Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
memory-failure.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states. The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * There are several operations here with exponential complexity because
25  * of unsuitable VM data structures. For example the operation to map back
26  * from RMAP chains to processes has to walk the complete process list and
27  * has non linear complexity with the number. But since memory corruptions
28  * are rare we hope to get away with this. This avoids impacting the core
29  * VM.
30  */
31 
32 /*
33  * Notebook:
34  * - hugetlb needs more code
35  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36  * - pass bad pages to kdump next kernel
37  */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
58 #include "internal.h"
59 
60 int sysctl_memory_failure_early_kill __read_mostly = 0;
61 
62 int sysctl_memory_failure_recovery __read_mostly = 1;
63 
65 
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67 
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
78 
79 static int hwpoison_filter_dev(struct page *p)
80 {
81  struct address_space *mapping;
82  dev_t dev;
83 
84  if (hwpoison_filter_dev_major == ~0U &&
85  hwpoison_filter_dev_minor == ~0U)
86  return 0;
87 
88  /*
89  * page_mapping() does not accept slab pages.
90  */
91  if (PageSlab(p))
92  return -EINVAL;
93 
94  mapping = page_mapping(p);
95  if (mapping == NULL || mapping->host == NULL)
96  return -EINVAL;
97 
98  dev = mapping->host->i_sb->s_dev;
99  if (hwpoison_filter_dev_major != ~0U &&
100  hwpoison_filter_dev_major != MAJOR(dev))
101  return -EINVAL;
102  if (hwpoison_filter_dev_minor != ~0U &&
103  hwpoison_filter_dev_minor != MINOR(dev))
104  return -EINVAL;
105 
106  return 0;
107 }
108 
109 static int hwpoison_filter_flags(struct page *p)
110 {
111  if (!hwpoison_filter_flags_mask)
112  return 0;
113 
114  if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115  hwpoison_filter_flags_value)
116  return 0;
117  else
118  return -EINVAL;
119 }
120 
121 /*
122  * This allows stress tests to limit test scope to a collection of tasks
123  * by putting them under some memcg. This prevents killing unrelated/important
124  * processes such as /sbin/init. Note that the target task may share clean
125  * pages with init (eg. libc text), which is harmless. If the target task
126  * share _dirty_ pages with another task B, the test scheme must make sure B
127  * is also included in the memcg. At last, due to race conditions this filter
128  * can only guarantee that the page either belongs to the memcg tasks, or is
129  * a freed page.
130  */
131 #ifdef CONFIG_MEMCG_SWAP
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134 static int hwpoison_filter_task(struct page *p)
135 {
136  struct mem_cgroup *mem;
137  struct cgroup_subsys_state *css;
138  unsigned long ino;
139 
140  if (!hwpoison_filter_memcg)
141  return 0;
142 
144  if (!mem)
145  return -EINVAL;
146 
147  css = mem_cgroup_css(mem);
148  /* root_mem_cgroup has NULL dentries */
149  if (!css->cgroup->dentry)
150  return -EINVAL;
151 
152  ino = css->cgroup->dentry->d_inode->i_ino;
153  css_put(css);
154 
155  if (ino != hwpoison_filter_memcg)
156  return -EINVAL;
157 
158  return 0;
159 }
160 #else
161 static int hwpoison_filter_task(struct page *p) { return 0; }
162 #endif
163 
164 int hwpoison_filter(struct page *p)
165 {
166  if (!hwpoison_filter_enable)
167  return 0;
168 
169  if (hwpoison_filter_dev(p))
170  return -EINVAL;
171 
172  if (hwpoison_filter_flags(p))
173  return -EINVAL;
174 
175  if (hwpoison_filter_task(p))
176  return -EINVAL;
177 
178  return 0;
179 }
180 #else
181 int hwpoison_filter(struct page *p)
182 {
183  return 0;
184 }
185 #endif
186 
188 
189 /*
190  * Send all the processes who have the page mapped a signal.
191  * ``action optional'' if they are not immediately affected by the error
192  * ``action required'' if error happened in current execution context
193  */
194 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
195  unsigned long pfn, struct page *page, int flags)
196 {
197  struct siginfo si;
198  int ret;
199 
201  "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
202  pfn, t->comm, t->pid);
203  si.si_signo = SIGBUS;
204  si.si_errno = 0;
205  si.si_addr = (void *)addr;
206 #ifdef __ARCH_SI_TRAPNO
207  si.si_trapno = trapno;
208 #endif
209  si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
210 
211  if ((flags & MF_ACTION_REQUIRED) && t == current) {
212  si.si_code = BUS_MCEERR_AR;
213  ret = force_sig_info(SIGBUS, &si, t);
214  } else {
215  /*
216  * Don't use force here, it's convenient if the signal
217  * can be temporarily blocked.
218  * This could cause a loop when the user sets SIGBUS
219  * to SIG_IGN, but hopefully no one will do that?
220  */
221  si.si_code = BUS_MCEERR_AO;
222  ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
223  }
224  if (ret < 0)
225  printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
226  t->comm, t->pid, ret);
227  return ret;
228 }
229 
230 /*
231  * When a unknown page type is encountered drain as many buffers as possible
232  * in the hope to turn the page into a LRU or free page, which we can handle.
233  */
234 void shake_page(struct page *p, int access)
235 {
236  if (!PageSlab(p)) {
238  if (PageLRU(p))
239  return;
240  drain_all_pages();
241  if (PageLRU(p) || is_free_buddy_page(p))
242  return;
243  }
244 
245  /*
246  * Only call shrink_slab here (which would also shrink other caches) if
247  * access is not potentially fatal.
248  */
249  if (access) {
250  int nr;
251  do {
252  struct shrink_control shrink = {
253  .gfp_mask = GFP_KERNEL,
254  };
255 
256  nr = shrink_slab(&shrink, 1000, 1000);
257  if (page_count(p) == 1)
258  break;
259  } while (nr > 10);
260  }
261 }
263 
264 /*
265  * Kill all processes that have a poisoned page mapped and then isolate
266  * the page.
267  *
268  * General strategy:
269  * Find all processes having the page mapped and kill them.
270  * But we keep a page reference around so that the page is not
271  * actually freed yet.
272  * Then stash the page away
273  *
274  * There's no convenient way to get back to mapped processes
275  * from the VMAs. So do a brute-force search over all
276  * running processes.
277  *
278  * Remember that machine checks are not common (or rather
279  * if they are common you have other problems), so this shouldn't
280  * be a performance issue.
281  *
282  * Also there are some races possible while we get from the
283  * error detection to actually handle it.
284  */
285 
286 struct to_kill {
287  struct list_head nd;
288  struct task_struct *tsk;
289  unsigned long addr;
291 };
292 
293 /*
294  * Failure handling: if we can't find or can't kill a process there's
295  * not much we can do. We just print a message and ignore otherwise.
296  */
297 
298 /*
299  * Schedule a process for later kill.
300  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
301  * TBD would GFP_NOIO be enough?
302  */
303 static void add_to_kill(struct task_struct *tsk, struct page *p,
304  struct vm_area_struct *vma,
305  struct list_head *to_kill,
306  struct to_kill **tkc)
307 {
308  struct to_kill *tk;
309 
310  if (*tkc) {
311  tk = *tkc;
312  *tkc = NULL;
313  } else {
314  tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
315  if (!tk) {
317  "MCE: Out of memory while machine check handling\n");
318  return;
319  }
320  }
321  tk->addr = page_address_in_vma(p, vma);
322  tk->addr_valid = 1;
323 
324  /*
325  * In theory we don't have to kill when the page was
326  * munmaped. But it could be also a mremap. Since that's
327  * likely very rare kill anyways just out of paranoia, but use
328  * a SIGKILL because the error is not contained anymore.
329  */
330  if (tk->addr == -EFAULT) {
331  pr_info("MCE: Unable to find user space address %lx in %s\n",
332  page_to_pfn(p), tsk->comm);
333  tk->addr_valid = 0;
334  }
335  get_task_struct(tsk);
336  tk->tsk = tsk;
337  list_add_tail(&tk->nd, to_kill);
338 }
339 
340 /*
341  * Kill the processes that have been collected earlier.
342  *
343  * Only do anything when DOIT is set, otherwise just free the list
344  * (this is used for clean pages which do not need killing)
345  * Also when FAIL is set do a force kill because something went
346  * wrong earlier.
347  */
348 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
349  int fail, struct page *page, unsigned long pfn,
350  int flags)
351 {
352  struct to_kill *tk, *next;
353 
354  list_for_each_entry_safe (tk, next, to_kill, nd) {
355  if (forcekill) {
356  /*
357  * In case something went wrong with munmapping
358  * make sure the process doesn't catch the
359  * signal and then access the memory. Just kill it.
360  */
361  if (fail || tk->addr_valid == 0) {
363  "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
364  pfn, tk->tsk->comm, tk->tsk->pid);
365  force_sig(SIGKILL, tk->tsk);
366  }
367 
368  /*
369  * In theory the process could have mapped
370  * something else on the address in-between. We could
371  * check for that, but we need to tell the
372  * process anyways.
373  */
374  else if (kill_proc(tk->tsk, tk->addr, trapno,
375  pfn, page, flags) < 0)
377  "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
378  pfn, tk->tsk->comm, tk->tsk->pid);
379  }
380  put_task_struct(tk->tsk);
381  kfree(tk);
382  }
383 }
384 
385 static int task_early_kill(struct task_struct *tsk)
386 {
387  if (!tsk->mm)
388  return 0;
389  if (tsk->flags & PF_MCE_PROCESS)
390  return !!(tsk->flags & PF_MCE_EARLY);
391  return sysctl_memory_failure_early_kill;
392 }
393 
394 /*
395  * Collect processes when the error hit an anonymous page.
396  */
397 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
398  struct to_kill **tkc)
399 {
400  struct vm_area_struct *vma;
401  struct task_struct *tsk;
402  struct anon_vma *av;
403  pgoff_t pgoff;
404 
405  av = page_lock_anon_vma(page);
406  if (av == NULL) /* Not actually mapped anymore */
407  return;
408 
409  pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
410  read_lock(&tasklist_lock);
411  for_each_process (tsk) {
412  struct anon_vma_chain *vmac;
413 
414  if (!task_early_kill(tsk))
415  continue;
416  anon_vma_interval_tree_foreach(vmac, &av->rb_root,
417  pgoff, pgoff) {
418  vma = vmac->vma;
419  if (!page_mapped_in_vma(page, vma))
420  continue;
421  if (vma->vm_mm == tsk->mm)
422  add_to_kill(tsk, page, vma, to_kill, tkc);
423  }
424  }
425  read_unlock(&tasklist_lock);
427 }
428 
429 /*
430  * Collect processes when the error hit a file mapped page.
431  */
432 static void collect_procs_file(struct page *page, struct list_head *to_kill,
433  struct to_kill **tkc)
434 {
435  struct vm_area_struct *vma;
436  struct task_struct *tsk;
437  struct address_space *mapping = page->mapping;
438 
439  mutex_lock(&mapping->i_mmap_mutex);
440  read_lock(&tasklist_lock);
441  for_each_process(tsk) {
442  pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
443 
444  if (!task_early_kill(tsk))
445  continue;
446 
447  vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
448  pgoff) {
449  /*
450  * Send early kill signal to tasks where a vma covers
451  * the page but the corrupted page is not necessarily
452  * mapped it in its pte.
453  * Assume applications who requested early kill want
454  * to be informed of all such data corruptions.
455  */
456  if (vma->vm_mm == tsk->mm)
457  add_to_kill(tsk, page, vma, to_kill, tkc);
458  }
459  }
460  read_unlock(&tasklist_lock);
461  mutex_unlock(&mapping->i_mmap_mutex);
462 }
463 
464 /*
465  * Collect the processes who have the corrupted page mapped to kill.
466  * This is done in two steps for locking reasons.
467  * First preallocate one tokill structure outside the spin locks,
468  * so that we can kill at least one process reasonably reliable.
469  */
470 static void collect_procs(struct page *page, struct list_head *tokill)
471 {
472  struct to_kill *tk;
473 
474  if (!page->mapping)
475  return;
476 
477  tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
478  if (!tk)
479  return;
480  if (PageAnon(page))
481  collect_procs_anon(page, tokill, &tk);
482  else
483  collect_procs_file(page, tokill, &tk);
484  kfree(tk);
485 }
486 
487 /*
488  * Error handlers for various types of pages.
489  */
490 
491 enum outcome {
492  IGNORED, /* Error: cannot be handled */
493  FAILED, /* Error: handling failed */
494  DELAYED, /* Will be handled later */
495  RECOVERED, /* Successfully recovered */
496 };
497 
498 static const char *action_name[] = {
499  [IGNORED] = "Ignored",
500  [FAILED] = "Failed",
501  [DELAYED] = "Delayed",
502  [RECOVERED] = "Recovered",
503 };
504 
505 /*
506  * XXX: It is possible that a page is isolated from LRU cache,
507  * and then kept in swap cache or failed to remove from page cache.
508  * The page count will stop it from being freed by unpoison.
509  * Stress tests should be aware of this memory leak problem.
510  */
511 static int delete_from_lru_cache(struct page *p)
512 {
513  if (!isolate_lru_page(p)) {
514  /*
515  * Clear sensible page flags, so that the buddy system won't
516  * complain when the page is unpoison-and-freed.
517  */
518  ClearPageActive(p);
519  ClearPageUnevictable(p);
520  /*
521  * drop the page count elevated by isolate_lru_page()
522  */
524  return 0;
525  }
526  return -EIO;
527 }
528 
529 /*
530  * Error hit kernel page.
531  * Do nothing, try to be lucky and not touch this instead. For a few cases we
532  * could be more sophisticated.
533  */
534 static int me_kernel(struct page *p, unsigned long pfn)
535 {
536  return IGNORED;
537 }
538 
539 /*
540  * Page in unknown state. Do nothing.
541  */
542 static int me_unknown(struct page *p, unsigned long pfn)
543 {
544  printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
545  return FAILED;
546 }
547 
548 /*
549  * Clean (or cleaned) page cache page.
550  */
551 static int me_pagecache_clean(struct page *p, unsigned long pfn)
552 {
553  int err;
554  int ret = FAILED;
555  struct address_space *mapping;
556 
557  delete_from_lru_cache(p);
558 
559  /*
560  * For anonymous pages we're done the only reference left
561  * should be the one m_f() holds.
562  */
563  if (PageAnon(p))
564  return RECOVERED;
565 
566  /*
567  * Now truncate the page in the page cache. This is really
568  * more like a "temporary hole punch"
569  * Don't do this for block devices when someone else
570  * has a reference, because it could be file system metadata
571  * and that's not safe to truncate.
572  */
573  mapping = page_mapping(p);
574  if (!mapping) {
575  /*
576  * Page has been teared down in the meanwhile
577  */
578  return FAILED;
579  }
580 
581  /*
582  * Truncation is a bit tricky. Enable it per file system for now.
583  *
584  * Open: to take i_mutex or not for this? Right now we don't.
585  */
586  if (mapping->a_ops->error_remove_page) {
587  err = mapping->a_ops->error_remove_page(mapping, p);
588  if (err != 0) {
589  printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
590  pfn, err);
591  } else if (page_has_private(p) &&
593  pr_info("MCE %#lx: failed to release buffers\n", pfn);
594  } else {
595  ret = RECOVERED;
596  }
597  } else {
598  /*
599  * If the file system doesn't support it just invalidate
600  * This fails on dirty or anything with private pages
601  */
602  if (invalidate_inode_page(p))
603  ret = RECOVERED;
604  else
605  printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
606  pfn);
607  }
608  return ret;
609 }
610 
611 /*
612  * Dirty cache page page
613  * Issues: when the error hit a hole page the error is not properly
614  * propagated.
615  */
616 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
617 {
618  struct address_space *mapping = page_mapping(p);
619 
620  SetPageError(p);
621  /* TBD: print more information about the file. */
622  if (mapping) {
623  /*
624  * IO error will be reported by write(), fsync(), etc.
625  * who check the mapping.
626  * This way the application knows that something went
627  * wrong with its dirty file data.
628  *
629  * There's one open issue:
630  *
631  * The EIO will be only reported on the next IO
632  * operation and then cleared through the IO map.
633  * Normally Linux has two mechanisms to pass IO error
634  * first through the AS_EIO flag in the address space
635  * and then through the PageError flag in the page.
636  * Since we drop pages on memory failure handling the
637  * only mechanism open to use is through AS_AIO.
638  *
639  * This has the disadvantage that it gets cleared on
640  * the first operation that returns an error, while
641  * the PageError bit is more sticky and only cleared
642  * when the page is reread or dropped. If an
643  * application assumes it will always get error on
644  * fsync, but does other operations on the fd before
645  * and the page is dropped between then the error
646  * will not be properly reported.
647  *
648  * This can already happen even without hwpoisoned
649  * pages: first on metadata IO errors (which only
650  * report through AS_EIO) or when the page is dropped
651  * at the wrong time.
652  *
653  * So right now we assume that the application DTRT on
654  * the first EIO, but we're not worse than other parts
655  * of the kernel.
656  */
657  mapping_set_error(mapping, EIO);
658  }
659 
660  return me_pagecache_clean(p, pfn);
661 }
662 
663 /*
664  * Clean and dirty swap cache.
665  *
666  * Dirty swap cache page is tricky to handle. The page could live both in page
667  * cache and swap cache(ie. page is freshly swapped in). So it could be
668  * referenced concurrently by 2 types of PTEs:
669  * normal PTEs and swap PTEs. We try to handle them consistently by calling
670  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
671  * and then
672  * - clear dirty bit to prevent IO
673  * - remove from LRU
674  * - but keep in the swap cache, so that when we return to it on
675  * a later page fault, we know the application is accessing
676  * corrupted data and shall be killed (we installed simple
677  * interception code in do_swap_page to catch it).
678  *
679  * Clean swap cache pages can be directly isolated. A later page fault will
680  * bring in the known good data from disk.
681  */
682 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
683 {
684  ClearPageDirty(p);
685  /* Trigger EIO in shmem: */
686  ClearPageUptodate(p);
687 
688  if (!delete_from_lru_cache(p))
689  return DELAYED;
690  else
691  return FAILED;
692 }
693 
694 static int me_swapcache_clean(struct page *p, unsigned long pfn)
695 {
697 
698  if (!delete_from_lru_cache(p))
699  return RECOVERED;
700  else
701  return FAILED;
702 }
703 
704 /*
705  * Huge pages. Needs work.
706  * Issues:
707  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
708  * To narrow down kill region to one page, we need to break up pmd.
709  */
710 static int me_huge_page(struct page *p, unsigned long pfn)
711 {
712  int res = 0;
713  struct page *hpage = compound_head(p);
714  /*
715  * We can safely recover from error on free or reserved (i.e.
716  * not in-use) hugepage by dequeuing it from freelist.
717  * To check whether a hugepage is in-use or not, we can't use
718  * page->lru because it can be used in other hugepage operations,
719  * such as __unmap_hugepage_range() and gather_surplus_pages().
720  * So instead we use page_mapping() and PageAnon().
721  * We assume that this function is called with page lock held,
722  * so there is no race between isolation and mapping/unmapping.
723  */
724  if (!(page_mapping(hpage) || PageAnon(hpage))) {
725  res = dequeue_hwpoisoned_huge_page(hpage);
726  if (!res)
727  return RECOVERED;
728  }
729  return DELAYED;
730 }
731 
732 /*
733  * Various page states we can handle.
734  *
735  * A page state is defined by its current page->flags bits.
736  * The table matches them in order and calls the right handler.
737  *
738  * This is quite tricky because we can access page at any time
739  * in its live cycle, so all accesses have to be extremely careful.
740  *
741  * This is not complete. More states could be added.
742  * For any missing state don't attempt recovery.
743  */
744 
745 #define dirty (1UL << PG_dirty)
746 #define sc (1UL << PG_swapcache)
747 #define unevict (1UL << PG_unevictable)
748 #define mlock (1UL << PG_mlocked)
749 #define writeback (1UL << PG_writeback)
750 #define lru (1UL << PG_lru)
751 #define swapbacked (1UL << PG_swapbacked)
752 #define head (1UL << PG_head)
753 #define tail (1UL << PG_tail)
754 #define compound (1UL << PG_compound)
755 #define slab (1UL << PG_slab)
756 #define reserved (1UL << PG_reserved)
757 
758 static struct page_state {
759  unsigned long mask;
760  unsigned long res;
761  char *msg;
762  int (*action)(struct page *p, unsigned long pfn);
763 } error_states[] = {
764  { reserved, reserved, "reserved kernel", me_kernel },
765  /*
766  * free pages are specially detected outside this table:
767  * PG_buddy pages only make a small fraction of all free pages.
768  */
769 
770  /*
771  * Could in theory check if slab page is free or if we can drop
772  * currently unused objects without touching them. But just
773  * treat it as standard kernel for now.
774  */
775  { slab, slab, "kernel slab", me_kernel },
776 
777 #ifdef CONFIG_PAGEFLAGS_EXTENDED
778  { head, head, "huge", me_huge_page },
779  { tail, tail, "huge", me_huge_page },
780 #else
781  { compound, compound, "huge", me_huge_page },
782 #endif
783 
784  { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
785  { sc|dirty, sc, "swapcache", me_swapcache_clean },
786 
787  { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
788  { unevict, unevict, "unevictable LRU", me_pagecache_clean},
789 
790  { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
791  { mlock, mlock, "mlocked LRU", me_pagecache_clean },
792 
793  { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
794  { lru|dirty, lru, "clean LRU", me_pagecache_clean },
795 
796  /*
797  * Catchall entry: must be at end.
798  */
799  { 0, 0, "unknown page state", me_unknown },
800 };
801 
802 #undef dirty
803 #undef sc
804 #undef unevict
805 #undef mlock
806 #undef writeback
807 #undef lru
808 #undef swapbacked
809 #undef head
810 #undef tail
811 #undef compound
812 #undef slab
813 #undef reserved
814 
815 static void action_result(unsigned long pfn, char *msg, int result)
816 {
817  struct page *page = pfn_to_page(pfn);
818 
819  printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
820  pfn,
821  PageDirty(page) ? "dirty " : "",
822  msg, action_name[result]);
823 }
824 
825 static int page_action(struct page_state *ps, struct page *p,
826  unsigned long pfn)
827 {
828  int result;
829  int count;
830 
831  result = ps->action(p, pfn);
832  action_result(pfn, ps->msg, result);
833 
834  count = page_count(p) - 1;
835  if (ps->action == me_swapcache_dirty && result == DELAYED)
836  count--;
837  if (count != 0) {
839  "MCE %#lx: %s page still referenced by %d users\n",
840  pfn, ps->msg, count);
841  result = FAILED;
842  }
843 
844  /* Could do more checks here if page looks ok */
845  /*
846  * Could adjust zone counters here to correct for the missing page.
847  */
848 
849  return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
850 }
851 
852 /*
853  * Do all that is necessary to remove user space mappings. Unmap
854  * the pages and send SIGBUS to the processes if the data was dirty.
855  */
856 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
857  int trapno, int flags)
858 {
860  struct address_space *mapping;
861  LIST_HEAD(tokill);
862  int ret;
863  int kill = 1, forcekill;
864  struct page *hpage = compound_head(p);
865  struct page *ppage;
866 
867  if (PageReserved(p) || PageSlab(p))
868  return SWAP_SUCCESS;
869 
870  /*
871  * This check implies we don't kill processes if their pages
872  * are in the swap cache early. Those are always late kills.
873  */
874  if (!page_mapped(hpage))
875  return SWAP_SUCCESS;
876 
877  if (PageKsm(p))
878  return SWAP_FAIL;
879 
880  if (PageSwapCache(p)) {
882  "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
883  ttu |= TTU_IGNORE_HWPOISON;
884  }
885 
886  /*
887  * Propagate the dirty bit from PTEs to struct page first, because we
888  * need this to decide if we should kill or just drop the page.
889  * XXX: the dirty test could be racy: set_page_dirty() may not always
890  * be called inside page lock (it's recommended but not enforced).
891  */
892  mapping = page_mapping(hpage);
893  if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
894  mapping_cap_writeback_dirty(mapping)) {
895  if (page_mkclean(hpage)) {
896  SetPageDirty(hpage);
897  } else {
898  kill = 0;
899  ttu |= TTU_IGNORE_HWPOISON;
901  "MCE %#lx: corrupted page was clean: dropped without side effects\n",
902  pfn);
903  }
904  }
905 
906  /*
907  * ppage: poisoned page
908  * if p is regular page(4k page)
909  * ppage == real poisoned page;
910  * else p is hugetlb or THP, ppage == head page.
911  */
912  ppage = hpage;
913 
914  if (PageTransHuge(hpage)) {
915  /*
916  * Verify that this isn't a hugetlbfs head page, the check for
917  * PageAnon is just for avoid tripping a split_huge_page
918  * internal debug check, as split_huge_page refuses to deal with
919  * anything that isn't an anon page. PageAnon can't go away fro
920  * under us because we hold a refcount on the hpage, without a
921  * refcount on the hpage. split_huge_page can't be safely called
922  * in the first place, having a refcount on the tail isn't
923  * enough * to be safe.
924  */
925  if (!PageHuge(hpage) && PageAnon(hpage)) {
926  if (unlikely(split_huge_page(hpage))) {
927  /*
928  * FIXME: if splitting THP is failed, it is
929  * better to stop the following operation rather
930  * than causing panic by unmapping. System might
931  * survive if the page is freed later.
932  */
934  "MCE %#lx: failed to split THP\n", pfn);
935 
936  BUG_ON(!PageHWPoison(p));
937  return SWAP_FAIL;
938  }
939  /* THP is split, so ppage should be the real poisoned page. */
940  ppage = p;
941  }
942  }
943 
944  /*
945  * First collect all the processes that have the page
946  * mapped in dirty form. This has to be done before try_to_unmap,
947  * because ttu takes the rmap data structures down.
948  *
949  * Error handling: We ignore errors here because
950  * there's nothing that can be done.
951  */
952  if (kill)
953  collect_procs(ppage, &tokill);
954 
955  if (hpage != ppage)
956  lock_page(ppage);
957 
958  ret = try_to_unmap(ppage, ttu);
959  if (ret != SWAP_SUCCESS)
960  printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
961  pfn, page_mapcount(ppage));
962 
963  if (hpage != ppage)
964  unlock_page(ppage);
965 
966  /*
967  * Now that the dirty bit has been propagated to the
968  * struct page and all unmaps done we can decide if
969  * killing is needed or not. Only kill when the page
970  * was dirty or the process is not restartable,
971  * otherwise the tokill list is merely
972  * freed. When there was a problem unmapping earlier
973  * use a more force-full uncatchable kill to prevent
974  * any accesses to the poisoned memory.
975  */
976  forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
977  kill_procs(&tokill, forcekill, trapno,
978  ret != SWAP_SUCCESS, p, pfn, flags);
979 
980  return ret;
981 }
982 
983 static void set_page_hwpoison_huge_page(struct page *hpage)
984 {
985  int i;
986  int nr_pages = 1 << compound_trans_order(hpage);
987  for (i = 0; i < nr_pages; i++)
988  SetPageHWPoison(hpage + i);
989 }
990 
991 static void clear_page_hwpoison_huge_page(struct page *hpage)
992 {
993  int i;
994  int nr_pages = 1 << compound_trans_order(hpage);
995  for (i = 0; i < nr_pages; i++)
996  ClearPageHWPoison(hpage + i);
997 }
998 
1017 int memory_failure(unsigned long pfn, int trapno, int flags)
1018 {
1019  struct page_state *ps;
1020  struct page *p;
1021  struct page *hpage;
1022  int res;
1023  unsigned int nr_pages;
1024 
1025  if (!sysctl_memory_failure_recovery)
1026  panic("Memory failure from trap %d on page %lx", trapno, pfn);
1027 
1028  if (!pfn_valid(pfn)) {
1030  "MCE %#lx: memory outside kernel control\n",
1031  pfn);
1032  return -ENXIO;
1033  }
1034 
1035  p = pfn_to_page(pfn);
1036  hpage = compound_head(p);
1037  if (TestSetPageHWPoison(p)) {
1038  printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1039  return 0;
1040  }
1041 
1042  nr_pages = 1 << compound_trans_order(hpage);
1043  atomic_long_add(nr_pages, &mce_bad_pages);
1044 
1045  /*
1046  * We need/can do nothing about count=0 pages.
1047  * 1) it's a free page, and therefore in safe hand:
1048  * prep_new_page() will be the gate keeper.
1049  * 2) it's a free hugepage, which is also safe:
1050  * an affected hugepage will be dequeued from hugepage freelist,
1051  * so there's no concern about reusing it ever after.
1052  * 3) it's part of a non-compound high order page.
1053  * Implies some kernel user: cannot stop them from
1054  * R/W the page; let's pray that the page has been
1055  * used and will be freed some time later.
1056  * In fact it's dangerous to directly bump up page count from 0,
1057  * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1058  */
1059  if (!(flags & MF_COUNT_INCREASED) &&
1060  !get_page_unless_zero(hpage)) {
1061  if (is_free_buddy_page(p)) {
1062  action_result(pfn, "free buddy", DELAYED);
1063  return 0;
1064  } else if (PageHuge(hpage)) {
1065  /*
1066  * Check "just unpoisoned", "filter hit", and
1067  * "race with other subpage."
1068  */
1069  lock_page(hpage);
1070  if (!PageHWPoison(hpage)
1071  || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1072  || (p != hpage && TestSetPageHWPoison(hpage))) {
1073  atomic_long_sub(nr_pages, &mce_bad_pages);
1074  return 0;
1075  }
1076  set_page_hwpoison_huge_page(hpage);
1077  res = dequeue_hwpoisoned_huge_page(hpage);
1078  action_result(pfn, "free huge",
1079  res ? IGNORED : DELAYED);
1080  unlock_page(hpage);
1081  return res;
1082  } else {
1083  action_result(pfn, "high order kernel", IGNORED);
1084  return -EBUSY;
1085  }
1086  }
1087 
1088  /*
1089  * We ignore non-LRU pages for good reasons.
1090  * - PG_locked is only well defined for LRU pages and a few others
1091  * - to avoid races with __set_page_locked()
1092  * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1093  * The check (unnecessarily) ignores LRU pages being isolated and
1094  * walked by the page reclaim code, however that's not a big loss.
1095  */
1096  if (!PageHuge(p) && !PageTransTail(p)) {
1097  if (!PageLRU(p))
1098  shake_page(p, 0);
1099  if (!PageLRU(p)) {
1100  /*
1101  * shake_page could have turned it free.
1102  */
1103  if (is_free_buddy_page(p)) {
1104  action_result(pfn, "free buddy, 2nd try",
1105  DELAYED);
1106  return 0;
1107  }
1108  action_result(pfn, "non LRU", IGNORED);
1109  put_page(p);
1110  return -EBUSY;
1111  }
1112  }
1113 
1114  /*
1115  * Lock the page and wait for writeback to finish.
1116  * It's very difficult to mess with pages currently under IO
1117  * and in many cases impossible, so we just avoid it here.
1118  */
1119  lock_page(hpage);
1120 
1121  /*
1122  * unpoison always clear PG_hwpoison inside page lock
1123  */
1124  if (!PageHWPoison(p)) {
1125  printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1126  res = 0;
1127  goto out;
1128  }
1129  if (hwpoison_filter(p)) {
1130  if (TestClearPageHWPoison(p))
1131  atomic_long_sub(nr_pages, &mce_bad_pages);
1132  unlock_page(hpage);
1133  put_page(hpage);
1134  return 0;
1135  }
1136 
1137  /*
1138  * For error on the tail page, we should set PG_hwpoison
1139  * on the head page to show that the hugepage is hwpoisoned
1140  */
1141  if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1142  action_result(pfn, "hugepage already hardware poisoned",
1143  IGNORED);
1144  unlock_page(hpage);
1145  put_page(hpage);
1146  return 0;
1147  }
1148  /*
1149  * Set PG_hwpoison on all pages in an error hugepage,
1150  * because containment is done in hugepage unit for now.
1151  * Since we have done TestSetPageHWPoison() for the head page with
1152  * page lock held, we can safely set PG_hwpoison bits on tail pages.
1153  */
1154  if (PageHuge(p))
1155  set_page_hwpoison_huge_page(hpage);
1156 
1157  wait_on_page_writeback(p);
1158 
1159  /*
1160  * Now take care of user space mappings.
1161  * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1162  */
1163  if (hwpoison_user_mappings(p, pfn, trapno, flags) != SWAP_SUCCESS) {
1164  printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1165  res = -EBUSY;
1166  goto out;
1167  }
1168 
1169  /*
1170  * Torn down by someone else?
1171  */
1172  if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1173  action_result(pfn, "already truncated LRU", IGNORED);
1174  res = -EBUSY;
1175  goto out;
1176  }
1177 
1178  res = -EBUSY;
1179  for (ps = error_states;; ps++) {
1180  if ((p->flags & ps->mask) == ps->res) {
1181  res = page_action(ps, p, pfn);
1182  break;
1183  }
1184  }
1185 out:
1186  unlock_page(hpage);
1187  return res;
1188 }
1190 
1191 #define MEMORY_FAILURE_FIFO_ORDER 4
1192 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1193 
1195  unsigned long pfn;
1196  int trapno;
1197  int flags;
1198 };
1199 
1205 };
1206 
1208 
1226 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1227 {
1228  struct memory_failure_cpu *mf_cpu;
1229  unsigned long proc_flags;
1230  struct memory_failure_entry entry = {
1231  .pfn = pfn,
1232  .trapno = trapno,
1233  .flags = flags,
1234  };
1235 
1236  mf_cpu = &get_cpu_var(memory_failure_cpu);
1237  spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1238  if (kfifo_put(&mf_cpu->fifo, &entry))
1239  schedule_work_on(smp_processor_id(), &mf_cpu->work);
1240  else
1241  pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
1242  pfn);
1243  spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1245 }
1247 
1248 static void memory_failure_work_func(struct work_struct *work)
1249 {
1250  struct memory_failure_cpu *mf_cpu;
1251  struct memory_failure_entry entry = { 0, };
1252  unsigned long proc_flags;
1253  int gotten;
1254 
1255  mf_cpu = &__get_cpu_var(memory_failure_cpu);
1256  for (;;) {
1257  spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1258  gotten = kfifo_get(&mf_cpu->fifo, &entry);
1259  spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1260  if (!gotten)
1261  break;
1262  memory_failure(entry.pfn, entry.trapno, entry.flags);
1263  }
1264 }
1265 
1266 static int __init memory_failure_init(void)
1267 {
1268  struct memory_failure_cpu *mf_cpu;
1269  int cpu;
1270 
1271  for_each_possible_cpu(cpu) {
1272  mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1273  spin_lock_init(&mf_cpu->lock);
1274  INIT_KFIFO(mf_cpu->fifo);
1275  INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1276  }
1277 
1278  return 0;
1279 }
1280 core_initcall(memory_failure_init);
1281 
1294 int unpoison_memory(unsigned long pfn)
1295 {
1296  struct page *page;
1297  struct page *p;
1298  int freeit = 0;
1299  unsigned int nr_pages;
1300 
1301  if (!pfn_valid(pfn))
1302  return -ENXIO;
1303 
1304  p = pfn_to_page(pfn);
1305  page = compound_head(p);
1306 
1307  if (!PageHWPoison(p)) {
1308  pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1309  return 0;
1310  }
1311 
1312  nr_pages = 1 << compound_trans_order(page);
1313 
1314  if (!get_page_unless_zero(page)) {
1315  /*
1316  * Since HWPoisoned hugepage should have non-zero refcount,
1317  * race between memory failure and unpoison seems to happen.
1318  * In such case unpoison fails and memory failure runs
1319  * to the end.
1320  */
1321  if (PageHuge(page)) {
1322  pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1323  return 0;
1324  }
1325  if (TestClearPageHWPoison(p))
1326  atomic_long_sub(nr_pages, &mce_bad_pages);
1327  pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1328  return 0;
1329  }
1330 
1331  lock_page(page);
1332  /*
1333  * This test is racy because PG_hwpoison is set outside of page lock.
1334  * That's acceptable because that won't trigger kernel panic. Instead,
1335  * the PG_hwpoison page will be caught and isolated on the entrance to
1336  * the free buddy page pool.
1337  */
1338  if (TestClearPageHWPoison(page)) {
1339  pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1340  atomic_long_sub(nr_pages, &mce_bad_pages);
1341  freeit = 1;
1342  if (PageHuge(page))
1343  clear_page_hwpoison_huge_page(page);
1344  }
1345  unlock_page(page);
1346 
1347  put_page(page);
1348  if (freeit)
1349  put_page(page);
1350 
1351  return 0;
1352 }
1354 
1355 static struct page *new_page(struct page *p, unsigned long private, int **x)
1356 {
1357  int nid = page_to_nid(p);
1358  if (PageHuge(p))
1359  return alloc_huge_page_node(page_hstate(compound_head(p)),
1360  nid);
1361  else
1362  return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1363 }
1364 
1365 /*
1366  * Safely get reference count of an arbitrary page.
1367  * Returns 0 for a free page, -EIO for a zero refcount page
1368  * that is not free, and 1 for any other page type.
1369  * For 1 the page is returned with increased page count, otherwise not.
1370  */
1371 static int get_any_page(struct page *p, unsigned long pfn, int flags)
1372 {
1373  int ret;
1374 
1375  if (flags & MF_COUNT_INCREASED)
1376  return 1;
1377 
1378  /*
1379  * The lock_memory_hotplug prevents a race with memory hotplug.
1380  * This is a big hammer, a better would be nicer.
1381  */
1383 
1384  /*
1385  * Isolate the page, so that it doesn't get reallocated if it
1386  * was free.
1387  */
1389  /*
1390  * When the target page is a free hugepage, just remove it
1391  * from free hugepage list.
1392  */
1393  if (!get_page_unless_zero(compound_head(p))) {
1394  if (PageHuge(p)) {
1395  pr_info("%s: %#lx free huge page\n", __func__, pfn);
1396  ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1397  } else if (is_free_buddy_page(p)) {
1398  pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1399  /* Set hwpoison bit while page is still isolated */
1400  SetPageHWPoison(p);
1401  ret = 0;
1402  } else {
1403  pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1404  __func__, pfn, p->flags);
1405  ret = -EIO;
1406  }
1407  } else {
1408  /* Not a free page */
1409  ret = 1;
1410  }
1413  return ret;
1414 }
1415 
1416 static int soft_offline_huge_page(struct page *page, int flags)
1417 {
1418  int ret;
1419  unsigned long pfn = page_to_pfn(page);
1420  struct page *hpage = compound_head(page);
1421 
1422  ret = get_any_page(page, pfn, flags);
1423  if (ret < 0)
1424  return ret;
1425  if (ret == 0)
1426  goto done;
1427 
1428  if (PageHWPoison(hpage)) {
1429  put_page(hpage);
1430  pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1431  return -EBUSY;
1432  }
1433 
1434  /* Keep page count to indicate a given hugepage is isolated. */
1435  ret = migrate_huge_page(hpage, new_page, MPOL_MF_MOVE_ALL, false,
1436  MIGRATE_SYNC);
1437  put_page(hpage);
1438  if (ret) {
1439  pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1440  pfn, ret, page->flags);
1441  return ret;
1442  }
1443 done:
1444  if (!PageHWPoison(hpage))
1445  atomic_long_add(1 << compound_trans_order(hpage),
1446  &mce_bad_pages);
1447  set_page_hwpoison_huge_page(hpage);
1448  dequeue_hwpoisoned_huge_page(hpage);
1449  /* keep elevated page count for bad page */
1450  return ret;
1451 }
1452 
1475 int soft_offline_page(struct page *page, int flags)
1476 {
1477  int ret;
1478  unsigned long pfn = page_to_pfn(page);
1479  struct page *hpage = compound_trans_head(page);
1480 
1481  if (PageHuge(page))
1482  return soft_offline_huge_page(page, flags);
1483  if (PageTransHuge(hpage)) {
1484  if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1485  pr_info("soft offline: %#lx: failed to split THP\n",
1486  pfn);
1487  return -EBUSY;
1488  }
1489  }
1490 
1491  ret = get_any_page(page, pfn, flags);
1492  if (ret < 0)
1493  return ret;
1494  if (ret == 0)
1495  goto done;
1496 
1497  /*
1498  * Page cache page we can handle?
1499  */
1500  if (!PageLRU(page)) {
1501  /*
1502  * Try to free it.
1503  */
1504  put_page(page);
1505  shake_page(page, 1);
1506 
1507  /*
1508  * Did it turn free?
1509  */
1510  ret = get_any_page(page, pfn, 0);
1511  if (ret < 0)
1512  return ret;
1513  if (ret == 0)
1514  goto done;
1515  }
1516  if (!PageLRU(page)) {
1517  pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1518  pfn, page->flags);
1519  return -EIO;
1520  }
1521 
1522  lock_page(page);
1523  wait_on_page_writeback(page);
1524 
1525  /*
1526  * Synchronized using the page lock with memory_failure()
1527  */
1528  if (PageHWPoison(page)) {
1529  unlock_page(page);
1530  put_page(page);
1531  pr_info("soft offline: %#lx page already poisoned\n", pfn);
1532  return -EBUSY;
1533  }
1534 
1535  /*
1536  * Try to invalidate first. This should work for
1537  * non dirty unmapped page cache pages.
1538  */
1539  ret = invalidate_inode_page(page);
1540  unlock_page(page);
1541  /*
1542  * RED-PEN would be better to keep it isolated here, but we
1543  * would need to fix isolation locking first.
1544  */
1545  if (ret == 1) {
1546  put_page(page);
1547  ret = 0;
1548  pr_info("soft_offline: %#lx: invalidated\n", pfn);
1549  goto done;
1550  }
1551 
1552  /*
1553  * Simple invalidation didn't work.
1554  * Try to migrate to a new page instead. migrate.c
1555  * handles a large number of cases for us.
1556  */
1557  ret = isolate_lru_page(page);
1558  /*
1559  * Drop page reference which is came from get_any_page()
1560  * successful isolate_lru_page() already took another one.
1561  */
1562  put_page(page);
1563  if (!ret) {
1564  LIST_HEAD(pagelist);
1566  page_is_file_cache(page));
1567  list_add(&page->lru, &pagelist);
1568  ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1569  false, MIGRATE_SYNC);
1570  if (ret) {
1571  putback_lru_pages(&pagelist);
1572  pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1573  pfn, ret, page->flags);
1574  if (ret > 0)
1575  ret = -EIO;
1576  }
1577  } else {
1578  pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1579  pfn, ret, page_count(page), page->flags);
1580  }
1581  if (ret)
1582  return ret;
1583 
1584 done:
1585  atomic_long_add(1, &mce_bad_pages);
1586  SetPageHWPoison(page);
1587  /* keep elevated page count for bad page */
1588  return ret;
1589 }