Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
pci-common.c
Go to the documentation of this file.
1 /*
2  * Contains common pci routines for ALL ppc platform
3  * (based on pci_32.c and pci_64.c)
4  *
5  * Port for PPC64 David Engebretsen, IBM Corp.
6  * Contains common pci routines for ppc64 platform, pSeries and iSeries brands.
7  *
8  * Copyright (C) 2003 Anton Blanchard <[email protected]>, IBM
9  * Rework, based on alpha PCI code.
10  *
11  * Common pmac/prep/chrp pci routines. -- Cort
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License
15  * as published by the Free Software Foundation; either version
16  * 2 of the License, or (at your option) any later version.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/pci.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h>
24 #include <linux/mm.h>
25 #include <linux/list.h>
26 #include <linux/syscalls.h>
27 #include <linux/irq.h>
28 #include <linux/vmalloc.h>
29 #include <linux/slab.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_pci.h>
33 #include <linux/export.h>
34 
35 #include <asm/processor.h>
36 #include <asm/io.h>
37 #include <asm/pci-bridge.h>
38 #include <asm/byteorder.h>
39 
40 static DEFINE_SPINLOCK(hose_spinlock);
41 LIST_HEAD(hose_list);
42 
43 /* XXX kill that some day ... */
44 static int global_phb_number; /* Global phb counter */
45 
46 /* ISA Memory physical address */
48 
49 static struct dma_map_ops *pci_dma_ops = &dma_direct_ops;
50 
51 unsigned long isa_io_base;
52 unsigned long pci_dram_offset;
53 static int pci_bus_count;
54 
55 
57 {
58  pci_dma_ops = dma_ops;
59 }
60 
62 {
63  return pci_dma_ops;
64 }
66 
68 {
69  struct pci_controller *phb;
70 
71  phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL);
72  if (!phb)
73  return NULL;
74  spin_lock(&hose_spinlock);
75  phb->global_number = global_phb_number++;
76  list_add_tail(&phb->list_node, &hose_list);
77  spin_unlock(&hose_spinlock);
78  phb->dn = dev;
79  phb->is_dynamic = mem_init_done;
80  return phb;
81 }
82 
84 {
85  spin_lock(&hose_spinlock);
86  list_del(&phb->list_node);
87  spin_unlock(&hose_spinlock);
88 
89  if (phb->is_dynamic)
90  kfree(phb);
91 }
92 
93 static resource_size_t pcibios_io_size(const struct pci_controller *hose)
94 {
95  return resource_size(&hose->io_resource);
96 }
97 
99 {
100  int ret = 0;
101  struct pci_controller *hose;
103 
104  spin_lock(&hose_spinlock);
105  list_for_each_entry(hose, &hose_list, list_node) {
106  size = pcibios_io_size(hose);
107  if (address >= hose->io_base_virt &&
108  address < (hose->io_base_virt + size)) {
109  ret = 1;
110  break;
111  }
112  }
113  spin_unlock(&hose_spinlock);
114  return ret;
115 }
116 
118 {
119  struct pci_controller *hose;
121  unsigned long ret = ~0;
122 
123  spin_lock(&hose_spinlock);
124  list_for_each_entry(hose, &hose_list, list_node) {
125  size = pcibios_io_size(hose);
126  if (address >= hose->io_base_phys &&
127  address < (hose->io_base_phys + size)) {
128  unsigned long base =
129  (unsigned long)hose->io_base_virt - _IO_BASE;
130  ret = base + (address - hose->io_base_phys);
131  break;
132  }
133  }
134  spin_unlock(&hose_spinlock);
135 
136  return ret;
137 }
139 
140 /*
141  * Return the domain number for this bus.
142  */
144 {
145  struct pci_controller *hose = pci_bus_to_host(bus);
146 
147  return hose->global_number;
148 }
150 
151 /* This routine is meant to be used early during boot, when the
152  * PCI bus numbers have not yet been assigned, and you need to
153  * issue PCI config cycles to an OF device.
154  * It could also be used to "fix" RTAS config cycles if you want
155  * to set pci_assign_all_buses to 1 and still use RTAS for PCI
156  * config cycles.
157  */
159 {
160  while (node) {
161  struct pci_controller *hose, *tmp;
162  list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
163  if (hose->dn == node)
164  return hose;
165  node = node->parent;
166  }
167  return NULL;
168 }
169 
170 static ssize_t pci_show_devspec(struct device *dev,
171  struct device_attribute *attr, char *buf)
172 {
173  struct pci_dev *pdev;
174  struct device_node *np;
175 
176  pdev = to_pci_dev(dev);
177  np = pci_device_to_OF_node(pdev);
178  if (np == NULL || np->full_name == NULL)
179  return 0;
180  return sprintf(buf, "%s", np->full_name);
181 }
182 static DEVICE_ATTR(devspec, S_IRUGO, pci_show_devspec, NULL);
183 
184 /* Add sysfs properties */
186 {
187  return device_create_file(&pdev->dev, &dev_attr_devspec);
188 }
189 
190 void pcibios_set_master(struct pci_dev *dev)
191 {
192  /* No special bus mastering setup handling */
193 }
194 
195 /*
196  * Reads the interrupt pin to determine if interrupt is use by card.
197  * If the interrupt is used, then gets the interrupt line from the
198  * openfirmware and sets it in the pci_dev and pci_config line.
199  */
201 {
202  struct of_irq oirq;
203  unsigned int virq;
204 
205  /* The current device-tree that iSeries generates from the HV
206  * PCI informations doesn't contain proper interrupt routing,
207  * and all the fallback would do is print out crap, so we
208  * don't attempt to resolve the interrupts here at all, some
209  * iSeries specific fixup does it.
210  *
211  * In the long run, we will hopefully fix the generated device-tree
212  * instead.
213  */
214  pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev));
215 
216 #ifdef DEBUG
217  memset(&oirq, 0xff, sizeof(oirq));
218 #endif
219  /* Try to get a mapping from the device-tree */
220  if (of_irq_map_pci(pci_dev, &oirq)) {
221  u8 line, pin;
222 
223  /* If that fails, lets fallback to what is in the config
224  * space and map that through the default controller. We
225  * also set the type to level low since that's what PCI
226  * interrupts are. If your platform does differently, then
227  * either provide a proper interrupt tree or don't use this
228  * function.
229  */
230  if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin))
231  return -1;
232  if (pin == 0)
233  return -1;
234  if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) ||
235  line == 0xff || line == 0) {
236  return -1;
237  }
238  pr_debug(" No map ! Using line %d (pin %d) from PCI config\n",
239  line, pin);
240 
241  virq = irq_create_mapping(NULL, line);
242  if (virq)
244  } else {
245  pr_debug(" Got one, spec %d cells (0x%08x 0x%08x...) on %s\n",
246  oirq.size, oirq.specifier[0], oirq.specifier[1],
247  of_node_full_name(oirq.controller));
248 
249  virq = irq_create_of_mapping(oirq.controller, oirq.specifier,
250  oirq.size);
251  }
252  if (!virq) {
253  pr_debug(" Failed to map !\n");
254  return -1;
255  }
256 
257  pr_debug(" Mapped to linux irq %d\n", virq);
258 
259  pci_dev->irq = virq;
260 
261  return 0;
262 }
264 
265 /*
266  * Platform support for /proc/bus/pci/X/Y mmap()s,
267  * modelled on the sparc64 implementation by Dave Miller.
268  * -- paulus.
269  */
270 
271 /*
272  * Adjust vm_pgoff of VMA such that it is the physical page offset
273  * corresponding to the 32-bit pci bus offset for DEV requested by the user.
274  *
275  * Basically, the user finds the base address for his device which he wishes
276  * to mmap. They read the 32-bit value from the config space base register,
277  * add whatever PAGE_SIZE multiple offset they wish, and feed this into the
278  * offset parameter of mmap on /proc/bus/pci/XXX for that device.
279  *
280  * Returns negative error code on failure, zero on success.
281  */
282 static struct resource *__pci_mmap_make_offset(struct pci_dev *dev,
284  enum pci_mmap_state mmap_state)
285 {
286  struct pci_controller *hose = pci_bus_to_host(dev->bus);
287  unsigned long io_offset = 0;
288  int i, res_bit;
289 
290  if (hose == 0)
291  return NULL; /* should never happen */
292 
293  /* If memory, add on the PCI bridge address offset */
294  if (mmap_state == pci_mmap_mem) {
295 #if 0 /* See comment in pci_resource_to_user() for why this is disabled */
296  *offset += hose->pci_mem_offset;
297 #endif
298  res_bit = IORESOURCE_MEM;
299  } else {
300  io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
301  *offset += io_offset;
302  res_bit = IORESOURCE_IO;
303  }
304 
305  /*
306  * Check that the offset requested corresponds to one of the
307  * resources of the device.
308  */
309  for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
310  struct resource *rp = &dev->resource[i];
311  int flags = rp->flags;
312 
313  /* treat ROM as memory (should be already) */
314  if (i == PCI_ROM_RESOURCE)
315  flags |= IORESOURCE_MEM;
316 
317  /* Active and same type? */
318  if ((flags & res_bit) == 0)
319  continue;
320 
321  /* In the range of this resource? */
322  if (*offset < (rp->start & PAGE_MASK) || *offset > rp->end)
323  continue;
324 
325  /* found it! construct the final physical address */
326  if (mmap_state == pci_mmap_io)
327  *offset += hose->io_base_phys - io_offset;
328  return rp;
329  }
330 
331  return NULL;
332 }
333 
334 /*
335  * Set vm_page_prot of VMA, as appropriate for this architecture, for a pci
336  * device mapping.
337  */
338 static pgprot_t __pci_mmap_set_pgprot(struct pci_dev *dev, struct resource *rp,
339  pgprot_t protection,
340  enum pci_mmap_state mmap_state,
341  int write_combine)
342 {
343  pgprot_t prot = protection;
344 
345  /* Write combine is always 0 on non-memory space mappings. On
346  * memory space, if the user didn't pass 1, we check for a
347  * "prefetchable" resource. This is a bit hackish, but we use
348  * this to workaround the inability of /sysfs to provide a write
349  * combine bit
350  */
351  if (mmap_state != pci_mmap_mem)
352  write_combine = 0;
353  else if (write_combine == 0) {
354  if (rp->flags & IORESOURCE_PREFETCH)
355  write_combine = 1;
356  }
357 
358  return pgprot_noncached(prot);
359 }
360 
361 /*
362  * This one is used by /dev/mem and fbdev who have no clue about the
363  * PCI device, it tries to find the PCI device first and calls the
364  * above routine
365  */
367  unsigned long pfn,
368  unsigned long size,
369  pgprot_t prot)
370 {
371  struct pci_dev *pdev = NULL;
372  struct resource *found = NULL;
373  resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT;
374  int i;
375 
376  if (page_is_ram(pfn))
377  return prot;
378 
379  prot = pgprot_noncached(prot);
380  for_each_pci_dev(pdev) {
381  for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
382  struct resource *rp = &pdev->resource[i];
383  int flags = rp->flags;
384 
385  /* Active and same type? */
386  if ((flags & IORESOURCE_MEM) == 0)
387  continue;
388  /* In the range of this resource? */
389  if (offset < (rp->start & PAGE_MASK) ||
390  offset > rp->end)
391  continue;
392  found = rp;
393  break;
394  }
395  if (found)
396  break;
397  }
398  if (found) {
399  if (found->flags & IORESOURCE_PREFETCH)
400  prot = pgprot_noncached_wc(prot);
401  pci_dev_put(pdev);
402  }
403 
404  pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n",
405  (unsigned long long)offset, pgprot_val(prot));
406 
407  return prot;
408 }
409 
410 /*
411  * Perform the actual remap of the pages for a PCI device mapping, as
412  * appropriate for this architecture. The region in the process to map
413  * is described by vm_start and vm_end members of VMA, the base physical
414  * address is found in vm_pgoff.
415  * The pci device structure is provided so that architectures may make mapping
416  * decisions on a per-device or per-bus basis.
417  *
418  * Returns a negative error code on failure, zero on success.
419  */
420 int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma,
421  enum pci_mmap_state mmap_state, int write_combine)
422 {
423  resource_size_t offset =
425  struct resource *rp;
426  int ret;
427 
428  rp = __pci_mmap_make_offset(dev, &offset, mmap_state);
429  if (rp == NULL)
430  return -EINVAL;
431 
432  vma->vm_pgoff = offset >> PAGE_SHIFT;
433  vma->vm_page_prot = __pci_mmap_set_pgprot(dev, rp,
434  vma->vm_page_prot,
435  mmap_state, write_combine);
436 
437  ret = remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
438  vma->vm_end - vma->vm_start, vma->vm_page_prot);
439 
440  return ret;
441 }
442 
443 /* This provides legacy IO read access on a bus */
444 int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size)
445 {
446  unsigned long offset;
447  struct pci_controller *hose = pci_bus_to_host(bus);
448  struct resource *rp = &hose->io_resource;
449  void __iomem *addr;
450 
451  /* Check if port can be supported by that bus. We only check
452  * the ranges of the PHB though, not the bus itself as the rules
453  * for forwarding legacy cycles down bridges are not our problem
454  * here. So if the host bridge supports it, we do it.
455  */
456  offset = (unsigned long)hose->io_base_virt - _IO_BASE;
457  offset += port;
458 
459  if (!(rp->flags & IORESOURCE_IO))
460  return -ENXIO;
461  if (offset < rp->start || (offset + size) > rp->end)
462  return -ENXIO;
463  addr = hose->io_base_virt + port;
464 
465  switch (size) {
466  case 1:
467  *((u8 *)val) = in_8(addr);
468  return 1;
469  case 2:
470  if (port & 1)
471  return -EINVAL;
472  *((u16 *)val) = in_le16(addr);
473  return 2;
474  case 4:
475  if (port & 3)
476  return -EINVAL;
477  *((u32 *)val) = in_le32(addr);
478  return 4;
479  }
480  return -EINVAL;
481 }
482 
483 /* This provides legacy IO write access on a bus */
484 int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size)
485 {
486  unsigned long offset;
487  struct pci_controller *hose = pci_bus_to_host(bus);
488  struct resource *rp = &hose->io_resource;
489  void __iomem *addr;
490 
491  /* Check if port can be supported by that bus. We only check
492  * the ranges of the PHB though, not the bus itself as the rules
493  * for forwarding legacy cycles down bridges are not our problem
494  * here. So if the host bridge supports it, we do it.
495  */
496  offset = (unsigned long)hose->io_base_virt - _IO_BASE;
497  offset += port;
498 
499  if (!(rp->flags & IORESOURCE_IO))
500  return -ENXIO;
501  if (offset < rp->start || (offset + size) > rp->end)
502  return -ENXIO;
503  addr = hose->io_base_virt + port;
504 
505  /* WARNING: The generic code is idiotic. It gets passed a pointer
506  * to what can be a 1, 2 or 4 byte quantity and always reads that
507  * as a u32, which means that we have to correct the location of
508  * the data read within those 32 bits for size 1 and 2
509  */
510  switch (size) {
511  case 1:
512  out_8(addr, val >> 24);
513  return 1;
514  case 2:
515  if (port & 1)
516  return -EINVAL;
517  out_le16(addr, val >> 16);
518  return 2;
519  case 4:
520  if (port & 3)
521  return -EINVAL;
522  out_le32(addr, val);
523  return 4;
524  }
525  return -EINVAL;
526 }
527 
528 /* This provides legacy IO or memory mmap access on a bus */
530  struct vm_area_struct *vma,
531  enum pci_mmap_state mmap_state)
532 {
533  struct pci_controller *hose = pci_bus_to_host(bus);
534  resource_size_t offset =
536  resource_size_t size = vma->vm_end - vma->vm_start;
537  struct resource *rp;
538 
539  pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n",
540  pci_domain_nr(bus), bus->number,
541  mmap_state == pci_mmap_mem ? "MEM" : "IO",
542  (unsigned long long)offset,
543  (unsigned long long)(offset + size - 1));
544 
545  if (mmap_state == pci_mmap_mem) {
546  /* Hack alert !
547  *
548  * Because X is lame and can fail starting if it gets an error
549  * trying to mmap legacy_mem (instead of just moving on without
550  * legacy memory access) we fake it here by giving it anonymous
551  * memory, effectively behaving just like /dev/zero
552  */
553  if ((offset + size) > hose->isa_mem_size) {
554 #ifdef CONFIG_MMU
556  "Process %s (pid:%d) mapped non-existing PCI"
557  "legacy memory for 0%04x:%02x\n",
558  current->comm, current->pid, pci_domain_nr(bus),
559  bus->number);
560 #endif
561  if (vma->vm_flags & VM_SHARED)
562  return shmem_zero_setup(vma);
563  return 0;
564  }
565  offset += hose->isa_mem_phys;
566  } else {
567  unsigned long io_offset = (unsigned long)hose->io_base_virt - \
568  _IO_BASE;
569  unsigned long roffset = offset + io_offset;
570  rp = &hose->io_resource;
571  if (!(rp->flags & IORESOURCE_IO))
572  return -ENXIO;
573  if (roffset < rp->start || (roffset + size) > rp->end)
574  return -ENXIO;
575  offset += hose->io_base_phys;
576  }
577  pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset);
578 
579  vma->vm_pgoff = offset >> PAGE_SHIFT;
581  return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
582  vma->vm_end - vma->vm_start,
583  vma->vm_page_prot);
584 }
585 
586 void pci_resource_to_user(const struct pci_dev *dev, int bar,
587  const struct resource *rsrc,
589 {
590  struct pci_controller *hose = pci_bus_to_host(dev->bus);
591  resource_size_t offset = 0;
592 
593  if (hose == NULL)
594  return;
595 
596  if (rsrc->flags & IORESOURCE_IO)
597  offset = (unsigned long)hose->io_base_virt - _IO_BASE;
598 
599  /* We pass a fully fixed up address to userland for MMIO instead of
600  * a BAR value because X is lame and expects to be able to use that
601  * to pass to /dev/mem !
602  *
603  * That means that we'll have potentially 64 bits values where some
604  * userland apps only expect 32 (like X itself since it thinks only
605  * Sparc has 64 bits MMIO) but if we don't do that, we break it on
606  * 32 bits CHRPs :-(
607  *
608  * Hopefully, the sysfs insterface is immune to that gunk. Once X
609  * has been fixed (and the fix spread enough), we can re-enable the
610  * 2 lines below and pass down a BAR value to userland. In that case
611  * we'll also have to re-enable the matching code in
612  * __pci_mmap_make_offset().
613  *
614  * BenH.
615  */
616 #if 0
617  else if (rsrc->flags & IORESOURCE_MEM)
618  offset = hose->pci_mem_offset;
619 #endif
620 
621  *start = rsrc->start - offset;
622  *end = rsrc->end - offset;
623 }
624 
659  struct device_node *dev,
660  int primary)
661 {
662  const u32 *ranges;
663  int rlen;
664  int pna = of_n_addr_cells(dev);
665  int np = pna + 5;
666  int memno = 0, isa_hole = -1;
667  u32 pci_space;
668  unsigned long long pci_addr, cpu_addr, pci_next, cpu_next, size;
669  unsigned long long isa_mb = 0;
670  struct resource *res;
671 
672  printk(KERN_INFO "PCI host bridge %s %s ranges:\n",
673  dev->full_name, primary ? "(primary)" : "");
674 
675  /* Get ranges property */
676  ranges = of_get_property(dev, "ranges", &rlen);
677  if (ranges == NULL)
678  return;
679 
680  /* Parse it */
681  pr_debug("Parsing ranges property...\n");
682  while ((rlen -= np * 4) >= 0) {
683  /* Read next ranges element */
684  pci_space = ranges[0];
685  pci_addr = of_read_number(ranges + 1, 2);
686  cpu_addr = of_translate_address(dev, ranges + 3);
687  size = of_read_number(ranges + pna + 3, 2);
688 
689  pr_debug("pci_space: 0x%08x pci_addr:0x%016llx "
690  "cpu_addr:0x%016llx size:0x%016llx\n",
691  pci_space, pci_addr, cpu_addr, size);
692 
693  ranges += np;
694 
695  /* If we failed translation or got a zero-sized region
696  * (some FW try to feed us with non sensical zero sized regions
697  * such as power3 which look like some kind of attempt
698  * at exposing the VGA memory hole)
699  */
700  if (cpu_addr == OF_BAD_ADDR || size == 0)
701  continue;
702 
703  /* Now consume following elements while they are contiguous */
704  for (; rlen >= np * sizeof(u32);
705  ranges += np, rlen -= np * 4) {
706  if (ranges[0] != pci_space)
707  break;
708  pci_next = of_read_number(ranges + 1, 2);
709  cpu_next = of_translate_address(dev, ranges + 3);
710  if (pci_next != pci_addr + size ||
711  cpu_next != cpu_addr + size)
712  break;
713  size += of_read_number(ranges + pna + 3, 2);
714  }
715 
716  /* Act based on address space type */
717  res = NULL;
718  switch ((pci_space >> 24) & 0x3) {
719  case 1: /* PCI IO space */
721  " IO 0x%016llx..0x%016llx -> 0x%016llx\n",
722  cpu_addr, cpu_addr + size - 1, pci_addr);
723 
724  /* We support only one IO range */
725  if (hose->pci_io_size) {
727  " \\--> Skipped (too many) !\n");
728  continue;
729  }
730  /* On 32 bits, limit I/O space to 16MB */
731  if (size > 0x01000000)
732  size = 0x01000000;
733 
734  /* 32 bits needs to map IOs here */
735  hose->io_base_virt = ioremap(cpu_addr, size);
736 
737  /* Expect trouble if pci_addr is not 0 */
738  if (primary)
739  isa_io_base =
740  (unsigned long)hose->io_base_virt;
741  /* pci_io_size and io_base_phys always represent IO
742  * space starting at 0 so we factor in pci_addr
743  */
744  hose->pci_io_size = pci_addr + size;
745  hose->io_base_phys = cpu_addr - pci_addr;
746 
747  /* Build resource */
748  res = &hose->io_resource;
749  res->flags = IORESOURCE_IO;
750  res->start = pci_addr;
751  break;
752  case 2: /* PCI Memory space */
753  case 3: /* PCI 64 bits Memory space */
755  " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n",
756  cpu_addr, cpu_addr + size - 1, pci_addr,
757  (pci_space & 0x40000000) ? "Prefetch" : "");
758 
759  /* We support only 3 memory ranges */
760  if (memno >= 3) {
762  " \\--> Skipped (too many) !\n");
763  continue;
764  }
765  /* Handles ISA memory hole space here */
766  if (pci_addr == 0) {
767  isa_mb = cpu_addr;
768  isa_hole = memno;
769  if (primary || isa_mem_base == 0)
771  hose->isa_mem_phys = cpu_addr;
772  hose->isa_mem_size = size;
773  }
774 
775  /* We get the PCI/Mem offset from the first range or
776  * the, current one if the offset came from an ISA
777  * hole. If they don't match, bugger.
778  */
779  if (memno == 0 ||
780  (isa_hole >= 0 && pci_addr != 0 &&
781  hose->pci_mem_offset == isa_mb))
782  hose->pci_mem_offset = cpu_addr - pci_addr;
783  else if (pci_addr != 0 &&
784  hose->pci_mem_offset != cpu_addr - pci_addr) {
786  " \\--> Skipped (offset mismatch) !\n");
787  continue;
788  }
789 
790  /* Build resource */
791  res = &hose->mem_resources[memno++];
792  res->flags = IORESOURCE_MEM;
793  if (pci_space & 0x40000000)
794  res->flags |= IORESOURCE_PREFETCH;
795  res->start = cpu_addr;
796  break;
797  }
798  if (res != NULL) {
799  res->name = dev->full_name;
800  res->end = res->start + size - 1;
801  res->parent = NULL;
802  res->sibling = NULL;
803  res->child = NULL;
804  }
805  }
806 
807  /* If there's an ISA hole and the pci_mem_offset is -not- matching
808  * the ISA hole offset, then we need to remove the ISA hole from
809  * the resource list for that brige
810  */
811  if (isa_hole >= 0 && hose->pci_mem_offset != isa_mb) {
812  unsigned int next = isa_hole + 1;
813  printk(KERN_INFO " Removing ISA hole at 0x%016llx\n", isa_mb);
814  if (next < memno)
815  memmove(&hose->mem_resources[isa_hole],
816  &hose->mem_resources[next],
817  sizeof(struct resource) * (memno - next));
818  hose->mem_resources[--memno].flags = 0;
819  }
820 }
821 
822 /* Decide whether to display the domain number in /proc */
824 {
825  struct pci_controller *hose = pci_bus_to_host(bus);
826 
827  return 0;
828 }
829 
830 /* This header fixup will do the resource fixup for all devices as they are
831  * probed, but not for bridge ranges
832  */
833 static void __devinit pcibios_fixup_resources(struct pci_dev *dev)
834 {
835  struct pci_controller *hose = pci_bus_to_host(dev->bus);
836  int i;
837 
838  if (!hose) {
839  printk(KERN_ERR "No host bridge for PCI dev %s !\n",
840  pci_name(dev));
841  return;
842  }
843  for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
844  struct resource *res = dev->resource + i;
845  if (!res->flags)
846  continue;
847  if (res->start == 0) {
848  pr_debug("PCI:%s Resource %d %016llx-%016llx [%x]" \
849  "is unassigned\n",
850  pci_name(dev), i,
851  (unsigned long long)res->start,
852  (unsigned long long)res->end,
853  (unsigned int)res->flags);
854  res->end -= res->start;
855  res->start = 0;
856  res->flags |= IORESOURCE_UNSET;
857  continue;
858  }
859 
860  pr_debug("PCI:%s Resource %d %016llx-%016llx [%x]\n",
861  pci_name(dev), i,
862  (unsigned long long)res->start,\
863  (unsigned long long)res->end,
864  (unsigned int)res->flags);
865  }
866 }
868 
869 /* This function tries to figure out if a bridge resource has been initialized
870  * by the firmware or not. It doesn't have to be absolutely bullet proof, but
871  * things go more smoothly when it gets it right. It should covers cases such
872  * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges
873  */
874 static int __devinit pcibios_uninitialized_bridge_resource(struct pci_bus *bus,
875  struct resource *res)
876 {
877  struct pci_controller *hose = pci_bus_to_host(bus);
878  struct pci_dev *dev = bus->self;
880  u16 command;
881  int i;
882 
883  /* Job is a bit different between memory and IO */
884  if (res->flags & IORESOURCE_MEM) {
885  /* If the BAR is non-0 (res != pci_mem_offset) then it's
886  * probably been initialized by somebody
887  */
888  if (res->start != hose->pci_mem_offset)
889  return 0;
890 
891  /* The BAR is 0, let's check if memory decoding is enabled on
892  * the bridge. If not, we consider it unassigned
893  */
894  pci_read_config_word(dev, PCI_COMMAND, &command);
895  if ((command & PCI_COMMAND_MEMORY) == 0)
896  return 1;
897 
898  /* Memory decoding is enabled and the BAR is 0. If any of
899  * the bridge resources covers that starting address (0 then
900  * it's good enough for us for memory
901  */
902  for (i = 0; i < 3; i++) {
903  if ((hose->mem_resources[i].flags & IORESOURCE_MEM) &&
904  hose->mem_resources[i].start == hose->pci_mem_offset)
905  return 0;
906  }
907 
908  /* Well, it starts at 0 and we know it will collide so we may as
909  * well consider it as unassigned. That covers the Apple case.
910  */
911  return 1;
912  } else {
913  /* If the BAR is non-0, then we consider it assigned */
914  offset = (unsigned long)hose->io_base_virt - _IO_BASE;
915  if (((res->start - offset) & 0xfffffffful) != 0)
916  return 0;
917 
918  /* Here, we are a bit different than memory as typically IO
919  * space starting at low addresses -is- valid. What we do
920  * instead if that we consider as unassigned anything that
921  * doesn't have IO enabled in the PCI command register,
922  * and that's it.
923  */
924  pci_read_config_word(dev, PCI_COMMAND, &command);
925  if (command & PCI_COMMAND_IO)
926  return 0;
927 
928  /* It's starting at 0 and IO is disabled in the bridge, consider
929  * it unassigned
930  */
931  return 1;
932  }
933 }
934 
935 /* Fixup resources of a PCI<->PCI bridge */
936 static void __devinit pcibios_fixup_bridge(struct pci_bus *bus)
937 {
938  struct resource *res;
939  int i;
940 
941  struct pci_dev *dev = bus->self;
942 
943  pci_bus_for_each_resource(bus, res, i) {
944  if (!res)
945  continue;
946  if (!res->flags)
947  continue;
948  if (i >= 3 && bus->self->transparent)
949  continue;
950 
951  pr_debug("PCI:%s Bus rsrc %d %016llx-%016llx [%x] fixup...\n",
952  pci_name(dev), i,
953  (unsigned long long)res->start,\
954  (unsigned long long)res->end,
955  (unsigned int)res->flags);
956 
957  /* Try to detect uninitialized P2P bridge resources,
958  * and clear them out so they get re-assigned later
959  */
960  if (pcibios_uninitialized_bridge_resource(bus, res)) {
961  res->flags = 0;
962  pr_debug("PCI:%s (unassigned)\n",
963  pci_name(dev));
964  } else {
965  pr_debug("PCI:%s %016llx-%016llx\n",
966  pci_name(dev),
967  (unsigned long long)res->start,
968  (unsigned long long)res->end);
969  }
970  }
971 }
972 
974 {
975  /* Fix up the bus resources for P2P bridges */
976  if (bus->self != NULL)
977  pcibios_fixup_bridge(bus);
978 }
979 
981 {
982  struct pci_dev *dev;
983 
984  pr_debug("PCI: Fixup bus devices %d (%s)\n",
985  bus->number, bus->self ? pci_name(bus->self) : "PHB");
986 
987  list_for_each_entry(dev, &bus->devices, bus_list) {
988  /* Setup OF node pointer in archdata */
989  dev->dev.of_node = pci_device_to_OF_node(dev);
990 
991  /* Fixup NUMA node as it may not be setup yet by the generic
992  * code and is needed by the DMA init
993  */
994  set_dev_node(&dev->dev, pcibus_to_node(dev->bus));
995 
996  /* Hook up default DMA ops */
997  set_dma_ops(&dev->dev, pci_dma_ops);
998  dev->dev.archdata.dma_data = (void *)PCI_DRAM_OFFSET;
999 
1000  /* Read default IRQs and fixup if necessary */
1001  pci_read_irq_line(dev);
1002  }
1003 }
1004 
1006 {
1007  /* When called from the generic PCI probe, read PCI<->PCI bridge
1008  * bases. This is -not- called when generating the PCI tree from
1009  * the OF device-tree.
1010  */
1011  if (bus->self != NULL)
1012  pci_read_bridge_bases(bus);
1013 
1014  /* Now fixup the bus bus */
1016 
1017  /* Now fixup devices on that bus */
1019 }
1021 
1022 static int skip_isa_ioresource_align(struct pci_dev *dev)
1023 {
1024  return 0;
1025 }
1026 
1027 /*
1028  * We need to avoid collisions with `mirrored' VGA ports
1029  * and other strange ISA hardware, so we always want the
1030  * addresses to be allocated in the 0x000-0x0ff region
1031  * modulo 0x400.
1032  *
1033  * Why? Because some silly external IO cards only decode
1034  * the low 10 bits of the IO address. The 0x00-0xff region
1035  * is reserved for motherboard devices that decode all 16
1036  * bits, so it's ok to allocate at, say, 0x2800-0x28ff,
1037  * but we want to try to avoid allocating at 0x2900-0x2bff
1038  * which might have be mirrored at 0x0100-0x03ff..
1039  */
1042 {
1043  struct pci_dev *dev = data;
1044  resource_size_t start = res->start;
1045 
1046  if (res->flags & IORESOURCE_IO) {
1047  if (skip_isa_ioresource_align(dev))
1048  return start;
1049  if (start & 0x300)
1050  start = (start + 0x3ff) & ~0x3ff;
1051  }
1052 
1053  return start;
1054 }
1056 
1057 /*
1058  * Reparent resource children of pr that conflict with res
1059  * under res, and make res replace those children.
1060  */
1061 static int __init reparent_resources(struct resource *parent,
1062  struct resource *res)
1063 {
1064  struct resource *p, **pp;
1065  struct resource **firstpp = NULL;
1066 
1067  for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) {
1068  if (p->end < res->start)
1069  continue;
1070  if (res->end < p->start)
1071  break;
1072  if (p->start < res->start || p->end > res->end)
1073  return -1; /* not completely contained */
1074  if (firstpp == NULL)
1075  firstpp = pp;
1076  }
1077  if (firstpp == NULL)
1078  return -1; /* didn't find any conflicting entries? */
1079  res->parent = parent;
1080  res->child = *firstpp;
1081  res->sibling = *pp;
1082  *firstpp = res;
1083  *pp = NULL;
1084  for (p = res->child; p != NULL; p = p->sibling) {
1085  p->parent = res;
1086  pr_debug("PCI: Reparented %s [%llx..%llx] under %s\n",
1087  p->name,
1088  (unsigned long long)p->start,
1089  (unsigned long long)p->end, res->name);
1090  }
1091  return 0;
1092 }
1093 
1094 /*
1095  * Handle resources of PCI devices. If the world were perfect, we could
1096  * just allocate all the resource regions and do nothing more. It isn't.
1097  * On the other hand, we cannot just re-allocate all devices, as it would
1098  * require us to know lots of host bridge internals. So we attempt to
1099  * keep as much of the original configuration as possible, but tweak it
1100  * when it's found to be wrong.
1101  *
1102  * Known BIOS problems we have to work around:
1103  * - I/O or memory regions not configured
1104  * - regions configured, but not enabled in the command register
1105  * - bogus I/O addresses above 64K used
1106  * - expansion ROMs left enabled (this may sound harmless, but given
1107  * the fact the PCI specs explicitly allow address decoders to be
1108  * shared between expansion ROMs and other resource regions, it's
1109  * at least dangerous)
1110  *
1111  * Our solution:
1112  * (1) Allocate resources for all buses behind PCI-to-PCI bridges.
1113  * This gives us fixed barriers on where we can allocate.
1114  * (2) Allocate resources for all enabled devices. If there is
1115  * a collision, just mark the resource as unallocated. Also
1116  * disable expansion ROMs during this step.
1117  * (3) Try to allocate resources for disabled devices. If the
1118  * resources were assigned correctly, everything goes well,
1119  * if they weren't, they won't disturb allocation of other
1120  * resources.
1121  * (4) Assign new addresses to resources which were either
1122  * not configured at all or misconfigured. If explicitly
1123  * requested by the user, configure expansion ROM address
1124  * as well.
1125  */
1126 
1128 {
1129  struct pci_bus *b;
1130  int i;
1131  struct resource *res, *pr;
1132 
1133  pr_debug("PCI: Allocating bus resources for %04x:%02x...\n",
1134  pci_domain_nr(bus), bus->number);
1135 
1136  pci_bus_for_each_resource(bus, res, i) {
1137  if (!res || !res->flags
1138  || res->start > res->end || res->parent)
1139  continue;
1140  if (bus->parent == NULL)
1141  pr = (res->flags & IORESOURCE_IO) ?
1143  else {
1144  /* Don't bother with non-root busses when
1145  * re-assigning all resources. We clear the
1146  * resource flags as if they were colliding
1147  * and as such ensure proper re-allocation
1148  * later.
1149  */
1150  pr = pci_find_parent_resource(bus->self, res);
1151  if (pr == res) {
1152  /* this happens when the generic PCI
1153  * code (wrongly) decides that this
1154  * bridge is transparent -- paulus
1155  */
1156  continue;
1157  }
1158  }
1159 
1160  pr_debug("PCI: %s (bus %d) bridge rsrc %d: %016llx-%016llx "
1161  "[0x%x], parent %p (%s)\n",
1162  bus->self ? pci_name(bus->self) : "PHB",
1163  bus->number, i,
1164  (unsigned long long)res->start,
1165  (unsigned long long)res->end,
1166  (unsigned int)res->flags,
1167  pr, (pr && pr->name) ? pr->name : "nil");
1168 
1169  if (pr && !(pr->flags & IORESOURCE_UNSET)) {
1170  if (request_resource(pr, res) == 0)
1171  continue;
1172  /*
1173  * Must be a conflict with an existing entry.
1174  * Move that entry (or entries) under the
1175  * bridge resource and try again.
1176  */
1177  if (reparent_resources(pr, res) == 0)
1178  continue;
1179  }
1180  printk(KERN_WARNING "PCI: Cannot allocate resource region "
1181  "%d of PCI bridge %d, will remap\n", i, bus->number);
1182 clear_resource:
1183  res->start = res->end = 0;
1184  res->flags = 0;
1185  }
1186 
1187  list_for_each_entry(b, &bus->children, node)
1189 }
1190 
1191 static inline void __devinit alloc_resource(struct pci_dev *dev, int idx)
1192 {
1193  struct resource *pr, *r = &dev->resource[idx];
1194 
1195  pr_debug("PCI: Allocating %s: Resource %d: %016llx..%016llx [%x]\n",
1196  pci_name(dev), idx,
1197  (unsigned long long)r->start,
1198  (unsigned long long)r->end,
1199  (unsigned int)r->flags);
1200 
1201  pr = pci_find_parent_resource(dev, r);
1202  if (!pr || (pr->flags & IORESOURCE_UNSET) ||
1203  request_resource(pr, r) < 0) {
1204  printk(KERN_WARNING "PCI: Cannot allocate resource region %d"
1205  " of device %s, will remap\n", idx, pci_name(dev));
1206  if (pr)
1207  pr_debug("PCI: parent is %p: %016llx-%016llx [%x]\n",
1208  pr,
1209  (unsigned long long)pr->start,
1210  (unsigned long long)pr->end,
1211  (unsigned int)pr->flags);
1212  /* We'll assign a new address later */
1213  r->flags |= IORESOURCE_UNSET;
1214  r->end -= r->start;
1215  r->start = 0;
1216  }
1217 }
1218 
1219 static void __init pcibios_allocate_resources(int pass)
1220 {
1221  struct pci_dev *dev = NULL;
1222  int idx, disabled;
1223  u16 command;
1224  struct resource *r;
1225 
1226  for_each_pci_dev(dev) {
1227  pci_read_config_word(dev, PCI_COMMAND, &command);
1228  for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) {
1229  r = &dev->resource[idx];
1230  if (r->parent) /* Already allocated */
1231  continue;
1232  if (!r->flags || (r->flags & IORESOURCE_UNSET))
1233  continue; /* Not assigned at all */
1234  /* We only allocate ROMs on pass 1 just in case they
1235  * have been screwed up by firmware
1236  */
1237  if (idx == PCI_ROM_RESOURCE)
1238  disabled = 1;
1239  if (r->flags & IORESOURCE_IO)
1240  disabled = !(command & PCI_COMMAND_IO);
1241  else
1242  disabled = !(command & PCI_COMMAND_MEMORY);
1243  if (pass == disabled)
1244  alloc_resource(dev, idx);
1245  }
1246  if (pass)
1247  continue;
1248  r = &dev->resource[PCI_ROM_RESOURCE];
1249  if (r->flags) {
1250  /* Turn the ROM off, leave the resource region,
1251  * but keep it unregistered.
1252  */
1253  u32 reg;
1254  pci_read_config_dword(dev, dev->rom_base_reg, &reg);
1255  if (reg & PCI_ROM_ADDRESS_ENABLE) {
1256  pr_debug("PCI: Switching off ROM of %s\n",
1257  pci_name(dev));
1259  pci_write_config_dword(dev, dev->rom_base_reg,
1260  reg & ~PCI_ROM_ADDRESS_ENABLE);
1261  }
1262  }
1263  }
1264 }
1265 
1266 static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus)
1267 {
1268  struct pci_controller *hose = pci_bus_to_host(bus);
1270  struct resource *res, *pres;
1271  int i;
1272 
1273  pr_debug("Reserving legacy ranges for domain %04x\n",
1274  pci_domain_nr(bus));
1275 
1276  /* Check for IO */
1277  if (!(hose->io_resource.flags & IORESOURCE_IO))
1278  goto no_io;
1279  offset = (unsigned long)hose->io_base_virt - _IO_BASE;
1280  res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1281  BUG_ON(res == NULL);
1282  res->name = "Legacy IO";
1283  res->flags = IORESOURCE_IO;
1284  res->start = offset;
1285  res->end = (offset + 0xfff) & 0xfffffffful;
1286  pr_debug("Candidate legacy IO: %pR\n", res);
1287  if (request_resource(&hose->io_resource, res)) {
1289  "PCI %04x:%02x Cannot reserve Legacy IO %pR\n",
1290  pci_domain_nr(bus), bus->number, res);
1291  kfree(res);
1292  }
1293 
1294  no_io:
1295  /* Check for memory */
1296  offset = hose->pci_mem_offset;
1297  pr_debug("hose mem offset: %016llx\n", (unsigned long long)offset);
1298  for (i = 0; i < 3; i++) {
1299  pres = &hose->mem_resources[i];
1300  if (!(pres->flags & IORESOURCE_MEM))
1301  continue;
1302  pr_debug("hose mem res: %pR\n", pres);
1303  if ((pres->start - offset) <= 0xa0000 &&
1304  (pres->end - offset) >= 0xbffff)
1305  break;
1306  }
1307  if (i >= 3)
1308  return;
1309  res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1310  BUG_ON(res == NULL);
1311  res->name = "Legacy VGA memory";
1312  res->flags = IORESOURCE_MEM;
1313  res->start = 0xa0000 + offset;
1314  res->end = 0xbffff + offset;
1315  pr_debug("Candidate VGA memory: %pR\n", res);
1316  if (request_resource(pres, res)) {
1318  "PCI %04x:%02x Cannot reserve VGA memory %pR\n",
1319  pci_domain_nr(bus), bus->number, res);
1320  kfree(res);
1321  }
1322 }
1323 
1325 {
1326  struct pci_bus *b;
1327 
1328  /* Allocate and assign resources. If we re-assign everything, then
1329  * we skip the allocate phase
1330  */
1331  list_for_each_entry(b, &pci_root_buses, node)
1333 
1334  pcibios_allocate_resources(0);
1335  pcibios_allocate_resources(1);
1336 
1337  /* Before we start assigning unassigned resource, we try to reserve
1338  * the low IO area and the VGA memory area if they intersect the
1339  * bus available resources to avoid allocating things on top of them
1340  */
1341  list_for_each_entry(b, &pci_root_buses, node)
1342  pcibios_reserve_legacy_regions(b);
1343 
1344  /* Now proceed to assigning things that were left unassigned */
1345  pr_debug("PCI: Assigning unassigned resources...\n");
1347 }
1348 
1349 #ifdef CONFIG_HOTPLUG
1350 
1351 /* This is used by the PCI hotplug driver to allocate resource
1352  * of newly plugged busses. We can try to consolidate with the
1353  * rest of the code later, for now, keep it as-is as our main
1354  * resource allocation function doesn't deal with sub-trees yet.
1355  */
1356 void __devinit pcibios_claim_one_bus(struct pci_bus *bus)
1357 {
1358  struct pci_dev *dev;
1359  struct pci_bus *child_bus;
1360 
1361  list_for_each_entry(dev, &bus->devices, bus_list) {
1362  int i;
1363 
1364  for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1365  struct resource *r = &dev->resource[i];
1366 
1367  if (r->parent || !r->start || !r->flags)
1368  continue;
1369 
1370  pr_debug("PCI: Claiming %s: "
1371  "Resource %d: %016llx..%016llx [%x]\n",
1372  pci_name(dev), i,
1373  (unsigned long long)r->start,
1374  (unsigned long long)r->end,
1375  (unsigned int)r->flags);
1376 
1377  pci_claim_resource(dev, i);
1378  }
1379  }
1380 
1381  list_for_each_entry(child_bus, &bus->children, node)
1382  pcibios_claim_one_bus(child_bus);
1383 }
1385 
1386 
1387 /* pcibios_finish_adding_to_bus
1388  *
1389  * This is to be called by the hotplug code after devices have been
1390  * added to a bus, this include calling it for a PHB that is just
1391  * being added
1392  */
1393 void pcibios_finish_adding_to_bus(struct pci_bus *bus)
1394 {
1395  pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n",
1396  pci_domain_nr(bus), bus->number);
1397 
1398  /* Allocate bus and devices resources */
1400  pcibios_claim_one_bus(bus);
1401 
1402  /* Add new devices to global lists. Register in proc, sysfs. */
1403  pci_bus_add_devices(bus);
1404 
1405  /* Fixup EEH */
1406  /* eeh_add_device_tree_late(bus); */
1407 }
1408 EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus);
1409 
1410 #endif /* CONFIG_HOTPLUG */
1411 
1412 int pcibios_enable_device(struct pci_dev *dev, int mask)
1413 {
1414  return pci_enable_resources(dev, mask);
1415 }
1416 
1417 static void __devinit pcibios_setup_phb_resources(struct pci_controller *hose, struct list_head *resources)
1418 {
1419  unsigned long io_offset;
1420  struct resource *res;
1421  int i;
1422 
1423  /* Hookup PHB IO resource */
1424  res = &hose->io_resource;
1425 
1426  /* Fixup IO space offset */
1427  io_offset = (unsigned long)hose->io_base_virt - isa_io_base;
1428  res->start = (res->start + io_offset) & 0xffffffffu;
1429  res->end = (res->end + io_offset) & 0xffffffffu;
1430 
1431  if (!res->flags) {
1432  printk(KERN_WARNING "PCI: I/O resource not set for host"
1433  " bridge %s (domain %d)\n",
1434  hose->dn->full_name, hose->global_number);
1435  /* Workaround for lack of IO resource only on 32-bit */
1436  res->start = (unsigned long)hose->io_base_virt - isa_io_base;
1437  res->end = res->start + IO_SPACE_LIMIT;
1438  res->flags = IORESOURCE_IO;
1439  }
1440  pci_add_resource_offset(resources, res, hose->io_base_virt - _IO_BASE);
1441 
1442  pr_debug("PCI: PHB IO resource = %016llx-%016llx [%lx]\n",
1443  (unsigned long long)res->start,
1444  (unsigned long long)res->end,
1445  (unsigned long)res->flags);
1446 
1447  /* Hookup PHB Memory resources */
1448  for (i = 0; i < 3; ++i) {
1449  res = &hose->mem_resources[i];
1450  if (!res->flags) {
1451  if (i > 0)
1452  continue;
1453  printk(KERN_ERR "PCI: Memory resource 0 not set for "
1454  "host bridge %s (domain %d)\n",
1455  hose->dn->full_name, hose->global_number);
1456 
1457  /* Workaround for lack of MEM resource only on 32-bit */
1458  res->start = hose->pci_mem_offset;
1459  res->end = (resource_size_t)-1LL;
1460  res->flags = IORESOURCE_MEM;
1461 
1462  }
1463  pci_add_resource_offset(resources, res, hose->pci_mem_offset);
1464 
1465  pr_debug("PCI: PHB MEM resource %d = %016llx-%016llx [%lx]\n",
1466  i, (unsigned long long)res->start,
1467  (unsigned long long)res->end,
1468  (unsigned long)res->flags);
1469  }
1470 
1471  pr_debug("PCI: PHB MEM offset = %016llx\n",
1472  (unsigned long long)hose->pci_mem_offset);
1473  pr_debug("PCI: PHB IO offset = %08lx\n",
1474  (unsigned long)hose->io_base_virt - _IO_BASE);
1475 }
1476 
1478 {
1479  struct pci_controller *hose = bus->sysdata;
1480 
1481  return of_node_get(hose->dn);
1482 }
1483 
1484 static void __devinit pcibios_scan_phb(struct pci_controller *hose)
1485 {
1486  LIST_HEAD(resources);
1487  struct pci_bus *bus;
1488  struct device_node *node = hose->dn;
1489 
1490  pr_debug("PCI: Scanning PHB %s\n", of_node_full_name(node));
1491 
1492  pcibios_setup_phb_resources(hose, &resources);
1493 
1494  bus = pci_scan_root_bus(hose->parent, hose->first_busno,
1495  hose->ops, hose, &resources);
1496  if (bus == NULL) {
1497  printk(KERN_ERR "Failed to create bus for PCI domain %04x\n",
1498  hose->global_number);
1499  pci_free_resource_list(&resources);
1500  return;
1501  }
1502  bus->busn_res.start = hose->first_busno;
1503  hose->bus = bus;
1504 
1505  hose->last_busno = bus->busn_res.end;
1506 }
1507 
1508 static int __init pcibios_init(void)
1509 {
1510  struct pci_controller *hose, *tmp;
1511  int next_busno = 0;
1512 
1513  printk(KERN_INFO "PCI: Probing PCI hardware\n");
1514 
1515  /* Scan all of the recorded PCI controllers. */
1516  list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1517  hose->last_busno = 0xff;
1518  pcibios_scan_phb(hose);
1519  if (next_busno <= hose->last_busno)
1520  next_busno = hose->last_busno + 1;
1521  }
1522  pci_bus_count = next_busno;
1523 
1524  /* Call common code to handle resource allocation */
1526 
1527  return 0;
1528 }
1529 
1530 subsys_initcall(pcibios_init);
1531 
1532 static struct pci_controller *pci_bus_to_hose(int bus)
1533 {
1534  struct pci_controller *hose, *tmp;
1535 
1536  list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
1537  if (bus >= hose->first_busno && bus <= hose->last_busno)
1538  return hose;
1539  return NULL;
1540 }
1541 
1542 /* Provide information on locations of various I/O regions in physical
1543  * memory. Do this on a per-card basis so that we choose the right
1544  * root bridge.
1545  * Note that the returned IO or memory base is a physical address
1546  */
1547 
1548 long sys_pciconfig_iobase(long which, unsigned long bus, unsigned long devfn)
1549 {
1550  struct pci_controller *hose;
1551  long result = -EOPNOTSUPP;
1552 
1553  hose = pci_bus_to_hose(bus);
1554  if (!hose)
1555  return -ENODEV;
1556 
1557  switch (which) {
1558  case IOBASE_BRIDGE_NUMBER:
1559  return (long)hose->first_busno;
1560  case IOBASE_MEMORY:
1561  return (long)hose->pci_mem_offset;
1562  case IOBASE_IO:
1563  return (long)hose->io_base_phys;
1564  case IOBASE_ISA_IO:
1565  return (long)isa_io_base;
1566  case IOBASE_ISA_MEM:
1567  return (long)isa_mem_base;
1568  }
1569 
1570  return result;
1571 }
1572 
1573 /*
1574  * Null PCI config access functions, for the case when we can't
1575  * find a hose.
1576  */
1577 #define NULL_PCI_OP(rw, size, type) \
1578 static int \
1579 null_##rw##_config_##size(struct pci_dev *dev, int offset, type val) \
1580 { \
1581  return PCIBIOS_DEVICE_NOT_FOUND; \
1582 }
1583 
1584 static int
1585 null_read_config(struct pci_bus *bus, unsigned int devfn, int offset,
1586  int len, u32 *val)
1587 {
1588  return PCIBIOS_DEVICE_NOT_FOUND;
1589 }
1590 
1591 static int
1592 null_write_config(struct pci_bus *bus, unsigned int devfn, int offset,
1593  int len, u32 val)
1594 {
1595  return PCIBIOS_DEVICE_NOT_FOUND;
1596 }
1597 
1598 static struct pci_ops null_pci_ops = {
1599  .read = null_read_config,
1600  .write = null_write_config,
1601 };
1602 
1603 /*
1604  * These functions are used early on before PCI scanning is done
1605  * and all of the pci_dev and pci_bus structures have been created.
1606  */
1607 static struct pci_bus *
1608 fake_pci_bus(struct pci_controller *hose, int busnr)
1609 {
1610  static struct pci_bus bus;
1611 
1612  if (!hose)
1613  printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr);
1614 
1615  bus.number = busnr;
1616  bus.sysdata = hose;
1617  bus.ops = hose ? hose->ops : &null_pci_ops;
1618  return &bus;
1619 }
1620 
1621 #define EARLY_PCI_OP(rw, size, type) \
1622 int early_##rw##_config_##size(struct pci_controller *hose, int bus, \
1623  int devfn, int offset, type value) \
1624 { \
1625  return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus), \
1626  devfn, offset, value); \
1627 }
1628 
1629 EARLY_PCI_OP(read, byte, u8 *)
1631 EARLY_PCI_OP(read, dword, u32 *)
1633 EARLY_PCI_OP(write, word, u16)
1634 EARLY_PCI_OP(write, dword, u32)
1635 
1637  int cap)
1638 {
1639  return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap);
1640 }
1641