Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rx.c
Go to the documentation of this file.
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007 Jiri Benc <[email protected]>
5  * Copyright 2007-2010 Johannes Berg <[email protected]>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
23 
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
33 
34 /*
35  * monitor mode reception
36  *
37  * This function cleans up the SKB, i.e. it removes all the stuff
38  * only useful for monitoring.
39  */
40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41  struct sk_buff *skb)
42 {
43  if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
44  if (likely(skb->len > FCS_LEN))
45  __pskb_trim(skb, skb->len - FCS_LEN);
46  else {
47  /* driver bug */
48  WARN_ON(1);
49  dev_kfree_skb(skb);
50  skb = NULL;
51  }
52  }
53 
54  return skb;
55 }
56 
57 static inline int should_drop_frame(struct sk_buff *skb,
58  int present_fcs_len)
59 {
60  struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
61  struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
62 
63  if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
66  return 1;
67  if (unlikely(skb->len < 16 + present_fcs_len))
68  return 1;
69  if (ieee80211_is_ctl(hdr->frame_control) &&
70  !ieee80211_is_pspoll(hdr->frame_control) &&
71  !ieee80211_is_back_req(hdr->frame_control))
72  return 1;
73  return 0;
74 }
75 
76 static int
77 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
78  struct ieee80211_rx_status *status)
79 {
80  int len;
81 
82  /* always present fields */
83  len = sizeof(struct ieee80211_radiotap_header) + 9;
84 
85  if (status->flag & RX_FLAG_MACTIME_MPDU)
86  len += 8;
87  if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
88  len += 1;
89 
90  if (len & 1) /* padding for RX_FLAGS if necessary */
91  len++;
92 
93  if (status->flag & RX_FLAG_HT) /* HT info */
94  len += 3;
95 
96  if (status->flag & RX_FLAG_AMPDU_DETAILS) {
97  /* padding */
98  while (len & 3)
99  len++;
100  len += 8;
101  }
102 
103  return len;
104 }
105 
106 /*
107  * ieee80211_add_rx_radiotap_header - add radiotap header
108  *
109  * add a radiotap header containing all the fields which the hardware provided.
110  */
111 static void
112 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
113  struct sk_buff *skb,
114  struct ieee80211_rate *rate,
115  int rtap_len, bool has_fcs)
116 {
117  struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
118  struct ieee80211_radiotap_header *rthdr;
119  unsigned char *pos;
120  u16 rx_flags = 0;
121 
122  rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
123  memset(rthdr, 0, rtap_len);
124 
125  /* radiotap header, set always present flags */
126  rthdr->it_present =
131  rthdr->it_len = cpu_to_le16(rtap_len);
132 
133  pos = (unsigned char *)(rthdr+1);
134 
135  /* the order of the following fields is important */
136 
137  /* IEEE80211_RADIOTAP_TSFT */
138  if (status->flag & RX_FLAG_MACTIME_MPDU) {
139  put_unaligned_le64(status->mactime, pos);
140  rthdr->it_present |=
142  pos += 8;
143  }
144 
145  /* IEEE80211_RADIOTAP_FLAGS */
146  if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
147  *pos |= IEEE80211_RADIOTAP_F_FCS;
150  if (status->flag & RX_FLAG_SHORTPRE)
152  pos++;
153 
154  /* IEEE80211_RADIOTAP_RATE */
155  if (!rate || status->flag & RX_FLAG_HT) {
156  /*
157  * Without rate information don't add it. If we have,
158  * MCS information is a separate field in radiotap,
159  * added below. The byte here is needed as padding
160  * for the channel though, so initialise it to 0.
161  */
162  *pos = 0;
163  } else {
165  *pos = rate->bitrate / 5;
166  }
167  pos++;
168 
169  /* IEEE80211_RADIOTAP_CHANNEL */
170  put_unaligned_le16(status->freq, pos);
171  pos += 2;
172  if (status->band == IEEE80211_BAND_5GHZ)
173  put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
174  pos);
175  else if (status->flag & RX_FLAG_HT)
176  put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
177  pos);
178  else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
179  put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
180  pos);
181  else if (rate)
182  put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
183  pos);
184  else
185  put_unaligned_le16(IEEE80211_CHAN_2GHZ, pos);
186  pos += 2;
187 
188  /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
189  if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
190  !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
191  *pos = status->signal;
192  rthdr->it_present |=
194  pos++;
195  }
196 
197  /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
198 
199  /* IEEE80211_RADIOTAP_ANTENNA */
200  *pos = status->antenna;
201  pos++;
202 
203  /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
204 
205  /* IEEE80211_RADIOTAP_RX_FLAGS */
206  /* ensure 2 byte alignment for the 2 byte field as required */
207  if ((pos - (u8 *)rthdr) & 1)
208  pos++;
209  if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
211  put_unaligned_le16(rx_flags, pos);
212  pos += 2;
213 
214  if (status->flag & RX_FLAG_HT) {
216  *pos++ = local->hw.radiotap_mcs_details;
217  *pos = 0;
218  if (status->flag & RX_FLAG_SHORT_GI)
220  if (status->flag & RX_FLAG_40MHZ)
222  if (status->flag & RX_FLAG_HT_GF)
224  pos++;
225  *pos++ = status->rate_idx;
226  }
227 
228  if (status->flag & RX_FLAG_AMPDU_DETAILS) {
229  u16 flags = 0;
230 
231  /* ensure 4 byte alignment */
232  while ((pos - (u8 *)rthdr) & 3)
233  pos++;
234  rthdr->it_present |=
236  put_unaligned_le32(status->ampdu_reference, pos);
237  pos += 4;
238  if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
240  if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
242  if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
244  if (status->flag & RX_FLAG_AMPDU_IS_LAST)
246  if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
248  if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
250  put_unaligned_le16(flags, pos);
251  pos += 2;
252  if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
253  *pos++ = status->ampdu_delimiter_crc;
254  else
255  *pos++ = 0;
256  *pos++ = 0;
257  }
258 }
259 
260 /*
261  * This function copies a received frame to all monitor interfaces and
262  * returns a cleaned-up SKB that no longer includes the FCS nor the
263  * radiotap header the driver might have added.
264  */
265 static struct sk_buff *
266 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
267  struct ieee80211_rate *rate)
268 {
269  struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
271  int needed_headroom;
272  struct sk_buff *skb, *skb2;
273  struct net_device *prev_dev = NULL;
274  int present_fcs_len = 0;
275 
276  /*
277  * First, we may need to make a copy of the skb because
278  * (1) we need to modify it for radiotap (if not present), and
279  * (2) the other RX handlers will modify the skb we got.
280  *
281  * We don't need to, of course, if we aren't going to return
282  * the SKB because it has a bad FCS/PLCP checksum.
283  */
284 
285  /* room for the radiotap header based on driver features */
286  needed_headroom = ieee80211_rx_radiotap_len(local, status);
287 
288  if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
289  present_fcs_len = FCS_LEN;
290 
291  /* make sure hdr->frame_control is on the linear part */
292  if (!pskb_may_pull(origskb, 2)) {
293  dev_kfree_skb(origskb);
294  return NULL;
295  }
296 
297  if (!local->monitors) {
298  if (should_drop_frame(origskb, present_fcs_len)) {
299  dev_kfree_skb(origskb);
300  return NULL;
301  }
302 
303  return remove_monitor_info(local, origskb);
304  }
305 
306  if (should_drop_frame(origskb, present_fcs_len)) {
307  /* only need to expand headroom if necessary */
308  skb = origskb;
309  origskb = NULL;
310 
311  /*
312  * This shouldn't trigger often because most devices have an
313  * RX header they pull before we get here, and that should
314  * be big enough for our radiotap information. We should
315  * probably export the length to drivers so that we can have
316  * them allocate enough headroom to start with.
317  */
318  if (skb_headroom(skb) < needed_headroom &&
319  pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
320  dev_kfree_skb(skb);
321  return NULL;
322  }
323  } else {
324  /*
325  * Need to make a copy and possibly remove radiotap header
326  * and FCS from the original.
327  */
328  skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
329 
330  origskb = remove_monitor_info(local, origskb);
331 
332  if (!skb)
333  return origskb;
334  }
335 
336  /* prepend radiotap information */
337  ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
338  true);
339 
340  skb_reset_mac_header(skb);
342  skb->pkt_type = PACKET_OTHERHOST;
343  skb->protocol = htons(ETH_P_802_2);
344 
345  list_for_each_entry_rcu(sdata, &local->interfaces, list) {
346  if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
347  continue;
348 
350  continue;
351 
352  if (!ieee80211_sdata_running(sdata))
353  continue;
354 
355  if (prev_dev) {
356  skb2 = skb_clone(skb, GFP_ATOMIC);
357  if (skb2) {
358  skb2->dev = prev_dev;
359  netif_receive_skb(skb2);
360  }
361  }
362 
363  prev_dev = sdata->dev;
364  sdata->dev->stats.rx_packets++;
365  sdata->dev->stats.rx_bytes += skb->len;
366  }
367 
368  if (prev_dev) {
369  skb->dev = prev_dev;
370  netif_receive_skb(skb);
371  } else
372  dev_kfree_skb(skb);
373 
374  return origskb;
375 }
376 
377 
378 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
379 {
380  struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
381  struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
382  int tid, seqno_idx, security_idx;
383 
384  /* does the frame have a qos control field? */
385  if (ieee80211_is_data_qos(hdr->frame_control)) {
386  u8 *qc = ieee80211_get_qos_ctl(hdr);
387  /* frame has qos control */
388  tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
390  status->rx_flags |= IEEE80211_RX_AMSDU;
391 
392  seqno_idx = tid;
393  security_idx = tid;
394  } else {
395  /*
396  * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
397  *
398  * Sequence numbers for management frames, QoS data
399  * frames with a broadcast/multicast address in the
400  * Address 1 field, and all non-QoS data frames sent
401  * by QoS STAs are assigned using an additional single
402  * modulo-4096 counter, [...]
403  *
404  * We also use that counter for non-QoS STAs.
405  */
406  seqno_idx = NUM_RX_DATA_QUEUES;
407  security_idx = 0;
408  if (ieee80211_is_mgmt(hdr->frame_control))
409  security_idx = NUM_RX_DATA_QUEUES;
410  tid = 0;
411  }
412 
413  rx->seqno_idx = seqno_idx;
414  rx->security_idx = security_idx;
415  /* Set skb->priority to 1d tag if highest order bit of TID is not set.
416  * For now, set skb->priority to 0 for other cases. */
417  rx->skb->priority = (tid > 7) ? 0 : tid;
418 }
419 
445 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
446 {
447 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
448  WARN_ONCE((unsigned long)rx->skb->data & 1,
449  "unaligned packet at 0x%p\n", rx->skb->data);
450 #endif
451 }
452 
453 
454 /* rx handlers */
455 
456 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
457 {
458  struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
459 
460  if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
461  return 0;
462 
463  return ieee80211_is_robust_mgmt_frame(hdr);
464 }
465 
466 
467 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
468 {
469  struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
470 
471  if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
472  return 0;
473 
474  return ieee80211_is_robust_mgmt_frame(hdr);
475 }
476 
477 
478 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
479 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
480 {
481  struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
482  struct ieee80211_mmie *mmie;
483 
484  if (skb->len < 24 + sizeof(*mmie) ||
485  !is_multicast_ether_addr(hdr->da))
486  return -1;
487 
488  if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
489  return -1; /* not a robust management frame */
490 
491  mmie = (struct ieee80211_mmie *)
492  (skb->data + skb->len - sizeof(*mmie));
493  if (mmie->element_id != WLAN_EID_MMIE ||
494  mmie->length != sizeof(*mmie) - 2)
495  return -1;
496 
497  return le16_to_cpu(mmie->key_id);
498 }
499 
500 
501 static ieee80211_rx_result
502 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
503 {
504  struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
505  char *dev_addr = rx->sdata->vif.addr;
506 
507  if (ieee80211_is_data(hdr->frame_control)) {
508  if (is_multicast_ether_addr(hdr->addr1)) {
509  if (ieee80211_has_tods(hdr->frame_control) ||
510  !ieee80211_has_fromds(hdr->frame_control))
511  return RX_DROP_MONITOR;
512  if (ether_addr_equal(hdr->addr3, dev_addr))
513  return RX_DROP_MONITOR;
514  } else {
515  if (!ieee80211_has_a4(hdr->frame_control))
516  return RX_DROP_MONITOR;
517  if (ether_addr_equal(hdr->addr4, dev_addr))
518  return RX_DROP_MONITOR;
519  }
520  }
521 
522  /* If there is not an established peer link and this is not a peer link
523  * establisment frame, beacon or probe, drop the frame.
524  */
525 
526  if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
527  struct ieee80211_mgmt *mgmt;
528 
529  if (!ieee80211_is_mgmt(hdr->frame_control))
530  return RX_DROP_MONITOR;
531 
532  if (ieee80211_is_action(hdr->frame_control)) {
533  u8 category;
534 
535  /* make sure category field is present */
536  if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
537  return RX_DROP_MONITOR;
538 
539  mgmt = (struct ieee80211_mgmt *)hdr;
540  category = mgmt->u.action.category;
541  if (category != WLAN_CATEGORY_MESH_ACTION &&
542  category != WLAN_CATEGORY_SELF_PROTECTED)
543  return RX_DROP_MONITOR;
544  return RX_CONTINUE;
545  }
546 
547  if (ieee80211_is_probe_req(hdr->frame_control) ||
548  ieee80211_is_probe_resp(hdr->frame_control) ||
549  ieee80211_is_beacon(hdr->frame_control) ||
550  ieee80211_is_auth(hdr->frame_control))
551  return RX_CONTINUE;
552 
553  return RX_DROP_MONITOR;
554 
555  }
556 
557  return RX_CONTINUE;
558 }
559 
560 #define SEQ_MODULO 0x1000
561 #define SEQ_MASK 0xfff
562 
563 static inline int seq_less(u16 sq1, u16 sq2)
564 {
565  return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
566 }
567 
568 static inline u16 seq_inc(u16 sq)
569 {
570  return (sq + 1) & SEQ_MASK;
571 }
572 
573 static inline u16 seq_sub(u16 sq1, u16 sq2)
574 {
575  return (sq1 - sq2) & SEQ_MASK;
576 }
577 
578 
579 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
580  struct tid_ampdu_rx *tid_agg_rx,
581  int index)
582 {
583  struct ieee80211_local *local = sdata->local;
584  struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
585  struct ieee80211_rx_status *status;
586 
587  lockdep_assert_held(&tid_agg_rx->reorder_lock);
588 
589  if (!skb)
590  goto no_frame;
591 
592  /* release the frame from the reorder ring buffer */
593  tid_agg_rx->stored_mpdu_num--;
594  tid_agg_rx->reorder_buf[index] = NULL;
595  status = IEEE80211_SKB_RXCB(skb);
597  skb_queue_tail(&local->rx_skb_queue, skb);
598 
599 no_frame:
600  tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
601 }
602 
603 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
604  struct tid_ampdu_rx *tid_agg_rx,
605  u16 head_seq_num)
606 {
607  int index;
608 
609  lockdep_assert_held(&tid_agg_rx->reorder_lock);
610 
611  while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
612  index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
613  tid_agg_rx->buf_size;
614  ieee80211_release_reorder_frame(sdata, tid_agg_rx, index);
615  }
616 }
617 
618 /*
619  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
620  * the skb was added to the buffer longer than this time ago, the earlier
621  * frames that have not yet been received are assumed to be lost and the skb
622  * can be released for processing. This may also release other skb's from the
623  * reorder buffer if there are no additional gaps between the frames.
624  *
625  * Callers must hold tid_agg_rx->reorder_lock.
626  */
627 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
628 
629 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
630  struct tid_ampdu_rx *tid_agg_rx)
631 {
632  int index, j;
633 
634  lockdep_assert_held(&tid_agg_rx->reorder_lock);
635 
636  /* release the buffer until next missing frame */
637  index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
638  tid_agg_rx->buf_size;
639  if (!tid_agg_rx->reorder_buf[index] &&
640  tid_agg_rx->stored_mpdu_num) {
641  /*
642  * No buffers ready to be released, but check whether any
643  * frames in the reorder buffer have timed out.
644  */
645  int skipped = 1;
646  for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
647  j = (j + 1) % tid_agg_rx->buf_size) {
648  if (!tid_agg_rx->reorder_buf[j]) {
649  skipped++;
650  continue;
651  }
652  if (skipped &&
653  !time_after(jiffies, tid_agg_rx->reorder_time[j] +
655  goto set_release_timer;
656 
657  ht_dbg_ratelimited(sdata,
658  "release an RX reorder frame due to timeout on earlier frames\n");
659  ieee80211_release_reorder_frame(sdata, tid_agg_rx, j);
660 
661  /*
662  * Increment the head seq# also for the skipped slots.
663  */
664  tid_agg_rx->head_seq_num =
665  (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
666  skipped = 0;
667  }
668  } else while (tid_agg_rx->reorder_buf[index]) {
669  ieee80211_release_reorder_frame(sdata, tid_agg_rx, index);
670  index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
671  tid_agg_rx->buf_size;
672  }
673 
674  if (tid_agg_rx->stored_mpdu_num) {
675  j = index = seq_sub(tid_agg_rx->head_seq_num,
676  tid_agg_rx->ssn) % tid_agg_rx->buf_size;
677 
678  for (; j != (index - 1) % tid_agg_rx->buf_size;
679  j = (j + 1) % tid_agg_rx->buf_size) {
680  if (tid_agg_rx->reorder_buf[j])
681  break;
682  }
683 
684  set_release_timer:
685 
686  mod_timer(&tid_agg_rx->reorder_timer,
687  tid_agg_rx->reorder_time[j] + 1 +
689  } else {
690  del_timer(&tid_agg_rx->reorder_timer);
691  }
692 }
693 
694 /*
695  * As this function belongs to the RX path it must be under
696  * rcu_read_lock protection. It returns false if the frame
697  * can be processed immediately, true if it was consumed.
698  */
699 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
700  struct tid_ampdu_rx *tid_agg_rx,
701  struct sk_buff *skb)
702 {
703  struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
704  u16 sc = le16_to_cpu(hdr->seq_ctrl);
705  u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
706  u16 head_seq_num, buf_size;
707  int index;
708  bool ret = true;
709 
710  spin_lock(&tid_agg_rx->reorder_lock);
711 
712  buf_size = tid_agg_rx->buf_size;
713  head_seq_num = tid_agg_rx->head_seq_num;
714 
715  /* frame with out of date sequence number */
716  if (seq_less(mpdu_seq_num, head_seq_num)) {
717  dev_kfree_skb(skb);
718  goto out;
719  }
720 
721  /*
722  * If frame the sequence number exceeds our buffering window
723  * size release some previous frames to make room for this one.
724  */
725  if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
726  head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
727  /* release stored frames up to new head to stack */
728  ieee80211_release_reorder_frames(sdata, tid_agg_rx,
729  head_seq_num);
730  }
731 
732  /* Now the new frame is always in the range of the reordering buffer */
733 
734  index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
735 
736  /* check if we already stored this frame */
737  if (tid_agg_rx->reorder_buf[index]) {
738  dev_kfree_skb(skb);
739  goto out;
740  }
741 
742  /*
743  * If the current MPDU is in the right order and nothing else
744  * is stored we can process it directly, no need to buffer it.
745  * If it is first but there's something stored, we may be able
746  * to release frames after this one.
747  */
748  if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
749  tid_agg_rx->stored_mpdu_num == 0) {
750  tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
751  ret = false;
752  goto out;
753  }
754 
755  /* put the frame in the reordering buffer */
756  tid_agg_rx->reorder_buf[index] = skb;
757  tid_agg_rx->reorder_time[index] = jiffies;
758  tid_agg_rx->stored_mpdu_num++;
759  ieee80211_sta_reorder_release(sdata, tid_agg_rx);
760 
761  out:
762  spin_unlock(&tid_agg_rx->reorder_lock);
763  return ret;
764 }
765 
766 /*
767  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
768  * true if the MPDU was buffered, false if it should be processed.
769  */
770 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
771 {
772  struct sk_buff *skb = rx->skb;
773  struct ieee80211_local *local = rx->local;
774  struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
775  struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
776  struct sta_info *sta = rx->sta;
777  struct tid_ampdu_rx *tid_agg_rx;
778  u16 sc;
779  u8 tid, ack_policy;
780 
781  if (!ieee80211_is_data_qos(hdr->frame_control))
782  goto dont_reorder;
783 
784  /*
785  * filter the QoS data rx stream according to
786  * STA/TID and check if this STA/TID is on aggregation
787  */
788 
789  if (!sta)
790  goto dont_reorder;
791 
792  ack_policy = *ieee80211_get_qos_ctl(hdr) &
794  tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
795 
796  tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
797  if (!tid_agg_rx)
798  goto dont_reorder;
799 
800  /* qos null data frames are excluded */
802  goto dont_reorder;
803 
804  /* not part of a BA session */
805  if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
807  goto dont_reorder;
808 
809  /* not actually part of this BA session */
810  if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
811  goto dont_reorder;
812 
813  /* new, potentially un-ordered, ampdu frame - process it */
814 
815  /* reset session timer */
816  if (tid_agg_rx->timeout)
817  tid_agg_rx->last_rx = jiffies;
818 
819  /* if this mpdu is fragmented - terminate rx aggregation session */
820  sc = le16_to_cpu(hdr->seq_ctrl);
821  if (sc & IEEE80211_SCTL_FRAG) {
823  skb_queue_tail(&rx->sdata->skb_queue, skb);
824  ieee80211_queue_work(&local->hw, &rx->sdata->work);
825  return;
826  }
827 
828  /*
829  * No locking needed -- we will only ever process one
830  * RX packet at a time, and thus own tid_agg_rx. All
831  * other code manipulating it needs to (and does) make
832  * sure that we cannot get to it any more before doing
833  * anything with it.
834  */
835  if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb))
836  return;
837 
838  dont_reorder:
839  skb_queue_tail(&local->rx_skb_queue, skb);
840 }
841 
843 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
844 {
845  struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
846  struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
847 
848  /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
849  if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
850  if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
851  rx->sta->last_seq_ctrl[rx->seqno_idx] ==
852  hdr->seq_ctrl)) {
853  if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
854  rx->local->dot11FrameDuplicateCount++;
855  rx->sta->num_duplicates++;
856  }
857  return RX_DROP_UNUSABLE;
858  } else
859  rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
860  }
861 
862  if (unlikely(rx->skb->len < 16)) {
863  I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
864  return RX_DROP_MONITOR;
865  }
866 
867  /* Drop disallowed frame classes based on STA auth/assoc state;
868  * IEEE 802.11, Chap 5.5.
869  *
870  * mac80211 filters only based on association state, i.e. it drops
871  * Class 3 frames from not associated stations. hostapd sends
872  * deauth/disassoc frames when needed. In addition, hostapd is
873  * responsible for filtering on both auth and assoc states.
874  */
875 
876  if (ieee80211_vif_is_mesh(&rx->sdata->vif))
877  return ieee80211_rx_mesh_check(rx);
878 
879  if (unlikely((ieee80211_is_data(hdr->frame_control) ||
880  ieee80211_is_pspoll(hdr->frame_control)) &&
881  rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
882  rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
883  (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
884  /*
885  * accept port control frames from the AP even when it's not
886  * yet marked ASSOC to prevent a race where we don't set the
887  * assoc bit quickly enough before it sends the first frame
888  */
889  if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
890  ieee80211_is_data_present(hdr->frame_control)) {
891  unsigned int hdrlen;
893 
894  hdrlen = ieee80211_hdrlen(hdr->frame_control);
895 
896  if (rx->skb->len < hdrlen + 8)
897  return RX_DROP_MONITOR;
898 
899  skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
900  if (ethertype == rx->sdata->control_port_protocol)
901  return RX_CONTINUE;
902  }
903 
904  if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
906  hdr->addr2,
907  GFP_ATOMIC))
908  return RX_DROP_UNUSABLE;
909 
910  return RX_DROP_MONITOR;
911  }
912 
913  return RX_CONTINUE;
914 }
915 
916 
918 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
919 {
920  struct sk_buff *skb = rx->skb;
921  struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
922  struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
923  int keyidx;
924  int hdrlen;
926  struct ieee80211_key *sta_ptk = NULL;
927  int mmie_keyidx = -1;
928  __le16 fc;
929 
930  /*
931  * Key selection 101
932  *
933  * There are four types of keys:
934  * - GTK (group keys)
935  * - IGTK (group keys for management frames)
936  * - PTK (pairwise keys)
937  * - STK (station-to-station pairwise keys)
938  *
939  * When selecting a key, we have to distinguish between multicast
940  * (including broadcast) and unicast frames, the latter can only
941  * use PTKs and STKs while the former always use GTKs and IGTKs.
942  * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
943  * unicast frames can also use key indices like GTKs. Hence, if we
944  * don't have a PTK/STK we check the key index for a WEP key.
945  *
946  * Note that in a regular BSS, multicast frames are sent by the
947  * AP only, associated stations unicast the frame to the AP first
948  * which then multicasts it on their behalf.
949  *
950  * There is also a slight problem in IBSS mode: GTKs are negotiated
951  * with each station, that is something we don't currently handle.
952  * The spec seems to expect that one negotiates the same key with
953  * every station but there's no such requirement; VLANs could be
954  * possible.
955  */
956 
957  /*
958  * No point in finding a key and decrypting if the frame is neither
959  * addressed to us nor a multicast frame.
960  */
961  if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
962  return RX_CONTINUE;
963 
964  /* start without a key */
965  rx->key = NULL;
966 
967  if (rx->sta)
968  sta_ptk = rcu_dereference(rx->sta->ptk);
969 
970  fc = hdr->frame_control;
971 
972  if (!ieee80211_has_protected(fc))
973  mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
974 
975  if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
976  rx->key = sta_ptk;
977  if ((status->flag & RX_FLAG_DECRYPTED) &&
978  (status->flag & RX_FLAG_IV_STRIPPED))
979  return RX_CONTINUE;
980  /* Skip decryption if the frame is not protected. */
981  if (!ieee80211_has_protected(fc))
982  return RX_CONTINUE;
983  } else if (mmie_keyidx >= 0) {
984  /* Broadcast/multicast robust management frame / BIP */
985  if ((status->flag & RX_FLAG_DECRYPTED) &&
986  (status->flag & RX_FLAG_IV_STRIPPED))
987  return RX_CONTINUE;
988 
989  if (mmie_keyidx < NUM_DEFAULT_KEYS ||
990  mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
991  return RX_DROP_MONITOR; /* unexpected BIP keyidx */
992  if (rx->sta)
993  rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
994  if (!rx->key)
995  rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
996  } else if (!ieee80211_has_protected(fc)) {
997  /*
998  * The frame was not protected, so skip decryption. However, we
999  * need to set rx->key if there is a key that could have been
1000  * used so that the frame may be dropped if encryption would
1001  * have been expected.
1002  */
1003  struct ieee80211_key *key = NULL;
1004  struct ieee80211_sub_if_data *sdata = rx->sdata;
1005  int i;
1006 
1007  if (ieee80211_is_mgmt(fc) &&
1008  is_multicast_ether_addr(hdr->addr1) &&
1009  (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1010  rx->key = key;
1011  else {
1012  if (rx->sta) {
1013  for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1014  key = rcu_dereference(rx->sta->gtk[i]);
1015  if (key)
1016  break;
1017  }
1018  }
1019  if (!key) {
1020  for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1021  key = rcu_dereference(sdata->keys[i]);
1022  if (key)
1023  break;
1024  }
1025  }
1026  if (key)
1027  rx->key = key;
1028  }
1029  return RX_CONTINUE;
1030  } else {
1031  u8 keyid;
1032  /*
1033  * The device doesn't give us the IV so we won't be
1034  * able to look up the key. That's ok though, we
1035  * don't need to decrypt the frame, we just won't
1036  * be able to keep statistics accurate.
1037  * Except for key threshold notifications, should
1038  * we somehow allow the driver to tell us which key
1039  * the hardware used if this flag is set?
1040  */
1041  if ((status->flag & RX_FLAG_DECRYPTED) &&
1042  (status->flag & RX_FLAG_IV_STRIPPED))
1043  return RX_CONTINUE;
1044 
1045  hdrlen = ieee80211_hdrlen(fc);
1046 
1047  if (rx->skb->len < 8 + hdrlen)
1048  return RX_DROP_UNUSABLE; /* TODO: count this? */
1049 
1050  /*
1051  * no need to call ieee80211_wep_get_keyidx,
1052  * it verifies a bunch of things we've done already
1053  */
1054  skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1055  keyidx = keyid >> 6;
1056 
1057  /* check per-station GTK first, if multicast packet */
1058  if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1059  rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1060 
1061  /* if not found, try default key */
1062  if (!rx->key) {
1063  rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1064 
1065  /*
1066  * RSNA-protected unicast frames should always be
1067  * sent with pairwise or station-to-station keys,
1068  * but for WEP we allow using a key index as well.
1069  */
1070  if (rx->key &&
1071  rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1072  rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1073  !is_multicast_ether_addr(hdr->addr1))
1074  rx->key = NULL;
1075  }
1076  }
1077 
1078  if (rx->key) {
1079  if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1080  return RX_DROP_MONITOR;
1081 
1082  rx->key->tx_rx_count++;
1083  /* TODO: add threshold stuff again */
1084  } else {
1085  return RX_DROP_MONITOR;
1086  }
1087 
1088  switch (rx->key->conf.cipher) {
1092  break;
1095  break;
1098  break;
1101  break;
1102  default:
1103  /*
1104  * We can reach here only with HW-only algorithms
1105  * but why didn't it decrypt the frame?!
1106  */
1107  return RX_DROP_UNUSABLE;
1108  }
1109 
1110  /* the hdr variable is invalid after the decrypt handlers */
1111 
1112  /* either the frame has been decrypted or will be dropped */
1113  status->flag |= RX_FLAG_DECRYPTED;
1114 
1115  return result;
1116 }
1117 
1119 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1120 {
1121  struct ieee80211_local *local;
1122  struct ieee80211_hdr *hdr;
1123  struct sk_buff *skb;
1124 
1125  local = rx->local;
1126  skb = rx->skb;
1127  hdr = (struct ieee80211_hdr *) skb->data;
1128 
1129  if (!local->pspolling)
1130  return RX_CONTINUE;
1131 
1132  if (!ieee80211_has_fromds(hdr->frame_control))
1133  /* this is not from AP */
1134  return RX_CONTINUE;
1135 
1136  if (!ieee80211_is_data(hdr->frame_control))
1137  return RX_CONTINUE;
1138 
1139  if (!ieee80211_has_moredata(hdr->frame_control)) {
1140  /* AP has no more frames buffered for us */
1141  local->pspolling = false;
1142  return RX_CONTINUE;
1143  }
1144 
1145  /* more data bit is set, let's request a new frame from the AP */
1146  ieee80211_send_pspoll(local, rx->sdata);
1147 
1148  return RX_CONTINUE;
1149 }
1150 
1151 static void ap_sta_ps_start(struct sta_info *sta)
1152 {
1153  struct ieee80211_sub_if_data *sdata = sta->sdata;
1154  struct ieee80211_local *local = sdata->local;
1155 
1156  atomic_inc(&sdata->bss->num_sta_ps);
1157  set_sta_flag(sta, WLAN_STA_PS_STA);
1158  if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1159  drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1160  ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1161  sta->sta.addr, sta->sta.aid);
1162 }
1163 
1164 static void ap_sta_ps_end(struct sta_info *sta)
1165 {
1166  ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1167  sta->sta.addr, sta->sta.aid);
1168 
1169  if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1170  ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1171  sta->sta.addr, sta->sta.aid);
1172  return;
1173  }
1174 
1176 }
1177 
1179 {
1180  struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1181  bool in_ps;
1182 
1183  WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1184 
1185  /* Don't let the same PS state be set twice */
1186  in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1187  if ((start && in_ps) || (!start && !in_ps))
1188  return -EINVAL;
1189 
1190  if (start)
1191  ap_sta_ps_start(sta_inf);
1192  else
1193  ap_sta_ps_end(sta_inf);
1194 
1195  return 0;
1196 }
1198 
1200 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1201 {
1202  struct ieee80211_sub_if_data *sdata = rx->sdata;
1203  struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1204  struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1205  int tid, ac;
1206 
1207  if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1208  return RX_CONTINUE;
1209 
1210  if (sdata->vif.type != NL80211_IFTYPE_AP &&
1211  sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1212  return RX_CONTINUE;
1213 
1214  /*
1215  * The device handles station powersave, so don't do anything about
1216  * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1217  * it to mac80211 since they're handled.)
1218  */
1219  if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1220  return RX_CONTINUE;
1221 
1222  /*
1223  * Don't do anything if the station isn't already asleep. In
1224  * the uAPSD case, the station will probably be marked asleep,
1225  * in the PS-Poll case the station must be confused ...
1226  */
1227  if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1228  return RX_CONTINUE;
1229 
1230  if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1231  if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1232  if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1234  else
1235  set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1236  }
1237 
1238  /* Free PS Poll skb here instead of returning RX_DROP that would
1239  * count as an dropped frame. */
1240  dev_kfree_skb(rx->skb);
1241 
1242  return RX_QUEUED;
1243  } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1244  !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1245  ieee80211_has_pm(hdr->frame_control) &&
1246  (ieee80211_is_data_qos(hdr->frame_control) ||
1247  ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1248  tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1249  ac = ieee802_1d_to_ac[tid & 7];
1250 
1251  /*
1252  * If this AC is not trigger-enabled do nothing.
1253  *
1254  * NB: This could/should check a separate bitmap of trigger-
1255  * enabled queues, but for now we only implement uAPSD w/o
1256  * TSPEC changes to the ACs, so they're always the same.
1257  */
1258  if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1259  return RX_CONTINUE;
1260 
1261  /* if we are in a service period, do nothing */
1262  if (test_sta_flag(rx->sta, WLAN_STA_SP))
1263  return RX_CONTINUE;
1264 
1265  if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1267  else
1268  set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1269  }
1270 
1271  return RX_CONTINUE;
1272 }
1273 
1275 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1276 {
1277  struct sta_info *sta = rx->sta;
1278  struct sk_buff *skb = rx->skb;
1279  struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1280  struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1281 
1282  if (!sta)
1283  return RX_CONTINUE;
1284 
1285  /*
1286  * Update last_rx only for IBSS packets which are for the current
1287  * BSSID to avoid keeping the current IBSS network alive in cases
1288  * where other STAs start using different BSSID.
1289  */
1290  if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1291  u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1293  if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid)) {
1294  sta->last_rx = jiffies;
1295  if (ieee80211_is_data(hdr->frame_control)) {
1296  sta->last_rx_rate_idx = status->rate_idx;
1297  sta->last_rx_rate_flag = status->flag;
1298  }
1299  }
1300  } else if (!is_multicast_ether_addr(hdr->addr1)) {
1301  /*
1302  * Mesh beacons will update last_rx when if they are found to
1303  * match the current local configuration when processed.
1304  */
1305  sta->last_rx = jiffies;
1306  if (ieee80211_is_data(hdr->frame_control)) {
1307  sta->last_rx_rate_idx = status->rate_idx;
1308  sta->last_rx_rate_flag = status->flag;
1309  }
1310  }
1311 
1312  if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1313  return RX_CONTINUE;
1314 
1315  if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1316  ieee80211_sta_rx_notify(rx->sdata, hdr);
1317 
1318  sta->rx_fragments++;
1319  sta->rx_bytes += rx->skb->len;
1320  if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1321  sta->last_signal = status->signal;
1322  ewma_add(&sta->avg_signal, -status->signal);
1323  }
1324 
1325  /*
1326  * Change STA power saving mode only at the end of a frame
1327  * exchange sequence.
1328  */
1329  if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1330  !ieee80211_has_morefrags(hdr->frame_control) &&
1331  !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1332  (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1333  rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1334  if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1335  /*
1336  * Ignore doze->wake transitions that are
1337  * indicated by non-data frames, the standard
1338  * is unclear here, but for example going to
1339  * PS mode and then scanning would cause a
1340  * doze->wake transition for the probe request,
1341  * and that is clearly undesirable.
1342  */
1343  if (ieee80211_is_data(hdr->frame_control) &&
1344  !ieee80211_has_pm(hdr->frame_control))
1345  ap_sta_ps_end(sta);
1346  } else {
1347  if (ieee80211_has_pm(hdr->frame_control))
1348  ap_sta_ps_start(sta);
1349  }
1350  }
1351 
1352  /*
1353  * Drop (qos-)data::nullfunc frames silently, since they
1354  * are used only to control station power saving mode.
1355  */
1356  if (ieee80211_is_nullfunc(hdr->frame_control) ||
1357  ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1358  I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1359 
1360  /*
1361  * If we receive a 4-addr nullfunc frame from a STA
1362  * that was not moved to a 4-addr STA vlan yet send
1363  * the event to userspace and for older hostapd drop
1364  * the frame to the monitor interface.
1365  */
1366  if (ieee80211_has_a4(hdr->frame_control) &&
1367  (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1368  (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1369  !rx->sdata->u.vlan.sta))) {
1370  if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1372  rx->sdata->dev, sta->sta.addr,
1373  GFP_ATOMIC);
1374  return RX_DROP_MONITOR;
1375  }
1376  /*
1377  * Update counter and free packet here to avoid
1378  * counting this as a dropped packed.
1379  */
1380  sta->rx_packets++;
1381  dev_kfree_skb(rx->skb);
1382  return RX_QUEUED;
1383  }
1384 
1385  return RX_CONTINUE;
1386 } /* ieee80211_rx_h_sta_process */
1387 
1388 static inline struct ieee80211_fragment_entry *
1389 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1390  unsigned int frag, unsigned int seq, int rx_queue,
1391  struct sk_buff **skb)
1392 {
1394  int idx;
1395 
1396  idx = sdata->fragment_next;
1397  entry = &sdata->fragments[sdata->fragment_next++];
1398  if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1399  sdata->fragment_next = 0;
1400 
1401  if (!skb_queue_empty(&entry->skb_list))
1402  __skb_queue_purge(&entry->skb_list);
1403 
1404  __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1405  *skb = NULL;
1406  entry->first_frag_time = jiffies;
1407  entry->seq = seq;
1408  entry->rx_queue = rx_queue;
1409  entry->last_frag = frag;
1410  entry->ccmp = 0;
1411  entry->extra_len = 0;
1412 
1413  return entry;
1414 }
1415 
1416 static inline struct ieee80211_fragment_entry *
1417 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1418  unsigned int frag, unsigned int seq,
1419  int rx_queue, struct ieee80211_hdr *hdr)
1420 {
1422  int i, idx;
1423 
1424  idx = sdata->fragment_next;
1425  for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1426  struct ieee80211_hdr *f_hdr;
1427 
1428  idx--;
1429  if (idx < 0)
1430  idx = IEEE80211_FRAGMENT_MAX - 1;
1431 
1432  entry = &sdata->fragments[idx];
1433  if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1434  entry->rx_queue != rx_queue ||
1435  entry->last_frag + 1 != frag)
1436  continue;
1437 
1438  f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1439 
1440  /*
1441  * Check ftype and addresses are equal, else check next fragment
1442  */
1443  if (((hdr->frame_control ^ f_hdr->frame_control) &
1445  !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1446  !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1447  continue;
1448 
1449  if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1450  __skb_queue_purge(&entry->skb_list);
1451  continue;
1452  }
1453  return entry;
1454  }
1455 
1456  return NULL;
1457 }
1458 
1460 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1461 {
1462  struct ieee80211_hdr *hdr;
1463  u16 sc;
1464  __le16 fc;
1465  unsigned int frag, seq;
1467  struct sk_buff *skb;
1468  struct ieee80211_rx_status *status;
1469 
1470  hdr = (struct ieee80211_hdr *)rx->skb->data;
1471  fc = hdr->frame_control;
1472 
1473  if (ieee80211_is_ctl(fc))
1474  return RX_CONTINUE;
1475 
1476  sc = le16_to_cpu(hdr->seq_ctrl);
1477  frag = sc & IEEE80211_SCTL_FRAG;
1478 
1479  if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1480  is_multicast_ether_addr(hdr->addr1))) {
1481  /* not fragmented */
1482  goto out;
1483  }
1484  I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1485 
1486  if (skb_linearize(rx->skb))
1487  return RX_DROP_UNUSABLE;
1488 
1489  /*
1490  * skb_linearize() might change the skb->data and
1491  * previously cached variables (in this case, hdr) need to
1492  * be refreshed with the new data.
1493  */
1494  hdr = (struct ieee80211_hdr *)rx->skb->data;
1495  seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1496 
1497  if (frag == 0) {
1498  /* This is the first fragment of a new frame. */
1499  entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1500  rx->seqno_idx, &(rx->skb));
1501  if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1502  ieee80211_has_protected(fc)) {
1503  int queue = rx->security_idx;
1504  /* Store CCMP PN so that we can verify that the next
1505  * fragment has a sequential PN value. */
1506  entry->ccmp = 1;
1507  memcpy(entry->last_pn,
1508  rx->key->u.ccmp.rx_pn[queue],
1509  CCMP_PN_LEN);
1510  }
1511  return RX_QUEUED;
1512  }
1513 
1514  /* This is a fragment for a frame that should already be pending in
1515  * fragment cache. Add this fragment to the end of the pending entry.
1516  */
1517  entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1518  rx->seqno_idx, hdr);
1519  if (!entry) {
1520  I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1521  return RX_DROP_MONITOR;
1522  }
1523 
1524  /* Verify that MPDUs within one MSDU have sequential PN values.
1525  * (IEEE 802.11i, 8.3.3.4.5) */
1526  if (entry->ccmp) {
1527  int i;
1528  u8 pn[CCMP_PN_LEN], *rpn;
1529  int queue;
1530  if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1531  return RX_DROP_UNUSABLE;
1532  memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1533  for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1534  pn[i]++;
1535  if (pn[i])
1536  break;
1537  }
1538  queue = rx->security_idx;
1539  rpn = rx->key->u.ccmp.rx_pn[queue];
1540  if (memcmp(pn, rpn, CCMP_PN_LEN))
1541  return RX_DROP_UNUSABLE;
1542  memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1543  }
1544 
1545  skb_pull(rx->skb, ieee80211_hdrlen(fc));
1546  __skb_queue_tail(&entry->skb_list, rx->skb);
1547  entry->last_frag = frag;
1548  entry->extra_len += rx->skb->len;
1549  if (ieee80211_has_morefrags(fc)) {
1550  rx->skb = NULL;
1551  return RX_QUEUED;
1552  }
1553 
1554  rx->skb = __skb_dequeue(&entry->skb_list);
1555  if (skb_tailroom(rx->skb) < entry->extra_len) {
1556  I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1557  if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1558  GFP_ATOMIC))) {
1559  I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1560  __skb_queue_purge(&entry->skb_list);
1561  return RX_DROP_UNUSABLE;
1562  }
1563  }
1564  while ((skb = __skb_dequeue(&entry->skb_list))) {
1565  memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1566  dev_kfree_skb(skb);
1567  }
1568 
1569  /* Complete frame has been reassembled - process it now */
1570  status = IEEE80211_SKB_RXCB(rx->skb);
1571  status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1572 
1573  out:
1574  if (rx->sta)
1575  rx->sta->rx_packets++;
1576  if (is_multicast_ether_addr(hdr->addr1))
1577  rx->local->dot11MulticastReceivedFrameCount++;
1578  else
1579  ieee80211_led_rx(rx->local);
1580  return RX_CONTINUE;
1581 }
1582 
1583 static int
1584 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1585 {
1586  if (unlikely(!rx->sta ||
1587  !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1588  return -EACCES;
1589 
1590  return 0;
1591 }
1592 
1593 static int
1594 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1595 {
1596  struct sk_buff *skb = rx->skb;
1597  struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1598 
1599  /*
1600  * Pass through unencrypted frames if the hardware has
1601  * decrypted them already.
1602  */
1603  if (status->flag & RX_FLAG_DECRYPTED)
1604  return 0;
1605 
1606  /* Drop unencrypted frames if key is set. */
1607  if (unlikely(!ieee80211_has_protected(fc) &&
1608  !ieee80211_is_nullfunc(fc) &&
1609  ieee80211_is_data(fc) &&
1610  (rx->key || rx->sdata->drop_unencrypted)))
1611  return -EACCES;
1612 
1613  return 0;
1614 }
1615 
1616 static int
1617 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1618 {
1619  struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1620  struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1621  __le16 fc = hdr->frame_control;
1622 
1623  /*
1624  * Pass through unencrypted frames if the hardware has
1625  * decrypted them already.
1626  */
1627  if (status->flag & RX_FLAG_DECRYPTED)
1628  return 0;
1629 
1630  if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1631  if (unlikely(!ieee80211_has_protected(fc) &&
1632  ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1633  rx->key)) {
1634  if (ieee80211_is_deauth(fc))
1636  rx->skb->data,
1637  rx->skb->len);
1638  else if (ieee80211_is_disassoc(fc))
1640  rx->skb->data,
1641  rx->skb->len);
1642  return -EACCES;
1643  }
1644  /* BIP does not use Protected field, so need to check MMIE */
1645  if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1646  ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1647  if (ieee80211_is_deauth(fc))
1649  rx->skb->data,
1650  rx->skb->len);
1651  else if (ieee80211_is_disassoc(fc))
1653  rx->skb->data,
1654  rx->skb->len);
1655  return -EACCES;
1656  }
1657  /*
1658  * When using MFP, Action frames are not allowed prior to
1659  * having configured keys.
1660  */
1661  if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1662  ieee80211_is_robust_mgmt_frame(
1663  (struct ieee80211_hdr *) rx->skb->data)))
1664  return -EACCES;
1665  }
1666 
1667  return 0;
1668 }
1669 
1670 static int
1671 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1672 {
1673  struct ieee80211_sub_if_data *sdata = rx->sdata;
1674  struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1675  bool check_port_control = false;
1676  struct ethhdr *ehdr;
1677  int ret;
1678 
1679  *port_control = false;
1680  if (ieee80211_has_a4(hdr->frame_control) &&
1681  sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1682  return -1;
1683 
1684  if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1685  !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1686 
1687  if (!sdata->u.mgd.use_4addr)
1688  return -1;
1689  else
1690  check_port_control = true;
1691  }
1692 
1693  if (is_multicast_ether_addr(hdr->addr1) &&
1694  sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1695  return -1;
1696 
1697  ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1698  if (ret < 0)
1699  return ret;
1700 
1701  ehdr = (struct ethhdr *) rx->skb->data;
1702  if (ehdr->h_proto == rx->sdata->control_port_protocol)
1703  *port_control = true;
1704  else if (check_port_control)
1705  return -1;
1706 
1707  return 0;
1708 }
1709 
1710 /*
1711  * requires that rx->skb is a frame with ethernet header
1712  */
1713 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1714 {
1715  static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1716  = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1717  struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1718 
1719  /*
1720  * Allow EAPOL frames to us/the PAE group address regardless
1721  * of whether the frame was encrypted or not.
1722  */
1723  if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1724  (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1725  ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1726  return true;
1727 
1728  if (ieee80211_802_1x_port_control(rx) ||
1729  ieee80211_drop_unencrypted(rx, fc))
1730  return false;
1731 
1732  return true;
1733 }
1734 
1735 /*
1736  * requires that rx->skb is a frame with ethernet header
1737  */
1738 static void
1739 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1740 {
1741  struct ieee80211_sub_if_data *sdata = rx->sdata;
1742  struct net_device *dev = sdata->dev;
1743  struct sk_buff *skb, *xmit_skb;
1744  struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1745  struct sta_info *dsta;
1746  struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1747 
1748  skb = rx->skb;
1749  xmit_skb = NULL;
1750 
1751  if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1752  sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1754  (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1755  (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1756  if (is_multicast_ether_addr(ehdr->h_dest)) {
1757  /*
1758  * send multicast frames both to higher layers in
1759  * local net stack and back to the wireless medium
1760  */
1761  xmit_skb = skb_copy(skb, GFP_ATOMIC);
1762  if (!xmit_skb)
1763  net_info_ratelimited("%s: failed to clone multicast frame\n",
1764  dev->name);
1765  } else {
1766  dsta = sta_info_get(sdata, skb->data);
1767  if (dsta) {
1768  /*
1769  * The destination station is associated to
1770  * this AP (in this VLAN), so send the frame
1771  * directly to it and do not pass it to local
1772  * net stack.
1773  */
1774  xmit_skb = skb;
1775  skb = NULL;
1776  }
1777  }
1778  }
1779 
1780  if (skb) {
1781  int align __maybe_unused;
1782 
1783 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1784  /*
1785  * 'align' will only take the values 0 or 2 here
1786  * since all frames are required to be aligned
1787  * to 2-byte boundaries when being passed to
1788  * mac80211. That also explains the __skb_push()
1789  * below.
1790  */
1791  align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1792  if (align) {
1793  if (WARN_ON(skb_headroom(skb) < 3)) {
1794  dev_kfree_skb(skb);
1795  skb = NULL;
1796  } else {
1797  u8 *data = skb->data;
1798  size_t len = skb_headlen(skb);
1799  skb->data -= align;
1800  memmove(skb->data, data, len);
1801  skb_set_tail_pointer(skb, len);
1802  }
1803  }
1804 #endif
1805 
1806  if (skb) {
1807  /* deliver to local stack */
1808  skb->protocol = eth_type_trans(skb, dev);
1809  memset(skb->cb, 0, sizeof(skb->cb));
1810  netif_receive_skb(skb);
1811  }
1812  }
1813 
1814  if (xmit_skb) {
1815  /*
1816  * Send to wireless media and increase priority by 256 to
1817  * keep the received priority instead of reclassifying
1818  * the frame (see cfg80211_classify8021d).
1819  */
1820  xmit_skb->priority += 256;
1821  xmit_skb->protocol = htons(ETH_P_802_3);
1822  skb_reset_network_header(xmit_skb);
1823  skb_reset_mac_header(xmit_skb);
1824  dev_queue_xmit(xmit_skb);
1825  }
1826 }
1827 
1829 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1830 {
1831  struct net_device *dev = rx->sdata->dev;
1832  struct sk_buff *skb = rx->skb;
1833  struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1834  __le16 fc = hdr->frame_control;
1835  struct sk_buff_head frame_list;
1836  struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1837 
1838  if (unlikely(!ieee80211_is_data(fc)))
1839  return RX_CONTINUE;
1840 
1841  if (unlikely(!ieee80211_is_data_present(fc)))
1842  return RX_DROP_MONITOR;
1843 
1844  if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1845  return RX_CONTINUE;
1846 
1847  if (ieee80211_has_a4(hdr->frame_control) &&
1848  rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1849  !rx->sdata->u.vlan.sta)
1850  return RX_DROP_UNUSABLE;
1851 
1852  if (is_multicast_ether_addr(hdr->addr1) &&
1853  ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1854  rx->sdata->u.vlan.sta) ||
1855  (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1856  rx->sdata->u.mgd.use_4addr)))
1857  return RX_DROP_UNUSABLE;
1858 
1859  skb->dev = dev;
1860  __skb_queue_head_init(&frame_list);
1861 
1862  if (skb_linearize(skb))
1863  return RX_DROP_UNUSABLE;
1864 
1866  rx->sdata->vif.type,
1867  rx->local->hw.extra_tx_headroom, true);
1868 
1869  while (!skb_queue_empty(&frame_list)) {
1870  rx->skb = __skb_dequeue(&frame_list);
1871 
1872  if (!ieee80211_frame_allowed(rx, fc)) {
1873  dev_kfree_skb(rx->skb);
1874  continue;
1875  }
1876  dev->stats.rx_packets++;
1877  dev->stats.rx_bytes += rx->skb->len;
1878 
1879  ieee80211_deliver_skb(rx);
1880  }
1881 
1882  return RX_QUEUED;
1883 }
1884 
1885 #ifdef CONFIG_MAC80211_MESH
1886 static ieee80211_rx_result
1887 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1888 {
1889  struct ieee80211_hdr *fwd_hdr, *hdr;
1890  struct ieee80211_tx_info *info;
1891  struct ieee80211s_hdr *mesh_hdr;
1892  struct sk_buff *skb = rx->skb, *fwd_skb;
1893  struct ieee80211_local *local = rx->local;
1894  struct ieee80211_sub_if_data *sdata = rx->sdata;
1895  struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1896  struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
1898  u16 q, hdrlen;
1899 
1900  hdr = (struct ieee80211_hdr *) skb->data;
1901  hdrlen = ieee80211_hdrlen(hdr->frame_control);
1902 
1903  /* make sure fixed part of mesh header is there, also checks skb len */
1904  if (!pskb_may_pull(rx->skb, hdrlen + 6))
1905  return RX_DROP_MONITOR;
1906 
1907  mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1908 
1909  /* make sure full mesh header is there, also checks skb len */
1910  if (!pskb_may_pull(rx->skb,
1911  hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
1912  return RX_DROP_MONITOR;
1913 
1914  /* reload pointers */
1915  hdr = (struct ieee80211_hdr *) skb->data;
1916  mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1917 
1918  /* frame is in RMC, don't forward */
1919  if (ieee80211_is_data(hdr->frame_control) &&
1920  is_multicast_ether_addr(hdr->addr1) &&
1921  mesh_rmc_check(hdr->addr3, mesh_hdr, rx->sdata))
1922  return RX_DROP_MONITOR;
1923 
1924  if (!ieee80211_is_data(hdr->frame_control) ||
1925  !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1926  return RX_CONTINUE;
1927 
1928  if (!mesh_hdr->ttl)
1929  return RX_DROP_MONITOR;
1930 
1931  if (mesh_hdr->flags & MESH_FLAGS_AE) {
1932  struct mesh_path *mppath;
1933  char *proxied_addr;
1934  char *mpp_addr;
1935 
1936  if (is_multicast_ether_addr(hdr->addr1)) {
1937  mpp_addr = hdr->addr3;
1938  proxied_addr = mesh_hdr->eaddr1;
1939  } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
1940  /* has_a4 already checked in ieee80211_rx_mesh_check */
1941  mpp_addr = hdr->addr4;
1942  proxied_addr = mesh_hdr->eaddr2;
1943  } else {
1944  return RX_DROP_MONITOR;
1945  }
1946 
1947  rcu_read_lock();
1948  mppath = mpp_path_lookup(proxied_addr, sdata);
1949  if (!mppath) {
1950  mpp_path_add(proxied_addr, mpp_addr, sdata);
1951  } else {
1952  spin_lock_bh(&mppath->state_lock);
1953  if (!ether_addr_equal(mppath->mpp, mpp_addr))
1954  memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1955  spin_unlock_bh(&mppath->state_lock);
1956  }
1957  rcu_read_unlock();
1958  }
1959 
1960  /* Frame has reached destination. Don't forward */
1961  if (!is_multicast_ether_addr(hdr->addr1) &&
1962  ether_addr_equal(sdata->vif.addr, hdr->addr3))
1963  return RX_CONTINUE;
1964 
1965  q = ieee80211_select_queue_80211(sdata, skb, hdr);
1966  if (ieee80211_queue_stopped(&local->hw, q)) {
1967  IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
1968  return RX_DROP_MONITOR;
1969  }
1970  skb_set_queue_mapping(skb, q);
1971 
1972  if (!--mesh_hdr->ttl) {
1973  IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
1974  goto out;
1975  }
1976 
1977  if (!ifmsh->mshcfg.dot11MeshForwarding)
1978  goto out;
1979 
1980  fwd_skb = skb_copy(skb, GFP_ATOMIC);
1981  if (!fwd_skb) {
1982  net_info_ratelimited("%s: failed to clone mesh frame\n",
1983  sdata->name);
1984  goto out;
1985  }
1986 
1987  fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1988  info = IEEE80211_SKB_CB(fwd_skb);
1989  memset(info, 0, sizeof(*info));
1991  info->control.vif = &rx->sdata->vif;
1992  info->control.jiffies = jiffies;
1993  if (is_multicast_ether_addr(fwd_hdr->addr1)) {
1994  IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
1995  memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1996  } else if (!mesh_nexthop_lookup(fwd_skb, sdata)) {
1997  IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
1998  } else {
1999  /* unable to resolve next hop */
2000  mesh_path_error_tx(ifmsh->mshcfg.element_ttl, fwd_hdr->addr3,
2001  0, reason, fwd_hdr->addr2, sdata);
2002  IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2003  kfree_skb(fwd_skb);
2004  return RX_DROP_MONITOR;
2005  }
2006 
2007  IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2008  ieee80211_add_pending_skb(local, fwd_skb);
2009  out:
2010  if (is_multicast_ether_addr(hdr->addr1) ||
2011  sdata->dev->flags & IFF_PROMISC)
2012  return RX_CONTINUE;
2013  else
2014  return RX_DROP_MONITOR;
2015 }
2016 #endif
2017 
2019 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2020 {
2021  struct ieee80211_sub_if_data *sdata = rx->sdata;
2022  struct ieee80211_local *local = rx->local;
2023  struct net_device *dev = sdata->dev;
2024  struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2025  __le16 fc = hdr->frame_control;
2026  bool port_control;
2027  int err;
2028 
2029  if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2030  return RX_CONTINUE;
2031 
2032  if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2033  return RX_DROP_MONITOR;
2034 
2035  /*
2036  * Send unexpected-4addr-frame event to hostapd. For older versions,
2037  * also drop the frame to cooked monitor interfaces.
2038  */
2039  if (ieee80211_has_a4(hdr->frame_control) &&
2040  sdata->vif.type == NL80211_IFTYPE_AP) {
2041  if (rx->sta &&
2042  !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2044  rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2045  return RX_DROP_MONITOR;
2046  }
2047 
2048  err = __ieee80211_data_to_8023(rx, &port_control);
2049  if (unlikely(err))
2050  return RX_DROP_UNUSABLE;
2051 
2052  if (!ieee80211_frame_allowed(rx, fc))
2053  return RX_DROP_MONITOR;
2054 
2055  if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2056  unlikely(port_control) && sdata->bss) {
2057  sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2058  u.ap);
2059  dev = sdata->dev;
2060  rx->sdata = sdata;
2061  }
2062 
2063  rx->skb->dev = dev;
2064 
2065  dev->stats.rx_packets++;
2066  dev->stats.rx_bytes += rx->skb->len;
2067 
2068  if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2069  !is_multicast_ether_addr(
2070  ((struct ethhdr *)rx->skb->data)->h_dest) &&
2071  (!local->scanning &&
2072  !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2073  mod_timer(&local->dynamic_ps_timer, jiffies +
2074  msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2075  }
2076 
2077  ieee80211_deliver_skb(rx);
2078 
2079  return RX_QUEUED;
2080 }
2081 
2083 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
2084 {
2085  struct sk_buff *skb = rx->skb;
2086  struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2087  struct tid_ampdu_rx *tid_agg_rx;
2089  u16 tid;
2090 
2091  if (likely(!ieee80211_is_ctl(bar->frame_control)))
2092  return RX_CONTINUE;
2093 
2094  if (ieee80211_is_back_req(bar->frame_control)) {
2095  struct {
2097  } __packed bar_data;
2098 
2099  if (!rx->sta)
2100  return RX_DROP_MONITOR;
2101 
2102  if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2103  &bar_data, sizeof(bar_data)))
2104  return RX_DROP_MONITOR;
2105 
2106  tid = le16_to_cpu(bar_data.control) >> 12;
2107 
2108  tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2109  if (!tid_agg_rx)
2110  return RX_DROP_MONITOR;
2111 
2112  start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2113 
2114  /* reset session timer */
2115  if (tid_agg_rx->timeout)
2116  mod_timer(&tid_agg_rx->session_timer,
2117  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2118 
2119  spin_lock(&tid_agg_rx->reorder_lock);
2120  /* release stored frames up to start of BAR */
2121  ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2122  start_seq_num);
2123  spin_unlock(&tid_agg_rx->reorder_lock);
2124 
2125  kfree_skb(skb);
2126  return RX_QUEUED;
2127  }
2128 
2129  /*
2130  * After this point, we only want management frames,
2131  * so we can drop all remaining control frames to
2132  * cooked monitor interfaces.
2133  */
2134  return RX_DROP_MONITOR;
2135 }
2136 
2137 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2138  struct ieee80211_mgmt *mgmt,
2139  size_t len)
2140 {
2141  struct ieee80211_local *local = sdata->local;
2142  struct sk_buff *skb;
2143  struct ieee80211_mgmt *resp;
2144 
2145  if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2146  /* Not to own unicast address */
2147  return;
2148  }
2149 
2150  if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2151  !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2152  /* Not from the current AP or not associated yet. */
2153  return;
2154  }
2155 
2156  if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2157  /* Too short SA Query request frame */
2158  return;
2159  }
2160 
2161  skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2162  if (skb == NULL)
2163  return;
2164 
2165  skb_reserve(skb, local->hw.extra_tx_headroom);
2166  resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2167  memset(resp, 0, 24);
2168  memcpy(resp->da, mgmt->sa, ETH_ALEN);
2169  memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2170  memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2173  skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2174  resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2175  resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2176  memcpy(resp->u.action.u.sa_query.trans_id,
2177  mgmt->u.action.u.sa_query.trans_id,
2179 
2180  ieee80211_tx_skb(sdata, skb);
2181 }
2182 
2184 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2185 {
2186  struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2187  struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2188 
2189  /*
2190  * From here on, look only at management frames.
2191  * Data and control frames are already handled,
2192  * and unknown (reserved) frames are useless.
2193  */
2194  if (rx->skb->len < 24)
2195  return RX_DROP_MONITOR;
2196 
2197  if (!ieee80211_is_mgmt(mgmt->frame_control))
2198  return RX_DROP_MONITOR;
2199 
2200  if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2201  ieee80211_is_beacon(mgmt->frame_control) &&
2203  int sig = 0;
2204 
2205  if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2206  sig = status->signal;
2207 
2208  cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2209  rx->skb->data, rx->skb->len,
2210  status->freq, sig, GFP_ATOMIC);
2212  }
2213 
2214  if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2215  return RX_DROP_MONITOR;
2216 
2217  if (ieee80211_drop_unencrypted_mgmt(rx))
2218  return RX_DROP_UNUSABLE;
2219 
2220  return RX_CONTINUE;
2221 }
2222 
2224 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2225 {
2226  struct ieee80211_local *local = rx->local;
2227  struct ieee80211_sub_if_data *sdata = rx->sdata;
2228  struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2229  struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2230  int len = rx->skb->len;
2231 
2232  if (!ieee80211_is_action(mgmt->frame_control))
2233  return RX_CONTINUE;
2234 
2235  /* drop too small frames */
2236  if (len < IEEE80211_MIN_ACTION_SIZE)
2237  return RX_DROP_UNUSABLE;
2238 
2239  if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2240  return RX_DROP_UNUSABLE;
2241 
2242  if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2243  return RX_DROP_UNUSABLE;
2244 
2245  switch (mgmt->u.action.category) {
2246  case WLAN_CATEGORY_HT:
2247  /* reject HT action frames from stations not supporting HT */
2248  if (!rx->sta->sta.ht_cap.ht_supported)
2249  goto invalid;
2250 
2251  if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2252  sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2253  sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2254  sdata->vif.type != NL80211_IFTYPE_AP &&
2255  sdata->vif.type != NL80211_IFTYPE_ADHOC)
2256  break;
2257 
2258  /* verify action & smps_control are present */
2259  if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2260  goto invalid;
2261 
2262  switch (mgmt->u.action.u.ht_smps.action) {
2263  case WLAN_HT_ACTION_SMPS: {
2264  struct ieee80211_supported_band *sband;
2265  u8 smps;
2266 
2267  /* convert to HT capability */
2268  switch (mgmt->u.action.u.ht_smps.smps_control) {
2271  break;
2273  smps = WLAN_HT_CAP_SM_PS_STATIC;
2274  break;
2277  break;
2278  default:
2279  goto invalid;
2280  }
2282 
2283  /* if no change do nothing */
2284  if ((rx->sta->sta.ht_cap.cap &
2285  IEEE80211_HT_CAP_SM_PS) == smps)
2286  goto handled;
2287 
2288  rx->sta->sta.ht_cap.cap &= ~IEEE80211_HT_CAP_SM_PS;
2289  rx->sta->sta.ht_cap.cap |= smps;
2290 
2291  sband = rx->local->hw.wiphy->bands[status->band];
2292 
2293  rate_control_rate_update(local, sband, rx->sta,
2295  goto handled;
2296  }
2297  default:
2298  goto invalid;
2299  }
2300 
2301  break;
2302  case WLAN_CATEGORY_BACK:
2303  if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2304  sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2305  sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2306  sdata->vif.type != NL80211_IFTYPE_AP &&
2307  sdata->vif.type != NL80211_IFTYPE_ADHOC)
2308  break;
2309 
2310  /* verify action_code is present */
2311  if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2312  break;
2313 
2314  switch (mgmt->u.action.u.addba_req.action_code) {
2315  case WLAN_ACTION_ADDBA_REQ:
2316  if (len < (IEEE80211_MIN_ACTION_SIZE +
2317  sizeof(mgmt->u.action.u.addba_req)))
2318  goto invalid;
2319  break;
2321  if (len < (IEEE80211_MIN_ACTION_SIZE +
2322  sizeof(mgmt->u.action.u.addba_resp)))
2323  goto invalid;
2324  break;
2325  case WLAN_ACTION_DELBA:
2326  if (len < (IEEE80211_MIN_ACTION_SIZE +
2327  sizeof(mgmt->u.action.u.delba)))
2328  goto invalid;
2329  break;
2330  default:
2331  goto invalid;
2332  }
2333 
2334  goto queue;
2336  if (status->band != IEEE80211_BAND_5GHZ)
2337  break;
2338 
2339  if (sdata->vif.type != NL80211_IFTYPE_STATION)
2340  break;
2341 
2342  /* verify action_code is present */
2343  if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2344  break;
2345 
2346  switch (mgmt->u.action.u.measurement.action_code) {
2348  if (len < (IEEE80211_MIN_ACTION_SIZE +
2349  sizeof(mgmt->u.action.u.measurement)))
2350  break;
2351  ieee80211_process_measurement_req(sdata, mgmt, len);
2352  goto handled;
2354  if (len < (IEEE80211_MIN_ACTION_SIZE +
2355  sizeof(mgmt->u.action.u.chan_switch)))
2356  break;
2357 
2358  if (sdata->vif.type != NL80211_IFTYPE_STATION)
2359  break;
2360 
2361  if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2362  break;
2363 
2364  goto queue;
2365  }
2366  break;
2368  if (len < (IEEE80211_MIN_ACTION_SIZE +
2369  sizeof(mgmt->u.action.u.sa_query)))
2370  break;
2371 
2372  switch (mgmt->u.action.u.sa_query.action) {
2374  if (sdata->vif.type != NL80211_IFTYPE_STATION)
2375  break;
2376  ieee80211_process_sa_query_req(sdata, mgmt, len);
2377  goto handled;
2378  }
2379  break;
2381  if (len < (IEEE80211_MIN_ACTION_SIZE +
2382  sizeof(mgmt->u.action.u.self_prot.action_code)))
2383  break;
2384 
2385  switch (mgmt->u.action.u.self_prot.action_code) {
2389  if (!ieee80211_vif_is_mesh(&sdata->vif))
2390  goto invalid;
2391  if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE)
2392  /* userspace handles this frame */
2393  break;
2394  goto queue;
2395  case WLAN_SP_MGK_INFORM:
2396  case WLAN_SP_MGK_ACK:
2397  if (!ieee80211_vif_is_mesh(&sdata->vif))
2398  goto invalid;
2399  break;
2400  }
2401  break;
2403  if (len < (IEEE80211_MIN_ACTION_SIZE +
2404  sizeof(mgmt->u.action.u.mesh_action.action_code)))
2405  break;
2406 
2407  if (!ieee80211_vif_is_mesh(&sdata->vif))
2408  break;
2409  if (mesh_action_is_path_sel(mgmt) &&
2410  (!mesh_path_sel_is_hwmp(sdata)))
2411  break;
2412  goto queue;
2413  }
2414 
2415  return RX_CONTINUE;
2416 
2417  invalid:
2419  /* will return in the next handlers */
2420  return RX_CONTINUE;
2421 
2422  handled:
2423  if (rx->sta)
2424  rx->sta->rx_packets++;
2425  dev_kfree_skb(rx->skb);
2426  return RX_QUEUED;
2427 
2428  queue:
2429  rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2430  skb_queue_tail(&sdata->skb_queue, rx->skb);
2431  ieee80211_queue_work(&local->hw, &sdata->work);
2432  if (rx->sta)
2433  rx->sta->rx_packets++;
2434  return RX_QUEUED;
2435 }
2436 
2438 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2439 {
2440  struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2441  int sig = 0;
2442 
2443  /* skip known-bad action frames and return them in the next handler */
2445  return RX_CONTINUE;
2446 
2447  /*
2448  * Getting here means the kernel doesn't know how to handle
2449  * it, but maybe userspace does ... include returned frames
2450  * so userspace can register for those to know whether ones
2451  * it transmitted were processed or returned.
2452  */
2453 
2454  if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2455  sig = status->signal;
2456 
2457  if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2458  rx->skb->data, rx->skb->len,
2459  GFP_ATOMIC)) {
2460  if (rx->sta)
2461  rx->sta->rx_packets++;
2462  dev_kfree_skb(rx->skb);
2463  return RX_QUEUED;
2464  }
2465 
2466 
2467  return RX_CONTINUE;
2468 }
2469 
2471 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2472 {
2473  struct ieee80211_local *local = rx->local;
2474  struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2475  struct sk_buff *nskb;
2476  struct ieee80211_sub_if_data *sdata = rx->sdata;
2477  struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2478 
2479  if (!ieee80211_is_action(mgmt->frame_control))
2480  return RX_CONTINUE;
2481 
2482  /*
2483  * For AP mode, hostapd is responsible for handling any action
2484  * frames that we didn't handle, including returning unknown
2485  * ones. For all other modes we will return them to the sender,
2486  * setting the 0x80 bit in the action category, as required by
2487  * 802.11-2012 9.24.4.
2488  * Newer versions of hostapd shall also use the management frame
2489  * registration mechanisms, but older ones still use cooked
2490  * monitor interfaces so push all frames there.
2491  */
2492  if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2493  (sdata->vif.type == NL80211_IFTYPE_AP ||
2494  sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2495  return RX_DROP_MONITOR;
2496 
2497  if (is_multicast_ether_addr(mgmt->da))
2498  return RX_DROP_MONITOR;
2499 
2500  /* do not return rejected action frames */
2501  if (mgmt->u.action.category & 0x80)
2502  return RX_DROP_UNUSABLE;
2503 
2504  nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2505  GFP_ATOMIC);
2506  if (nskb) {
2507  struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2508 
2509  nmgmt->u.action.category |= 0x80;
2510  memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2511  memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2512 
2513  memset(nskb->cb, 0, sizeof(nskb->cb));
2514 
2515  ieee80211_tx_skb(rx->sdata, nskb);
2516  }
2517  dev_kfree_skb(rx->skb);
2518  return RX_QUEUED;
2519 }
2520 
2522 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2523 {
2524  struct ieee80211_sub_if_data *sdata = rx->sdata;
2525  struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2526  __le16 stype;
2527 
2529 
2530  if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2531  sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2532  sdata->vif.type != NL80211_IFTYPE_STATION)
2533  return RX_DROP_MONITOR;
2534 
2535  switch (stype) {
2539  /* process for all: mesh, mlme, ibss */
2540  break;
2545  if (is_multicast_ether_addr(mgmt->da) &&
2546  !is_broadcast_ether_addr(mgmt->da))
2548 
2549  /* process only for station */
2550  if (sdata->vif.type != NL80211_IFTYPE_STATION)
2551  return RX_DROP_MONITOR;
2552  break;
2554  /* process only for ibss */
2555  if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2557  break;
2558  default:
2559  return RX_DROP_MONITOR;
2560  }
2561 
2562  /* queue up frame and kick off work to process it */
2563  rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2564  skb_queue_tail(&sdata->skb_queue, rx->skb);
2565  ieee80211_queue_work(&rx->local->hw, &sdata->work);
2566  if (rx->sta)
2567  rx->sta->rx_packets++;
2568 
2569  return RX_QUEUED;
2570 }
2571 
2572 /* TODO: use IEEE80211_RX_FRAGMENTED */
2573 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2574  struct ieee80211_rate *rate)
2575 {
2576  struct ieee80211_sub_if_data *sdata;
2577  struct ieee80211_local *local = rx->local;
2578  struct sk_buff *skb = rx->skb, *skb2;
2579  struct net_device *prev_dev = NULL;
2580  struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2581  int needed_headroom;
2582 
2583  /*
2584  * If cooked monitor has been processed already, then
2585  * don't do it again. If not, set the flag.
2586  */
2587  if (rx->flags & IEEE80211_RX_CMNTR)
2588  goto out_free_skb;
2589  rx->flags |= IEEE80211_RX_CMNTR;
2590 
2591  /* If there are no cooked monitor interfaces, just free the SKB */
2592  if (!local->cooked_mntrs)
2593  goto out_free_skb;
2594 
2595  /* room for the radiotap header based on driver features */
2596  needed_headroom = ieee80211_rx_radiotap_len(local, status);
2597 
2598  if (skb_headroom(skb) < needed_headroom &&
2599  pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2600  goto out_free_skb;
2601 
2602  /* prepend radiotap information */
2603  ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2604  false);
2605 
2606  skb_set_mac_header(skb, 0);
2608  skb->pkt_type = PACKET_OTHERHOST;
2609  skb->protocol = htons(ETH_P_802_2);
2610 
2611  list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2612  if (!ieee80211_sdata_running(sdata))
2613  continue;
2614 
2615  if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2617  continue;
2618 
2619  if (prev_dev) {
2620  skb2 = skb_clone(skb, GFP_ATOMIC);
2621  if (skb2) {
2622  skb2->dev = prev_dev;
2623  netif_receive_skb(skb2);
2624  }
2625  }
2626 
2627  prev_dev = sdata->dev;
2628  sdata->dev->stats.rx_packets++;
2629  sdata->dev->stats.rx_bytes += skb->len;
2630  }
2631 
2632  if (prev_dev) {
2633  skb->dev = prev_dev;
2634  netif_receive_skb(skb);
2635  return;
2636  }
2637 
2638  out_free_skb:
2639  dev_kfree_skb(skb);
2640 }
2641 
2642 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2644 {
2645  switch (res) {
2646  case RX_DROP_MONITOR:
2647  I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2648  if (rx->sta)
2649  rx->sta->rx_dropped++;
2650  /* fall through */
2651  case RX_CONTINUE: {
2652  struct ieee80211_rate *rate = NULL;
2653  struct ieee80211_supported_band *sband;
2654  struct ieee80211_rx_status *status;
2655 
2656  status = IEEE80211_SKB_RXCB((rx->skb));
2657 
2658  sband = rx->local->hw.wiphy->bands[status->band];
2659  if (!(status->flag & RX_FLAG_HT))
2660  rate = &sband->bitrates[status->rate_idx];
2661 
2662  ieee80211_rx_cooked_monitor(rx, rate);
2663  break;
2664  }
2665  case RX_DROP_UNUSABLE:
2666  I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2667  if (rx->sta)
2668  rx->sta->rx_dropped++;
2669  dev_kfree_skb(rx->skb);
2670  break;
2671  case RX_QUEUED:
2672  I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2673  break;
2674  }
2675 }
2676 
2677 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2678 {
2680  struct sk_buff *skb;
2681 
2682 #define CALL_RXH(rxh) \
2683  do { \
2684  res = rxh(rx); \
2685  if (res != RX_CONTINUE) \
2686  goto rxh_next; \
2687  } while (0);
2688 
2689  spin_lock(&rx->local->rx_skb_queue.lock);
2690  if (rx->local->running_rx_handler)
2691  goto unlock;
2692 
2693  rx->local->running_rx_handler = true;
2694 
2695  while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2696  spin_unlock(&rx->local->rx_skb_queue.lock);
2697 
2698  /*
2699  * all the other fields are valid across frames
2700  * that belong to an aMPDU since they are on the
2701  * same TID from the same station
2702  */
2703  rx->skb = skb;
2704 
2705  CALL_RXH(ieee80211_rx_h_decrypt)
2706  CALL_RXH(ieee80211_rx_h_check_more_data)
2707  CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2708  CALL_RXH(ieee80211_rx_h_sta_process)
2709  CALL_RXH(ieee80211_rx_h_defragment)
2711  /* must be after MMIC verify so header is counted in MPDU mic */
2712 #ifdef CONFIG_MAC80211_MESH
2713  if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2714  CALL_RXH(ieee80211_rx_h_mesh_fwding);
2715 #endif
2716  CALL_RXH(ieee80211_rx_h_amsdu)
2717  CALL_RXH(ieee80211_rx_h_data)
2718  CALL_RXH(ieee80211_rx_h_ctrl);
2719  CALL_RXH(ieee80211_rx_h_mgmt_check)
2720  CALL_RXH(ieee80211_rx_h_action)
2721  CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2722  CALL_RXH(ieee80211_rx_h_action_return)
2723  CALL_RXH(ieee80211_rx_h_mgmt)
2724 
2725  rxh_next:
2726  ieee80211_rx_handlers_result(rx, res);
2727  spin_lock(&rx->local->rx_skb_queue.lock);
2728 #undef CALL_RXH
2729  }
2730 
2731  rx->local->running_rx_handler = false;
2732 
2733  unlock:
2734  spin_unlock(&rx->local->rx_skb_queue.lock);
2735 }
2736 
2737 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2738 {
2740 
2741 #define CALL_RXH(rxh) \
2742  do { \
2743  res = rxh(rx); \
2744  if (res != RX_CONTINUE) \
2745  goto rxh_next; \
2746  } while (0);
2747 
2748  CALL_RXH(ieee80211_rx_h_check)
2749 
2750  ieee80211_rx_reorder_ampdu(rx);
2751 
2752  ieee80211_rx_handlers(rx);
2753  return;
2754 
2755  rxh_next:
2756  ieee80211_rx_handlers_result(rx, res);
2757 
2758 #undef CALL_RXH
2759 }
2760 
2761 /*
2762  * This function makes calls into the RX path, therefore
2763  * it has to be invoked under RCU read lock.
2764  */
2766 {
2767  struct ieee80211_rx_data rx = {
2768  .sta = sta,
2769  .sdata = sta->sdata,
2770  .local = sta->local,
2771  /* This is OK -- must be QoS data frame */
2772  .security_idx = tid,
2773  .seqno_idx = tid,
2774  .flags = 0,
2775  };
2776  struct tid_ampdu_rx *tid_agg_rx;
2777 
2778  tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2779  if (!tid_agg_rx)
2780  return;
2781 
2782  spin_lock(&tid_agg_rx->reorder_lock);
2783  ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx);
2784  spin_unlock(&tid_agg_rx->reorder_lock);
2785 
2786  ieee80211_rx_handlers(&rx);
2787 }
2788 
2789 /* main receive path */
2790 
2791 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2792  struct ieee80211_hdr *hdr)
2793 {
2794  struct ieee80211_sub_if_data *sdata = rx->sdata;
2795  struct sk_buff *skb = rx->skb;
2796  struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2797  u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2798  int multicast = is_multicast_ether_addr(hdr->addr1);
2799 
2800  switch (sdata->vif.type) {
2802  if (!bssid && !sdata->u.mgd.use_4addr)
2803  return 0;
2804  if (!multicast &&
2805  !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
2806  if (!(sdata->dev->flags & IFF_PROMISC) ||
2807  sdata->u.mgd.use_4addr)
2808  return 0;
2809  status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2810  }
2811  break;
2812  case NL80211_IFTYPE_ADHOC:
2813  if (!bssid)
2814  return 0;
2815  if (ieee80211_is_beacon(hdr->frame_control)) {
2816  return 1;
2817  } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2818  return 0;
2819  } else if (!multicast &&
2820  !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
2821  if (!(sdata->dev->flags & IFF_PROMISC))
2822  return 0;
2823  status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2824  } else if (!rx->sta) {
2825  int rate_idx;
2826  if (status->flag & RX_FLAG_HT)
2827  rate_idx = 0; /* TODO: HT rates */
2828  else
2829  rate_idx = status->rate_idx;
2830  ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
2831  BIT(rate_idx));
2832  }
2833  break;
2835  if (!multicast &&
2836  !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
2837  if (!(sdata->dev->flags & IFF_PROMISC))
2838  return 0;
2839 
2840  status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2841  }
2842  break;
2844  case NL80211_IFTYPE_AP:
2845  if (!bssid) {
2846  if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
2847  return 0;
2848  } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
2849  /*
2850  * Accept public action frames even when the
2851  * BSSID doesn't match, this is used for P2P
2852  * and location updates. Note that mac80211
2853  * itself never looks at these frames.
2854  */
2855  if (ieee80211_is_public_action(hdr, skb->len))
2856  return 1;
2857  if (!ieee80211_is_beacon(hdr->frame_control))
2858  return 0;
2859  status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2860  }
2861  break;
2862  case NL80211_IFTYPE_WDS:
2863  if (bssid || !ieee80211_is_data(hdr->frame_control))
2864  return 0;
2865  if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
2866  return 0;
2867  break;
2869  if (!ieee80211_is_public_action(hdr, skb->len) &&
2870  !ieee80211_is_probe_req(hdr->frame_control) &&
2871  !ieee80211_is_probe_resp(hdr->frame_control) &&
2872  !ieee80211_is_beacon(hdr->frame_control))
2873  return 0;
2874  if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
2875  status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2876  break;
2877  default:
2878  /* should never get here */
2879  WARN_ON_ONCE(1);
2880  break;
2881  }
2882 
2883  return 1;
2884 }
2885 
2886 /*
2887  * This function returns whether or not the SKB
2888  * was destined for RX processing or not, which,
2889  * if consume is true, is equivalent to whether
2890  * or not the skb was consumed.
2891  */
2892 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2893  struct sk_buff *skb, bool consume)
2894 {
2895  struct ieee80211_local *local = rx->local;
2896  struct ieee80211_sub_if_data *sdata = rx->sdata;
2897  struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2898  struct ieee80211_hdr *hdr = (void *)skb->data;
2899  int prepares;
2900 
2901  rx->skb = skb;
2902  status->rx_flags |= IEEE80211_RX_RA_MATCH;
2903  prepares = prepare_for_handlers(rx, hdr);
2904 
2905  if (!prepares)
2906  return false;
2907 
2908  if (!consume) {
2909  skb = skb_copy(skb, GFP_ATOMIC);
2910  if (!skb) {
2911  if (net_ratelimit())
2912  wiphy_debug(local->hw.wiphy,
2913  "failed to copy skb for %s\n",
2914  sdata->name);
2915  return true;
2916  }
2917 
2918  rx->skb = skb;
2919  }
2920 
2921  ieee80211_invoke_rx_handlers(rx);
2922  return true;
2923 }
2924 
2925 /*
2926  * This is the actual Rx frames handler. as it blongs to Rx path it must
2927  * be called with rcu_read_lock protection.
2928  */
2929 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2930  struct sk_buff *skb)
2931 {
2932  struct ieee80211_local *local = hw_to_local(hw);
2933  struct ieee80211_sub_if_data *sdata;
2934  struct ieee80211_hdr *hdr;
2935  __le16 fc;
2936  struct ieee80211_rx_data rx;
2937  struct ieee80211_sub_if_data *prev;
2938  struct sta_info *sta, *tmp, *prev_sta;
2939  int err = 0;
2940 
2941  fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2942  memset(&rx, 0, sizeof(rx));
2943  rx.skb = skb;
2944  rx.local = local;
2945 
2946  if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2947  local->dot11ReceivedFragmentCount++;
2948 
2949  if (ieee80211_is_mgmt(fc)) {
2950  /* drop frame if too short for header */
2951  if (skb->len < ieee80211_hdrlen(fc))
2952  err = -ENOBUFS;
2953  else
2954  err = skb_linearize(skb);
2955  } else {
2956  err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2957  }
2958 
2959  if (err) {
2960  dev_kfree_skb(skb);
2961  return;
2962  }
2963 
2964  hdr = (struct ieee80211_hdr *)skb->data;
2965  ieee80211_parse_qos(&rx);
2966  ieee80211_verify_alignment(&rx);
2967 
2968  if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
2969  ieee80211_is_beacon(hdr->frame_control)))
2970  ieee80211_scan_rx(local, skb);
2971 
2972  if (ieee80211_is_data(fc)) {
2973  prev_sta = NULL;
2974 
2975  for_each_sta_info(local, hdr->addr2, sta, tmp) {
2976  if (!prev_sta) {
2977  prev_sta = sta;
2978  continue;
2979  }
2980 
2981  rx.sta = prev_sta;
2982  rx.sdata = prev_sta->sdata;
2983  ieee80211_prepare_and_rx_handle(&rx, skb, false);
2984 
2985  prev_sta = sta;
2986  }
2987 
2988  if (prev_sta) {
2989  rx.sta = prev_sta;
2990  rx.sdata = prev_sta->sdata;
2991 
2992  if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2993  return;
2994  goto out;
2995  }
2996  }
2997 
2998  prev = NULL;
2999 
3000  list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3001  if (!ieee80211_sdata_running(sdata))
3002  continue;
3003 
3004  if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3005  sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3006  continue;
3007 
3008  /*
3009  * frame is destined for this interface, but if it's
3010  * not also for the previous one we handle that after
3011  * the loop to avoid copying the SKB once too much
3012  */
3013 
3014  if (!prev) {
3015  prev = sdata;
3016  continue;
3017  }
3018 
3019  rx.sta = sta_info_get_bss(prev, hdr->addr2);
3020  rx.sdata = prev;
3021  ieee80211_prepare_and_rx_handle(&rx, skb, false);
3022 
3023  prev = sdata;
3024  }
3025 
3026  if (prev) {
3027  rx.sta = sta_info_get_bss(prev, hdr->addr2);
3028  rx.sdata = prev;
3029 
3030  if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3031  return;
3032  }
3033 
3034  out:
3035  dev_kfree_skb(skb);
3036 }
3037 
3038 /*
3039  * This is the receive path handler. It is called by a low level driver when an
3040  * 802.11 MPDU is received from the hardware.
3041  */
3042 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3043 {
3044  struct ieee80211_local *local = hw_to_local(hw);
3045  struct ieee80211_rate *rate = NULL;
3046  struct ieee80211_supported_band *sband;
3047  struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3048 
3049  WARN_ON_ONCE(softirq_count() == 0);
3050 
3051  if (WARN_ON(status->band < 0 ||
3052  status->band >= IEEE80211_NUM_BANDS))
3053  goto drop;
3054 
3055  sband = local->hw.wiphy->bands[status->band];
3056  if (WARN_ON(!sband))
3057  goto drop;
3058 
3059  /*
3060  * If we're suspending, it is possible although not too likely
3061  * that we'd be receiving frames after having already partially
3062  * quiesced the stack. We can't process such frames then since
3063  * that might, for example, cause stations to be added or other
3064  * driver callbacks be invoked.
3065  */
3066  if (unlikely(local->quiescing || local->suspended))
3067  goto drop;
3068 
3069  /* We might be during a HW reconfig, prevent Rx for the same reason */
3070  if (unlikely(local->in_reconfig))
3071  goto drop;
3072 
3073  /*
3074  * The same happens when we're not even started,
3075  * but that's worth a warning.
3076  */
3077  if (WARN_ON(!local->started))
3078  goto drop;
3079 
3080  if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3081  /*
3082  * Validate the rate, unless a PLCP error means that
3083  * we probably can't have a valid rate here anyway.
3084  */
3085 
3086  if (status->flag & RX_FLAG_HT) {
3087  /*
3088  * rate_idx is MCS index, which can be [0-76]
3089  * as documented on:
3090  *
3091  * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3092  *
3093  * Anything else would be some sort of driver or
3094  * hardware error. The driver should catch hardware
3095  * errors.
3096  */
3097  if (WARN((status->rate_idx < 0 ||
3098  status->rate_idx > 76),
3099  "Rate marked as an HT rate but passed "
3100  "status->rate_idx is not "
3101  "an MCS index [0-76]: %d (0x%02x)\n",
3102  status->rate_idx,
3103  status->rate_idx))
3104  goto drop;
3105  } else {
3106  if (WARN_ON(status->rate_idx < 0 ||
3107  status->rate_idx >= sband->n_bitrates))
3108  goto drop;
3109  rate = &sband->bitrates[status->rate_idx];
3110  }
3111  }
3112 
3113  status->rx_flags = 0;
3114 
3115  /*
3116  * key references and virtual interfaces are protected using RCU
3117  * and this requires that we are in a read-side RCU section during
3118  * receive processing
3119  */
3120  rcu_read_lock();
3121 
3122  /*
3123  * Frames with failed FCS/PLCP checksum are not returned,
3124  * all other frames are returned without radiotap header
3125  * if it was previously present.
3126  * Also, frames with less than 16 bytes are dropped.
3127  */
3128  skb = ieee80211_rx_monitor(local, skb, rate);
3129  if (!skb) {
3130  rcu_read_unlock();
3131  return;
3132  }
3133 
3134  ieee80211_tpt_led_trig_rx(local,
3135  ((struct ieee80211_hdr *)skb->data)->frame_control,
3136  skb->len);
3137  __ieee80211_rx_handle_packet(hw, skb);
3138 
3139  rcu_read_unlock();
3140 
3141  return;
3142  drop:
3143  kfree_skb(skb);
3144 }
3146 
3147 /* This is a version of the rx handler that can be called from hard irq
3148  * context. Post the skb on the queue and schedule the tasklet */
3149 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3150 {
3151  struct ieee80211_local *local = hw_to_local(hw);
3152 
3153  BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3154 
3155  skb->pkt_type = IEEE80211_RX_MSG;
3156  skb_queue_tail(&local->skb_queue, skb);
3157  tasklet_schedule(&local->tasklet);
3158 }