Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hw.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <asm/unaligned.h>
21 
22 #include "hw.h"
23 #include "hw-ops.h"
24 #include "rc.h"
25 #include "ar9003_mac.h"
26 #include "ar9003_mci.h"
27 #include "ar9003_phy.h"
28 #include "debug.h"
29 #include "ath9k.h"
30 
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 
33 MODULE_AUTHOR("Atheros Communications");
34 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
35 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
36 MODULE_LICENSE("Dual BSD/GPL");
37 
38 static int __init ath9k_init(void)
39 {
40  return 0;
41 }
42 module_init(ath9k_init);
43 
44 static void __exit ath9k_exit(void)
45 {
46  return;
47 }
48 module_exit(ath9k_exit);
49 
50 /* Private hardware callbacks */
51 
52 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
53 {
54  ath9k_hw_private_ops(ah)->init_cal_settings(ah);
55 }
56 
57 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
58 {
59  ath9k_hw_private_ops(ah)->init_mode_regs(ah);
60 }
61 
62 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
63  struct ath9k_channel *chan)
64 {
65  return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
66 }
67 
68 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
69 {
70  if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
71  return;
72 
73  ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
74 }
75 
76 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
77 {
78  /* You will not have this callback if using the old ANI */
79  if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
80  return;
81 
82  ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
83 }
84 
85 /********************/
86 /* Helper Functions */
87 /********************/
88 
89 #ifdef CONFIG_ATH9K_DEBUGFS
90 
91 void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
92 {
93  struct ath_softc *sc = common->priv;
94  if (sync_cause)
95  sc->debug.stats.istats.sync_cause_all++;
96  if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
97  sc->debug.stats.istats.sync_rtc_irq++;
98  if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
99  sc->debug.stats.istats.sync_mac_irq++;
100  if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
101  sc->debug.stats.istats.eeprom_illegal_access++;
102  if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
103  sc->debug.stats.istats.apb_timeout++;
104  if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
105  sc->debug.stats.istats.pci_mode_conflict++;
106  if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
107  sc->debug.stats.istats.host1_fatal++;
108  if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
109  sc->debug.stats.istats.host1_perr++;
110  if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
111  sc->debug.stats.istats.trcv_fifo_perr++;
112  if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
113  sc->debug.stats.istats.radm_cpl_ep++;
114  if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
115  sc->debug.stats.istats.radm_cpl_dllp_abort++;
116  if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
117  sc->debug.stats.istats.radm_cpl_tlp_abort++;
118  if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
119  sc->debug.stats.istats.radm_cpl_ecrc_err++;
120  if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
121  sc->debug.stats.istats.radm_cpl_timeout++;
122  if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
123  sc->debug.stats.istats.local_timeout++;
124  if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
125  sc->debug.stats.istats.pm_access++;
126  if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
127  sc->debug.stats.istats.mac_awake++;
128  if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
129  sc->debug.stats.istats.mac_asleep++;
130  if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
131  sc->debug.stats.istats.mac_sleep_access++;
132 }
133 #endif
134 
135 
136 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
137 {
138  struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
139  struct ath_common *common = ath9k_hw_common(ah);
140  unsigned int clockrate;
141 
142  /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
143  if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
144  clockrate = 117;
145  else if (!ah->curchan) /* should really check for CCK instead */
146  clockrate = ATH9K_CLOCK_RATE_CCK;
147  else if (conf->channel->band == IEEE80211_BAND_2GHZ)
148  clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
149  else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
151  else
152  clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
153 
154  if (conf_is_ht40(conf))
155  clockrate *= 2;
156 
157  if (ah->curchan) {
158  if (IS_CHAN_HALF_RATE(ah->curchan))
159  clockrate /= 2;
160  if (IS_CHAN_QUARTER_RATE(ah->curchan))
161  clockrate /= 4;
162  }
163 
164  common->clockrate = clockrate;
165 }
166 
167 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
168 {
169  struct ath_common *common = ath9k_hw_common(ah);
170 
171  return usecs * common->clockrate;
172 }
173 
174 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
175 {
176  int i;
177 
178  BUG_ON(timeout < AH_TIME_QUANTUM);
179 
180  for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
181  if ((REG_READ(ah, reg) & mask) == val)
182  return true;
183 
185  }
186 
187  ath_dbg(ath9k_hw_common(ah), ANY,
188  "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
189  timeout, reg, REG_READ(ah, reg), mask, val);
190 
191  return false;
192 }
194 
195 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
196  int hw_delay)
197 {
198  if (IS_CHAN_B(chan))
199  hw_delay = (4 * hw_delay) / 22;
200  else
201  hw_delay /= 10;
202 
203  if (IS_CHAN_HALF_RATE(chan))
204  hw_delay *= 2;
205  else if (IS_CHAN_QUARTER_RATE(chan))
206  hw_delay *= 4;
207 
208  udelay(hw_delay + BASE_ACTIVATE_DELAY);
209 }
210 
211 void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
212  int column, unsigned int *writecnt)
213 {
214  int r;
215 
217  for (r = 0; r < array->ia_rows; r++) {
218  REG_WRITE(ah, INI_RA(array, r, 0),
219  INI_RA(array, r, column));
220  DO_DELAY(*writecnt);
221  }
223 }
224 
226 {
227  u32 retval;
228  int i;
229 
230  for (i = 0, retval = 0; i < n; i++) {
231  retval = (retval << 1) | (val & 1);
232  val >>= 1;
233  }
234  return retval;
235 }
236 
238  u8 phy, int kbps,
239  u32 frameLen, u16 rateix,
240  bool shortPreamble)
241 {
242  u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
243 
244  if (kbps == 0)
245  return 0;
246 
247  switch (phy) {
248  case WLAN_RC_PHY_CCK:
249  phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
250  if (shortPreamble)
251  phyTime >>= 1;
252  numBits = frameLen << 3;
253  txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
254  break;
255  case WLAN_RC_PHY_OFDM:
256  if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
257  bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
258  numBits = OFDM_PLCP_BITS + (frameLen << 3);
259  numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
260  txTime = OFDM_SIFS_TIME_QUARTER
262  + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
263  } else if (ah->curchan &&
264  IS_CHAN_HALF_RATE(ah->curchan)) {
265  bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
266  numBits = OFDM_PLCP_BITS + (frameLen << 3);
267  numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
268  txTime = OFDM_SIFS_TIME_HALF +
270  + (numSymbols * OFDM_SYMBOL_TIME_HALF);
271  } else {
272  bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
273  numBits = OFDM_PLCP_BITS + (frameLen << 3);
274  numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
276  + (numSymbols * OFDM_SYMBOL_TIME);
277  }
278  break;
279  default:
280  ath_err(ath9k_hw_common(ah),
281  "Unknown phy %u (rate ix %u)\n", phy, rateix);
282  txTime = 0;
283  break;
284  }
285 
286  return txTime;
287 }
289 
291  struct ath9k_channel *chan,
292  struct chan_centers *centers)
293 {
294  int8_t extoff;
295 
296  if (!IS_CHAN_HT40(chan)) {
297  centers->ctl_center = centers->ext_center =
298  centers->synth_center = chan->channel;
299  return;
300  }
301 
302  if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
303  (chan->chanmode == CHANNEL_G_HT40PLUS)) {
304  centers->synth_center =
306  extoff = 1;
307  } else {
308  centers->synth_center =
310  extoff = -1;
311  }
312 
313  centers->ctl_center =
314  centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
315  /* 25 MHz spacing is supported by hw but not on upper layers */
316  centers->ext_center =
317  centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
318 }
319 
320 /******************/
321 /* Chip Revisions */
322 /******************/
323 
324 static void ath9k_hw_read_revisions(struct ath_hw *ah)
325 {
326  u32 val;
327 
328  switch (ah->hw_version.devid) {
329  case AR5416_AR9100_DEVID:
330  ah->hw_version.macVersion = AR_SREV_VERSION_9100;
331  break;
332  case AR9300_DEVID_AR9330:
333  ah->hw_version.macVersion = AR_SREV_VERSION_9330;
334  if (ah->get_mac_revision) {
335  ah->hw_version.macRev = ah->get_mac_revision();
336  } else {
337  val = REG_READ(ah, AR_SREV);
338  ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
339  }
340  return;
341  case AR9300_DEVID_AR9340:
342  ah->hw_version.macVersion = AR_SREV_VERSION_9340;
343  val = REG_READ(ah, AR_SREV);
344  ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
345  return;
347  ah->hw_version.macVersion = AR_SREV_VERSION_9550;
348  return;
349  }
350 
351  val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
352 
353  if (val == 0xFF) {
354  val = REG_READ(ah, AR_SREV);
355  ah->hw_version.macVersion =
357  ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
358 
359  if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
360  ah->is_pciexpress = true;
361  else
362  ah->is_pciexpress = (val &
363  AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
364  } else {
365  if (!AR_SREV_9100(ah))
366  ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
367 
368  ah->hw_version.macRev = val & AR_SREV_REVISION;
369 
370  if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
371  ah->is_pciexpress = true;
372  }
373 }
374 
375 /************************************/
376 /* HW Attach, Detach, Init Routines */
377 /************************************/
378 
379 static void ath9k_hw_disablepcie(struct ath_hw *ah)
380 {
381  if (!AR_SREV_5416(ah))
382  return;
383 
384  REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
385  REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
386  REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
387  REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
388  REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
389  REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
390  REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
391  REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
392  REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
393 
394  REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
395 }
396 
397 /* This should work for all families including legacy */
398 static bool ath9k_hw_chip_test(struct ath_hw *ah)
399 {
400  struct ath_common *common = ath9k_hw_common(ah);
401  u32 regAddr[2] = { AR_STA_ID0 };
402  u32 regHold[2];
403  static const u32 patternData[4] = {
404  0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
405  };
406  int i, j, loop_max;
407 
408  if (!AR_SREV_9300_20_OR_LATER(ah)) {
409  loop_max = 2;
410  regAddr[1] = AR_PHY_BASE + (8 << 2);
411  } else
412  loop_max = 1;
413 
414  for (i = 0; i < loop_max; i++) {
415  u32 addr = regAddr[i];
416  u32 wrData, rdData;
417 
418  regHold[i] = REG_READ(ah, addr);
419  for (j = 0; j < 0x100; j++) {
420  wrData = (j << 16) | j;
421  REG_WRITE(ah, addr, wrData);
422  rdData = REG_READ(ah, addr);
423  if (rdData != wrData) {
424  ath_err(common,
425  "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
426  addr, wrData, rdData);
427  return false;
428  }
429  }
430  for (j = 0; j < 4; j++) {
431  wrData = patternData[j];
432  REG_WRITE(ah, addr, wrData);
433  rdData = REG_READ(ah, addr);
434  if (wrData != rdData) {
435  ath_err(common,
436  "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
437  addr, wrData, rdData);
438  return false;
439  }
440  }
441  REG_WRITE(ah, regAddr[i], regHold[i]);
442  }
443  udelay(100);
444 
445  return true;
446 }
447 
448 static void ath9k_hw_init_config(struct ath_hw *ah)
449 {
450  int i;
451 
452  ah->config.dma_beacon_response_time = 1;
453  ah->config.sw_beacon_response_time = 6;
454  ah->config.additional_swba_backoff = 0;
455  ah->config.ack_6mb = 0x0;
456  ah->config.cwm_ignore_extcca = 0;
457  ah->config.pcie_clock_req = 0;
458  ah->config.pcie_waen = 0;
459  ah->config.analog_shiftreg = 1;
460  ah->config.enable_ani = true;
461 
462  for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
463  ah->config.spurchans[i][0] = AR_NO_SPUR;
464  ah->config.spurchans[i][1] = AR_NO_SPUR;
465  }
466 
467  ah->config.rx_intr_mitigation = true;
468  ah->config.pcieSerDesWrite = true;
469 
470  /*
471  * We need this for PCI devices only (Cardbus, PCI, miniPCI)
472  * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
473  * This means we use it for all AR5416 devices, and the few
474  * minor PCI AR9280 devices out there.
475  *
476  * Serialization is required because these devices do not handle
477  * well the case of two concurrent reads/writes due to the latency
478  * involved. During one read/write another read/write can be issued
479  * on another CPU while the previous read/write may still be working
480  * on our hardware, if we hit this case the hardware poops in a loop.
481  * We prevent this by serializing reads and writes.
482  *
483  * This issue is not present on PCI-Express devices or pre-AR5416
484  * devices (legacy, 802.11abg).
485  */
486  if (num_possible_cpus() > 1)
487  ah->config.serialize_regmode = SER_REG_MODE_AUTO;
488 }
489 
490 static void ath9k_hw_init_defaults(struct ath_hw *ah)
491 {
492  struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
493 
494  regulatory->country_code = CTRY_DEFAULT;
495  regulatory->power_limit = MAX_RATE_POWER;
496 
497  ah->hw_version.magic = AR5416_MAGIC;
498  ah->hw_version.subvendorid = 0;
499 
500  ah->atim_window = 0;
501  ah->sta_id1_defaults =
504  if (AR_SREV_9100(ah))
507  ah->globaltxtimeout = (u32) -1;
509  ah->htc_reset_init = true;
510 }
511 
512 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
513 {
514  struct ath_common *common = ath9k_hw_common(ah);
515  u32 sum;
516  int i;
517  u16 eeval;
518  static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
519 
520  sum = 0;
521  for (i = 0; i < 3; i++) {
522  eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
523  sum += eeval;
524  common->macaddr[2 * i] = eeval >> 8;
525  common->macaddr[2 * i + 1] = eeval & 0xff;
526  }
527  if (sum == 0 || sum == 0xffff * 3)
528  return -EADDRNOTAVAIL;
529 
530  return 0;
531 }
532 
533 static int ath9k_hw_post_init(struct ath_hw *ah)
534 {
535  struct ath_common *common = ath9k_hw_common(ah);
536  int ecode;
537 
538  if (common->bus_ops->ath_bus_type != ATH_USB) {
539  if (!ath9k_hw_chip_test(ah))
540  return -ENODEV;
541  }
542 
543  if (!AR_SREV_9300_20_OR_LATER(ah)) {
544  ecode = ar9002_hw_rf_claim(ah);
545  if (ecode != 0)
546  return ecode;
547  }
548 
549  ecode = ath9k_hw_eeprom_init(ah);
550  if (ecode != 0)
551  return ecode;
552 
553  ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
554  ah->eep_ops->get_eeprom_ver(ah),
555  ah->eep_ops->get_eeprom_rev(ah));
556 
557  ecode = ath9k_hw_rf_alloc_ext_banks(ah);
558  if (ecode) {
559  ath_err(ath9k_hw_common(ah),
560  "Failed allocating banks for external radio\n");
561  ath9k_hw_rf_free_ext_banks(ah);
562  return ecode;
563  }
564 
565  if (ah->config.enable_ani) {
566  ath9k_hw_ani_setup(ah);
567  ath9k_hw_ani_init(ah);
568  }
569 
570  return 0;
571 }
572 
573 static void ath9k_hw_attach_ops(struct ath_hw *ah)
574 {
575  if (AR_SREV_9300_20_OR_LATER(ah))
577  else
579 }
580 
581 /* Called for all hardware families */
582 static int __ath9k_hw_init(struct ath_hw *ah)
583 {
584  struct ath_common *common = ath9k_hw_common(ah);
585  int r = 0;
586 
587  ath9k_hw_read_revisions(ah);
588 
589  /*
590  * Read back AR_WA into a permanent copy and set bits 14 and 17.
591  * We need to do this to avoid RMW of this register. We cannot
592  * read the reg when chip is asleep.
593  */
594  ah->WARegVal = REG_READ(ah, AR_WA);
595  ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
597 
598  if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
599  ath_err(common, "Couldn't reset chip\n");
600  return -EIO;
601  }
602 
603  if (AR_SREV_9462(ah))
605 
606  if (AR_SREV_9565(ah)) {
607  ah->WARegVal |= AR_WA_BIT22;
608  REG_WRITE(ah, AR_WA, ah->WARegVal);
609  }
610 
611  ath9k_hw_init_defaults(ah);
612  ath9k_hw_init_config(ah);
613 
614  ath9k_hw_attach_ops(ah);
615 
616  if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
617  ath_err(common, "Couldn't wakeup chip\n");
618  return -EIO;
619  }
620 
621  if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
622  if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
623  ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
624  !ah->is_pciexpress)) {
625  ah->config.serialize_regmode =
627  } else {
628  ah->config.serialize_regmode =
630  }
631  }
632 
633  ath_dbg(common, RESET, "serialize_regmode is %d\n",
634  ah->config.serialize_regmode);
635 
636  if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
637  ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
638  else
639  ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
640 
641  switch (ah->hw_version.macVersion) {
657  break;
658  default:
659  ath_err(common,
660  "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
661  ah->hw_version.macVersion, ah->hw_version.macRev);
662  return -EOPNOTSUPP;
663  }
664 
665  if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
666  AR_SREV_9330(ah) || AR_SREV_9550(ah))
667  ah->is_pciexpress = false;
668 
669  ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
670  ath9k_hw_init_cal_settings(ah);
671 
675  if (!AR_SREV_9300_20_OR_LATER(ah))
677 
678  ath9k_hw_init_mode_regs(ah);
679 
680  if (!ah->is_pciexpress)
681  ath9k_hw_disablepcie(ah);
682 
683  r = ath9k_hw_post_init(ah);
684  if (r)
685  return r;
686 
687  ath9k_hw_init_mode_gain_regs(ah);
688  r = ath9k_hw_fill_cap_info(ah);
689  if (r)
690  return r;
691 
692  r = ath9k_hw_init_macaddr(ah);
693  if (r) {
694  ath_err(common, "Failed to initialize MAC address\n");
695  return r;
696  }
697 
698  if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
700  else
702 
703  if (AR_SREV_9330(ah))
704  ah->bb_watchdog_timeout_ms = 85;
705  else
706  ah->bb_watchdog_timeout_ms = 25;
707 
708  common->state = ATH_HW_INITIALIZED;
709 
710  return 0;
711 }
712 
713 int ath9k_hw_init(struct ath_hw *ah)
714 {
715  int ret;
716  struct ath_common *common = ath9k_hw_common(ah);
717 
718  /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
719  switch (ah->hw_version.devid) {
720  case AR5416_DEVID_PCI:
721  case AR5416_DEVID_PCIE:
722  case AR5416_AR9100_DEVID:
723  case AR9160_DEVID_PCI:
724  case AR9280_DEVID_PCI:
725  case AR9280_DEVID_PCIE:
726  case AR9285_DEVID_PCIE:
727  case AR9287_DEVID_PCI:
728  case AR9287_DEVID_PCIE:
729  case AR2427_DEVID_PCIE:
730  case AR9300_DEVID_PCIE:
732  case AR9300_DEVID_AR9330:
733  case AR9300_DEVID_AR9340:
735  case AR9300_DEVID_AR9580:
736  case AR9300_DEVID_AR9462:
737  case AR9485_DEVID_AR1111:
738  case AR9300_DEVID_AR9565:
739  break;
740  default:
741  if (common->bus_ops->ath_bus_type == ATH_USB)
742  break;
743  ath_err(common, "Hardware device ID 0x%04x not supported\n",
744  ah->hw_version.devid);
745  return -EOPNOTSUPP;
746  }
747 
748  ret = __ath9k_hw_init(ah);
749  if (ret) {
750  ath_err(common,
751  "Unable to initialize hardware; initialization status: %d\n",
752  ret);
753  return ret;
754  }
755 
756  return 0;
757 }
759 
760 static void ath9k_hw_init_qos(struct ath_hw *ah)
761 {
763 
764  REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
765  REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
766 
771 
773  REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
774  REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
775  REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
776  REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
777 
779 }
780 
782 {
783  struct ath_common *common = ath9k_hw_common(ah);
784  int i = 0;
785 
787  udelay(100);
789 
790  while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
791 
792  udelay(100);
793 
794  if (WARN_ON_ONCE(i >= 100)) {
795  ath_err(common, "PLL4 meaurement not done\n");
796  break;
797  }
798 
799  i++;
800  }
801 
802  return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
803 }
805 
806 static void ath9k_hw_init_pll(struct ath_hw *ah,
807  struct ath9k_channel *chan)
808 {
809  u32 pll;
810 
811  if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
812  /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
816  AR_CH0_DPLL2_KD, 0x40);
818  AR_CH0_DPLL2_KI, 0x4);
819 
823  AR_CH0_BB_DPLL1_NINI, 0x58);
825  AR_CH0_BB_DPLL1_NFRAC, 0x0);
826 
833 
834  /* program BB PLL phase_shift to 0x6 */
837 
840  udelay(1000);
841  } else if (AR_SREV_9330(ah)) {
842  u32 ddr_dpll2, pll_control2, kd;
843 
844  if (ah->is_clk_25mhz) {
845  ddr_dpll2 = 0x18e82f01;
846  pll_control2 = 0xe04a3d;
847  kd = 0x1d;
848  } else {
849  ddr_dpll2 = 0x19e82f01;
850  pll_control2 = 0x886666;
851  kd = 0x3d;
852  }
853 
854  /* program DDR PLL ki and kd value */
855  REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
856 
857  /* program DDR PLL phase_shift */
860 
861  REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
862  udelay(1000);
863 
864  /* program refdiv, nint, frac to RTC register */
865  REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
866 
867  /* program BB PLL kd and ki value */
870 
871  /* program BB PLL phase_shift */
874  } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
875  u32 regval, pll2_divint, pll2_divfrac, refdiv;
876 
877  REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
878  udelay(1000);
879 
880  REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
881  udelay(100);
882 
883  if (ah->is_clk_25mhz) {
884  pll2_divint = 0x54;
885  pll2_divfrac = 0x1eb85;
886  refdiv = 3;
887  } else {
888  if (AR_SREV_9340(ah)) {
889  pll2_divint = 88;
890  pll2_divfrac = 0;
891  refdiv = 5;
892  } else {
893  pll2_divint = 0x11;
894  pll2_divfrac = 0x26666;
895  refdiv = 1;
896  }
897  }
898 
899  regval = REG_READ(ah, AR_PHY_PLL_MODE);
900  regval |= (0x1 << 16);
901  REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
902  udelay(100);
903 
904  REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
905  (pll2_divint << 18) | pll2_divfrac);
906  udelay(100);
907 
908  regval = REG_READ(ah, AR_PHY_PLL_MODE);
909  if (AR_SREV_9340(ah))
910  regval = (regval & 0x80071fff) | (0x1 << 30) |
911  (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
912  else
913  regval = (regval & 0x80071fff) | (0x3 << 30) |
914  (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
915  REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
917  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
918  udelay(1000);
919  }
920 
921  pll = ath9k_hw_compute_pll_control(ah, chan);
922  if (AR_SREV_9565(ah))
923  pll |= 0x40000;
924  REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
925 
926  if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
927  AR_SREV_9550(ah))
928  udelay(1000);
929 
930  /* Switch the core clock for ar9271 to 117Mhz */
931  if (AR_SREV_9271(ah)) {
932  udelay(500);
933  REG_WRITE(ah, 0x50040, 0x304);
934  }
935 
937 
939 
940  if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
941  if (ah->is_clk_25mhz) {
942  REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
943  REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
944  REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
945  } else {
946  REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
947  REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
948  REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
949  }
950  udelay(100);
951  }
952 }
953 
954 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
955  enum nl80211_iftype opmode)
956 {
957  u32 sync_default = AR_INTR_SYNC_DEFAULT;
958  u32 imr_reg = AR_IMR_TXERR |
959  AR_IMR_TXURN |
960  AR_IMR_RXERR |
961  AR_IMR_RXORN |
963 
964  if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
965  sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
966 
967  if (AR_SREV_9300_20_OR_LATER(ah)) {
968  imr_reg |= AR_IMR_RXOK_HP;
969  if (ah->config.rx_intr_mitigation)
970  imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
971  else
972  imr_reg |= AR_IMR_RXOK_LP;
973 
974  } else {
975  if (ah->config.rx_intr_mitigation)
976  imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
977  else
978  imr_reg |= AR_IMR_RXOK;
979  }
980 
981  if (ah->config.tx_intr_mitigation)
982  imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
983  else
984  imr_reg |= AR_IMR_TXOK;
985 
987 
988  REG_WRITE(ah, AR_IMR, imr_reg);
989  ah->imrs2_reg |= AR_IMR_S2_GTT;
990  REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
991 
992  if (!AR_SREV_9100(ah)) {
993  REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
994  REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
996  }
997 
999 
1000  if (AR_SREV_9300_20_OR_LATER(ah)) {
1005  }
1006 }
1007 
1008 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
1009 {
1010  u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
1011  val = min(val, (u32) 0xFFFF);
1012  REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
1013 }
1014 
1015 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1016 {
1017  u32 val = ath9k_hw_mac_to_clks(ah, us);
1018  val = min(val, (u32) 0xFFFF);
1019  REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1020 }
1021 
1022 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1023 {
1024  u32 val = ath9k_hw_mac_to_clks(ah, us);
1025  val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1027 }
1028 
1029 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1030 {
1031  u32 val = ath9k_hw_mac_to_clks(ah, us);
1032  val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1034 }
1035 
1036 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1037 {
1038  if (tu > 0xFFFF) {
1039  ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1040  tu);
1041  ah->globaltxtimeout = (u32) -1;
1042  return false;
1043  } else {
1045  ah->globaltxtimeout = tu;
1046  return true;
1047  }
1048 }
1049 
1051 {
1052  struct ath_common *common = ath9k_hw_common(ah);
1053  struct ieee80211_conf *conf = &common->hw->conf;
1054  const struct ath9k_channel *chan = ah->curchan;
1055  int acktimeout, ctstimeout, ack_offset = 0;
1056  int slottime;
1057  int sifstime;
1058  int rx_lat = 0, tx_lat = 0, eifs = 0;
1059  u32 reg;
1060 
1061  ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1062  ah->misc_mode);
1063 
1064  if (!chan)
1065  return;
1066 
1067  if (ah->misc_mode != 0)
1068  REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1069 
1070  if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1071  rx_lat = 41;
1072  else
1073  rx_lat = 37;
1074  tx_lat = 54;
1075 
1076  if (IS_CHAN_5GHZ(chan))
1077  sifstime = 16;
1078  else
1079  sifstime = 10;
1080 
1081  if (IS_CHAN_HALF_RATE(chan)) {
1082  eifs = 175;
1083  rx_lat *= 2;
1084  tx_lat *= 2;
1085  if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1086  tx_lat += 11;
1087 
1088  sifstime *= 2;
1089  ack_offset = 16;
1090  slottime = 13;
1091  } else if (IS_CHAN_QUARTER_RATE(chan)) {
1092  eifs = 340;
1093  rx_lat = (rx_lat * 4) - 1;
1094  tx_lat *= 4;
1095  if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1096  tx_lat += 22;
1097 
1098  sifstime *= 4;
1099  ack_offset = 32;
1100  slottime = 21;
1101  } else {
1102  if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1104  reg = AR_USEC_ASYNC_FIFO;
1105  } else {
1106  eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1107  common->clockrate;
1108  reg = REG_READ(ah, AR_USEC);
1109  }
1110  rx_lat = MS(reg, AR_USEC_RX_LAT);
1111  tx_lat = MS(reg, AR_USEC_TX_LAT);
1112 
1113  slottime = ah->slottime;
1114  }
1115 
1116  /* As defined by IEEE 802.11-2007 17.3.8.6 */
1117  acktimeout = slottime + sifstime + 3 * ah->coverage_class + ack_offset;
1118  ctstimeout = acktimeout;
1119 
1120  /*
1121  * Workaround for early ACK timeouts, add an offset to match the
1122  * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1123  * This was initially only meant to work around an issue with delayed
1124  * BA frames in some implementations, but it has been found to fix ACK
1125  * timeout issues in other cases as well.
1126  */
1127  if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ &&
1128  !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1129  acktimeout += 64 - sifstime - ah->slottime;
1130  ctstimeout += 48 - sifstime - ah->slottime;
1131  }
1132 
1133 
1134  ath9k_hw_set_sifs_time(ah, sifstime);
1135  ath9k_hw_setslottime(ah, slottime);
1136  ath9k_hw_set_ack_timeout(ah, acktimeout);
1137  ath9k_hw_set_cts_timeout(ah, ctstimeout);
1138  if (ah->globaltxtimeout != (u32) -1)
1139  ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1140 
1141  REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1142  REG_RMW(ah, AR_USEC,
1143  (common->clockrate - 1) |
1144  SM(rx_lat, AR_USEC_RX_LAT) |
1145  SM(tx_lat, AR_USEC_TX_LAT),
1147 
1148 }
1150 
1151 void ath9k_hw_deinit(struct ath_hw *ah)
1152 {
1153  struct ath_common *common = ath9k_hw_common(ah);
1154 
1155  if (common->state < ATH_HW_INITIALIZED)
1156  goto free_hw;
1157 
1159 
1160 free_hw:
1161  ath9k_hw_rf_free_ext_banks(ah);
1162 }
1164 
1165 /*******/
1166 /* INI */
1167 /*******/
1168 
1170 {
1171  u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1172 
1173  if (IS_CHAN_B(chan))
1174  ctl |= CTL_11B;
1175  else if (IS_CHAN_G(chan))
1176  ctl |= CTL_11G;
1177  else
1178  ctl |= CTL_11A;
1179 
1180  return ctl;
1181 }
1182 
1183 /****************************************/
1184 /* Reset and Channel Switching Routines */
1185 /****************************************/
1186 
1187 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1188 {
1189  struct ath_common *common = ath9k_hw_common(ah);
1190 
1192 
1193  /*
1194  * set AHB_MODE not to do cacheline prefetches
1195  */
1196  if (!AR_SREV_9300_20_OR_LATER(ah))
1198 
1199  /*
1200  * let mac dma reads be in 128 byte chunks
1201  */
1203 
1205 
1206  /*
1207  * Restore TX Trigger Level to its pre-reset value.
1208  * The initial value depends on whether aggregation is enabled, and is
1209  * adjusted whenever underruns are detected.
1210  */
1211  if (!AR_SREV_9300_20_OR_LATER(ah))
1213 
1215 
1216  /*
1217  * let mac dma writes be in 128 byte chunks
1218  */
1220 
1221  /*
1222  * Setup receive FIFO threshold to hold off TX activities
1223  */
1224  REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1225 
1226  if (AR_SREV_9300_20_OR_LATER(ah)) {
1229 
1230  ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1231  ah->caps.rx_status_len);
1232  }
1233 
1234  /*
1235  * reduce the number of usable entries in PCU TXBUF to avoid
1236  * wrap around issues.
1237  */
1238  if (AR_SREV_9285(ah)) {
1239  /* For AR9285 the number of Fifos are reduced to half.
1240  * So set the usable tx buf size also to half to
1241  * avoid data/delimiter underruns
1242  */
1245  } else if (!AR_SREV_9271(ah)) {
1248  }
1249 
1251 
1252  if (AR_SREV_9300_20_OR_LATER(ah))
1254 }
1255 
1256 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1257 {
1259  u32 set = AR_STA_ID1_KSRCH_MODE;
1260 
1261  switch (opmode) {
1262  case NL80211_IFTYPE_ADHOC:
1264  set |= AR_STA_ID1_ADHOC;
1266  break;
1267  case NL80211_IFTYPE_AP:
1268  set |= AR_STA_ID1_STA_AP;
1269  /* fall through */
1272  break;
1273  default:
1274  if (!ah->is_monitoring)
1275  set = 0;
1276  break;
1277  }
1278  REG_RMW(ah, AR_STA_ID1, set, mask);
1279 }
1280 
1281 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1282  u32 *coef_mantissa, u32 *coef_exponent)
1283 {
1284  u32 coef_exp, coef_man;
1285 
1286  for (coef_exp = 31; coef_exp > 0; coef_exp--)
1287  if ((coef_scaled >> coef_exp) & 0x1)
1288  break;
1289 
1290  coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1291 
1292  coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1293 
1294  *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1295  *coef_exponent = coef_exp - 16;
1296 }
1297 
1298 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1299 {
1300  u32 rst_flags;
1301  u32 tmpReg;
1302 
1303  if (AR_SREV_9100(ah)) {
1307  }
1308 
1310 
1311  if (AR_SREV_9300_20_OR_LATER(ah)) {
1312  REG_WRITE(ah, AR_WA, ah->WARegVal);
1313  udelay(10);
1314  }
1315 
1318 
1319  if (AR_SREV_9100(ah)) {
1320  rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1322  } else {
1323  tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1324  if (tmpReg &
1325  (AR_INTR_SYNC_LOCAL_TIMEOUT |
1326  AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1327  u32 val;
1329 
1330  val = AR_RC_HOSTIF;
1331  if (!AR_SREV_9300_20_OR_LATER(ah))
1332  val |= AR_RC_AHB;
1333  REG_WRITE(ah, AR_RC, val);
1334 
1335  } else if (!AR_SREV_9300_20_OR_LATER(ah))
1336  REG_WRITE(ah, AR_RC, AR_RC_AHB);
1337 
1338  rst_flags = AR_RTC_RC_MAC_WARM;
1339  if (type == ATH9K_RESET_COLD)
1340  rst_flags |= AR_RTC_RC_MAC_COLD;
1341  }
1342 
1343  if (AR_SREV_9330(ah)) {
1344  int npend = 0;
1345  int i;
1346 
1347  /* AR9330 WAR:
1348  * call external reset function to reset WMAC if:
1349  * - doing a cold reset
1350  * - we have pending frames in the TX queues
1351  */
1352 
1353  for (i = 0; i < AR_NUM_QCU; i++) {
1354  npend = ath9k_hw_numtxpending(ah, i);
1355  if (npend)
1356  break;
1357  }
1358 
1359  if (ah->external_reset &&
1360  (npend || type == ATH9K_RESET_COLD)) {
1361  int reset_err = 0;
1362 
1363  ath_dbg(ath9k_hw_common(ah), RESET,
1364  "reset MAC via external reset\n");
1365 
1366  reset_err = ah->external_reset();
1367  if (reset_err) {
1368  ath_err(ath9k_hw_common(ah),
1369  "External reset failed, err=%d\n",
1370  reset_err);
1371  return false;
1372  }
1373 
1374  REG_WRITE(ah, AR_RTC_RESET, 1);
1375  }
1376  }
1377 
1378  if (ath9k_hw_mci_is_enabled(ah))
1380 
1381  REG_WRITE(ah, AR_RTC_RC, rst_flags);
1382 
1384 
1385  udelay(50);
1386 
1387  REG_WRITE(ah, AR_RTC_RC, 0);
1389  ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1390  return false;
1391  }
1392 
1393  if (!AR_SREV_9100(ah))
1394  REG_WRITE(ah, AR_RC, 0);
1395 
1396  if (AR_SREV_9100(ah))
1397  udelay(50);
1398 
1399  return true;
1400 }
1401 
1402 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1403 {
1405 
1406  if (AR_SREV_9300_20_OR_LATER(ah)) {
1407  REG_WRITE(ah, AR_WA, ah->WARegVal);
1408  udelay(10);
1409  }
1410 
1413 
1414  if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1415  REG_WRITE(ah, AR_RC, AR_RC_AHB);
1416 
1417  REG_WRITE(ah, AR_RTC_RESET, 0);
1418 
1420 
1421  if (!AR_SREV_9300_20_OR_LATER(ah))
1422  udelay(2);
1423 
1424  if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1425  REG_WRITE(ah, AR_RC, 0);
1426 
1427  REG_WRITE(ah, AR_RTC_RESET, 1);
1428 
1429  if (!ath9k_hw_wait(ah,
1430  AR_RTC_STATUS,
1433  AH_WAIT_TIMEOUT)) {
1434  ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1435  return false;
1436  }
1437 
1438  return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1439 }
1440 
1441 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1442 {
1443  bool ret = false;
1444 
1445  if (AR_SREV_9300_20_OR_LATER(ah)) {
1446  REG_WRITE(ah, AR_WA, ah->WARegVal);
1447  udelay(10);
1448  }
1449 
1452 
1453  if (!ah->reset_power_on)
1454  type = ATH9K_RESET_POWER_ON;
1455 
1456  switch (type) {
1457  case ATH9K_RESET_POWER_ON:
1458  ret = ath9k_hw_set_reset_power_on(ah);
1459  if (ret)
1460  ah->reset_power_on = true;
1461  break;
1462  case ATH9K_RESET_WARM:
1463  case ATH9K_RESET_COLD:
1464  ret = ath9k_hw_set_reset(ah, type);
1465  break;
1466  default:
1467  break;
1468  }
1469 
1470  return ret;
1471 }
1472 
1473 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1474  struct ath9k_channel *chan)
1475 {
1477 
1478  if (AR_SREV_9280(ah)) {
1479  if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1480  reset_type = ATH9K_RESET_POWER_ON;
1481  else
1482  reset_type = ATH9K_RESET_COLD;
1483  }
1484 
1485  if (!ath9k_hw_set_reset_reg(ah, reset_type))
1486  return false;
1487 
1489  return false;
1490 
1491  ah->chip_fullsleep = false;
1492 
1493  if (AR_SREV_9330(ah))
1495  ath9k_hw_init_pll(ah, chan);
1496  ath9k_hw_set_rfmode(ah, chan);
1497 
1498  return true;
1499 }
1500 
1501 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1502  struct ath9k_channel *chan)
1503 {
1504  struct ath_common *common = ath9k_hw_common(ah);
1505  u32 qnum;
1506  int r;
1507  bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1508  bool band_switch, mode_diff;
1509  u8 ini_reloaded;
1510 
1511  band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
1512  (ah->curchan->channelFlags & (CHANNEL_2GHZ |
1513  CHANNEL_5GHZ));
1514  mode_diff = (chan->chanmode != ah->curchan->chanmode);
1515 
1516  for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1517  if (ath9k_hw_numtxpending(ah, qnum)) {
1518  ath_dbg(common, QUEUE,
1519  "Transmit frames pending on queue %d\n", qnum);
1520  return false;
1521  }
1522  }
1523 
1524  if (!ath9k_hw_rfbus_req(ah)) {
1525  ath_err(common, "Could not kill baseband RX\n");
1526  return false;
1527  }
1528 
1529  if (edma && (band_switch || mode_diff)) {
1530  ath9k_hw_mark_phy_inactive(ah);
1531  udelay(5);
1532 
1533  ath9k_hw_init_pll(ah, NULL);
1534 
1535  if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1536  ath_err(common, "Failed to do fast channel change\n");
1537  return false;
1538  }
1539  }
1540 
1541  ath9k_hw_set_channel_regs(ah, chan);
1542 
1543  r = ath9k_hw_rf_set_freq(ah, chan);
1544  if (r) {
1545  ath_err(common, "Failed to set channel\n");
1546  return false;
1547  }
1548  ath9k_hw_set_clockrate(ah);
1549  ath9k_hw_apply_txpower(ah, chan, false);
1550  ath9k_hw_rfbus_done(ah);
1551 
1552  if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1553  ath9k_hw_set_delta_slope(ah, chan);
1554 
1555  ath9k_hw_spur_mitigate_freq(ah, chan);
1556 
1557  if (edma && (band_switch || mode_diff)) {
1558  ah->ah_flags |= AH_FASTCC;
1559  if (band_switch || ini_reloaded)
1560  ah->eep_ops->set_board_values(ah, chan);
1561 
1562  ath9k_hw_init_bb(ah, chan);
1563 
1564  if (band_switch || ini_reloaded)
1565  ath9k_hw_init_cal(ah, chan);
1566  ah->ah_flags &= ~AH_FASTCC;
1567  }
1568 
1569  return true;
1570 }
1571 
1572 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1573 {
1574  u32 gpio_mask = ah->gpio_mask;
1575  int i;
1576 
1577  for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1578  if (!(gpio_mask & 1))
1579  continue;
1580 
1582  ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1583  }
1584 }
1585 
1586 static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
1587  int *hang_state, int *hang_pos)
1588 {
1589  static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
1590  u32 chain_state, dcs_pos, i;
1591 
1592  for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
1593  chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
1594  for (i = 0; i < 3; i++) {
1595  if (chain_state == dcu_chain_state[i]) {
1596  *hang_state = chain_state;
1597  *hang_pos = dcs_pos;
1598  return true;
1599  }
1600  }
1601  }
1602  return false;
1603 }
1604 
1605 #define DCU_COMPLETE_STATE 1
1606 #define DCU_COMPLETE_STATE_MASK 0x3
1607 #define NUM_STATUS_READS 50
1608 static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
1609 {
1610  u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
1611  u32 i, hang_pos, hang_state, num_state = 6;
1612 
1613  comp_state = REG_READ(ah, AR_DMADBG_6);
1614 
1615  if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
1616  ath_dbg(ath9k_hw_common(ah), RESET,
1617  "MAC Hang signature not found at DCU complete\n");
1618  return false;
1619  }
1620 
1621  chain_state = REG_READ(ah, dcs_reg);
1622  if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1623  goto hang_check_iter;
1624 
1625  dcs_reg = AR_DMADBG_5;
1626  num_state = 4;
1627  chain_state = REG_READ(ah, dcs_reg);
1628  if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1629  goto hang_check_iter;
1630 
1631  ath_dbg(ath9k_hw_common(ah), RESET,
1632  "MAC Hang signature 1 not found\n");
1633  return false;
1634 
1635 hang_check_iter:
1636  ath_dbg(ath9k_hw_common(ah), RESET,
1637  "DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
1638  chain_state, comp_state, hang_state, hang_pos);
1639 
1640  for (i = 0; i < NUM_STATUS_READS; i++) {
1641  chain_state = REG_READ(ah, dcs_reg);
1642  chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
1643  comp_state = REG_READ(ah, AR_DMADBG_6);
1644 
1645  if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
1646  DCU_COMPLETE_STATE) ||
1647  (chain_state != hang_state))
1648  return false;
1649  }
1650 
1651  ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
1652 
1653  return true;
1654 }
1655 
1657 {
1658  int count = 50;
1659  u32 reg;
1660 
1661  if (AR_SREV_9300(ah))
1662  return !ath9k_hw_detect_mac_hang(ah);
1663 
1664  if (AR_SREV_9285_12_OR_LATER(ah))
1665  return true;
1666 
1667  do {
1668  reg = REG_READ(ah, AR_OBS_BUS_1);
1669 
1670  if ((reg & 0x7E7FFFEF) == 0x00702400)
1671  continue;
1672 
1673  switch (reg & 0x7E000B00) {
1674  case 0x1E000000:
1675  case 0x52000B00:
1676  case 0x18000B00:
1677  continue;
1678  default:
1679  return true;
1680  }
1681  } while (count-- > 0);
1682 
1683  return false;
1684 }
1686 
1687 /*
1688  * Fast channel change:
1689  * (Change synthesizer based on channel freq without resetting chip)
1690  *
1691  * Don't do FCC when
1692  * - Flag is not set
1693  * - Chip is just coming out of full sleep
1694  * - Channel to be set is same as current channel
1695  * - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
1696  */
1697 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1698 {
1699  struct ath_common *common = ath9k_hw_common(ah);
1700  int ret;
1701 
1702  if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1703  goto fail;
1704 
1705  if (ah->chip_fullsleep)
1706  goto fail;
1707 
1708  if (!ah->curchan)
1709  goto fail;
1710 
1711  if (chan->channel == ah->curchan->channel)
1712  goto fail;
1713 
1714  if ((ah->curchan->channelFlags | chan->channelFlags) &
1716  goto fail;
1717 
1718  if ((chan->channelFlags & CHANNEL_ALL) !=
1719  (ah->curchan->channelFlags & CHANNEL_ALL))
1720  goto fail;
1721 
1722  if (!ath9k_hw_check_alive(ah))
1723  goto fail;
1724 
1725  /*
1726  * For AR9462, make sure that calibration data for
1727  * re-using are present.
1728  */
1729  if (AR_SREV_9462(ah) && (ah->caldata &&
1730  (!ah->caldata->done_txiqcal_once ||
1731  !ah->caldata->done_txclcal_once ||
1732  !ah->caldata->rtt_done)))
1733  goto fail;
1734 
1735  ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1736  ah->curchan->channel, chan->channel);
1737 
1738  ret = ath9k_hw_channel_change(ah, chan);
1739  if (!ret)
1740  goto fail;
1741 
1742  if (ath9k_hw_mci_is_enabled(ah))
1743  ar9003_mci_2g5g_switch(ah, false);
1744 
1745  ath9k_hw_loadnf(ah, ah->curchan);
1746  ath9k_hw_start_nfcal(ah, true);
1747 
1748  if (AR_SREV_9271(ah))
1749  ar9002_hw_load_ani_reg(ah, chan);
1750 
1751  return 0;
1752 fail:
1753  return -EINVAL;
1754 }
1755 
1756 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1757  struct ath9k_hw_cal_data *caldata, bool fastcc)
1758 {
1759  struct ath_common *common = ath9k_hw_common(ah);
1760  u32 saveLedState;
1761  u32 saveDefAntenna;
1762  u32 macStaId1;
1763  u64 tsf = 0;
1764  int i, r;
1765  bool start_mci_reset = false;
1766  bool save_fullsleep = ah->chip_fullsleep;
1767 
1768  if (ath9k_hw_mci_is_enabled(ah)) {
1769  start_mci_reset = ar9003_mci_start_reset(ah, chan);
1770  if (start_mci_reset)
1771  return 0;
1772  }
1773 
1775  return -EIO;
1776 
1777  if (ah->curchan && !ah->chip_fullsleep)
1778  ath9k_hw_getnf(ah, ah->curchan);
1779 
1780  ah->caldata = caldata;
1781  if (caldata &&
1782  (chan->channel != caldata->channel ||
1783  (chan->channelFlags & ~CHANNEL_CW_INT) !=
1784  (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1785  /* Operating channel changed, reset channel calibration data */
1786  memset(caldata, 0, sizeof(*caldata));
1787  ath9k_init_nfcal_hist_buffer(ah, chan);
1788  } else if (caldata) {
1789  caldata->paprd_packet_sent = false;
1790  }
1791  ah->noise = ath9k_hw_getchan_noise(ah, chan);
1792 
1793  if (fastcc) {
1794  r = ath9k_hw_do_fastcc(ah, chan);
1795  if (!r)
1796  return r;
1797  }
1798 
1799  if (ath9k_hw_mci_is_enabled(ah))
1800  ar9003_mci_stop_bt(ah, save_fullsleep);
1801 
1802  saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1803  if (saveDefAntenna == 0)
1804  saveDefAntenna = 1;
1805 
1806  macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1807 
1808  /* For chips on which RTC reset is done, save TSF before it gets cleared */
1809  if (AR_SREV_9100(ah) ||
1810  (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1811  tsf = ath9k_hw_gettsf64(ah);
1812 
1813  saveLedState = REG_READ(ah, AR_CFG_LED) &
1816 
1817  ath9k_hw_mark_phy_inactive(ah);
1818 
1819  ah->paprd_table_write_done = false;
1820 
1821  /* Only required on the first reset */
1822  if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1823  REG_WRITE(ah,
1826  udelay(50);
1827  }
1828 
1829  if (!ath9k_hw_chip_reset(ah, chan)) {
1830  ath_err(common, "Chip reset failed\n");
1831  return -EINVAL;
1832  }
1833 
1834  /* Only required on the first reset */
1835  if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1836  ah->htc_reset_init = false;
1837  REG_WRITE(ah,
1840  udelay(50);
1841  }
1842 
1843  /* Restore TSF */
1844  if (tsf)
1845  ath9k_hw_settsf64(ah, tsf);
1846 
1847  if (AR_SREV_9280_20_OR_LATER(ah))
1849 
1850  if (!AR_SREV_9300_20_OR_LATER(ah))
1852 
1853  r = ath9k_hw_process_ini(ah, chan);
1854  if (r)
1855  return r;
1856 
1857  if (ath9k_hw_mci_is_enabled(ah))
1858  ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1859 
1860  /*
1861  * Some AR91xx SoC devices frequently fail to accept TSF writes
1862  * right after the chip reset. When that happens, write a new
1863  * value after the initvals have been applied, with an offset
1864  * based on measured time difference
1865  */
1866  if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1867  tsf += 1500;
1868  ath9k_hw_settsf64(ah, tsf);
1869  }
1870 
1871  /* Setup MFP options for CCMP */
1872  if (AR_SREV_9280_20_OR_LATER(ah)) {
1873  /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1874  * frames when constructing CCMP AAD. */
1876  0xc7ff);
1877  ah->sw_mgmt_crypto = false;
1878  } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1879  /* Disable hardware crypto for management frames */
1884  ah->sw_mgmt_crypto = true;
1885  } else
1886  ah->sw_mgmt_crypto = true;
1887 
1888  if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1889  ath9k_hw_set_delta_slope(ah, chan);
1890 
1891  ath9k_hw_spur_mitigate_freq(ah, chan);
1892  ah->eep_ops->set_board_values(ah, chan);
1893 
1895 
1897  REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1898  | macStaId1
1900  | (ah->config.
1901  ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1902  | ah->sta_id1_defaults);
1903  ath_hw_setbssidmask(common);
1904  REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1906  REG_WRITE(ah, AR_ISR, ~0);
1908 
1910 
1911  ath9k_hw_set_operating_mode(ah, ah->opmode);
1912 
1913  r = ath9k_hw_rf_set_freq(ah, chan);
1914  if (r)
1915  return r;
1916 
1917  ath9k_hw_set_clockrate(ah);
1918 
1920 
1921  for (i = 0; i < AR_NUM_DCU; i++)
1922  REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1923 
1925 
1926  ah->intr_txqs = 0;
1927  for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1928  ath9k_hw_resettxqueue(ah, i);
1929 
1930  ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1931  ath9k_hw_ani_cache_ini_regs(ah);
1932  ath9k_hw_init_qos(ah);
1933 
1934  if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1936 
1938 
1939  if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1946  }
1947 
1949 
1950  ath9k_hw_set_dma(ah);
1951 
1952  if (!ath9k_hw_mci_is_enabled(ah))
1953  REG_WRITE(ah, AR_OBS, 8);
1954 
1955  if (ah->config.rx_intr_mitigation) {
1956  REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1957  REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1958  }
1959 
1960  if (ah->config.tx_intr_mitigation) {
1961  REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1962  REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1963  }
1964 
1965  ath9k_hw_init_bb(ah, chan);
1966 
1967  if (caldata) {
1968  caldata->done_txiqcal_once = false;
1969  caldata->done_txclcal_once = false;
1970  }
1971  if (!ath9k_hw_init_cal(ah, chan))
1972  return -EIO;
1973 
1974  if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1975  return -EIO;
1976 
1978 
1979  ath9k_hw_restore_chainmask(ah);
1980  REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1981 
1983 
1984  /*
1985  * For big endian systems turn on swapping for descriptors
1986  */
1987  if (AR_SREV_9100(ah)) {
1988  u32 mask;
1989  mask = REG_READ(ah, AR_CFG);
1990  if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1991  ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1992  mask);
1993  } else {
1994  mask =
1996  REG_WRITE(ah, AR_CFG, mask);
1997  ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1998  REG_READ(ah, AR_CFG));
1999  }
2000  } else {
2001  if (common->bus_ops->ath_bus_type == ATH_USB) {
2002  /* Configure AR9271 target WLAN */
2003  if (AR_SREV_9271(ah))
2005  else
2007  }
2008 #ifdef __BIG_ENDIAN
2009  else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
2010  AR_SREV_9550(ah))
2012  else
2014 #endif
2015  }
2016 
2017  if (ath9k_hw_btcoex_is_enabled(ah))
2019 
2020  if (ath9k_hw_mci_is_enabled(ah))
2021  ar9003_mci_check_bt(ah);
2022 
2023  ath9k_hw_loadnf(ah, chan);
2024  ath9k_hw_start_nfcal(ah, true);
2025 
2026  if (AR_SREV_9300_20_OR_LATER(ah)) {
2028 
2030  }
2031 
2032  ath9k_hw_apply_gpio_override(ah);
2033 
2034  if (AR_SREV_9565(ah) && ah->shared_chain_lnadiv)
2036 
2037  return 0;
2038 }
2040 
2041 /******************************/
2042 /* Power Management (Chipset) */
2043 /******************************/
2044 
2045 /*
2046  * Notify Power Mgt is disabled in self-generated frames.
2047  * If requested, force chip to sleep.
2048  */
2049 static void ath9k_set_power_sleep(struct ath_hw *ah)
2050 {
2052 
2053  if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2054  REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2055  REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2056  REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2057  /* xxx Required for WLAN only case ? */
2059  udelay(100);
2060  }
2061 
2062  /*
2063  * Clear the RTC force wake bit to allow the
2064  * mac to go to sleep.
2065  */
2067 
2068  if (ath9k_hw_mci_is_enabled(ah))
2069  udelay(100);
2070 
2071  if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2073 
2074  /* Shutdown chip. Active low */
2075  if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2077  udelay(2);
2078  }
2079 
2080  /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2081  if (AR_SREV_9300_20_OR_LATER(ah))
2083 }
2084 
2085 /*
2086  * Notify Power Management is enabled in self-generating
2087  * frames. If request, set power mode of chip to
2088  * auto/normal. Duration in units of 128us (1/8 TU).
2089  */
2090 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2091 {
2092  struct ath9k_hw_capabilities *pCap = &ah->caps;
2093 
2095 
2096  if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2097  /* Set WakeOnInterrupt bit; clear ForceWake bit */
2100  } else {
2101 
2102  /* When chip goes into network sleep, it could be waken
2103  * up by MCI_INT interrupt caused by BT's HW messages
2104  * (LNA_xxx, CONT_xxx) which chould be in a very fast
2105  * rate (~100us). This will cause chip to leave and
2106  * re-enter network sleep mode frequently, which in
2107  * consequence will have WLAN MCI HW to generate lots of
2108  * SYS_WAKING and SYS_SLEEPING messages which will make
2109  * BT CPU to busy to process.
2110  */
2111  if (ath9k_hw_mci_is_enabled(ah))
2114  /*
2115  * Clear the RTC force wake bit to allow the
2116  * mac to go to sleep.
2117  */
2119 
2120  if (ath9k_hw_mci_is_enabled(ah))
2121  udelay(30);
2122  }
2123 
2124  /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2125  if (AR_SREV_9300_20_OR_LATER(ah))
2127 }
2128 
2129 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2130 {
2131  u32 val;
2132  int i;
2133 
2134  /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2135  if (AR_SREV_9300_20_OR_LATER(ah)) {
2136  REG_WRITE(ah, AR_WA, ah->WARegVal);
2137  udelay(10);
2138  }
2139 
2140  if ((REG_READ(ah, AR_RTC_STATUS) &
2142  if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2143  return false;
2144  }
2145  if (!AR_SREV_9300_20_OR_LATER(ah))
2146  ath9k_hw_init_pll(ah, NULL);
2147  }
2148  if (AR_SREV_9100(ah))
2150  AR_RTC_RESET_EN);
2151 
2154  udelay(50);
2155 
2156  if (ath9k_hw_mci_is_enabled(ah))
2158 
2159  for (i = POWER_UP_TIME / 50; i > 0; i--) {
2160  val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2161  if (val == AR_RTC_STATUS_ON)
2162  break;
2163  udelay(50);
2166  }
2167  if (i == 0) {
2168  ath_err(ath9k_hw_common(ah),
2169  "Failed to wakeup in %uus\n",
2170  POWER_UP_TIME / 20);
2171  return false;
2172  }
2173 
2175 
2176  return true;
2177 }
2178 
2180 {
2181  struct ath_common *common = ath9k_hw_common(ah);
2182  int status = true;
2183  static const char *modes[] = {
2184  "AWAKE",
2185  "FULL-SLEEP",
2186  "NETWORK SLEEP",
2187  "UNDEFINED"
2188  };
2189 
2190  if (ah->power_mode == mode)
2191  return status;
2192 
2193  ath_dbg(common, RESET, "%s -> %s\n",
2194  modes[ah->power_mode], modes[mode]);
2195 
2196  switch (mode) {
2197  case ATH9K_PM_AWAKE:
2198  status = ath9k_hw_set_power_awake(ah);
2199  break;
2200  case ATH9K_PM_FULL_SLEEP:
2201  if (ath9k_hw_mci_is_enabled(ah))
2203 
2204  ath9k_set_power_sleep(ah);
2205  ah->chip_fullsleep = true;
2206  break;
2208  ath9k_set_power_network_sleep(ah);
2209  break;
2210  default:
2211  ath_err(common, "Unknown power mode %u\n", mode);
2212  return false;
2213  }
2214  ah->power_mode = mode;
2215 
2216  /*
2217  * XXX: If this warning never comes up after a while then
2218  * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2219  * ath9k_hw_setpower() return type void.
2220  */
2221 
2222  if (!(ah->ah_flags & AH_UNPLUGGED))
2223  ATH_DBG_WARN_ON_ONCE(!status);
2224 
2225  return status;
2226 }
2228 
2229 /*******************/
2230 /* Beacon Handling */
2231 /*******************/
2232 
2233 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2234 {
2235  int flags = 0;
2236 
2238 
2239  switch (ah->opmode) {
2240  case NL80211_IFTYPE_ADHOC:
2242  REG_SET_BIT(ah, AR_TXCFG,
2244  REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
2245  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
2246  flags |= AR_NDP_TIMER_EN;
2247  case NL80211_IFTYPE_AP:
2248  REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2249  REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2250  TU_TO_USEC(ah->config.dma_beacon_response_time));
2251  REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2252  TU_TO_USEC(ah->config.sw_beacon_response_time));
2253  flags |=
2255  break;
2256  default:
2257  ath_dbg(ath9k_hw_common(ah), BEACON,
2258  "%s: unsupported opmode: %d\n", __func__, ah->opmode);
2259  return;
2260  break;
2261  }
2262 
2263  REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2264  REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2265  REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2266  REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2267 
2269 
2270  REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2271 }
2273 
2275  const struct ath9k_beacon_state *bs)
2276 {
2277  u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2278  struct ath9k_hw_capabilities *pCap = &ah->caps;
2279  struct ath_common *common = ath9k_hw_common(ah);
2280 
2282 
2284 
2286  TU_TO_USEC(bs->bs_intval));
2288  TU_TO_USEC(bs->bs_intval));
2289 
2291 
2294 
2295  beaconintval = bs->bs_intval;
2296 
2297  if (bs->bs_sleepduration > beaconintval)
2298  beaconintval = bs->bs_sleepduration;
2299 
2300  dtimperiod = bs->bs_dtimperiod;
2301  if (bs->bs_sleepduration > dtimperiod)
2302  dtimperiod = bs->bs_sleepduration;
2303 
2304  if (beaconintval == dtimperiod)
2305  nextTbtt = bs->bs_nextdtim;
2306  else
2307  nextTbtt = bs->bs_nexttbtt;
2308 
2309  ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2310  ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2311  ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2312  ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2313 
2315 
2316  REG_WRITE(ah, AR_NEXT_DTIM,
2318  REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2319 
2320  REG_WRITE(ah, AR_SLEEP1,
2323 
2324  if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2325  beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2326  else
2327  beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2328 
2329  REG_WRITE(ah, AR_SLEEP2,
2330  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2331 
2332  REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2333  REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2334 
2336 
2340 
2341  /* TSF Out of Range Threshold */
2343 }
2345 
2346 /*******************/
2347 /* HW Capabilities */
2348 /*******************/
2349 
2350 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2351 {
2352  eeprom_chainmask &= chip_chainmask;
2353  if (eeprom_chainmask)
2354  return eeprom_chainmask;
2355  else
2356  return chip_chainmask;
2357 }
2358 
2372 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2373 {
2374 
2375  switch (ah->hw_version.macVersion) {
2376  /* AR9580 will likely be our first target to get testing on */
2377  case AR_SREV_VERSION_9580:
2378  default:
2379  return false;
2380  }
2381 }
2382 
2384 {
2385  struct ath9k_hw_capabilities *pCap = &ah->caps;
2386  struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2387  struct ath_common *common = ath9k_hw_common(ah);
2388  unsigned int chip_chainmask;
2389 
2390  u16 eeval;
2391  u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2392 
2393  eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2394  regulatory->current_rd = eeval;
2395 
2396  if (ah->opmode != NL80211_IFTYPE_AP &&
2397  ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2398  if (regulatory->current_rd == 0x64 ||
2399  regulatory->current_rd == 0x65)
2400  regulatory->current_rd += 5;
2401  else if (regulatory->current_rd == 0x41)
2402  regulatory->current_rd = 0x43;
2403  ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2404  regulatory->current_rd);
2405  }
2406 
2407  eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2408  if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2409  ath_err(common,
2410  "no band has been marked as supported in EEPROM\n");
2411  return -EINVAL;
2412  }
2413 
2414  if (eeval & AR5416_OPFLAGS_11A)
2415  pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2416 
2417  if (eeval & AR5416_OPFLAGS_11G)
2418  pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2419 
2420  if (AR_SREV_9485(ah) ||
2421  AR_SREV_9285(ah) ||
2422  AR_SREV_9330(ah) ||
2423  AR_SREV_9565(ah))
2424  chip_chainmask = 1;
2425  else if (AR_SREV_9462(ah))
2426  chip_chainmask = 3;
2427  else if (!AR_SREV_9280_20_OR_LATER(ah))
2428  chip_chainmask = 7;
2429  else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2430  chip_chainmask = 3;
2431  else
2432  chip_chainmask = 7;
2433 
2434  pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2435  /*
2436  * For AR9271 we will temporarilly uses the rx chainmax as read from
2437  * the EEPROM.
2438  */
2439  if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2440  !(eeval & AR5416_OPFLAGS_11A) &&
2441  !(AR_SREV_9271(ah)))
2442  /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2443  pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2444  else if (AR_SREV_9100(ah))
2445  pCap->rx_chainmask = 0x7;
2446  else
2447  /* Use rx_chainmask from EEPROM. */
2448  pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2449 
2450  pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2451  pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2452  ah->txchainmask = pCap->tx_chainmask;
2453  ah->rxchainmask = pCap->rx_chainmask;
2454 
2456 
2457  /* enable key search for every frame in an aggregate */
2458  if (AR_SREV_9300_20_OR_LATER(ah))
2460 
2462 
2463  if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2464  pCap->hw_caps |= ATH9K_HW_CAP_HT;
2465  else
2466  pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2467 
2468  if (AR_SREV_9271(ah))
2470  else if (AR_DEVID_7010(ah))
2472  else if (AR_SREV_9300_20_OR_LATER(ah))
2474  else if (AR_SREV_9287_11_OR_LATER(ah))
2476  else if (AR_SREV_9285_12_OR_LATER(ah))
2478  else if (AR_SREV_9280_20_OR_LATER(ah))
2480  else
2481  pCap->num_gpio_pins = AR_NUM_GPIO;
2482 
2483  if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2485  else
2486  pCap->rts_aggr_limit = (8 * 1024);
2487 
2488 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2489  ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2490  if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2491  ah->rfkill_gpio =
2493  ah->rfkill_polarity =
2495 
2496  pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2497  }
2498 #endif
2499  if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2501  else
2502  pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2503 
2504  if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2506  else
2508 
2509  if (AR_SREV_9300_20_OR_LATER(ah)) {
2511  if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2512  pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2513 
2516  pCap->rx_status_len = sizeof(struct ar9003_rxs);
2517  pCap->tx_desc_len = sizeof(struct ar9003_txc);
2518  pCap->txs_len = sizeof(struct ar9003_txs);
2519  } else {
2520  pCap->tx_desc_len = sizeof(struct ath_desc);
2521  if (AR_SREV_9280_20(ah))
2523  }
2524 
2525  if (AR_SREV_9300_20_OR_LATER(ah))
2527 
2528  if (AR_SREV_9300_20_OR_LATER(ah))
2529  ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2530 
2531  if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2532  pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2533 
2534  if (AR_SREV_9285(ah))
2535  if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2536  ant_div_ctl1 =
2537  ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2538  if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2540  }
2541  if (AR_SREV_9300_20_OR_LATER(ah)) {
2542  if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2543  pCap->hw_caps |= ATH9K_HW_CAP_APM;
2544  }
2545 
2546 
2547  if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2548  ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2549  /*
2550  * enable the diversity-combining algorithm only when
2551  * both enable_lna_div and enable_fast_div are set
2552  * Table for Diversity
2553  * ant_div_alt_lnaconf bit 0-1
2554  * ant_div_main_lnaconf bit 2-3
2555  * ant_div_alt_gaintb bit 4
2556  * ant_div_main_gaintb bit 5
2557  * enable_ant_div_lnadiv bit 6
2558  * enable_ant_fast_div bit 7
2559  */
2560  if ((ant_div_ctl1 >> 0x6) == 0x3)
2562  }
2563 
2564  if (AR_SREV_9485_10(ah)) {
2565  pCap->pcie_lcr_extsync_en = true;
2566  pCap->pcie_lcr_offset = 0x80;
2567  }
2568 
2569  if (ath9k_hw_dfs_tested(ah))
2570  pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2571 
2572  tx_chainmask = pCap->tx_chainmask;
2573  rx_chainmask = pCap->rx_chainmask;
2574  while (tx_chainmask || rx_chainmask) {
2575  if (tx_chainmask & BIT(0))
2576  pCap->max_txchains++;
2577  if (rx_chainmask & BIT(0))
2578  pCap->max_rxchains++;
2579 
2580  tx_chainmask >>= 1;
2581  rx_chainmask >>= 1;
2582  }
2583 
2584  if (AR_SREV_9300_20_OR_LATER(ah)) {
2585  ah->enabled_cals |= TX_IQ_CAL;
2586  if (AR_SREV_9485_OR_LATER(ah))
2588  }
2589 
2590  if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2591  if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2592  pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2593 
2594  if (AR_SREV_9462_20(ah))
2595  pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2596  }
2597 
2598 
2599  if (AR_SREV_9280_20_OR_LATER(ah)) {
2602 
2603  if (AR_SREV_9280(ah))
2605  }
2606 
2607  return 0;
2608 }
2609 
2610 /****************************/
2611 /* GPIO / RFKILL / Antennae */
2612 /****************************/
2613 
2614 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2615  u32 gpio, u32 type)
2616 {
2617  int addr;
2618  u32 gpio_shift, tmp;
2619 
2620  if (gpio > 11)
2621  addr = AR_GPIO_OUTPUT_MUX3;
2622  else if (gpio > 5)
2623  addr = AR_GPIO_OUTPUT_MUX2;
2624  else
2625  addr = AR_GPIO_OUTPUT_MUX1;
2626 
2627  gpio_shift = (gpio % 6) * 5;
2628 
2629  if (AR_SREV_9280_20_OR_LATER(ah)
2630  || (addr != AR_GPIO_OUTPUT_MUX1)) {
2631  REG_RMW(ah, addr, (type << gpio_shift),
2632  (0x1f << gpio_shift));
2633  } else {
2634  tmp = REG_READ(ah, addr);
2635  tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2636  tmp &= ~(0x1f << gpio_shift);
2637  tmp |= (type << gpio_shift);
2638  REG_WRITE(ah, addr, tmp);
2639  }
2640 }
2641 
2642 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2643 {
2644  u32 gpio_shift;
2645 
2646  BUG_ON(gpio >= ah->caps.num_gpio_pins);
2647 
2648  if (AR_DEVID_7010(ah)) {
2649  gpio_shift = gpio;
2650  REG_RMW(ah, AR7010_GPIO_OE,
2651  (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2652  (AR7010_GPIO_OE_MASK << gpio_shift));
2653  return;
2654  }
2655 
2656  gpio_shift = gpio << 1;
2657  REG_RMW(ah,
2659  (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2660  (AR_GPIO_OE_OUT_DRV << gpio_shift));
2661 }
2663 
2664 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2665 {
2666 #define MS_REG_READ(x, y) \
2667  (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2668 
2669  if (gpio >= ah->caps.num_gpio_pins)
2670  return 0xffffffff;
2671 
2672  if (AR_DEVID_7010(ah)) {
2673  u32 val;
2674  val = REG_READ(ah, AR7010_GPIO_IN);
2675  return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2676  } else if (AR_SREV_9300_20_OR_LATER(ah))
2677  return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2678  AR_GPIO_BIT(gpio)) != 0;
2679  else if (AR_SREV_9271(ah))
2680  return MS_REG_READ(AR9271, gpio) != 0;
2681  else if (AR_SREV_9287_11_OR_LATER(ah))
2682  return MS_REG_READ(AR9287, gpio) != 0;
2683  else if (AR_SREV_9285_12_OR_LATER(ah))
2684  return MS_REG_READ(AR9285, gpio) != 0;
2685  else if (AR_SREV_9280_20_OR_LATER(ah))
2686  return MS_REG_READ(AR928X, gpio) != 0;
2687  else
2688  return MS_REG_READ(AR, gpio) != 0;
2689 }
2691 
2692 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2693  u32 ah_signal_type)
2694 {
2695  u32 gpio_shift;
2696 
2697  if (AR_DEVID_7010(ah)) {
2698  gpio_shift = gpio;
2699  REG_RMW(ah, AR7010_GPIO_OE,
2700  (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2701  (AR7010_GPIO_OE_MASK << gpio_shift));
2702  return;
2703  }
2704 
2705  ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2706  gpio_shift = 2 * gpio;
2707  REG_RMW(ah,
2709  (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2710  (AR_GPIO_OE_OUT_DRV << gpio_shift));
2711 }
2713 
2714 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2715 {
2716  if (AR_DEVID_7010(ah)) {
2717  val = val ? 0 : 1;
2718  REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2719  AR_GPIO_BIT(gpio));
2720  return;
2721  }
2722 
2723  if (AR_SREV_9271(ah))
2724  val = ~val;
2725 
2726  REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2727  AR_GPIO_BIT(gpio));
2728 }
2730 
2732 {
2733  REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2734 }
2736 
2737 /*********************/
2738 /* General Operation */
2739 /*********************/
2740 
2742 {
2743  u32 bits = REG_READ(ah, AR_RX_FILTER);
2744  u32 phybits = REG_READ(ah, AR_PHY_ERR);
2745 
2746  if (phybits & AR_PHY_ERR_RADAR)
2747  bits |= ATH9K_RX_FILTER_PHYRADAR;
2749  bits |= ATH9K_RX_FILTER_PHYERR;
2750 
2751  return bits;
2752 }
2754 
2756 {
2757  u32 phybits;
2758 
2760 
2761  if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2763 
2764  REG_WRITE(ah, AR_RX_FILTER, bits);
2765 
2766  phybits = 0;
2767  if (bits & ATH9K_RX_FILTER_PHYRADAR)
2768  phybits |= AR_PHY_ERR_RADAR;
2769  if (bits & ATH9K_RX_FILTER_PHYERR)
2771  REG_WRITE(ah, AR_PHY_ERR, phybits);
2772 
2773  if (phybits)
2775  else
2777 
2779 }
2781 
2783 {
2784  if (ath9k_hw_mci_is_enabled(ah))
2786 
2787  if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2788  return false;
2789 
2790  ath9k_hw_init_pll(ah, NULL);
2791  ah->htc_reset_init = true;
2792  return true;
2793 }
2795 
2796 bool ath9k_hw_disable(struct ath_hw *ah)
2797 {
2799  return false;
2800 
2801  if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2802  return false;
2803 
2804  ath9k_hw_init_pll(ah, NULL);
2805  return true;
2806 }
2808 
2809 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2810 {
2811  enum eeprom_param gain_param;
2812 
2813  if (IS_CHAN_2GHZ(chan))
2814  gain_param = EEP_ANTENNA_GAIN_2G;
2815  else
2816  gain_param = EEP_ANTENNA_GAIN_5G;
2817 
2818  return ah->eep_ops->get_eeprom(ah, gain_param);
2819 }
2820 
2821 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2822  bool test)
2823 {
2824  struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2825  struct ieee80211_channel *channel;
2826  int chan_pwr, new_pwr, max_gain;
2827  int ant_gain, ant_reduction = 0;
2828 
2829  if (!chan)
2830  return;
2831 
2832  channel = chan->chan;
2833  chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2834  new_pwr = min_t(int, chan_pwr, reg->power_limit);
2835  max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2836 
2837  ant_gain = get_antenna_gain(ah, chan);
2838  if (ant_gain > max_gain)
2839  ant_reduction = ant_gain - max_gain;
2840 
2841  ah->eep_ops->set_txpower(ah, chan,
2842  ath9k_regd_get_ctl(reg, chan),
2843  ant_reduction, new_pwr, test);
2844 }
2845 
2847 {
2848  struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2849  struct ath9k_channel *chan = ah->curchan;
2850  struct ieee80211_channel *channel = chan->chan;
2851 
2852  reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2853  if (test)
2854  channel->max_power = MAX_RATE_POWER / 2;
2855 
2856  ath9k_hw_apply_txpower(ah, chan, test);
2857 
2858  if (test)
2859  channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2860 }
2862 
2863 void ath9k_hw_setopmode(struct ath_hw *ah)
2864 {
2865  ath9k_hw_set_operating_mode(ah, ah->opmode);
2866 }
2868 
2869 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2870 {
2871  REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2872  REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2873 }
2875 
2877 {
2878  struct ath_common *common = ath9k_hw_common(ah);
2879 
2881  REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2882  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2883 }
2885 
2886 #define ATH9K_MAX_TSF_READ 10
2887 
2889 {
2890  u32 tsf_lower, tsf_upper1, tsf_upper2;
2891  int i;
2892 
2893  tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2894  for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2895  tsf_lower = REG_READ(ah, AR_TSF_L32);
2896  tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2897  if (tsf_upper2 == tsf_upper1)
2898  break;
2899  tsf_upper1 = tsf_upper2;
2900  }
2901 
2902  WARN_ON( i == ATH9K_MAX_TSF_READ );
2903 
2904  return (((u64)tsf_upper1 << 32) | tsf_lower);
2905 }
2907 
2908 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2909 {
2910  REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2911  REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2912 }
2914 
2915 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2916 {
2919  ath_dbg(ath9k_hw_common(ah), RESET,
2920  "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2921 
2923 }
2925 
2926 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2927 {
2928  if (set)
2930  else
2931  ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2932 }
2934 
2936 {
2937  struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2938  u32 macmode;
2939 
2940  if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2941  macmode = AR_2040_JOINED_RX_CLEAR;
2942  else
2943  macmode = 0;
2944 
2945  REG_WRITE(ah, AR_2040_MODE, macmode);
2946 }
2947 
2948 /* HW Generic timers configuration */
2949 
2950 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2951 {
2961  {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2962  AR_NDP2_TIMER_MODE, 0x0002},
2963  {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2964  AR_NDP2_TIMER_MODE, 0x0004},
2965  {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2966  AR_NDP2_TIMER_MODE, 0x0008},
2967  {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2968  AR_NDP2_TIMER_MODE, 0x0010},
2969  {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2970  AR_NDP2_TIMER_MODE, 0x0020},
2971  {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2972  AR_NDP2_TIMER_MODE, 0x0040},
2973  {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2974  AR_NDP2_TIMER_MODE, 0x0080}
2975 };
2976 
2977 /* HW generic timer primitives */
2978 
2979 /* compute and clear index of rightmost 1 */
2980 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2981 {
2982  u32 b;
2983 
2984  b = *mask;
2985  b &= (0-b);
2986  *mask &= ~b;
2987  b *= debruijn32;
2988  b >>= 27;
2989 
2990  return timer_table->gen_timer_index[b];
2991 }
2992 
2994 {
2995  return REG_READ(ah, AR_TSF_L32);
2996 }
2998 
3000  void (*trigger)(void *),
3001  void (*overflow)(void *),
3002  void *arg,
3003  u8 timer_index)
3004 {
3005  struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3006  struct ath_gen_timer *timer;
3007 
3008  timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3009 
3010  if (timer == NULL) {
3011  ath_err(ath9k_hw_common(ah),
3012  "Failed to allocate memory for hw timer[%d]\n",
3013  timer_index);
3014  return NULL;
3015  }
3016 
3017  /* allocate a hardware generic timer slot */
3018  timer_table->timers[timer_index] = timer;
3019  timer->index = timer_index;
3020  timer->trigger = trigger;
3021  timer->overflow = overflow;
3022  timer->arg = arg;
3023 
3024  return timer;
3025 }
3027 
3029  struct ath_gen_timer *timer,
3030  u32 trig_timeout,
3031  u32 timer_period)
3032 {
3033  struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3034  u32 tsf, timer_next;
3035 
3036  BUG_ON(!timer_period);
3037 
3038  set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3039 
3040  tsf = ath9k_hw_gettsf32(ah);
3041 
3042  timer_next = tsf + trig_timeout;
3043 
3044  ath_dbg(ath9k_hw_common(ah), HWTIMER,
3045  "current tsf %x period %x timer_next %x\n",
3046  tsf, timer_period, timer_next);
3047 
3048  /*
3049  * Program generic timer registers
3050  */
3051  REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3052  timer_next);
3053  REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3054  timer_period);
3055  REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3056  gen_tmr_configuration[timer->index].mode_mask);
3057 
3058  if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3059  /*
3060  * Starting from AR9462, each generic timer can select which tsf
3061  * to use. But we still follow the old rule, 0 - 7 use tsf and
3062  * 8 - 15 use tsf2.
3063  */
3064  if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3066  (1 << timer->index));
3067  else
3069  (1 << timer->index));
3070  }
3071 
3072  /* Enable both trigger and thresh interrupt masks */
3073  REG_SET_BIT(ah, AR_IMR_S5,
3076 }
3078 
3080 {
3081  struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3082 
3083  if ((timer->index < AR_FIRST_NDP_TIMER) ||
3084  (timer->index >= ATH_MAX_GEN_TIMER)) {
3085  return;
3086  }
3087 
3088  /* Clear generic timer enable bits. */
3089  REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3090  gen_tmr_configuration[timer->index].mode_mask);
3091 
3092  if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3093  /*
3094  * Need to switch back to TSF if it was using TSF2.
3095  */
3096  if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3098  (1 << timer->index));
3099  }
3100  }
3101 
3102  /* Disable both trigger and thresh interrupt masks */
3103  REG_CLR_BIT(ah, AR_IMR_S5,
3106 
3107  clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3108 }
3110 
3112 {
3113  struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3114 
3115  /* free the hardware generic timer slot */
3116  timer_table->timers[timer->index] = NULL;
3117  kfree(timer);
3118 }
3120 
3121 /*
3122  * Generic Timer Interrupts handling
3123  */
3124 void ath_gen_timer_isr(struct ath_hw *ah)
3125 {
3126  struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3127  struct ath_gen_timer *timer;
3128  struct ath_common *common = ath9k_hw_common(ah);
3129  u32 trigger_mask, thresh_mask, index;
3130 
3131  /* get hardware generic timer interrupt status */
3132  trigger_mask = ah->intr_gen_timer_trigger;
3133  thresh_mask = ah->intr_gen_timer_thresh;
3134  trigger_mask &= timer_table->timer_mask.val;
3135  thresh_mask &= timer_table->timer_mask.val;
3136 
3137  trigger_mask &= ~thresh_mask;
3138 
3139  while (thresh_mask) {
3140  index = rightmost_index(timer_table, &thresh_mask);
3141  timer = timer_table->timers[index];
3142  BUG_ON(!timer);
3143  ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
3144  index);
3145  timer->overflow(timer->arg);
3146  }
3147 
3148  while (trigger_mask) {
3149  index = rightmost_index(timer_table, &trigger_mask);
3150  timer = timer_table->timers[index];
3151  BUG_ON(!timer);
3152  ath_dbg(common, HWTIMER,
3153  "Gen timer[%d] trigger\n", index);
3154  timer->trigger(timer->arg);
3155  }
3156 }
3158 
3159 /********/
3160 /* HTC */
3161 /********/
3162 
3163 static struct {
3165  const char * name;
3166 } ath_mac_bb_names[] = {
3167  /* Devices with external radios */
3168  { AR_SREV_VERSION_5416_PCI, "5416" },
3169  { AR_SREV_VERSION_5416_PCIE, "5418" },
3170  { AR_SREV_VERSION_9100, "9100" },
3171  { AR_SREV_VERSION_9160, "9160" },
3172  /* Single-chip solutions */
3173  { AR_SREV_VERSION_9280, "9280" },
3174  { AR_SREV_VERSION_9285, "9285" },
3175  { AR_SREV_VERSION_9287, "9287" },
3176  { AR_SREV_VERSION_9271, "9271" },
3177  { AR_SREV_VERSION_9300, "9300" },
3178  { AR_SREV_VERSION_9330, "9330" },
3179  { AR_SREV_VERSION_9340, "9340" },
3180  { AR_SREV_VERSION_9485, "9485" },
3181  { AR_SREV_VERSION_9462, "9462" },
3182  { AR_SREV_VERSION_9550, "9550" },
3183  { AR_SREV_VERSION_9565, "9565" },
3184 };
3185 
3186 /* For devices with external radios */
3187 static struct {
3188  u16 version;
3189  const char * name;
3190 } ath_rf_names[] = {
3191  { 0, "5133" },
3192  { AR_RAD5133_SREV_MAJOR, "5133" },
3193  { AR_RAD5122_SREV_MAJOR, "5122" },
3194  { AR_RAD2133_SREV_MAJOR, "2133" },
3195  { AR_RAD2122_SREV_MAJOR, "2122" }
3196 };
3197 
3198 /*
3199  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3200  */
3201 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3202 {
3203  int i;
3204 
3205  for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3206  if (ath_mac_bb_names[i].version == mac_bb_version) {
3207  return ath_mac_bb_names[i].name;
3208  }
3209  }
3210 
3211  return "????";
3212 }
3213 
3214 /*
3215  * Return the RF name. "????" is returned if the RF is unknown.
3216  * Used for devices with external radios.
3217  */
3218 static const char *ath9k_hw_rf_name(u16 rf_version)
3219 {
3220  int i;
3221 
3222  for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3223  if (ath_rf_names[i].version == rf_version) {
3224  return ath_rf_names[i].name;
3225  }
3226  }
3227 
3228  return "????";
3229 }
3230 
3231 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3232 {
3233  int used;
3234 
3235  /* chipsets >= AR9280 are single-chip */
3236  if (AR_SREV_9280_20_OR_LATER(ah)) {
3237  used = snprintf(hw_name, len,
3238  "Atheros AR%s Rev:%x",
3239  ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3240  ah->hw_version.macRev);
3241  }
3242  else {
3243  used = snprintf(hw_name, len,
3244  "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3245  ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3246  ah->hw_version.macRev,
3247  ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3249  ah->hw_version.phyRev);
3250  }
3251 
3252  hw_name[used] = '\0';
3253 }