Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mv_udc_core.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
3  * Author: Chao Xie <[email protected]>
4  * Neil Zhang <[email protected]>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation; either version 2 of the License, or (at your
9  * option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/ioport.h>
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/timer.h>
25 #include <linux/list.h>
26 #include <linux/interrupt.h>
27 #include <linux/moduleparam.h>
28 #include <linux/device.h>
29 #include <linux/usb/ch9.h>
30 #include <linux/usb/gadget.h>
31 #include <linux/usb/otg.h>
32 #include <linux/pm.h>
33 #include <linux/io.h>
34 #include <linux/irq.h>
35 #include <linux/platform_device.h>
36 #include <linux/clk.h>
38 #include <asm/unaligned.h>
39 
40 #include "mv_udc.h"
41 
42 #define DRIVER_DESC "Marvell PXA USB Device Controller driver"
43 #define DRIVER_VERSION "8 Nov 2010"
44 
45 #define ep_dir(ep) (((ep)->ep_num == 0) ? \
46  ((ep)->udc->ep0_dir) : ((ep)->direction))
47 
48 /* timeout value -- usec */
49 #define RESET_TIMEOUT 10000
50 #define FLUSH_TIMEOUT 10000
51 #define EPSTATUS_TIMEOUT 10000
52 #define PRIME_TIMEOUT 10000
53 #define READSAFE_TIMEOUT 1000
54 
55 #define LOOPS_USEC_SHIFT 1
56 #define LOOPS_USEC (1 << LOOPS_USEC_SHIFT)
57 #define LOOPS(timeout) ((timeout) >> LOOPS_USEC_SHIFT)
58 
59 static DECLARE_COMPLETION(release_done);
60 
61 static const char driver_name[] = "mv_udc";
62 static const char driver_desc[] = DRIVER_DESC;
63 
64 /* controller device global variable */
65 static struct mv_udc *the_controller;
66 
67 static void nuke(struct mv_ep *ep, int status);
68 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver);
69 
70 /* for endpoint 0 operations */
71 static const struct usb_endpoint_descriptor mv_ep0_desc = {
72  .bLength = USB_DT_ENDPOINT_SIZE,
73  .bDescriptorType = USB_DT_ENDPOINT,
74  .bEndpointAddress = 0,
75  .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
76  .wMaxPacketSize = EP0_MAX_PKT_SIZE,
77 };
78 
79 static void ep0_reset(struct mv_udc *udc)
80 {
81  struct mv_ep *ep;
82  u32 epctrlx;
83  int i = 0;
84 
85  /* ep0 in and out */
86  for (i = 0; i < 2; i++) {
87  ep = &udc->eps[i];
88  ep->udc = udc;
89 
90  /* ep0 dQH */
91  ep->dqh = &udc->ep_dqh[i];
92 
93  /* configure ep0 endpoint capabilities in dQH */
94  ep->dqh->max_packet_length =
97 
98  ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
99 
100  epctrlx = readl(&udc->op_regs->epctrlx[0]);
101  if (i) { /* TX */
102  epctrlx |= EPCTRL_TX_ENABLE
105 
106  } else { /* RX */
107  epctrlx |= EPCTRL_RX_ENABLE
110  }
111 
112  writel(epctrlx, &udc->op_regs->epctrlx[0]);
113  }
114 }
115 
116 /* protocol ep0 stall, will automatically be cleared on new transaction */
117 static void ep0_stall(struct mv_udc *udc)
118 {
119  u32 epctrlx;
120 
121  /* set TX and RX to stall */
122  epctrlx = readl(&udc->op_regs->epctrlx[0]);
124  writel(epctrlx, &udc->op_regs->epctrlx[0]);
125 
126  /* update ep0 state */
127  udc->ep0_state = WAIT_FOR_SETUP;
128  udc->ep0_dir = EP_DIR_OUT;
129 }
130 
131 static int process_ep_req(struct mv_udc *udc, int index,
132  struct mv_req *curr_req)
133 {
134  struct mv_dtd *curr_dtd;
135  struct mv_dqh *curr_dqh;
136  int td_complete, actual, remaining_length;
137  int i, direction;
138  int retval = 0;
139  u32 errors;
140  u32 bit_pos;
141 
142  curr_dqh = &udc->ep_dqh[index];
143  direction = index % 2;
144 
145  curr_dtd = curr_req->head;
146  td_complete = 0;
147  actual = curr_req->req.length;
148 
149  for (i = 0; i < curr_req->dtd_count; i++) {
150  if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
151  dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
152  udc->eps[index].name);
153  return 1;
154  }
155 
156  errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
157  if (!errors) {
158  remaining_length =
159  (curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
161  actual -= remaining_length;
162 
163  if (remaining_length) {
164  if (direction) {
165  dev_dbg(&udc->dev->dev,
166  "TX dTD remains data\n");
167  retval = -EPROTO;
168  break;
169  } else
170  break;
171  }
172  } else {
173  dev_info(&udc->dev->dev,
174  "complete_tr error: ep=%d %s: error = 0x%x\n",
175  index >> 1, direction ? "SEND" : "RECV",
176  errors);
177  if (errors & DTD_STATUS_HALTED) {
178  /* Clear the errors and Halt condition */
179  curr_dqh->size_ioc_int_sts &= ~errors;
180  retval = -EPIPE;
181  } else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
182  retval = -EPROTO;
183  } else if (errors & DTD_STATUS_TRANSACTION_ERR) {
184  retval = -EILSEQ;
185  }
186  }
187  if (i != curr_req->dtd_count - 1)
188  curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
189  }
190  if (retval)
191  return retval;
192 
193  if (direction == EP_DIR_OUT)
194  bit_pos = 1 << curr_req->ep->ep_num;
195  else
196  bit_pos = 1 << (16 + curr_req->ep->ep_num);
197 
198  while ((curr_dqh->curr_dtd_ptr == curr_dtd->td_dma)) {
199  if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
200  while (readl(&udc->op_regs->epstatus) & bit_pos)
201  udelay(1);
202  break;
203  }
204  udelay(1);
205  }
206 
207  curr_req->req.actual = actual;
208 
209  return 0;
210 }
211 
212 /*
213  * done() - retire a request; caller blocked irqs
214  * @status : request status to be set, only works when
215  * request is still in progress.
216  */
217 static void done(struct mv_ep *ep, struct mv_req *req, int status)
218 {
219  struct mv_udc *udc = NULL;
220  unsigned char stopped = ep->stopped;
221  struct mv_dtd *curr_td, *next_td;
222  int j;
223 
224  udc = (struct mv_udc *)ep->udc;
225  /* Removed the req from fsl_ep->queue */
226  list_del_init(&req->queue);
227 
228  /* req.status should be set as -EINPROGRESS in ep_queue() */
229  if (req->req.status == -EINPROGRESS)
230  req->req.status = status;
231  else
232  status = req->req.status;
233 
234  /* Free dtd for the request */
235  next_td = req->head;
236  for (j = 0; j < req->dtd_count; j++) {
237  curr_td = next_td;
238  if (j != req->dtd_count - 1)
239  next_td = curr_td->next_dtd_virt;
240  dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
241  }
242 
243  if (req->mapped) {
244  dma_unmap_single(ep->udc->gadget.dev.parent,
245  req->req.dma, req->req.length,
246  ((ep_dir(ep) == EP_DIR_IN) ?
248  req->req.dma = DMA_ADDR_INVALID;
249  req->mapped = 0;
250  } else
251  dma_sync_single_for_cpu(ep->udc->gadget.dev.parent,
252  req->req.dma, req->req.length,
253  ((ep_dir(ep) == EP_DIR_IN) ?
255 
256  if (status && (status != -ESHUTDOWN))
257  dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
258  ep->ep.name, &req->req, status,
259  req->req.actual, req->req.length);
260 
261  ep->stopped = 1;
262 
263  spin_unlock(&ep->udc->lock);
264  /*
265  * complete() is from gadget layer,
266  * eg fsg->bulk_in_complete()
267  */
268  if (req->req.complete)
269  req->req.complete(&ep->ep, &req->req);
270 
271  spin_lock(&ep->udc->lock);
272  ep->stopped = stopped;
273 }
274 
275 static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
276 {
277  struct mv_udc *udc;
278  struct mv_dqh *dqh;
279  u32 bit_pos, direction;
280  u32 usbcmd, epstatus;
281  unsigned int loops;
282  int retval = 0;
283 
284  udc = ep->udc;
285  direction = ep_dir(ep);
286  dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
287  bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
288 
289  /* check if the pipe is empty */
290  if (!(list_empty(&ep->queue))) {
291  struct mv_req *lastreq;
292  lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
293  lastreq->tail->dtd_next =
294  req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
295 
296  wmb();
297 
298  if (readl(&udc->op_regs->epprime) & bit_pos)
299  goto done;
300 
301  loops = LOOPS(READSAFE_TIMEOUT);
302  while (1) {
303  /* start with setting the semaphores */
304  usbcmd = readl(&udc->op_regs->usbcmd);
305  usbcmd |= USBCMD_ATDTW_TRIPWIRE_SET;
306  writel(usbcmd, &udc->op_regs->usbcmd);
307 
308  /* read the endpoint status */
309  epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
310 
311  /*
312  * Reread the ATDTW semaphore bit to check if it is
313  * cleared. When hardware see a hazard, it will clear
314  * the bit or else we remain set to 1 and we can
315  * proceed with priming of endpoint if not already
316  * primed.
317  */
318  if (readl(&udc->op_regs->usbcmd)
320  break;
321 
322  loops--;
323  if (loops == 0) {
324  dev_err(&udc->dev->dev,
325  "Timeout for ATDTW_TRIPWIRE...\n");
326  retval = -ETIME;
327  goto done;
328  }
330  }
331 
332  /* Clear the semaphore */
333  usbcmd = readl(&udc->op_regs->usbcmd);
334  usbcmd &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
335  writel(usbcmd, &udc->op_regs->usbcmd);
336 
337  if (epstatus)
338  goto done;
339  }
340 
341  /* Write dQH next pointer and terminate bit to 0 */
342  dqh->next_dtd_ptr = req->head->td_dma
344 
345  /* clear active and halt bit, in case set from a previous error */
347 
348  /* Ensure that updates to the QH will occure before priming. */
349  wmb();
350 
351  /* Prime the Endpoint */
352  writel(bit_pos, &udc->op_regs->epprime);
353 
354 done:
355  return retval;
356 }
357 
358 static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
359  dma_addr_t *dma, int *is_last)
360 {
361  struct mv_dtd *dtd;
362  struct mv_udc *udc;
363  struct mv_dqh *dqh;
364  u32 temp, mult = 0;
365 
366  /* how big will this transfer be? */
367  if (usb_endpoint_xfer_isoc(req->ep->ep.desc)) {
368  dqh = req->ep->dqh;
370  & 0x3;
371  *length = min(req->req.length - req->req.actual,
372  (unsigned)(mult * req->ep->ep.maxpacket));
373  } else
374  *length = min(req->req.length - req->req.actual,
375  (unsigned)EP_MAX_LENGTH_TRANSFER);
376 
377  udc = req->ep->udc;
378 
379  /*
380  * Be careful that no _GFP_HIGHMEM is set,
381  * or we can not use dma_to_virt
382  */
383  dtd = dma_pool_alloc(udc->dtd_pool, GFP_ATOMIC, dma);
384  if (dtd == NULL)
385  return dtd;
386 
387  dtd->td_dma = *dma;
388  /* initialize buffer page pointers */
389  temp = (u32)(req->req.dma + req->req.actual);
390  dtd->buff_ptr0 = cpu_to_le32(temp);
391  temp &= ~0xFFF;
392  dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
393  dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
394  dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
395  dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
396 
397  req->req.actual += *length;
398 
399  /* zlp is needed if req->req.zero is set */
400  if (req->req.zero) {
401  if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
402  *is_last = 1;
403  else
404  *is_last = 0;
405  } else if (req->req.length == req->req.actual)
406  *is_last = 1;
407  else
408  *is_last = 0;
409 
410  /* Fill in the transfer size; set active bit */
411  temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
412 
413  /* Enable interrupt for the last dtd of a request */
414  if (*is_last && !req->req.no_interrupt)
415  temp |= DTD_IOC;
416 
417  temp |= mult << 10;
418 
419  dtd->size_ioc_sts = temp;
420 
421  mb();
422 
423  return dtd;
424 }
425 
426 /* generate dTD linked list for a request */
427 static int req_to_dtd(struct mv_req *req)
428 {
429  unsigned count;
430  int is_last, is_first = 1;
431  struct mv_dtd *dtd, *last_dtd = NULL;
432  struct mv_udc *udc;
433  dma_addr_t dma;
434 
435  udc = req->ep->udc;
436 
437  do {
438  dtd = build_dtd(req, &count, &dma, &is_last);
439  if (dtd == NULL)
440  return -ENOMEM;
441 
442  if (is_first) {
443  is_first = 0;
444  req->head = dtd;
445  } else {
446  last_dtd->dtd_next = dma;
447  last_dtd->next_dtd_virt = dtd;
448  }
449  last_dtd = dtd;
450  req->dtd_count++;
451  } while (!is_last);
452 
453  /* set terminate bit to 1 for the last dTD */
455 
456  req->tail = dtd;
457 
458  return 0;
459 }
460 
461 static int mv_ep_enable(struct usb_ep *_ep,
462  const struct usb_endpoint_descriptor *desc)
463 {
464  struct mv_udc *udc;
465  struct mv_ep *ep;
466  struct mv_dqh *dqh;
467  u16 max = 0;
468  u32 bit_pos, epctrlx, direction;
469  unsigned char zlt = 0, ios = 0, mult = 0;
470  unsigned long flags;
471 
472  ep = container_of(_ep, struct mv_ep, ep);
473  udc = ep->udc;
474 
475  if (!_ep || !desc
476  || desc->bDescriptorType != USB_DT_ENDPOINT)
477  return -EINVAL;
478 
479  if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
480  return -ESHUTDOWN;
481 
482  direction = ep_dir(ep);
483  max = usb_endpoint_maxp(desc);
484 
485  /*
486  * disable HW zero length termination select
487  * driver handles zero length packet through req->req.zero
488  */
489  zlt = 1;
490 
491  bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
492 
493  /* Check if the Endpoint is Primed */
494  if ((readl(&udc->op_regs->epprime) & bit_pos)
495  || (readl(&udc->op_regs->epstatus) & bit_pos)) {
496  dev_info(&udc->dev->dev,
497  "ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
498  " ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
499  (unsigned)ep->ep_num, direction ? "SEND" : "RECV",
500  (unsigned)readl(&udc->op_regs->epprime),
501  (unsigned)readl(&udc->op_regs->epstatus),
502  (unsigned)bit_pos);
503  goto en_done;
504  }
505  /* Set the max packet length, interrupt on Setup and Mult fields */
506  switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
508  zlt = 1;
509  mult = 0;
510  break;
512  ios = 1;
514  mult = 0;
515  break;
517  /* Calculate transactions needed for high bandwidth iso */
518  mult = (unsigned char)(1 + ((max >> 11) & 0x03));
519  max = max & 0x7ff; /* bit 0~10 */
520  /* 3 transactions at most */
521  if (mult > 3)
522  goto en_done;
523  break;
524  default:
525  goto en_done;
526  }
527 
528  spin_lock_irqsave(&udc->lock, flags);
529  /* Get the endpoint queue head address */
530  dqh = ep->dqh;
532  | (mult << EP_QUEUE_HEAD_MULT_POS)
533  | (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
534  | (ios ? EP_QUEUE_HEAD_IOS : 0);
535  dqh->next_dtd_ptr = 1;
536  dqh->size_ioc_int_sts = 0;
537 
538  ep->ep.maxpacket = max;
539  ep->ep.desc = desc;
540  ep->stopped = 0;
541 
542  /* Enable the endpoint for Rx or Tx and set the endpoint type */
543  epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
544  if (direction == EP_DIR_IN) {
545  epctrlx &= ~EPCTRL_TX_ALL_MASK;
549  } else {
550  epctrlx &= ~EPCTRL_RX_ALL_MASK;
554  }
555  writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
556 
557  /*
558  * Implement Guideline (GL# USB-7) The unused endpoint type must
559  * be programmed to bulk.
560  */
561  epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
562  if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
563  epctrlx |= (USB_ENDPOINT_XFER_BULK
565  writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
566  }
567 
568  epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
569  if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
570  epctrlx |= (USB_ENDPOINT_XFER_BULK
572  writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
573  }
574 
575  spin_unlock_irqrestore(&udc->lock, flags);
576 
577  return 0;
578 en_done:
579  return -EINVAL;
580 }
581 
582 static int mv_ep_disable(struct usb_ep *_ep)
583 {
584  struct mv_udc *udc;
585  struct mv_ep *ep;
586  struct mv_dqh *dqh;
587  u32 bit_pos, epctrlx, direction;
588  unsigned long flags;
589 
590  ep = container_of(_ep, struct mv_ep, ep);
591  if ((_ep == NULL) || !ep->ep.desc)
592  return -EINVAL;
593 
594  udc = ep->udc;
595 
596  /* Get the endpoint queue head address */
597  dqh = ep->dqh;
598 
599  spin_lock_irqsave(&udc->lock, flags);
600 
601  direction = ep_dir(ep);
602  bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
603 
604  /* Reset the max packet length and the interrupt on Setup */
605  dqh->max_packet_length = 0;
606 
607  /* Disable the endpoint for Rx or Tx and reset the endpoint type */
608  epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
609  epctrlx &= ~((direction == EP_DIR_IN)
611  : (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
612  writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
613 
614  /* nuke all pending requests (does flush) */
615  nuke(ep, -ESHUTDOWN);
616 
617  ep->ep.desc = NULL;
618  ep->stopped = 1;
619 
620  spin_unlock_irqrestore(&udc->lock, flags);
621 
622  return 0;
623 }
624 
625 static struct usb_request *
626 mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
627 {
628  struct mv_req *req = NULL;
629 
630  req = kzalloc(sizeof *req, gfp_flags);
631  if (!req)
632  return NULL;
633 
634  req->req.dma = DMA_ADDR_INVALID;
635  INIT_LIST_HEAD(&req->queue);
636 
637  return &req->req;
638 }
639 
640 static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
641 {
642  struct mv_req *req = NULL;
643 
644  req = container_of(_req, struct mv_req, req);
645 
646  if (_req)
647  kfree(req);
648 }
649 
650 static void mv_ep_fifo_flush(struct usb_ep *_ep)
651 {
652  struct mv_udc *udc;
653  u32 bit_pos, direction;
654  struct mv_ep *ep;
655  unsigned int loops;
656 
657  if (!_ep)
658  return;
659 
660  ep = container_of(_ep, struct mv_ep, ep);
661  if (!ep->ep.desc)
662  return;
663 
664  udc = ep->udc;
665  direction = ep_dir(ep);
666 
667  if (ep->ep_num == 0)
668  bit_pos = (1 << 16) | 1;
669  else if (direction == EP_DIR_OUT)
670  bit_pos = 1 << ep->ep_num;
671  else
672  bit_pos = 1 << (16 + ep->ep_num);
673 
674  loops = LOOPS(EPSTATUS_TIMEOUT);
675  do {
676  unsigned int inter_loops;
677 
678  if (loops == 0) {
679  dev_err(&udc->dev->dev,
680  "TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
681  (unsigned)readl(&udc->op_regs->epstatus),
682  (unsigned)bit_pos);
683  return;
684  }
685  /* Write 1 to the Flush register */
686  writel(bit_pos, &udc->op_regs->epflush);
687 
688  /* Wait until flushing completed */
689  inter_loops = LOOPS(FLUSH_TIMEOUT);
690  while (readl(&udc->op_regs->epflush)) {
691  /*
692  * ENDPTFLUSH bit should be cleared to indicate this
693  * operation is complete
694  */
695  if (inter_loops == 0) {
696  dev_err(&udc->dev->dev,
697  "TIMEOUT for ENDPTFLUSH=0x%x,"
698  "bit_pos=0x%x\n",
699  (unsigned)readl(&udc->op_regs->epflush),
700  (unsigned)bit_pos);
701  return;
702  }
703  inter_loops--;
705  }
706  loops--;
707  } while (readl(&udc->op_regs->epstatus) & bit_pos);
708 }
709 
710 /* queues (submits) an I/O request to an endpoint */
711 static int
712 mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
713 {
714  struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
715  struct mv_req *req = container_of(_req, struct mv_req, req);
716  struct mv_udc *udc = ep->udc;
717  unsigned long flags;
718  int retval;
719 
720  /* catch various bogus parameters */
721  if (!_req || !req->req.complete || !req->req.buf
722  || !list_empty(&req->queue)) {
723  dev_err(&udc->dev->dev, "%s, bad params", __func__);
724  return -EINVAL;
725  }
726  if (unlikely(!_ep || !ep->ep.desc)) {
727  dev_err(&udc->dev->dev, "%s, bad ep", __func__);
728  return -EINVAL;
729  }
730 
731  udc = ep->udc;
732  if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
733  return -ESHUTDOWN;
734 
735  req->ep = ep;
736 
737  /* map virtual address to hardware */
738  if (req->req.dma == DMA_ADDR_INVALID) {
739  req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
740  req->req.buf,
741  req->req.length, ep_dir(ep)
742  ? DMA_TO_DEVICE
743  : DMA_FROM_DEVICE);
744  req->mapped = 1;
745  } else {
746  dma_sync_single_for_device(ep->udc->gadget.dev.parent,
747  req->req.dma, req->req.length,
748  ep_dir(ep)
749  ? DMA_TO_DEVICE
750  : DMA_FROM_DEVICE);
751  req->mapped = 0;
752  }
753 
754  req->req.status = -EINPROGRESS;
755  req->req.actual = 0;
756  req->dtd_count = 0;
757 
758  spin_lock_irqsave(&udc->lock, flags);
759 
760  /* build dtds and push them to device queue */
761  if (!req_to_dtd(req)) {
762  retval = queue_dtd(ep, req);
763  if (retval) {
764  spin_unlock_irqrestore(&udc->lock, flags);
765  dev_err(&udc->dev->dev, "Failed to queue dtd\n");
766  goto err_unmap_dma;
767  }
768  } else {
769  spin_unlock_irqrestore(&udc->lock, flags);
770  dev_err(&udc->dev->dev, "Failed to dma_pool_alloc\n");
771  retval = -ENOMEM;
772  goto err_unmap_dma;
773  }
774 
775  /* Update ep0 state */
776  if (ep->ep_num == 0)
777  udc->ep0_state = DATA_STATE_XMIT;
778 
779  /* irq handler advances the queue */
780  list_add_tail(&req->queue, &ep->queue);
781  spin_unlock_irqrestore(&udc->lock, flags);
782 
783  return 0;
784 
785 err_unmap_dma:
786  if (req->mapped) {
787  dma_unmap_single(ep->udc->gadget.dev.parent,
788  req->req.dma, req->req.length,
789  ((ep_dir(ep) == EP_DIR_IN) ?
791  req->req.dma = DMA_ADDR_INVALID;
792  req->mapped = 0;
793  } else
794  dma_sync_single_for_cpu(ep->udc->gadget.dev.parent,
795  req->req.dma, req->req.length,
796  ((ep_dir(ep) == EP_DIR_IN) ?
798 
799  return retval;
800 }
801 
802 static void mv_prime_ep(struct mv_ep *ep, struct mv_req *req)
803 {
804  struct mv_dqh *dqh = ep->dqh;
805  u32 bit_pos;
806 
807  /* Write dQH next pointer and terminate bit to 0 */
808  dqh->next_dtd_ptr = req->head->td_dma
810 
811  /* clear active and halt bit, in case set from a previous error */
813 
814  /* Ensure that updates to the QH will occure before priming. */
815  wmb();
816 
817  bit_pos = 1 << (((ep_dir(ep) == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
818 
819  /* Prime the Endpoint */
820  writel(bit_pos, &ep->udc->op_regs->epprime);
821 }
822 
823 /* dequeues (cancels, unlinks) an I/O request from an endpoint */
824 static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
825 {
826  struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
827  struct mv_req *req;
828  struct mv_udc *udc = ep->udc;
829  unsigned long flags;
830  int stopped, ret = 0;
831  u32 epctrlx;
832 
833  if (!_ep || !_req)
834  return -EINVAL;
835 
836  spin_lock_irqsave(&ep->udc->lock, flags);
837  stopped = ep->stopped;
838 
839  /* Stop the ep before we deal with the queue */
840  ep->stopped = 1;
841  epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
842  if (ep_dir(ep) == EP_DIR_IN)
843  epctrlx &= ~EPCTRL_TX_ENABLE;
844  else
845  epctrlx &= ~EPCTRL_RX_ENABLE;
846  writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
847 
848  /* make sure it's actually queued on this endpoint */
849  list_for_each_entry(req, &ep->queue, queue) {
850  if (&req->req == _req)
851  break;
852  }
853  if (&req->req != _req) {
854  ret = -EINVAL;
855  goto out;
856  }
857 
858  /* The request is in progress, or completed but not dequeued */
859  if (ep->queue.next == &req->queue) {
860  _req->status = -ECONNRESET;
861  mv_ep_fifo_flush(_ep); /* flush current transfer */
862 
863  /* The request isn't the last request in this ep queue */
864  if (req->queue.next != &ep->queue) {
865  struct mv_req *next_req;
866 
867  next_req = list_entry(req->queue.next,
868  struct mv_req, queue);
869 
870  /* Point the QH to the first TD of next request */
871  mv_prime_ep(ep, next_req);
872  } else {
873  struct mv_dqh *qh;
874 
875  qh = ep->dqh;
876  qh->next_dtd_ptr = 1;
877  qh->size_ioc_int_sts = 0;
878  }
879 
880  /* The request hasn't been processed, patch up the TD chain */
881  } else {
882  struct mv_req *prev_req;
883 
884  prev_req = list_entry(req->queue.prev, struct mv_req, queue);
885  writel(readl(&req->tail->dtd_next),
886  &prev_req->tail->dtd_next);
887 
888  }
889 
890  done(ep, req, -ECONNRESET);
891 
892  /* Enable EP */
893 out:
894  epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
895  if (ep_dir(ep) == EP_DIR_IN)
896  epctrlx |= EPCTRL_TX_ENABLE;
897  else
898  epctrlx |= EPCTRL_RX_ENABLE;
899  writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
900  ep->stopped = stopped;
901 
902  spin_unlock_irqrestore(&ep->udc->lock, flags);
903  return ret;
904 }
905 
906 static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
907 {
908  u32 epctrlx;
909 
910  epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
911 
912  if (stall) {
913  if (direction == EP_DIR_IN)
914  epctrlx |= EPCTRL_TX_EP_STALL;
915  else
916  epctrlx |= EPCTRL_RX_EP_STALL;
917  } else {
918  if (direction == EP_DIR_IN) {
919  epctrlx &= ~EPCTRL_TX_EP_STALL;
920  epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
921  } else {
922  epctrlx &= ~EPCTRL_RX_EP_STALL;
923  epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
924  }
925  }
926  writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
927 }
928 
929 static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
930 {
931  u32 epctrlx;
932 
933  epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
934 
935  if (direction == EP_DIR_OUT)
936  return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
937  else
938  return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
939 }
940 
941 static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
942 {
943  struct mv_ep *ep;
944  unsigned long flags = 0;
945  int status = 0;
946  struct mv_udc *udc;
947 
948  ep = container_of(_ep, struct mv_ep, ep);
949  udc = ep->udc;
950  if (!_ep || !ep->ep.desc) {
951  status = -EINVAL;
952  goto out;
953  }
954 
955  if (ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
956  status = -EOPNOTSUPP;
957  goto out;
958  }
959 
960  /*
961  * Attempt to halt IN ep will fail if any transfer requests
962  * are still queue
963  */
964  if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
965  status = -EAGAIN;
966  goto out;
967  }
968 
969  spin_lock_irqsave(&ep->udc->lock, flags);
970  ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
971  if (halt && wedge)
972  ep->wedge = 1;
973  else if (!halt)
974  ep->wedge = 0;
975  spin_unlock_irqrestore(&ep->udc->lock, flags);
976 
977  if (ep->ep_num == 0) {
978  udc->ep0_state = WAIT_FOR_SETUP;
979  udc->ep0_dir = EP_DIR_OUT;
980  }
981 out:
982  return status;
983 }
984 
985 static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
986 {
987  return mv_ep_set_halt_wedge(_ep, halt, 0);
988 }
989 
990 static int mv_ep_set_wedge(struct usb_ep *_ep)
991 {
992  return mv_ep_set_halt_wedge(_ep, 1, 1);
993 }
994 
995 static struct usb_ep_ops mv_ep_ops = {
996  .enable = mv_ep_enable,
997  .disable = mv_ep_disable,
998 
999  .alloc_request = mv_alloc_request,
1000  .free_request = mv_free_request,
1001 
1002  .queue = mv_ep_queue,
1003  .dequeue = mv_ep_dequeue,
1004 
1005  .set_wedge = mv_ep_set_wedge,
1006  .set_halt = mv_ep_set_halt,
1007  .fifo_flush = mv_ep_fifo_flush, /* flush fifo */
1008 };
1009 
1010 static void udc_clock_enable(struct mv_udc *udc)
1011 {
1012  unsigned int i;
1013 
1014  for (i = 0; i < udc->clknum; i++)
1015  clk_enable(udc->clk[i]);
1016 }
1017 
1018 static void udc_clock_disable(struct mv_udc *udc)
1019 {
1020  unsigned int i;
1021 
1022  for (i = 0; i < udc->clknum; i++)
1023  clk_disable(udc->clk[i]);
1024 }
1025 
1026 static void udc_stop(struct mv_udc *udc)
1027 {
1028  u32 tmp;
1029 
1030  /* Disable interrupts */
1031  tmp = readl(&udc->op_regs->usbintr);
1032  tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
1034  writel(tmp, &udc->op_regs->usbintr);
1035 
1036  udc->stopped = 1;
1037 
1038  /* Reset the Run the bit in the command register to stop VUSB */
1039  tmp = readl(&udc->op_regs->usbcmd);
1040  tmp &= ~USBCMD_RUN_STOP;
1041  writel(tmp, &udc->op_regs->usbcmd);
1042 }
1043 
1044 static void udc_start(struct mv_udc *udc)
1045 {
1046  u32 usbintr;
1047 
1051  /* Enable interrupts */
1052  writel(usbintr, &udc->op_regs->usbintr);
1053 
1054  udc->stopped = 0;
1055 
1056  /* Set the Run bit in the command register */
1057  writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
1058 }
1059 
1060 static int udc_reset(struct mv_udc *udc)
1061 {
1062  unsigned int loops;
1063  u32 tmp, portsc;
1064 
1065  /* Stop the controller */
1066  tmp = readl(&udc->op_regs->usbcmd);
1067  tmp &= ~USBCMD_RUN_STOP;
1068  writel(tmp, &udc->op_regs->usbcmd);
1069 
1070  /* Reset the controller to get default values */
1071  writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
1072 
1073  /* wait for reset to complete */
1074  loops = LOOPS(RESET_TIMEOUT);
1075  while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
1076  if (loops == 0) {
1077  dev_err(&udc->dev->dev,
1078  "Wait for RESET completed TIMEOUT\n");
1079  return -ETIMEDOUT;
1080  }
1081  loops--;
1082  udelay(LOOPS_USEC);
1083  }
1084 
1085  /* set controller to device mode */
1086  tmp = readl(&udc->op_regs->usbmode);
1087  tmp |= USBMODE_CTRL_MODE_DEVICE;
1088 
1089  /* turn setup lockout off, require setup tripwire in usbcmd */
1090  tmp |= USBMODE_SETUP_LOCK_OFF;
1091 
1092  writel(tmp, &udc->op_regs->usbmode);
1093 
1094  writel(0x0, &udc->op_regs->epsetupstat);
1095 
1096  /* Configure the Endpoint List Address */
1098  &udc->op_regs->eplistaddr);
1099 
1100  portsc = readl(&udc->op_regs->portsc[0]);
1101  if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
1102  portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
1103 
1104  if (udc->force_fs)
1106  else
1107  portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
1108 
1109  writel(portsc, &udc->op_regs->portsc[0]);
1110 
1111  tmp = readl(&udc->op_regs->epctrlx[0]);
1113  writel(tmp, &udc->op_regs->epctrlx[0]);
1114 
1115  return 0;
1116 }
1117 
1118 static int mv_udc_enable_internal(struct mv_udc *udc)
1119 {
1120  int retval;
1121 
1122  if (udc->active)
1123  return 0;
1124 
1125  dev_dbg(&udc->dev->dev, "enable udc\n");
1126  udc_clock_enable(udc);
1127  if (udc->pdata->phy_init) {
1128  retval = udc->pdata->phy_init(udc->phy_regs);
1129  if (retval) {
1130  dev_err(&udc->dev->dev,
1131  "init phy error %d\n", retval);
1132  udc_clock_disable(udc);
1133  return retval;
1134  }
1135  }
1136  udc->active = 1;
1137 
1138  return 0;
1139 }
1140 
1141 static int mv_udc_enable(struct mv_udc *udc)
1142 {
1143  if (udc->clock_gating)
1144  return mv_udc_enable_internal(udc);
1145 
1146  return 0;
1147 }
1148 
1149 static void mv_udc_disable_internal(struct mv_udc *udc)
1150 {
1151  if (udc->active) {
1152  dev_dbg(&udc->dev->dev, "disable udc\n");
1153  if (udc->pdata->phy_deinit)
1154  udc->pdata->phy_deinit(udc->phy_regs);
1155  udc_clock_disable(udc);
1156  udc->active = 0;
1157  }
1158 }
1159 
1160 static void mv_udc_disable(struct mv_udc *udc)
1161 {
1162  if (udc->clock_gating)
1163  mv_udc_disable_internal(udc);
1164 }
1165 
1166 static int mv_udc_get_frame(struct usb_gadget *gadget)
1167 {
1168  struct mv_udc *udc;
1169  u16 retval;
1170 
1171  if (!gadget)
1172  return -ENODEV;
1173 
1174  udc = container_of(gadget, struct mv_udc, gadget);
1175 
1176  retval = readl(&udc->op_regs->frindex) & USB_FRINDEX_MASKS;
1177 
1178  return retval;
1179 }
1180 
1181 /* Tries to wake up the host connected to this gadget */
1182 static int mv_udc_wakeup(struct usb_gadget *gadget)
1183 {
1184  struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
1185  u32 portsc;
1186 
1187  /* Remote wakeup feature not enabled by host */
1188  if (!udc->remote_wakeup)
1189  return -ENOTSUPP;
1190 
1191  portsc = readl(&udc->op_regs->portsc);
1192  /* not suspended? */
1193  if (!(portsc & PORTSCX_PORT_SUSPEND))
1194  return 0;
1195  /* trigger force resume */
1196  portsc |= PORTSCX_PORT_FORCE_RESUME;
1197  writel(portsc, &udc->op_regs->portsc[0]);
1198  return 0;
1199 }
1200 
1201 static int mv_udc_vbus_session(struct usb_gadget *gadget, int is_active)
1202 {
1203  struct mv_udc *udc;
1204  unsigned long flags;
1205  int retval = 0;
1206 
1207  udc = container_of(gadget, struct mv_udc, gadget);
1208  spin_lock_irqsave(&udc->lock, flags);
1209 
1210  udc->vbus_active = (is_active != 0);
1211 
1212  dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1213  __func__, udc->softconnect, udc->vbus_active);
1214 
1215  if (udc->driver && udc->softconnect && udc->vbus_active) {
1216  retval = mv_udc_enable(udc);
1217  if (retval == 0) {
1218  /* Clock is disabled, need re-init registers */
1219  udc_reset(udc);
1220  ep0_reset(udc);
1221  udc_start(udc);
1222  }
1223  } else if (udc->driver && udc->softconnect) {
1224  if (!udc->active)
1225  goto out;
1226 
1227  /* stop all the transfer in queue*/
1228  stop_activity(udc, udc->driver);
1229  udc_stop(udc);
1230  mv_udc_disable(udc);
1231  }
1232 
1233 out:
1234  spin_unlock_irqrestore(&udc->lock, flags);
1235  return retval;
1236 }
1237 
1238 static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
1239 {
1240  struct mv_udc *udc;
1241  unsigned long flags;
1242  int retval = 0;
1243 
1244  udc = container_of(gadget, struct mv_udc, gadget);
1245  spin_lock_irqsave(&udc->lock, flags);
1246 
1247  udc->softconnect = (is_on != 0);
1248 
1249  dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1250  __func__, udc->softconnect, udc->vbus_active);
1251 
1252  if (udc->driver && udc->softconnect && udc->vbus_active) {
1253  retval = mv_udc_enable(udc);
1254  if (retval == 0) {
1255  /* Clock is disabled, need re-init registers */
1256  udc_reset(udc);
1257  ep0_reset(udc);
1258  udc_start(udc);
1259  }
1260  } else if (udc->driver && udc->vbus_active) {
1261  /* stop all the transfer in queue*/
1262  stop_activity(udc, udc->driver);
1263  udc_stop(udc);
1264  mv_udc_disable(udc);
1265  }
1266 
1267  spin_unlock_irqrestore(&udc->lock, flags);
1268  return retval;
1269 }
1270 
1271 static int mv_udc_start(struct usb_gadget_driver *driver,
1272  int (*bind)(struct usb_gadget *, struct usb_gadget_driver *));
1273 static int mv_udc_stop(struct usb_gadget_driver *driver);
1274 /* device controller usb_gadget_ops structure */
1275 static const struct usb_gadget_ops mv_ops = {
1276 
1277  /* returns the current frame number */
1278  .get_frame = mv_udc_get_frame,
1279 
1280  /* tries to wake up the host connected to this gadget */
1281  .wakeup = mv_udc_wakeup,
1282 
1283  /* notify controller that VBUS is powered or not */
1284  .vbus_session = mv_udc_vbus_session,
1285 
1286  /* D+ pullup, software-controlled connect/disconnect to USB host */
1287  .pullup = mv_udc_pullup,
1288  .start = mv_udc_start,
1289  .stop = mv_udc_stop,
1290 };
1291 
1292 static int eps_init(struct mv_udc *udc)
1293 {
1294  struct mv_ep *ep;
1295  char name[14];
1296  int i;
1297 
1298  /* initialize ep0 */
1299  ep = &udc->eps[0];
1300  ep->udc = udc;
1301  strncpy(ep->name, "ep0", sizeof(ep->name));
1302  ep->ep.name = ep->name;
1303  ep->ep.ops = &mv_ep_ops;
1304  ep->wedge = 0;
1305  ep->stopped = 0;
1306  ep->ep.maxpacket = EP0_MAX_PKT_SIZE;
1307  ep->ep_num = 0;
1308  ep->ep.desc = &mv_ep0_desc;
1309  INIT_LIST_HEAD(&ep->queue);
1310 
1312 
1313  /* initialize other endpoints */
1314  for (i = 2; i < udc->max_eps * 2; i++) {
1315  ep = &udc->eps[i];
1316  if (i % 2) {
1317  snprintf(name, sizeof(name), "ep%din", i / 2);
1318  ep->direction = EP_DIR_IN;
1319  } else {
1320  snprintf(name, sizeof(name), "ep%dout", i / 2);
1321  ep->direction = EP_DIR_OUT;
1322  }
1323  ep->udc = udc;
1324  strncpy(ep->name, name, sizeof(ep->name));
1325  ep->ep.name = ep->name;
1326 
1327  ep->ep.ops = &mv_ep_ops;
1328  ep->stopped = 0;
1329  ep->ep.maxpacket = (unsigned short) ~0;
1330  ep->ep_num = i / 2;
1331 
1332  INIT_LIST_HEAD(&ep->queue);
1333  list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1334 
1335  ep->dqh = &udc->ep_dqh[i];
1336  }
1337 
1338  return 0;
1339 }
1340 
1341 /* delete all endpoint requests, called with spinlock held */
1342 static void nuke(struct mv_ep *ep, int status)
1343 {
1344  /* called with spinlock held */
1345  ep->stopped = 1;
1346 
1347  /* endpoint fifo flush */
1348  mv_ep_fifo_flush(&ep->ep);
1349 
1350  while (!list_empty(&ep->queue)) {
1351  struct mv_req *req = NULL;
1352  req = list_entry(ep->queue.next, struct mv_req, queue);
1353  done(ep, req, status);
1354  }
1355 }
1356 
1357 /* stop all USB activities */
1358 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
1359 {
1360  struct mv_ep *ep;
1361 
1362  nuke(&udc->eps[0], -ESHUTDOWN);
1363 
1364  list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1365  nuke(ep, -ESHUTDOWN);
1366  }
1367 
1368  /* report disconnect; the driver is already quiesced */
1369  if (driver) {
1370  spin_unlock(&udc->lock);
1371  driver->disconnect(&udc->gadget);
1372  spin_lock(&udc->lock);
1373  }
1374 }
1375 
1376 static int mv_udc_start(struct usb_gadget_driver *driver,
1377  int (*bind)(struct usb_gadget *, struct usb_gadget_driver *))
1378 {
1379  struct mv_udc *udc = the_controller;
1380  int retval = 0;
1381  unsigned long flags;
1382 
1383  if (!udc)
1384  return -ENODEV;
1385 
1386  if (udc->driver)
1387  return -EBUSY;
1388 
1389  spin_lock_irqsave(&udc->lock, flags);
1390 
1391  /* hook up the driver ... */
1392  driver->driver.bus = NULL;
1393  udc->driver = driver;
1394  udc->gadget.dev.driver = &driver->driver;
1395 
1397  udc->ep0_state = WAIT_FOR_SETUP;
1398  udc->ep0_dir = EP_DIR_OUT;
1399 
1400  spin_unlock_irqrestore(&udc->lock, flags);
1401 
1402  retval = bind(&udc->gadget, driver);
1403  if (retval) {
1404  dev_err(&udc->dev->dev, "bind to driver %s --> %d\n",
1405  driver->driver.name, retval);
1406  udc->driver = NULL;
1407  udc->gadget.dev.driver = NULL;
1408  return retval;
1409  }
1410 
1411  if (!IS_ERR_OR_NULL(udc->transceiver)) {
1412  retval = otg_set_peripheral(udc->transceiver->otg,
1413  &udc->gadget);
1414  if (retval) {
1415  dev_err(&udc->dev->dev,
1416  "unable to register peripheral to otg\n");
1417  if (driver->unbind) {
1418  driver->unbind(&udc->gadget);
1419  udc->gadget.dev.driver = NULL;
1420  udc->driver = NULL;
1421  }
1422  return retval;
1423  }
1424  }
1425 
1426  /* pullup is always on */
1427  mv_udc_pullup(&udc->gadget, 1);
1428 
1429  /* When boot with cable attached, there will be no vbus irq occurred */
1430  if (udc->qwork)
1431  queue_work(udc->qwork, &udc->vbus_work);
1432 
1433  return 0;
1434 }
1435 
1436 static int mv_udc_stop(struct usb_gadget_driver *driver)
1437 {
1438  struct mv_udc *udc = the_controller;
1439  unsigned long flags;
1440 
1441  if (!udc)
1442  return -ENODEV;
1443 
1444  spin_lock_irqsave(&udc->lock, flags);
1445 
1446  mv_udc_enable(udc);
1447  udc_stop(udc);
1448 
1449  /* stop all usb activities */
1450  udc->gadget.speed = USB_SPEED_UNKNOWN;
1451  stop_activity(udc, driver);
1452  mv_udc_disable(udc);
1453 
1454  spin_unlock_irqrestore(&udc->lock, flags);
1455 
1456  /* unbind gadget driver */
1457  driver->unbind(&udc->gadget);
1458  udc->gadget.dev.driver = NULL;
1459  udc->driver = NULL;
1460 
1461  return 0;
1462 }
1463 
1464 static void mv_set_ptc(struct mv_udc *udc, u32 mode)
1465 {
1466  u32 portsc;
1467 
1468  portsc = readl(&udc->op_regs->portsc[0]);
1469  portsc |= mode << 16;
1470  writel(portsc, &udc->op_regs->portsc[0]);
1471 }
1472 
1473 static void prime_status_complete(struct usb_ep *ep, struct usb_request *_req)
1474 {
1475  struct mv_udc *udc = the_controller;
1476  struct mv_req *req = container_of(_req, struct mv_req, req);
1477  unsigned long flags;
1478 
1479  dev_info(&udc->dev->dev, "switch to test mode %d\n", req->test_mode);
1480 
1481  spin_lock_irqsave(&udc->lock, flags);
1482  if (req->test_mode) {
1483  mv_set_ptc(udc, req->test_mode);
1484  req->test_mode = 0;
1485  }
1486  spin_unlock_irqrestore(&udc->lock, flags);
1487 }
1488 
1489 static int
1490 udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
1491 {
1492  int retval = 0;
1493  struct mv_req *req;
1494  struct mv_ep *ep;
1495 
1496  ep = &udc->eps[0];
1497  udc->ep0_dir = direction;
1499 
1500  req = udc->status_req;
1501 
1502  /* fill in the reqest structure */
1503  if (empty == false) {
1504  *((u16 *) req->req.buf) = cpu_to_le16(status);
1505  req->req.length = 2;
1506  } else
1507  req->req.length = 0;
1508 
1509  req->ep = ep;
1510  req->req.status = -EINPROGRESS;
1511  req->req.actual = 0;
1512  if (udc->test_mode) {
1513  req->req.complete = prime_status_complete;
1514  req->test_mode = udc->test_mode;
1515  udc->test_mode = 0;
1516  } else
1517  req->req.complete = NULL;
1518  req->dtd_count = 0;
1519 
1520  if (req->req.dma == DMA_ADDR_INVALID) {
1521  req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
1522  req->req.buf, req->req.length,
1524  req->mapped = 1;
1525  }
1526 
1527  /* prime the data phase */
1528  if (!req_to_dtd(req)) {
1529  retval = queue_dtd(ep, req);
1530  if (retval) {
1531  dev_err(&udc->dev->dev,
1532  "Failed to queue dtd when prime status\n");
1533  goto out;
1534  }
1535  } else{ /* no mem */
1536  retval = -ENOMEM;
1537  dev_err(&udc->dev->dev,
1538  "Failed to dma_pool_alloc when prime status\n");
1539  goto out;
1540  }
1541 
1542  list_add_tail(&req->queue, &ep->queue);
1543 
1544  return 0;
1545 out:
1546  if (req->mapped) {
1547  dma_unmap_single(ep->udc->gadget.dev.parent,
1548  req->req.dma, req->req.length,
1549  ((ep_dir(ep) == EP_DIR_IN) ?
1551  req->req.dma = DMA_ADDR_INVALID;
1552  req->mapped = 0;
1553  }
1554 
1555  return retval;
1556 }
1557 
1558 static void mv_udc_testmode(struct mv_udc *udc, u16 index)
1559 {
1560  if (index <= TEST_FORCE_EN) {
1561  udc->test_mode = index;
1562  if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1563  ep0_stall(udc);
1564  } else
1565  dev_err(&udc->dev->dev,
1566  "This test mode(%d) is not supported\n", index);
1567 }
1568 
1569 static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1570 {
1571  udc->dev_addr = (u8)setup->wValue;
1572 
1573  /* update usb state */
1575 
1576  if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1577  ep0_stall(udc);
1578 }
1579 
1580 static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
1581  struct usb_ctrlrequest *setup)
1582 {
1583  u16 status = 0;
1584  int retval;
1585 
1586  if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
1588  return;
1589 
1590  if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1591  status = 1 << USB_DEVICE_SELF_POWERED;
1592  status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
1593  } else if ((setup->bRequestType & USB_RECIP_MASK)
1594  == USB_RECIP_INTERFACE) {
1595  /* get interface status */
1596  status = 0;
1597  } else if ((setup->bRequestType & USB_RECIP_MASK)
1598  == USB_RECIP_ENDPOINT) {
1599  u8 ep_num, direction;
1600 
1601  ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1602  direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1603  ? EP_DIR_IN : EP_DIR_OUT;
1604  status = ep_is_stall(udc, ep_num, direction)
1605  << USB_ENDPOINT_HALT;
1606  }
1607 
1608  retval = udc_prime_status(udc, EP_DIR_IN, status, false);
1609  if (retval)
1610  ep0_stall(udc);
1611  else
1612  udc->ep0_state = DATA_STATE_XMIT;
1613 }
1614 
1615 static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1616 {
1617  u8 ep_num;
1618  u8 direction;
1619  struct mv_ep *ep;
1620 
1621  if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1623  switch (setup->wValue) {
1625  udc->remote_wakeup = 0;
1626  break;
1627  default:
1628  goto out;
1629  }
1630  } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1632  switch (setup->wValue) {
1633  case USB_ENDPOINT_HALT:
1634  ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1635  direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1636  ? EP_DIR_IN : EP_DIR_OUT;
1637  if (setup->wValue != 0 || setup->wLength != 0
1638  || ep_num > udc->max_eps)
1639  goto out;
1640  ep = &udc->eps[ep_num * 2 + direction];
1641  if (ep->wedge == 1)
1642  break;
1643  spin_unlock(&udc->lock);
1644  ep_set_stall(udc, ep_num, direction, 0);
1645  spin_lock(&udc->lock);
1646  break;
1647  default:
1648  goto out;
1649  }
1650  } else
1651  goto out;
1652 
1653  if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1654  ep0_stall(udc);
1655 out:
1656  return;
1657 }
1658 
1659 static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1660 {
1661  u8 ep_num;
1662  u8 direction;
1663 
1664  if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1666  switch (setup->wValue) {
1668  udc->remote_wakeup = 1;
1669  break;
1670  case USB_DEVICE_TEST_MODE:
1671  if (setup->wIndex & 0xFF
1672  || udc->gadget.speed != USB_SPEED_HIGH)
1673  ep0_stall(udc);
1674 
1675  if (udc->usb_state != USB_STATE_CONFIGURED
1676  && udc->usb_state != USB_STATE_ADDRESS
1677  && udc->usb_state != USB_STATE_DEFAULT)
1678  ep0_stall(udc);
1679 
1680  mv_udc_testmode(udc, (setup->wIndex >> 8));
1681  goto out;
1682  default:
1683  goto out;
1684  }
1685  } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1687  switch (setup->wValue) {
1688  case USB_ENDPOINT_HALT:
1689  ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1690  direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1691  ? EP_DIR_IN : EP_DIR_OUT;
1692  if (setup->wValue != 0 || setup->wLength != 0
1693  || ep_num > udc->max_eps)
1694  goto out;
1695  spin_unlock(&udc->lock);
1696  ep_set_stall(udc, ep_num, direction, 1);
1697  spin_lock(&udc->lock);
1698  break;
1699  default:
1700  goto out;
1701  }
1702  } else
1703  goto out;
1704 
1705  if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1706  ep0_stall(udc);
1707 out:
1708  return;
1709 }
1710 
1711 static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
1712  struct usb_ctrlrequest *setup)
1713 {
1714  bool delegate = false;
1715 
1716  nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
1717 
1718  dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1719  setup->bRequestType, setup->bRequest,
1720  setup->wValue, setup->wIndex, setup->wLength);
1721  /* We process some stardard setup requests here */
1722  if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1723  switch (setup->bRequest) {
1724  case USB_REQ_GET_STATUS:
1725  ch9getstatus(udc, ep_num, setup);
1726  break;
1727 
1728  case USB_REQ_SET_ADDRESS:
1729  ch9setaddress(udc, setup);
1730  break;
1731 
1732  case USB_REQ_CLEAR_FEATURE:
1733  ch9clearfeature(udc, setup);
1734  break;
1735 
1736  case USB_REQ_SET_FEATURE:
1737  ch9setfeature(udc, setup);
1738  break;
1739 
1740  default:
1741  delegate = true;
1742  }
1743  } else
1744  delegate = true;
1745 
1746  /* delegate USB standard requests to the gadget driver */
1747  if (delegate == true) {
1748  /* USB requests handled by gadget */
1749  if (setup->wLength) {
1750  /* DATA phase from gadget, STATUS phase from udc */
1751  udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
1752  ? EP_DIR_IN : EP_DIR_OUT;
1753  spin_unlock(&udc->lock);
1754  if (udc->driver->setup(&udc->gadget,
1755  &udc->local_setup_buff) < 0)
1756  ep0_stall(udc);
1757  spin_lock(&udc->lock);
1758  udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
1760  } else {
1761  /* no DATA phase, IN STATUS phase from gadget */
1762  udc->ep0_dir = EP_DIR_IN;
1763  spin_unlock(&udc->lock);
1764  if (udc->driver->setup(&udc->gadget,
1765  &udc->local_setup_buff) < 0)
1766  ep0_stall(udc);
1767  spin_lock(&udc->lock);
1769  }
1770  }
1771 }
1772 
1773 /* complete DATA or STATUS phase of ep0 prime status phase if needed */
1774 static void ep0_req_complete(struct mv_udc *udc,
1775  struct mv_ep *ep0, struct mv_req *req)
1776 {
1777  u32 new_addr;
1778 
1779  if (udc->usb_state == USB_STATE_ADDRESS) {
1780  /* set the new address */
1781  new_addr = (u32)udc->dev_addr;
1783  &udc->op_regs->deviceaddr);
1784  }
1785 
1786  done(ep0, req, 0);
1787 
1788  switch (udc->ep0_state) {
1789  case DATA_STATE_XMIT:
1790  /* receive status phase */
1791  if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
1792  ep0_stall(udc);
1793  break;
1794  case DATA_STATE_RECV:
1795  /* send status phase */
1796  if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
1797  ep0_stall(udc);
1798  break;
1799  case WAIT_FOR_OUT_STATUS:
1800  udc->ep0_state = WAIT_FOR_SETUP;
1801  break;
1802  case WAIT_FOR_SETUP:
1803  dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
1804  break;
1805  default:
1806  ep0_stall(udc);
1807  break;
1808  }
1809 }
1810 
1811 static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
1812 {
1813  u32 temp;
1814  struct mv_dqh *dqh;
1815 
1816  dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
1817 
1818  /* Clear bit in ENDPTSETUPSTAT */
1819  writel((1 << ep_num), &udc->op_regs->epsetupstat);
1820 
1821  /* while a hazard exists when setup package arrives */
1822  do {
1823  /* Set Setup Tripwire */
1824  temp = readl(&udc->op_regs->usbcmd);
1825  writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1826 
1827  /* Copy the setup packet to local buffer */
1828  memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
1829  } while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
1830 
1831  /* Clear Setup Tripwire */
1832  temp = readl(&udc->op_regs->usbcmd);
1833  writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1834 }
1835 
1836 static void irq_process_tr_complete(struct mv_udc *udc)
1837 {
1838  u32 tmp, bit_pos;
1839  int i, ep_num = 0, direction = 0;
1840  struct mv_ep *curr_ep;
1841  struct mv_req *curr_req, *temp_req;
1842  int status;
1843 
1844  /*
1845  * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
1846  * because the setup packets are to be read ASAP
1847  */
1848 
1849  /* Process all Setup packet received interrupts */
1850  tmp = readl(&udc->op_regs->epsetupstat);
1851 
1852  if (tmp) {
1853  for (i = 0; i < udc->max_eps; i++) {
1854  if (tmp & (1 << i)) {
1855  get_setup_data(udc, i,
1856  (u8 *)(&udc->local_setup_buff));
1857  handle_setup_packet(udc, i,
1858  &udc->local_setup_buff);
1859  }
1860  }
1861  }
1862 
1863  /* Don't clear the endpoint setup status register here.
1864  * It is cleared as a setup packet is read out of the buffer
1865  */
1866 
1867  /* Process non-setup transaction complete interrupts */
1868  tmp = readl(&udc->op_regs->epcomplete);
1869 
1870  if (!tmp)
1871  return;
1872 
1873  writel(tmp, &udc->op_regs->epcomplete);
1874 
1875  for (i = 0; i < udc->max_eps * 2; i++) {
1876  ep_num = i >> 1;
1877  direction = i % 2;
1878 
1879  bit_pos = 1 << (ep_num + 16 * direction);
1880 
1881  if (!(bit_pos & tmp))
1882  continue;
1883 
1884  if (i == 1)
1885  curr_ep = &udc->eps[0];
1886  else
1887  curr_ep = &udc->eps[i];
1888  /* process the req queue until an uncomplete request */
1889  list_for_each_entry_safe(curr_req, temp_req,
1890  &curr_ep->queue, queue) {
1891  status = process_ep_req(udc, i, curr_req);
1892  if (status)
1893  break;
1894 
1895  /* write back status to req */
1896  curr_req->req.status = status;
1897 
1898  /* ep0 request completion */
1899  if (ep_num == 0) {
1900  ep0_req_complete(udc, curr_ep, curr_req);
1901  break;
1902  } else {
1903  done(curr_ep, curr_req, status);
1904  }
1905  }
1906  }
1907 }
1908 
1909 void irq_process_reset(struct mv_udc *udc)
1910 {
1911  u32 tmp;
1912  unsigned int loops;
1913 
1914  udc->ep0_dir = EP_DIR_OUT;
1915  udc->ep0_state = WAIT_FOR_SETUP;
1916  udc->remote_wakeup = 0; /* default to 0 on reset */
1917 
1918  /* The address bits are past bit 25-31. Set the address */
1919  tmp = readl(&udc->op_regs->deviceaddr);
1920  tmp &= ~(USB_DEVICE_ADDRESS_MASK);
1921  writel(tmp, &udc->op_regs->deviceaddr);
1922 
1923  /* Clear all the setup token semaphores */
1924  tmp = readl(&udc->op_regs->epsetupstat);
1925  writel(tmp, &udc->op_regs->epsetupstat);
1926 
1927  /* Clear all the endpoint complete status bits */
1928  tmp = readl(&udc->op_regs->epcomplete);
1929  writel(tmp, &udc->op_regs->epcomplete);
1930 
1931  /* wait until all endptprime bits cleared */
1932  loops = LOOPS(PRIME_TIMEOUT);
1933  while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
1934  if (loops == 0) {
1935  dev_err(&udc->dev->dev,
1936  "Timeout for ENDPTPRIME = 0x%x\n",
1937  readl(&udc->op_regs->epprime));
1938  break;
1939  }
1940  loops--;
1941  udelay(LOOPS_USEC);
1942  }
1943 
1944  /* Write 1s to the Flush register */
1945  writel((u32)~0, &udc->op_regs->epflush);
1946 
1947  if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
1948  dev_info(&udc->dev->dev, "usb bus reset\n");
1950  /* reset all the queues, stop all USB activities */
1951  stop_activity(udc, udc->driver);
1952  } else {
1953  dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
1954  readl(&udc->op_regs->portsc));
1955 
1956  /*
1957  * re-initialize
1958  * controller reset
1959  */
1960  udc_reset(udc);
1961 
1962  /* reset all the queues, stop all USB activities */
1963  stop_activity(udc, udc->driver);
1964 
1965  /* reset ep0 dQH and endptctrl */
1966  ep0_reset(udc);
1967 
1968  /* enable interrupt and set controller to run state */
1969  udc_start(udc);
1970 
1972  }
1973 }
1974 
1975 static void handle_bus_resume(struct mv_udc *udc)
1976 {
1977  udc->usb_state = udc->resume_state;
1978  udc->resume_state = 0;
1979 
1980  /* report resume to the driver */
1981  if (udc->driver) {
1982  if (udc->driver->resume) {
1983  spin_unlock(&udc->lock);
1984  udc->driver->resume(&udc->gadget);
1985  spin_lock(&udc->lock);
1986  }
1987  }
1988 }
1989 
1990 static void irq_process_suspend(struct mv_udc *udc)
1991 {
1992  udc->resume_state = udc->usb_state;
1994 
1995  if (udc->driver->suspend) {
1996  spin_unlock(&udc->lock);
1997  udc->driver->suspend(&udc->gadget);
1998  spin_lock(&udc->lock);
1999  }
2000 }
2001 
2002 static void irq_process_port_change(struct mv_udc *udc)
2003 {
2004  u32 portsc;
2005 
2006  portsc = readl(&udc->op_regs->portsc[0]);
2007  if (!(portsc & PORTSCX_PORT_RESET)) {
2008  /* Get the speed */
2009  u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
2010  switch (speed) {
2012  udc->gadget.speed = USB_SPEED_HIGH;
2013  break;
2015  udc->gadget.speed = USB_SPEED_FULL;
2016  break;
2018  udc->gadget.speed = USB_SPEED_LOW;
2019  break;
2020  default:
2021  udc->gadget.speed = USB_SPEED_UNKNOWN;
2022  break;
2023  }
2024  }
2025 
2026  if (portsc & PORTSCX_PORT_SUSPEND) {
2027  udc->resume_state = udc->usb_state;
2029  if (udc->driver->suspend) {
2030  spin_unlock(&udc->lock);
2031  udc->driver->suspend(&udc->gadget);
2032  spin_lock(&udc->lock);
2033  }
2034  }
2035 
2036  if (!(portsc & PORTSCX_PORT_SUSPEND)
2037  && udc->usb_state == USB_STATE_SUSPENDED) {
2038  handle_bus_resume(udc);
2039  }
2040 
2041  if (!udc->resume_state)
2043 }
2044 
2045 static void irq_process_error(struct mv_udc *udc)
2046 {
2047  /* Increment the error count */
2048  udc->errors++;
2049 }
2050 
2051 static irqreturn_t mv_udc_irq(int irq, void *dev)
2052 {
2053  struct mv_udc *udc = (struct mv_udc *)dev;
2054  u32 status, intr;
2055 
2056  /* Disable ISR when stopped bit is set */
2057  if (udc->stopped)
2058  return IRQ_NONE;
2059 
2060  spin_lock(&udc->lock);
2061 
2062  status = readl(&udc->op_regs->usbsts);
2063  intr = readl(&udc->op_regs->usbintr);
2064  status &= intr;
2065 
2066  if (status == 0) {
2067  spin_unlock(&udc->lock);
2068  return IRQ_NONE;
2069  }
2070 
2071  /* Clear all the interrupts occurred */
2072  writel(status, &udc->op_regs->usbsts);
2073 
2074  if (status & USBSTS_ERR)
2075  irq_process_error(udc);
2076 
2077  if (status & USBSTS_RESET)
2078  irq_process_reset(udc);
2079 
2080  if (status & USBSTS_PORT_CHANGE)
2081  irq_process_port_change(udc);
2082 
2083  if (status & USBSTS_INT)
2084  irq_process_tr_complete(udc);
2085 
2086  if (status & USBSTS_SUSPEND)
2087  irq_process_suspend(udc);
2088 
2089  spin_unlock(&udc->lock);
2090 
2091  return IRQ_HANDLED;
2092 }
2093 
2094 static irqreturn_t mv_udc_vbus_irq(int irq, void *dev)
2095 {
2096  struct mv_udc *udc = (struct mv_udc *)dev;
2097 
2098  /* polling VBUS and init phy may cause too much time*/
2099  if (udc->qwork)
2100  queue_work(udc->qwork, &udc->vbus_work);
2101 
2102  return IRQ_HANDLED;
2103 }
2104 
2105 static void mv_udc_vbus_work(struct work_struct *work)
2106 {
2107  struct mv_udc *udc;
2108  unsigned int vbus;
2109 
2110  udc = container_of(work, struct mv_udc, vbus_work);
2111  if (!udc->pdata->vbus)
2112  return;
2113 
2114  vbus = udc->pdata->vbus->poll();
2115  dev_info(&udc->dev->dev, "vbus is %d\n", vbus);
2116 
2117  if (vbus == VBUS_HIGH)
2118  mv_udc_vbus_session(&udc->gadget, 1);
2119  else if (vbus == VBUS_LOW)
2120  mv_udc_vbus_session(&udc->gadget, 0);
2121 }
2122 
2123 /* release device structure */
2124 static void gadget_release(struct device *_dev)
2125 {
2126  struct mv_udc *udc = the_controller;
2127 
2128  complete(udc->done);
2129 }
2130 
2131 static int __devexit mv_udc_remove(struct platform_device *dev)
2132 {
2133  struct mv_udc *udc = the_controller;
2134  int clk_i;
2135 
2136  usb_del_gadget_udc(&udc->gadget);
2137 
2138  if (udc->qwork) {
2139  flush_workqueue(udc->qwork);
2140  destroy_workqueue(udc->qwork);
2141  }
2142 
2143  /*
2144  * If we have transceiver inited,
2145  * then vbus irq will not be requested in udc driver.
2146  */
2147  if (udc->pdata && udc->pdata->vbus
2148  && udc->clock_gating && IS_ERR_OR_NULL(udc->transceiver))
2149  free_irq(udc->pdata->vbus->irq, &dev->dev);
2150 
2151  /* free memory allocated in probe */
2152  if (udc->dtd_pool)
2153  dma_pool_destroy(udc->dtd_pool);
2154 
2155  if (udc->ep_dqh)
2156  dma_free_coherent(&dev->dev, udc->ep_dqh_size,
2157  udc->ep_dqh, udc->ep_dqh_dma);
2158 
2159  kfree(udc->eps);
2160 
2161  if (udc->irq)
2162  free_irq(udc->irq, &dev->dev);
2163 
2164  mv_udc_disable(udc);
2165 
2166  if (udc->cap_regs)
2167  iounmap(udc->cap_regs);
2168 
2169  if (udc->phy_regs)
2170  iounmap(udc->phy_regs);
2171 
2172  if (udc->status_req) {
2173  kfree(udc->status_req->req.buf);
2174  kfree(udc->status_req);
2175  }
2176 
2177  for (clk_i = 0; clk_i <= udc->clknum; clk_i++)
2178  clk_put(udc->clk[clk_i]);
2179 
2180  device_unregister(&udc->gadget.dev);
2181 
2182  /* free dev, wait for the release() finished */
2183  wait_for_completion(udc->done);
2184  kfree(udc);
2185 
2186  the_controller = NULL;
2187 
2188  return 0;
2189 }
2190 
2191 static int __devinit mv_udc_probe(struct platform_device *dev)
2192 {
2193  struct mv_usb_platform_data *pdata = dev->dev.platform_data;
2194  struct mv_udc *udc;
2195  int retval = 0;
2196  int clk_i = 0;
2197  struct resource *r;
2198  size_t size;
2199 
2200  if (pdata == NULL) {
2201  dev_err(&dev->dev, "missing platform_data\n");
2202  return -ENODEV;
2203  }
2204 
2205  size = sizeof(*udc) + sizeof(struct clk *) * pdata->clknum;
2206  udc = kzalloc(size, GFP_KERNEL);
2207  if (udc == NULL) {
2208  dev_err(&dev->dev, "failed to allocate memory for udc\n");
2209  return -ENOMEM;
2210  }
2211 
2212  the_controller = udc;
2213  udc->done = &release_done;
2214  udc->pdata = dev->dev.platform_data;
2215  spin_lock_init(&udc->lock);
2216 
2217  udc->dev = dev;
2218 
2219 #ifdef CONFIG_USB_OTG_UTILS
2220  if (pdata->mode == MV_USB_MODE_OTG)
2222 #endif
2223 
2224  udc->clknum = pdata->clknum;
2225  for (clk_i = 0; clk_i < udc->clknum; clk_i++) {
2226  udc->clk[clk_i] = clk_get(&dev->dev, pdata->clkname[clk_i]);
2227  if (IS_ERR(udc->clk[clk_i])) {
2228  retval = PTR_ERR(udc->clk[clk_i]);
2229  goto err_put_clk;
2230  }
2231  }
2232 
2233  r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
2234  if (r == NULL) {
2235  dev_err(&dev->dev, "no I/O memory resource defined\n");
2236  retval = -ENODEV;
2237  goto err_put_clk;
2238  }
2239 
2240  udc->cap_regs = (struct mv_cap_regs __iomem *)
2241  ioremap(r->start, resource_size(r));
2242  if (udc->cap_regs == NULL) {
2243  dev_err(&dev->dev, "failed to map I/O memory\n");
2244  retval = -EBUSY;
2245  goto err_put_clk;
2246  }
2247 
2248  r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
2249  if (r == NULL) {
2250  dev_err(&dev->dev, "no phy I/O memory resource defined\n");
2251  retval = -ENODEV;
2252  goto err_iounmap_capreg;
2253  }
2254 
2255  udc->phy_regs = ioremap(r->start, resource_size(r));
2256  if (udc->phy_regs == NULL) {
2257  dev_err(&dev->dev, "failed to map phy I/O memory\n");
2258  retval = -EBUSY;
2259  goto err_iounmap_capreg;
2260  }
2261 
2262  /* we will acces controller register, so enable the clk */
2263  retval = mv_udc_enable_internal(udc);
2264  if (retval)
2265  goto err_iounmap_phyreg;
2266 
2267  udc->op_regs =
2268  (struct mv_op_regs __iomem *)((unsigned long)udc->cap_regs
2269  + (readl(&udc->cap_regs->caplength_hciversion)
2270  & CAPLENGTH_MASK));
2271  udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
2272 
2273  /*
2274  * some platform will use usb to download image, it may not disconnect
2275  * usb gadget before loading kernel. So first stop udc here.
2276  */
2277  udc_stop(udc);
2278  writel(0xFFFFFFFF, &udc->op_regs->usbsts);
2279 
2280  size = udc->max_eps * sizeof(struct mv_dqh) *2;
2281  size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
2282  udc->ep_dqh = dma_alloc_coherent(&dev->dev, size,
2283  &udc->ep_dqh_dma, GFP_KERNEL);
2284 
2285  if (udc->ep_dqh == NULL) {
2286  dev_err(&dev->dev, "allocate dQH memory failed\n");
2287  retval = -ENOMEM;
2288  goto err_disable_clock;
2289  }
2290  udc->ep_dqh_size = size;
2291 
2292  /* create dTD dma_pool resource */
2293  udc->dtd_pool = dma_pool_create("mv_dtd",
2294  &dev->dev,
2295  sizeof(struct mv_dtd),
2296  DTD_ALIGNMENT,
2297  DMA_BOUNDARY);
2298 
2299  if (!udc->dtd_pool) {
2300  retval = -ENOMEM;
2301  goto err_free_dma;
2302  }
2303 
2304  size = udc->max_eps * sizeof(struct mv_ep) *2;
2305  udc->eps = kzalloc(size, GFP_KERNEL);
2306  if (udc->eps == NULL) {
2307  dev_err(&dev->dev, "allocate ep memory failed\n");
2308  retval = -ENOMEM;
2309  goto err_destroy_dma;
2310  }
2311 
2312  /* initialize ep0 status request structure */
2313  udc->status_req = kzalloc(sizeof(struct mv_req), GFP_KERNEL);
2314  if (!udc->status_req) {
2315  dev_err(&dev->dev, "allocate status_req memory failed\n");
2316  retval = -ENOMEM;
2317  goto err_free_eps;
2318  }
2319  INIT_LIST_HEAD(&udc->status_req->queue);
2320 
2321  /* allocate a small amount of memory to get valid address */
2322  udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
2323  udc->status_req->req.dma = DMA_ADDR_INVALID;
2324 
2327  udc->ep0_dir = EP_DIR_OUT;
2328  udc->remote_wakeup = 0;
2329 
2331  if (r == NULL) {
2332  dev_err(&dev->dev, "no IRQ resource defined\n");
2333  retval = -ENODEV;
2334  goto err_free_status_req;
2335  }
2336  udc->irq = r->start;
2337  if (request_irq(udc->irq, mv_udc_irq,
2338  IRQF_SHARED, driver_name, udc)) {
2339  dev_err(&dev->dev, "Request irq %d for UDC failed\n",
2340  udc->irq);
2341  retval = -ENODEV;
2342  goto err_free_status_req;
2343  }
2344 
2345  /* initialize gadget structure */
2346  udc->gadget.ops = &mv_ops; /* usb_gadget_ops */
2347  udc->gadget.ep0 = &udc->eps[0].ep; /* gadget ep0 */
2348  INIT_LIST_HEAD(&udc->gadget.ep_list); /* ep_list */
2349  udc->gadget.speed = USB_SPEED_UNKNOWN; /* speed */
2350  udc->gadget.max_speed = USB_SPEED_HIGH; /* support dual speed */
2351 
2352  /* the "gadget" abstracts/virtualizes the controller */
2353  dev_set_name(&udc->gadget.dev, "gadget");
2354  udc->gadget.dev.parent = &dev->dev;
2355  udc->gadget.dev.dma_mask = dev->dev.dma_mask;
2356  udc->gadget.dev.release = gadget_release;
2357  udc->gadget.name = driver_name; /* gadget name */
2358 
2359  retval = device_register(&udc->gadget.dev);
2360  if (retval)
2361  goto err_free_irq;
2362 
2363  eps_init(udc);
2364 
2365  /* VBUS detect: we can disable/enable clock on demand.*/
2366  if (!IS_ERR_OR_NULL(udc->transceiver))
2367  udc->clock_gating = 1;
2368  else if (pdata->vbus) {
2369  udc->clock_gating = 1;
2370  retval = request_threaded_irq(pdata->vbus->irq, NULL,
2371  mv_udc_vbus_irq, IRQF_ONESHOT, "vbus", udc);
2372  if (retval) {
2373  dev_info(&dev->dev,
2374  "Can not request irq for VBUS, "
2375  "disable clock gating\n");
2376  udc->clock_gating = 0;
2377  }
2378 
2379  udc->qwork = create_singlethread_workqueue("mv_udc_queue");
2380  if (!udc->qwork) {
2381  dev_err(&dev->dev, "cannot create workqueue\n");
2382  retval = -ENOMEM;
2383  goto err_unregister;
2384  }
2385 
2386  INIT_WORK(&udc->vbus_work, mv_udc_vbus_work);
2387  }
2388 
2389  /*
2390  * When clock gating is supported, we can disable clk and phy.
2391  * If not, it means that VBUS detection is not supported, we
2392  * have to enable vbus active all the time to let controller work.
2393  */
2394  if (udc->clock_gating)
2395  mv_udc_disable_internal(udc);
2396  else
2397  udc->vbus_active = 1;
2398 
2399  retval = usb_add_gadget_udc(&dev->dev, &udc->gadget);
2400  if (retval)
2401  goto err_unregister;
2402 
2403  dev_info(&dev->dev, "successful probe UDC device %s clock gating.\n",
2404  udc->clock_gating ? "with" : "without");
2405 
2406  return 0;
2407 
2408 err_unregister:
2409  if (udc->pdata && udc->pdata->vbus
2410  && udc->clock_gating && IS_ERR_OR_NULL(udc->transceiver))
2411  free_irq(pdata->vbus->irq, &dev->dev);
2412  device_unregister(&udc->gadget.dev);
2413 err_free_irq:
2414  free_irq(udc->irq, &dev->dev);
2415 err_free_status_req:
2416  kfree(udc->status_req->req.buf);
2417  kfree(udc->status_req);
2418 err_free_eps:
2419  kfree(udc->eps);
2420 err_destroy_dma:
2421  dma_pool_destroy(udc->dtd_pool);
2422 err_free_dma:
2423  dma_free_coherent(&dev->dev, udc->ep_dqh_size,
2424  udc->ep_dqh, udc->ep_dqh_dma);
2425 err_disable_clock:
2426  mv_udc_disable_internal(udc);
2427 err_iounmap_phyreg:
2428  iounmap(udc->phy_regs);
2429 err_iounmap_capreg:
2430  iounmap(udc->cap_regs);
2431 err_put_clk:
2432  for (clk_i--; clk_i >= 0; clk_i--)
2433  clk_put(udc->clk[clk_i]);
2434  the_controller = NULL;
2435  kfree(udc);
2436  return retval;
2437 }
2438 
2439 #ifdef CONFIG_PM
2440 static int mv_udc_suspend(struct device *_dev)
2441 {
2442  struct mv_udc *udc = the_controller;
2443 
2444  /* if OTG is enabled, the following will be done in OTG driver*/
2445  if (!IS_ERR_OR_NULL(udc->transceiver))
2446  return 0;
2447 
2448  if (udc->pdata->vbus && udc->pdata->vbus->poll)
2449  if (udc->pdata->vbus->poll() == VBUS_HIGH) {
2450  dev_info(&udc->dev->dev, "USB cable is connected!\n");
2451  return -EAGAIN;
2452  }
2453 
2454  /*
2455  * only cable is unplugged, udc can suspend.
2456  * So do not care about clock_gating == 1.
2457  */
2458  if (!udc->clock_gating) {
2459  udc_stop(udc);
2460 
2461  spin_lock_irq(&udc->lock);
2462  /* stop all usb activities */
2463  stop_activity(udc, udc->driver);
2464  spin_unlock_irq(&udc->lock);
2465 
2466  mv_udc_disable_internal(udc);
2467  }
2468 
2469  return 0;
2470 }
2471 
2472 static int mv_udc_resume(struct device *_dev)
2473 {
2474  struct mv_udc *udc = the_controller;
2475  int retval;
2476 
2477  /* if OTG is enabled, the following will be done in OTG driver*/
2478  if (!IS_ERR_OR_NULL(udc->transceiver))
2479  return 0;
2480 
2481  if (!udc->clock_gating) {
2482  retval = mv_udc_enable_internal(udc);
2483  if (retval)
2484  return retval;
2485 
2486  if (udc->driver && udc->softconnect) {
2487  udc_reset(udc);
2488  ep0_reset(udc);
2489  udc_start(udc);
2490  }
2491  }
2492 
2493  return 0;
2494 }
2495 
2496 static const struct dev_pm_ops mv_udc_pm_ops = {
2497  .suspend = mv_udc_suspend,
2498  .resume = mv_udc_resume,
2499 };
2500 #endif
2501 
2502 static void mv_udc_shutdown(struct platform_device *dev)
2503 {
2504  struct mv_udc *udc = the_controller;
2505  u32 mode;
2506 
2507  /* reset controller mode to IDLE */
2508  mv_udc_enable(udc);
2509  mode = readl(&udc->op_regs->usbmode);
2510  mode &= ~3;
2511  writel(mode, &udc->op_regs->usbmode);
2512  mv_udc_disable(udc);
2513 }
2514 
2515 static struct platform_driver udc_driver = {
2516  .probe = mv_udc_probe,
2517  .remove = __exit_p(mv_udc_remove),
2518  .shutdown = mv_udc_shutdown,
2519  .driver = {
2520  .owner = THIS_MODULE,
2521  .name = "mv-udc",
2522 #ifdef CONFIG_PM
2523  .pm = &mv_udc_pm_ops,
2524 #endif
2525  },
2526 };
2527 
2528 module_platform_driver(udc_driver);
2529 MODULE_ALIAS("platform:mv-udc");
2531 MODULE_AUTHOR("Chao Xie <[email protected]>");
2533 MODULE_LICENSE("GPL");