0);
1850  atomic_set(&md->event_nr, 0);
1851  atomic_set(&md->uevent_seq, 0);
1852  INIT_LIST_HEAD(&md->uevent_list);
1854 
1856  if (!md->queue)
1857  goto bad_queue;
1858 
1859  dm_init_md_queue(md);
1860 
1861  md->disk = alloc_disk(1);
1862  if (!md->disk)
1863  goto bad_disk;
1864 
1865  atomic_set(&md->pending[0], 0);
1866  atomic_set(&md->pending[1], 0);
1867  init_waitqueue_head(&md->wait);
1868  INIT_WORK(&md->work, dm_wq_work);
1870 
1871  md->disk->major = _major;
1872  md->disk->first_minor = minor;
1873  md->disk->fops = &dm_blk_dops;
1874  md->disk->queue = md->queue;
1875  md->disk->private_data = md;
1876  sprintf(md->disk->disk_name, "dm-%d", minor);
1877  add_disk(md->disk);
1878  format_dev_t(md->name, MKDEV(_major, minor));
1879 
1880  md->wq = alloc_workqueue("kdmflush",
1882  if (!md->wq)
1883  goto bad_thread;
1884 
1885  md->bdev = bdget_disk(md->disk, 0);
1886  if (!md->bdev)
1887  goto bad_bdev;
1888 
1889  bio_init(&md->flush_bio);
1890  md->flush_bio.bi_bdev = md->bdev;
1891  md->flush_bio.bi_rw = WRITE_FLUSH;
1892 
1893  /* Populate the mapping, nobody knows we exist yet */
1894  spin_lock(&_minor_lock);
1895  old_md = idr_replace(&_minor_idr, md, minor);
1896  spin_unlock(&_minor_lock);
1897 
1898  BUG_ON(old_md != MINOR_ALLOCED);
1899 
1900  return md;
1901 
1902 bad_bdev:
1903  destroy_workqueue(md->wq);
1904 bad_thread:
1905  del_gendisk(md->disk);
1906  put_disk(md->disk);
1907 bad_disk:
1908  blk_cleanup_queue(md->queue);
1909 bad_queue:
1910  free_minor(minor);
1911 bad_minor:
1912  module_put(THIS_MODULE);
1913 bad_module_get:
1914  kfree(md);
1915  return NULL;
1916 }
1917 
1918 static void unlock_fs(struct mapped_device *md);
1919 
1920 static void free_dev(struct mapped_device *md)
1921 {
1922  int minor = MINOR(disk_devt(md->disk));
1923 
1924  unlock_fs(md);
1925  bdput(md->bdev);
1926  destroy_workqueue(md->wq);
1927  if (md->tio_pool)
1929  if (md->io_pool)
1930  mempool_destroy(md->io_pool);
1931  if (md->bs)
1932  bioset_free(md->bs);
1934  del_gendisk(md->disk);
1935  free_minor(minor);
1936 
1937  spin_lock(&_minor_lock);
1938  md->disk->private_data = NULL;
1939  spin_unlock(&_minor_lock);
1940 
1941  put_disk(md->disk);
1942  blk_cleanup_queue(md->queue);
1943  module_put(THIS_MODULE);
1944  kfree(md);
1945 }
1946 
1947 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1948 {
1949  struct dm_md_mempools *p;
1950 
1951  if (md->io_pool && (md->tio_pool || dm_table_get_type(t) == DM_TYPE_BIO_BASED) && md->bs)
1952  /* the md already has necessary mempools */
1953  goto out;
1954 
1955  p = dm_table_get_md_mempools(t);
1956  BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1957 
1958  md->io_pool = p->io_pool;
1959  p->io_pool = NULL;
1960  md->tio_pool = p->tio_pool;
1961  p->tio_pool = NULL;
1962  md->bs = p->bs;
1963  p->bs = NULL;
1964 
1965 out:
1966  /* mempool bind completed, now no need any mempools in the table */
1968 }
1969 
1970 /*
1971  * Bind a table to the device.
1972  */
1973 static void event_callback(void *context)
1974 {
1975  unsigned long flags;
1976  LIST_HEAD(uevents);
1977  struct mapped_device *md = (struct mapped_device *) context;
1978 
1979  spin_lock_irqsave(&md->uevent_lock, flags);
1980  list_splice_init(&md->uevent_list, &uevents);
1981  spin_unlock_irqrestore(&md->uevent_lock, flags);
1982 
1983  dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1984 
1985  atomic_inc(&md->event_nr);
1986  wake_up(&md->eventq);
1987 }
1988 
1989 /*
1990  * Protected by md->suspend_lock obtained by dm_swap_table().
1991  */
1992 static void __set_size(struct mapped_device *md, sector_t size)
1993 {
1994  set_capacity(md->disk, size);
1995 
1996  i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1997 }
1998 
1999 /*
2000  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2001  *
2002  * If this function returns 0, then the device is either a non-dm
2003  * device without a merge_bvec_fn, or it is a dm device that is
2004  * able to split any bios it receives that are too big.
2005  */
2007 {
2008  struct mapped_device *dev_md;
2009 
2010  if (!q->merge_bvec_fn)
2011  return 0;
2012 
2013  if (q->make_request_fn == dm_request) {
2014  dev_md = q->queuedata;
2015  if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2016  return 0;
2017  }
2018 
2019  return 1;
2020 }
2021 
2022 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2023  struct dm_dev *dev, sector_t start,
2024  sector_t len, void *data)
2025 {
2026  struct block_device *bdev = dev->bdev;
2027  struct request_queue *q = bdev_get_queue(bdev);
2028 
2029  return dm_queue_merge_is_compulsory(q);
2030 }
2031 
2032 /*
2033  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2034  * on the properties of the underlying devices.
2035  */
2036 static int dm_table_merge_is_optional(struct dm_table *table)
2037 {
2038  unsigned i = 0;
2039  struct dm_target *ti;
2040 
2041  while (i < dm_table_get_num_targets(table)) {
2042  ti = dm_table_get_target(table, i++);
2043 
2044  if (ti->type->iterate_devices &&
2045  ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2046  return 0;
2047  }
2048 
2049  return 1;
2050 }
2051 
2052 /*
2053  * Returns old map, which caller must destroy.
2054  */
2055 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2056  struct queue_limits *limits)
2057 {
2058  struct dm_table *old_map;
2059  struct request_queue *q = md->queue;
2060  sector_t size;
2061  unsigned long flags;
2062  int merge_is_optional;
2063 
2064  size = dm_table_get_size(t);
2065 
2066  /*
2067  * Wipe any geometry if the size of the table changed.
2068  */
2069  if (size != get_capacity(md->disk))
2070  memset(&md->geometry, 0, sizeof(md->geometry));
2071 
2072  __set_size(md, size);
2073 
2074  dm_table_event_callback(t, event_callback, md);
2075 
2076  /*
2077  * The queue hasn't been stopped yet, if the old table type wasn't
2078  * for request-based during suspension. So stop it to prevent
2079  * I/O mapping before resume.
2080  * This must be done before setting the queue restrictions,
2081  * because request-based dm may be run just after the setting.
2082  */
2083  if (dm_table_request_based(t) && !blk_queue_stopped(q))
2084  stop_queue(q);
2085 
2086  __bind_mempools(md, t);
2087 
2088  merge_is_optional = dm_table_merge_is_optional(t);
2089 
2090  write_lock_irqsave(&md->map_lock, flags);
2091  old_map = md->map;
2092  md->map = t;
2094 
2095  dm_table_set_restrictions(t, q, limits);
2096  if (merge_is_optional)
2098  else
2100  write_unlock_irqrestore(&md->map_lock, flags);
2101 
2102  return old_map;
2103 }
2104 
2105 /*
2106  * Returns unbound table for the caller to free.
2107  */
2108 static struct dm_table *__unbind(struct mapped_device *md)
2109 {
2110  struct dm_table *map = md->map;
2111  unsigned long flags;
2112 
2113  if (!map)
2114  return NULL;
2115 
2117  write_lock_irqsave(&md->map_lock, flags);
2118  md->map = NULL;
2119  write_unlock_irqrestore(&md->map_lock, flags);
2120 
2121  return map;
2122 }
2123 
2124 /*
2125  * Constructor for a new device.
2126  */
2127 int dm_create(int minor, struct mapped_device **result)
2128 {
2129  struct mapped_device *md;
2130 
2131  md = alloc_dev(minor);
2132  if (!md)
2133  return -ENXIO;
2134 
2135  dm_sysfs_init(md);
2136 
2137  *result = md;
2138  return 0;
2139 }
2140 
2141 /*
2142  * Functions to manage md->type.
2143  * All are required to hold md->type_lock.
2144  */
2146 {
2147  mutex_lock(&md->type_lock);
2148 }
2149 
2151 {
2152  mutex_unlock(&md->type_lock);
2153 }
2154 
2155 void dm_set_md_type(struct mapped_device *md, unsigned type)
2156 {
2157  md->type = type;
2158 }
2159 
2160 unsigned dm_get_md_type(struct mapped_device *md)
2161 {
2162  return md->type;
2163 }
2164 
2166 {
2167  return md->immutable_target_type;
2168 }
2169 
2170 /*
2171  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2172  */
2173 static int dm_init_request_based_queue(struct mapped_device *md)
2174 {
2175  struct request_queue *q = NULL;
2176 
2177  if (md->queue->elevator)
2178  return 1;
2179 
2180  /* Fully initialize the queue */
2181  q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2182  if (!q)
2183  return 0;
2184 
2185  md->queue = q;
2186  dm_init_md_queue(md);
2187  blk_queue_softirq_done(md->queue, dm_softirq_done);
2188  blk_queue_prep_rq(md->queue, dm_prep_fn);
2189  blk_queue_lld_busy(md->queue, dm_lld_busy);
2190 
2192 
2193  return 1;
2194 }
2195 
2196 /*
2197  * Setup the DM device's queue based on md's type
2198  */
2200 {
2201  if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2202  !dm_init_request_based_queue(md)) {
2203  DMWARN("Cannot initialize queue for request-based mapped device");
2204  return -EINVAL;
2205  }
2206 
2207  return 0;
2208 }
2209 
2210 static struct mapped_device *dm_find_md(dev_t dev)
2211 {
2212  struct mapped_device *md;
2213  unsigned minor = MINOR(dev);
2214 
2215  if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2216  return NULL;
2217 
2218  spin_lock(&_minor_lock);
2219 
2220  md = idr_find(&_minor_idr, minor);
2221  if (md && (md == MINOR_ALLOCED ||
2222  (MINOR(disk_devt(dm_disk(md))) != minor) ||
2223  dm_deleting_md(md) ||
2224  test_bit(DMF_FREEING, &md->flags))) {
2225  md = NULL;
2226  goto out;
2227  }
2228 
2229 out:
2230  spin_unlock(&_minor_lock);
2231 
2232  return md;
2233 }
2234 
2236 {
2237  struct mapped_device *md = dm_find_md(dev);
2238 
2239  if (md)
2240  dm_get(md);
2241 
2242  return md;
2243 }
2245 
2246 void *dm_get_mdptr(struct mapped_device *md)
2247 {
2248  return md->interface_ptr;
2249 }
2250 
2251 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2252 {
2253  md->interface_ptr = ptr;
2254 }
2255 
2256 void dm_get(struct mapped_device *md)
2257 {
2258  atomic_inc(&md->holders);
2259  BUG_ON(test_bit(DMF_FREEING, &md->flags));
2260 }
2261 
2262 const char *dm_device_name(struct mapped_device *md)
2263 {
2264  return md->name;
2265 }
2267 
2268 static void __dm_destroy(struct mapped_device *md, bool wait)
2269 {
2270  struct dm_table *map;
2271 
2272  might_sleep();
2273 
2274  spin_lock(&_minor_lock);
2275  map = dm_get_live_table(md);
2276  idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2277  set_bit(DMF_FREEING, &md->flags);
2278  spin_unlock(&_minor_lock);
2279 
2280  if (!dm_suspended_md(md)) {
2283  }
2284 
2285  /*
2286  * Rare, but there may be I/O requests still going to complete,
2287  * for example. Wait for all references to disappear.
2288  * No one should increment the reference count of the mapped_device,
2289  * after the mapped_device state becomes DMF_FREEING.
2290  */
2291  if (wait)
2292  while (atomic_read(&md->holders))
2293  msleep(1);
2294  else if (atomic_read(&md->holders))
2295  DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2296  dm_device_name(md), atomic_read(&md->holders));
2297 
2298  dm_sysfs_exit(md);
2299  dm_table_put(map);
2300  dm_table_destroy(__unbind(md));
2301  free_dev(md);
2302 }
2303 
2304 void dm_destroy(struct mapped_device *md)
2305 {
2306  __dm_destroy(md, true);
2307 }
2308 
2310 {
2311  __dm_destroy(md, false);
2312 }
2313 
2314 void dm_put(struct mapped_device *md)
2315 {
2316  atomic_dec(&md->holders);
2317 }
2319 
2320 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2321 {
2322  int r = 0;
2323  DECLARE_WAITQUEUE(wait, current);
2324 
2325  add_wait_queue(&md->wait, &wait);
2326 
2327  while (1) {
2328  set_current_state(interruptible);
2329 
2330  if (!md_in_flight(md))
2331  break;
2332 
2333  if (interruptible == TASK_INTERRUPTIBLE &&
2334  signal_pending(current)) {
2335  r = -EINTR;
2336  break;
2337  }
2338 
2339  io_schedule();
2340  }
2342 
2343  remove_wait_queue(&md->wait, &wait);
2344 
2345  return r;
2346 }
2347 
2348 /*
2349  * Process the deferred bios
2350  */
2351 static void dm_wq_work(struct work_struct *work)
2352 {
2353  struct mapped_device *md = container_of(work, struct mapped_device,
2354  work);
2355  struct bio *c;
2356 
2357  down_read(&md->io_lock);
2358 
2359  while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2360  spin_lock_irq(&md->deferred_lock);
2361  c = bio_list_pop(&md->deferred);
2362  spin_unlock_irq(&md->deferred_lock);
2363 
2364  if (!c)
2365  break;
2366 
2367  up_read(&md->io_lock);
2368 
2369  if (dm_request_based(md))
2371  else
2372  __split_and_process_bio(md, c);
2373 
2374  down_read(&md->io_lock);
2375  }
2376 
2377  up_read(&md->io_lock);
2378 }
2379 
2380 static void dm_queue_flush(struct mapped_device *md)
2381 {
2384  queue_work(md->wq, &md->work);
2385 }
2386 
2387 /*
2388  * Swap in a new table, returning the old one for the caller to destroy.
2389  */
2390 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2391 {
2392  struct dm_table *live_map, *map = ERR_PTR(-EINVAL);
2393  struct queue_limits limits;
2394  int r;
2395 
2396  mutex_lock(&md->suspend_lock);
2397 
2398  /* device must be suspended */
2399  if (!dm_suspended_md(md))
2400  goto out;
2401 
2402  /*
2403  * If the new table has no data devices, retain the existing limits.
2404  * This helps multipath with queue_if_no_path if all paths disappear,
2405  * then new I/O is queued based on these limits, and then some paths
2406  * reappear.
2407  */
2408  if (dm_table_has_no_data_devices(table)) {
2409  live_map = dm_get_live_table(md);
2410  if (live_map)
2411  limits = md->queue->limits;
2412  dm_table_put(live_map);
2413  }
2414 
2415  r = dm_calculate_queue_limits(table, &limits);
2416  if (r) {
2417  map = ERR_PTR(r);
2418  goto out;
2419  }
2420 
2421  map = __bind(md, table, &limits);
2422 
2423 out:
2424  mutex_unlock(&md->suspend_lock);
2425  return map;
2426 }
2427 
2428 /*
2429  * Functions to lock and unlock any filesystem running on the
2430  * device.
2431  */
2432 static int lock_fs(struct mapped_device *md)
2433 {
2434  int r;
2435 
2436  WARN_ON(md->frozen_sb);
2437 
2438  md->frozen_sb = freeze_bdev(md->bdev);
2439  if (IS_ERR(md->frozen_sb)) {
2440  r = PTR_ERR(md->frozen_sb);
2441  md->frozen_sb = NULL;
2442  return r;
2443  }
2444 
2445  set_bit(DMF_FROZEN, &md->flags);
2446 
2447  return 0;
2448 }
2449 
2450 static void unlock_fs(struct mapped_device *md)
2451 {
2452  if (!test_bit(DMF_FROZEN, &md->flags))
2453  return;
2454 
2455  thaw_bdev(md->bdev, md->frozen_sb);
2456  md->frozen_sb = NULL;
2457  clear_bit(DMF_FROZEN, &md->flags);
2458 }
2459 
2460 /*
2461  * We need to be able to change a mapping table under a mounted
2462  * filesystem. For example we might want to move some data in
2463  * the background. Before the table can be swapped with
2464  * dm_bind_table, dm_suspend must be called to flush any in
2465  * flight bios and ensure that any further io gets deferred.
2466  */
2467 /*
2468  * Suspend mechanism in request-based dm.
2469  *
2470  * 1. Flush all I/Os by lock_fs() if needed.
2471  * 2. Stop dispatching any I/O by stopping the request_queue.
2472  * 3. Wait for all in-flight I/Os to be completed or requeued.
2473  *
2474  * To abort suspend, start the request_queue.
2475  */
2476 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2477 {
2478  struct dm_table *map = NULL;
2479  int r = 0;
2480  int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2481  int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2482 
2483  mutex_lock(&md->suspend_lock);
2484 
2485  if (dm_suspended_md(md)) {
2486  r = -EINVAL;
2487  goto out_unlock;
2488  }
2489 
2490  map = dm_get_live_table(md);
2491 
2492  /*
2493  * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2494  * This flag is cleared before dm_suspend returns.
2495  */
2496  if (noflush)
2498 
2499  /* This does not get reverted if there's an error later. */
2501 
2502  /*
2503  * Flush I/O to the device.
2504  * Any I/O submitted after lock_fs() may not be flushed.
2505  * noflush takes precedence over do_lockfs.
2506  * (lock_fs() flushes I/Os and waits for them to complete.)
2507  */
2508  if (!noflush && do_lockfs) {
2509  r = lock_fs(md);
2510  if (r)
2511  goto out;
2512  }
2513 
2514  /*
2515  * Here we must make sure that no processes are submitting requests
2516  * to target drivers i.e. no one may be executing
2517  * __split_and_process_bio. This is called from dm_request and
2518  * dm_wq_work.
2519  *
2520  * To get all processes out of __split_and_process_bio in dm_request,
2521  * we take the write lock. To prevent any process from reentering
2522  * __split_and_process_bio from dm_request and quiesce the thread
2523  * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2524  * flush_workqueue(md->wq).
2525  */
2526  down_write(&md->io_lock);
2528  up_write(&md->io_lock);
2529 
2530  /*
2531  * Stop md->queue before flushing md->wq in case request-based
2532  * dm defers requests to md->wq from md->queue.
2533  */
2534  if (dm_request_based(md))
2535  stop_queue(md->queue);
2536 
2537  flush_workqueue(md->wq);
2538 
2539  /*
2540  * At this point no more requests are entering target request routines.
2541  * We call dm_wait_for_completion to wait for all existing requests
2542  * to finish.
2543  */
2544  r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2545 
2546  down_write(&md->io_lock);
2547  if (noflush)
2549  up_write(&md->io_lock);
2550 
2551  /* were we interrupted ? */
2552  if (r < 0) {
2553  dm_queue_flush(md);
2554 
2555  if (dm_request_based(md))
2556  start_queue(md->queue);
2557 
2558  unlock_fs(md);
2559  goto out; /* pushback list is already flushed, so skip flush */
2560  }
2561 
2562  /*
2563  * If dm_wait_for_completion returned 0, the device is completely
2564  * quiescent now. There is no request-processing activity. All new
2565  * requests are being added to md->deferred list.
2566  */
2567 
2568  set_bit(DMF_SUSPENDED, &md->flags);
2569 
2571 
2572 out:
2573  dm_table_put(map);
2574 
2575 out_unlock:
2576  mutex_unlock(&md->suspend_lock);
2577  return r;
2578 }
2579 
2580 int dm_resume(struct mapped_device *md)
2581 {
2582  int r = -EINVAL;
2583  struct dm_table *map = NULL;
2584 
2585  mutex_lock(&md->suspend_lock);
2586  if (!dm_suspended_md(md))
2587  goto out;
2588 
2589  map = dm_get_live_table(md);
2590  if (!map || !dm_table_get_size(map))
2591  goto out;
2592 
2593  r = dm_table_resume_targets(map);
2594  if (r)
2595  goto out;
2596 
2597  dm_queue_flush(md);
2598 
2599  /*
2600  * Flushing deferred I/Os must be done after targets are resumed
2601  * so that mapping of targets can work correctly.
2602  * Request-based dm is queueing the deferred I/Os in its request_queue.
2603  */
2604  if (dm_request_based(md))
2605  start_queue(md->queue);
2606 
2607  unlock_fs(md);
2608 
2609  clear_bit(DMF_SUSPENDED, &md->flags);
2610 
2611  r = 0;
2612 out:
2613  dm_table_put(map);
2614  mutex_unlock(&md->suspend_lock);
2615 
2616  return r;
2617 }
2618 
2619 /*-----------------------------------------------------------------
2620  * Event notification.
2621  *---------------------------------------------------------------*/
2623  unsigned cookie)
2624 {
2625  char udev_cookie[DM_COOKIE_LENGTH];
2626  char *envp[] = { udev_cookie, NULL };
2627 
2628  if (!cookie)
2629  return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2630  else {
2631  snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2632  DM_COOKIE_ENV_VAR_NAME, cookie);
2633  return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2634  action, envp);
2635  }
2636 }
2637 
2639 {
2640  return atomic_add_return(1, &md->uevent_seq);
2641 }
2642 
2644 {
2645  return atomic_read(&md->event_nr);
2646 }
2647 
2648 int dm_wait_event(struct mapped_device *md, int event_nr)
2649 {
2650  return wait_event_interruptible(md->eventq,
2651  (event_nr != atomic_read(&md->event_nr)));
2652 }
2653 
2654 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2655 {
2656  unsigned long flags;
2657 
2658  spin_lock_irqsave(&md->uevent_lock, flags);
2659  list_add(elist, &md->uevent_list);
2660  spin_unlock_irqrestore(&md->uevent_lock, flags);
2661 }
2662 
2663 /*
2664  * The gendisk is only valid as long as you have a reference
2665  * count on 'md'.
2666  */
2667 struct gendisk *dm_disk(struct mapped_device *md)
2668 {
2669  return md->disk;
2670 }
2671 
2672 struct kobject *dm_kobject(struct mapped_device *md)
2673 {
2674  return &md->kobj;
2675 }
2676 
2677 /*
2678  * struct mapped_device should not be exported outside of dm.c
2679  * so use this check to verify that kobj is part of md structure
2680  */
2682 {
2683  struct mapped_device *md;
2684 
2685  md = container_of(kobj, struct mapped_device, kobj);
2686  if (&md->kobj != kobj)
2687  return NULL;
2688 
2689  if (test_bit(DMF_FREEING, &md->flags) ||
2690  dm_deleting_md(md))
2691  return NULL;
2692 
2693  dm_get(md);
2694  return md;
2695 }
2696 
2698 {
2699  return test_bit(DMF_SUSPENDED, &md->flags);
2700 }
2701 
2702 int dm_suspended(struct dm_target *ti)
2703 {
2704  return dm_suspended_md(dm_table_get_md(ti->table));
2705 }
2707 
2709 {
2710  return __noflush_suspending(dm_table_get_md(ti->table));
2711 }
2713 
2714 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2715 {
2716  struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2717  unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2718 
2719  if (!pools)
2720  return NULL;
2721 
2722  pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2723  mempool_create_slab_pool(MIN_IOS, _io_cache) :
2724  mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2725  if (!pools->io_pool)
2726  goto free_pools_and_out;
2727 
2728  pools->tio_pool = NULL;
2729  if (type == DM_TYPE_REQUEST_BASED) {
2730  pools->tio_pool = mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2731  if (!pools->tio_pool)
2732  goto free_io_pool_and_out;
2733  }
2734 
2735  pools->bs = (type == DM_TYPE_BIO_BASED) ?
2736  bioset_create(pool_size,
2737  offsetof(struct dm_target_io, clone)) :
2738  bioset_create(pool_size,
2739  offsetof(struct dm_rq_clone_bio_info, clone));
2740  if (!pools->bs)
2741  goto free_tio_pool_and_out;
2742 
2743  if (integrity && bioset_integrity_create(pools->bs, pool_size))
2744  goto free_bioset_and_out;
2745 
2746  return pools;
2747 
2748 free_bioset_and_out:
2749  bioset_free(pools->bs);
2750 
2751 free_tio_pool_and_out:
2752  if (pools->tio_pool)
2753  mempool_destroy(pools->tio_pool);
2754 
2755 free_io_pool_and_out:
2756  mempool_destroy(pools->io_pool);
2757 
2758 free_pools_and_out:
2759  kfree(pools);
2760 
2761  return NULL;
2762 }
2763 
2765 {
2766  if (!pools)
2767  return;
2768 
2769  if (pools->io_pool)
2770  mempool_destroy(pools->io_pool);
2771 
2772  if (pools->tio_pool)
2773  mempool_destroy(pools->tio_pool);
2774 
2775  if (pools->bs)
2776  bioset_free(pools->bs);
2777 
2778  kfree(pools);
2779 }
2780 
2781 static const struct block_device_operations dm_blk_dops = {
2782  .open = dm_blk_open,
2783  .release = dm_blk_close,
2784  .ioctl = dm_blk_ioctl,
2785  .getgeo = dm_blk_getgeo,
2786  .owner = THIS_MODULE
2787 };
2788 
2790 
2791 /*
2792  * module hooks
2793  */
2794 module_init(dm_init);
2795 module_exit(dm_exit);
2796 
2797 module_param(major, uint, 0);
2798 MODULE_PARM_DESC(major, "The major number of the device mapper");
2799 MODULE_DESCRIPTION(DM_NAME " driver");
2800 MODULE_AUTHOR("Joe Thornber <[email protected]>");
2801 MODULE_LICENSE("GPL");