Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
nv50_pm.c
Go to the documentation of this file.
1 /*
2  * Copyright 2010 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 
25 #include <drm/drmP.h>
26 #include "nouveau_drm.h"
27 #include "nouveau_bios.h"
28 #include "nouveau_hw.h"
29 #include "nouveau_pm.h"
30 #include "nouveau_hwsq.h"
31 
32 #include "nv50_display.h"
33 
34 #include <subdev/bios/pll.h>
35 #include <subdev/clock.h>
36 #include <subdev/timer.h>
37 #include <subdev/fb.h>
38 
39 enum clk_src {
51 };
52 
53 static u32 read_clk(struct drm_device *, enum clk_src);
54 
55 static u32
56 read_div(struct drm_device *dev)
57 {
58  struct nouveau_device *device = nouveau_dev(dev);
59  struct nouveau_drm *drm = nouveau_drm(dev);
60 
61  switch (nv_device(drm->device)->chipset) {
62  case 0x50: /* it exists, but only has bit 31, not the dividers.. */
63  case 0x84:
64  case 0x86:
65  case 0x98:
66  case 0xa0:
67  return nv_rd32(device, 0x004700);
68  case 0x92:
69  case 0x94:
70  case 0x96:
71  return nv_rd32(device, 0x004800);
72  default:
73  return 0x00000000;
74  }
75 }
76 
77 static u32
78 read_pll_src(struct drm_device *dev, u32 base)
79 {
80  struct nouveau_device *device = nouveau_dev(dev);
81  struct nouveau_drm *drm = nouveau_drm(dev);
82  u32 coef, ref = read_clk(dev, clk_src_crystal);
83  u32 rsel = nv_rd32(device, 0x00e18c);
84  int P, N, M, id;
85 
86  switch (nv_device(drm->device)->chipset) {
87  case 0x50:
88  case 0xa0:
89  switch (base) {
90  case 0x4020:
91  case 0x4028: id = !!(rsel & 0x00000004); break;
92  case 0x4008: id = !!(rsel & 0x00000008); break;
93  case 0x4030: id = 0; break;
94  default:
95  NV_ERROR(drm, "ref: bad pll 0x%06x\n", base);
96  return 0;
97  }
98 
99  coef = nv_rd32(device, 0x00e81c + (id * 0x0c));
100  ref *= (coef & 0x01000000) ? 2 : 4;
101  P = (coef & 0x00070000) >> 16;
102  N = ((coef & 0x0000ff00) >> 8) + 1;
103  M = ((coef & 0x000000ff) >> 0) + 1;
104  break;
105  case 0x84:
106  case 0x86:
107  case 0x92:
108  coef = nv_rd32(device, 0x00e81c);
109  P = (coef & 0x00070000) >> 16;
110  N = (coef & 0x0000ff00) >> 8;
111  M = (coef & 0x000000ff) >> 0;
112  break;
113  case 0x94:
114  case 0x96:
115  case 0x98:
116  rsel = nv_rd32(device, 0x00c050);
117  switch (base) {
118  case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
119  case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
120  case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
121  case 0x4030: rsel = 3; break;
122  default:
123  NV_ERROR(drm, "ref: bad pll 0x%06x\n", base);
124  return 0;
125  }
126 
127  switch (rsel) {
128  case 0: id = 1; break;
129  case 1: return read_clk(dev, clk_src_crystal);
130  case 2: return read_clk(dev, clk_src_href);
131  case 3: id = 0; break;
132  }
133 
134  coef = nv_rd32(device, 0x00e81c + (id * 0x28));
135  P = (nv_rd32(device, 0x00e824 + (id * 0x28)) >> 16) & 7;
136  P += (coef & 0x00070000) >> 16;
137  N = (coef & 0x0000ff00) >> 8;
138  M = (coef & 0x000000ff) >> 0;
139  break;
140  default:
141  BUG_ON(1);
142  }
143 
144  if (M)
145  return (ref * N / M) >> P;
146  return 0;
147 }
148 
149 static u32
150 read_pll_ref(struct drm_device *dev, u32 base)
151 {
152  struct nouveau_device *device = nouveau_dev(dev);
153  struct nouveau_drm *drm = nouveau_drm(dev);
154  u32 src, mast = nv_rd32(device, 0x00c040);
155 
156  switch (base) {
157  case 0x004028:
158  src = !!(mast & 0x00200000);
159  break;
160  case 0x004020:
161  src = !!(mast & 0x00400000);
162  break;
163  case 0x004008:
164  src = !!(mast & 0x00010000);
165  break;
166  case 0x004030:
167  src = !!(mast & 0x02000000);
168  break;
169  case 0x00e810:
170  return read_clk(dev, clk_src_crystal);
171  default:
172  NV_ERROR(drm, "bad pll 0x%06x\n", base);
173  return 0;
174  }
175 
176  if (src)
177  return read_clk(dev, clk_src_href);
178  return read_pll_src(dev, base);
179 }
180 
181 static u32
182 read_pll(struct drm_device *dev, u32 base)
183 {
184  struct nouveau_device *device = nouveau_dev(dev);
185  struct nouveau_drm *drm = nouveau_drm(dev);
186  u32 mast = nv_rd32(device, 0x00c040);
187  u32 ctrl = nv_rd32(device, base + 0);
188  u32 coef = nv_rd32(device, base + 4);
189  u32 ref = read_pll_ref(dev, base);
190  u32 clk = 0;
191  int N1, N2, M1, M2;
192 
193  if (base == 0x004028 && (mast & 0x00100000)) {
194  /* wtf, appears to only disable post-divider on nva0 */
195  if (nv_device(drm->device)->chipset != 0xa0)
196  return read_clk(dev, clk_src_dom6);
197  }
198 
199  N2 = (coef & 0xff000000) >> 24;
200  M2 = (coef & 0x00ff0000) >> 16;
201  N1 = (coef & 0x0000ff00) >> 8;
202  M1 = (coef & 0x000000ff);
203  if ((ctrl & 0x80000000) && M1) {
204  clk = ref * N1 / M1;
205  if ((ctrl & 0x40000100) == 0x40000000) {
206  if (M2)
207  clk = clk * N2 / M2;
208  else
209  clk = 0;
210  }
211  }
212 
213  return clk;
214 }
215 
216 static u32
217 read_clk(struct drm_device *dev, enum clk_src src)
218 {
219  struct nouveau_device *device = nouveau_dev(dev);
220  struct nouveau_drm *drm = nouveau_drm(dev);
221  u32 mast = nv_rd32(device, 0x00c040);
222  u32 P = 0;
223 
224  switch (src) {
225  case clk_src_crystal:
226  return device->crystal;
227  case clk_src_href:
228  return 100000; /* PCIE reference clock */
229  case clk_src_hclk:
230  return read_clk(dev, clk_src_href) * 27778 / 10000;
231  case clk_src_hclkm3:
232  return read_clk(dev, clk_src_hclk) * 3;
233  case clk_src_hclkm3d2:
234  return read_clk(dev, clk_src_hclk) * 3 / 2;
235  case clk_src_host:
236  switch (mast & 0x30000000) {
237  case 0x00000000: return read_clk(dev, clk_src_href);
238  case 0x10000000: break;
239  case 0x20000000: /* !0x50 */
240  case 0x30000000: return read_clk(dev, clk_src_hclk);
241  }
242  break;
243  case clk_src_nvclk:
244  if (!(mast & 0x00100000))
245  P = (nv_rd32(device, 0x004028) & 0x00070000) >> 16;
246  switch (mast & 0x00000003) {
247  case 0x00000000: return read_clk(dev, clk_src_crystal) >> P;
248  case 0x00000001: return read_clk(dev, clk_src_dom6);
249  case 0x00000002: return read_pll(dev, 0x004020) >> P;
250  case 0x00000003: return read_pll(dev, 0x004028) >> P;
251  }
252  break;
253  case clk_src_sclk:
254  P = (nv_rd32(device, 0x004020) & 0x00070000) >> 16;
255  switch (mast & 0x00000030) {
256  case 0x00000000:
257  if (mast & 0x00000080)
258  return read_clk(dev, clk_src_host) >> P;
259  return read_clk(dev, clk_src_crystal) >> P;
260  case 0x00000010: break;
261  case 0x00000020: return read_pll(dev, 0x004028) >> P;
262  case 0x00000030: return read_pll(dev, 0x004020) >> P;
263  }
264  break;
265  case clk_src_mclk:
266  P = (nv_rd32(device, 0x004008) & 0x00070000) >> 16;
267  if (nv_rd32(device, 0x004008) & 0x00000200) {
268  switch (mast & 0x0000c000) {
269  case 0x00000000:
270  return read_clk(dev, clk_src_crystal) >> P;
271  case 0x00008000:
272  case 0x0000c000:
273  return read_clk(dev, clk_src_href) >> P;
274  }
275  } else {
276  return read_pll(dev, 0x004008) >> P;
277  }
278  break;
279  case clk_src_vdec:
280  P = (read_div(dev) & 0x00000700) >> 8;
281  switch (nv_device(drm->device)->chipset) {
282  case 0x84:
283  case 0x86:
284  case 0x92:
285  case 0x94:
286  case 0x96:
287  case 0xa0:
288  switch (mast & 0x00000c00) {
289  case 0x00000000:
290  if (nv_device(drm->device)->chipset == 0xa0) /* wtf?? */
291  return read_clk(dev, clk_src_nvclk) >> P;
292  return read_clk(dev, clk_src_crystal) >> P;
293  case 0x00000400:
294  return 0;
295  case 0x00000800:
296  if (mast & 0x01000000)
297  return read_pll(dev, 0x004028) >> P;
298  return read_pll(dev, 0x004030) >> P;
299  case 0x00000c00:
300  return read_clk(dev, clk_src_nvclk) >> P;
301  }
302  break;
303  case 0x98:
304  switch (mast & 0x00000c00) {
305  case 0x00000000:
306  return read_clk(dev, clk_src_nvclk) >> P;
307  case 0x00000400:
308  return 0;
309  case 0x00000800:
310  return read_clk(dev, clk_src_hclkm3d2) >> P;
311  case 0x00000c00:
312  return read_clk(dev, clk_src_mclk) >> P;
313  }
314  break;
315  }
316  break;
317  case clk_src_dom6:
318  switch (nv_device(drm->device)->chipset) {
319  case 0x50:
320  case 0xa0:
321  return read_pll(dev, 0x00e810) >> 2;
322  case 0x84:
323  case 0x86:
324  case 0x92:
325  case 0x94:
326  case 0x96:
327  case 0x98:
328  P = (read_div(dev) & 0x00000007) >> 0;
329  switch (mast & 0x0c000000) {
330  case 0x00000000: return read_clk(dev, clk_src_href);
331  case 0x04000000: break;
332  case 0x08000000: return read_clk(dev, clk_src_hclk);
333  case 0x0c000000:
334  return read_clk(dev, clk_src_hclkm3) >> P;
335  }
336  break;
337  default:
338  break;
339  }
340  default:
341  break;
342  }
343 
344  NV_DEBUG(drm, "unknown clock source %d 0x%08x\n", src, mast);
345  return 0;
346 }
347 
348 int
349 nv50_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
350 {
351  struct nouveau_drm *drm = nouveau_drm(dev);
352  if (nv_device(drm->device)->chipset == 0xaa ||
353  nv_device(drm->device)->chipset == 0xac)
354  return 0;
355 
356  perflvl->core = read_clk(dev, clk_src_nvclk);
357  perflvl->shader = read_clk(dev, clk_src_sclk);
358  perflvl->memory = read_clk(dev, clk_src_mclk);
359  if (nv_device(drm->device)->chipset != 0x50) {
360  perflvl->vdec = read_clk(dev, clk_src_vdec);
361  perflvl->dom6 = read_clk(dev, clk_src_dom6);
362  }
363 
364  return 0;
365 }
366 
375 };
376 
377 static u32
378 calc_pll(struct drm_device *dev, u32 reg, struct nvbios_pll *pll,
379  u32 clk, int *N1, int *M1, int *log2P)
380 {
381  struct nouveau_device *device = nouveau_dev(dev);
382  struct nouveau_bios *bios = nouveau_bios(device);
383  struct nouveau_clock *pclk = nouveau_clock(device);
384  struct nouveau_pll_vals coef;
385  int ret;
386 
387  ret = nvbios_pll_parse(bios, reg, pll);
388  if (ret)
389  return 0;
390 
391  pll->vco2.max_freq = 0;
392  pll->refclk = read_pll_ref(dev, reg);
393  if (!pll->refclk)
394  return 0;
395 
396  ret = pclk->pll_calc(pclk, pll, clk, &coef);
397  if (ret == 0)
398  return 0;
399 
400  *N1 = coef.N1;
401  *M1 = coef.M1;
402  *log2P = coef.log2P;
403  return ret;
404 }
405 
406 static inline u32
407 calc_div(u32 src, u32 target, int *div)
408 {
409  u32 clk0 = src, clk1 = src;
410  for (*div = 0; *div <= 7; (*div)++) {
411  if (clk0 <= target) {
412  clk1 = clk0 << (*div ? 1 : 0);
413  break;
414  }
415  clk0 >>= 1;
416  }
417 
418  if (target - clk0 <= clk1 - target)
419  return clk0;
420  (*div)--;
421  return clk1;
422 }
423 
424 static inline u32
425 clk_same(u32 a, u32 b)
426 {
427  return ((a / 1000) == (b / 1000));
428 }
429 
430 static void
431 mclk_precharge(struct nouveau_mem_exec_func *exec)
432 {
433  struct nv50_pm_state *info = exec->priv;
434  struct hwsq_ucode *hwsq = &info->mclk_hwsq;
435 
436  hwsq_wr32(hwsq, 0x1002d4, 0x00000001);
437 }
438 
439 static void
440 mclk_refresh(struct nouveau_mem_exec_func *exec)
441 {
442  struct nv50_pm_state *info = exec->priv;
443  struct hwsq_ucode *hwsq = &info->mclk_hwsq;
444 
445  hwsq_wr32(hwsq, 0x1002d0, 0x00000001);
446 }
447 
448 static void
449 mclk_refresh_auto(struct nouveau_mem_exec_func *exec, bool enable)
450 {
451  struct nv50_pm_state *info = exec->priv;
452  struct hwsq_ucode *hwsq = &info->mclk_hwsq;
453 
454  hwsq_wr32(hwsq, 0x100210, enable ? 0x80000000 : 0x00000000);
455 }
456 
457 static void
458 mclk_refresh_self(struct nouveau_mem_exec_func *exec, bool enable)
459 {
460  struct nv50_pm_state *info = exec->priv;
461  struct hwsq_ucode *hwsq = &info->mclk_hwsq;
462 
463  hwsq_wr32(hwsq, 0x1002dc, enable ? 0x00000001 : 0x00000000);
464 }
465 
466 static void
467 mclk_wait(struct nouveau_mem_exec_func *exec, u32 nsec)
468 {
469  struct nv50_pm_state *info = exec->priv;
470  struct hwsq_ucode *hwsq = &info->mclk_hwsq;
471 
472  if (nsec > 1000)
473  hwsq_usec(hwsq, (nsec + 500) / 1000);
474 }
475 
476 static u32
477 mclk_mrg(struct nouveau_mem_exec_func *exec, int mr)
478 {
479  struct nouveau_device *device = nouveau_dev(exec->dev);
480  if (mr <= 1)
481  return nv_rd32(device, 0x1002c0 + ((mr - 0) * 4));
482  if (mr <= 3)
483  return nv_rd32(device, 0x1002e0 + ((mr - 2) * 4));
484  return 0;
485 }
486 
487 static void
488 mclk_mrs(struct nouveau_mem_exec_func *exec, int mr, u32 data)
489 {
490  struct nouveau_device *device = nouveau_dev(exec->dev);
491  struct nouveau_fb *pfb = nouveau_fb(device);
492  struct nv50_pm_state *info = exec->priv;
493  struct hwsq_ucode *hwsq = &info->mclk_hwsq;
494 
495  if (mr <= 1) {
496  if (pfb->ram.ranks > 1)
497  hwsq_wr32(hwsq, 0x1002c8 + ((mr - 0) * 4), data);
498  hwsq_wr32(hwsq, 0x1002c0 + ((mr - 0) * 4), data);
499  } else
500  if (mr <= 3) {
501  if (pfb->ram.ranks > 1)
502  hwsq_wr32(hwsq, 0x1002e8 + ((mr - 2) * 4), data);
503  hwsq_wr32(hwsq, 0x1002e0 + ((mr - 2) * 4), data);
504  }
505 }
506 
507 static void
508 mclk_clock_set(struct nouveau_mem_exec_func *exec)
509 {
510  struct nouveau_device *device = nouveau_dev(exec->dev);
511  struct nv50_pm_state *info = exec->priv;
512  struct hwsq_ucode *hwsq = &info->mclk_hwsq;
513  u32 ctrl = nv_rd32(device, 0x004008);
514 
515  info->mmast = nv_rd32(device, 0x00c040);
516  info->mmast &= ~0xc0000000; /* get MCLK_2 from HREF */
517  info->mmast |= 0x0000c000; /* use MCLK_2 as MPLL_BYPASS clock */
518 
519  hwsq_wr32(hwsq, 0xc040, info->mmast);
520  hwsq_wr32(hwsq, 0x4008, ctrl | 0x00000200); /* bypass MPLL */
521  if (info->mctrl & 0x80000000)
522  hwsq_wr32(hwsq, 0x400c, info->mcoef);
523  hwsq_wr32(hwsq, 0x4008, info->mctrl);
524 }
525 
526 static void
527 mclk_timing_set(struct nouveau_mem_exec_func *exec)
528 {
529  struct nouveau_device *device = nouveau_dev(exec->dev);
530  struct nv50_pm_state *info = exec->priv;
531  struct nouveau_pm_level *perflvl = info->perflvl;
532  struct hwsq_ucode *hwsq = &info->mclk_hwsq;
533  int i;
534 
535  for (i = 0; i < 9; i++) {
536  u32 reg = 0x100220 + (i * 4);
537  u32 val = nv_rd32(device, reg);
538  if (val != perflvl->timing.reg[i])
539  hwsq_wr32(hwsq, reg, perflvl->timing.reg[i]);
540  }
541 }
542 
543 static int
544 calc_mclk(struct drm_device *dev, struct nouveau_pm_level *perflvl,
545  struct nv50_pm_state *info)
546 {
547  struct nouveau_drm *drm = nouveau_drm(dev);
548  struct nouveau_device *device = nouveau_dev(dev);
549  u32 crtc_mask = nv50_display_active_crtcs(dev);
550  struct nouveau_mem_exec_func exec = {
551  .dev = dev,
552  .precharge = mclk_precharge,
553  .refresh = mclk_refresh,
554  .refresh_auto = mclk_refresh_auto,
555  .refresh_self = mclk_refresh_self,
556  .wait = mclk_wait,
557  .mrg = mclk_mrg,
558  .mrs = mclk_mrs,
559  .clock_set = mclk_clock_set,
560  .timing_set = mclk_timing_set,
561  .priv = info
562  };
563  struct hwsq_ucode *hwsq = &info->mclk_hwsq;
564  struct nvbios_pll pll;
565  int N, M, P;
566  int ret;
567 
568  /* use pcie refclock if possible, otherwise use mpll */
569  info->mctrl = nv_rd32(device, 0x004008);
570  info->mctrl &= ~0x81ff0200;
571  if (clk_same(perflvl->memory, read_clk(dev, clk_src_href))) {
572  info->mctrl |= 0x00000200 | (pll.bias_p << 19);
573  } else {
574  ret = calc_pll(dev, 0x4008, &pll, perflvl->memory, &N, &M, &P);
575  if (ret == 0)
576  return -EINVAL;
577 
578  info->mctrl |= 0x80000000 | (P << 22) | (P << 16);
579  info->mctrl |= pll.bias_p << 19;
580  info->mcoef = (N << 8) | M;
581  }
582 
583  /* build the ucode which will reclock the memory for us */
584  hwsq_init(hwsq);
585  if (crtc_mask) {
586  hwsq_op5f(hwsq, crtc_mask, 0x00); /* wait for scanout */
587  hwsq_op5f(hwsq, crtc_mask, 0x01); /* wait for vblank */
588  }
589  if (nv_device(drm->device)->chipset >= 0x92)
590  hwsq_wr32(hwsq, 0x611200, 0x00003300); /* disable scanout */
591  hwsq_setf(hwsq, 0x10, 0); /* disable bus access */
592  hwsq_op5f(hwsq, 0x00, 0x01); /* no idea :s */
593 
594  ret = nouveau_mem_exec(&exec, perflvl);
595  if (ret)
596  return ret;
597 
598  hwsq_setf(hwsq, 0x10, 1); /* enable bus access */
599  hwsq_op5f(hwsq, 0x00, 0x00); /* no idea, reverse of 0x00, 0x01? */
600  if (nv_device(drm->device)->chipset >= 0x92)
601  hwsq_wr32(hwsq, 0x611200, 0x00003330); /* enable scanout */
602  hwsq_fini(hwsq);
603  return 0;
604 }
605 
606 void *
607 nv50_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
608 {
609  struct nouveau_device *device = nouveau_dev(dev);
610  struct nouveau_drm *drm = nouveau_drm(dev);
611  struct nv50_pm_state *info;
612  struct hwsq_ucode *hwsq;
613  struct nvbios_pll pll;
614  u32 out, mast, divs, ctrl;
615  int clk, ret = -EINVAL;
616  int N, M, P1, P2;
617 
618  if (nv_device(drm->device)->chipset == 0xaa ||
619  nv_device(drm->device)->chipset == 0xac)
620  return ERR_PTR(-ENODEV);
621 
622  info = kmalloc(sizeof(*info), GFP_KERNEL);
623  if (!info)
624  return ERR_PTR(-ENOMEM);
625  info->perflvl = perflvl;
626 
627  /* memory: build hwsq ucode which we'll use to reclock memory.
628  * use pcie refclock if possible, otherwise use mpll */
629  info->mclk_hwsq.len = 0;
630  if (perflvl->memory) {
631  ret = calc_mclk(dev, perflvl, info);
632  if (ret)
633  goto error;
634  info->mscript = perflvl->memscript;
635  }
636 
637  divs = read_div(dev);
638  mast = info->mmast;
639 
640  /* start building HWSQ script for engine reclocking */
641  hwsq = &info->eclk_hwsq;
642  hwsq_init(hwsq);
643  hwsq_setf(hwsq, 0x10, 0); /* disable bus access */
644  hwsq_op5f(hwsq, 0x00, 0x01); /* wait for access disabled? */
645 
646  /* vdec/dom6: switch to "safe" clocks temporarily */
647  if (perflvl->vdec) {
648  mast &= ~0x00000c00;
649  divs &= ~0x00000700;
650  }
651 
652  if (perflvl->dom6) {
653  mast &= ~0x0c000000;
654  divs &= ~0x00000007;
655  }
656 
657  hwsq_wr32(hwsq, 0x00c040, mast);
658 
659  /* vdec: avoid modifying xpll until we know exactly how the other
660  * clock domains work, i suspect at least some of them can also be
661  * tied to xpll...
662  */
663  if (perflvl->vdec) {
664  /* see how close we can get using nvclk as a source */
665  clk = calc_div(perflvl->core, perflvl->vdec, &P1);
666 
667  /* see how close we can get using xpll/hclk as a source */
668  if (nv_device(drm->device)->chipset != 0x98)
669  out = read_pll(dev, 0x004030);
670  else
671  out = read_clk(dev, clk_src_hclkm3d2);
672  out = calc_div(out, perflvl->vdec, &P2);
673 
674  /* select whichever gets us closest */
675  if (abs((int)perflvl->vdec - clk) <=
676  abs((int)perflvl->vdec - out)) {
677  if (nv_device(drm->device)->chipset != 0x98)
678  mast |= 0x00000c00;
679  divs |= P1 << 8;
680  } else {
681  mast |= 0x00000800;
682  divs |= P2 << 8;
683  }
684  }
685 
686  /* dom6: nfi what this is, but we're limited to various combinations
687  * of the host clock frequency
688  */
689  if (perflvl->dom6) {
690  if (clk_same(perflvl->dom6, read_clk(dev, clk_src_href))) {
691  mast |= 0x00000000;
692  } else
693  if (clk_same(perflvl->dom6, read_clk(dev, clk_src_hclk))) {
694  mast |= 0x08000000;
695  } else {
696  clk = read_clk(dev, clk_src_hclk) * 3;
697  clk = calc_div(clk, perflvl->dom6, &P1);
698 
699  mast |= 0x0c000000;
700  divs |= P1;
701  }
702  }
703 
704  /* vdec/dom6: complete switch to new clocks */
705  switch (nv_device(drm->device)->chipset) {
706  case 0x92:
707  case 0x94:
708  case 0x96:
709  hwsq_wr32(hwsq, 0x004800, divs);
710  break;
711  default:
712  hwsq_wr32(hwsq, 0x004700, divs);
713  break;
714  }
715 
716  hwsq_wr32(hwsq, 0x00c040, mast);
717 
718  /* core/shader: make sure sclk/nvclk are disconnected from their
719  * PLLs (nvclk to dom6, sclk to hclk)
720  */
721  if (nv_device(drm->device)->chipset < 0x92)
722  mast = (mast & ~0x001000b0) | 0x00100080;
723  else
724  mast = (mast & ~0x000000b3) | 0x00000081;
725 
726  hwsq_wr32(hwsq, 0x00c040, mast);
727 
728  /* core: for the moment at least, always use nvpll */
729  clk = calc_pll(dev, 0x4028, &pll, perflvl->core, &N, &M, &P1);
730  if (clk == 0)
731  goto error;
732 
733  ctrl = nv_rd32(device, 0x004028) & ~0xc03f0100;
734  mast &= ~0x00100000;
735  mast |= 3;
736 
737  hwsq_wr32(hwsq, 0x004028, 0x80000000 | (P1 << 19) | (P1 << 16) | ctrl);
738  hwsq_wr32(hwsq, 0x00402c, (N << 8) | M);
739 
740  /* shader: tie to nvclk if possible, otherwise use spll. have to be
741  * very careful that the shader clock is at least twice the core, or
742  * some chipsets will be very unhappy. i expect most or all of these
743  * cases will be handled by tying to nvclk, but it's possible there's
744  * corners
745  */
746  ctrl = nv_rd32(device, 0x004020) & ~0xc03f0100;
747 
748  if (P1-- && perflvl->shader == (perflvl->core << 1)) {
749  hwsq_wr32(hwsq, 0x004020, (P1 << 19) | (P1 << 16) | ctrl);
750  hwsq_wr32(hwsq, 0x00c040, 0x00000020 | mast);
751  } else {
752  clk = calc_pll(dev, 0x4020, &pll, perflvl->shader, &N, &M, &P1);
753  if (clk == 0)
754  goto error;
755  ctrl |= 0x80000000;
756 
757  hwsq_wr32(hwsq, 0x004020, (P1 << 19) | (P1 << 16) | ctrl);
758  hwsq_wr32(hwsq, 0x004024, (N << 8) | M);
759  hwsq_wr32(hwsq, 0x00c040, 0x00000030 | mast);
760  }
761 
762  hwsq_setf(hwsq, 0x10, 1); /* enable bus access */
763  hwsq_op5f(hwsq, 0x00, 0x00); /* wait for access enabled? */
764  hwsq_fini(hwsq);
765 
766  return info;
767 error:
768  kfree(info);
769  return ERR_PTR(ret);
770 }
771 
772 static int
773 prog_hwsq(struct drm_device *dev, struct hwsq_ucode *hwsq)
774 {
775  struct nouveau_device *device = nouveau_dev(dev);
776  struct nouveau_drm *drm = nouveau_drm(dev);
777  u32 hwsq_data, hwsq_kick;
778  int i;
779 
780  if (nv_device(drm->device)->chipset < 0x94) {
781  hwsq_data = 0x001400;
782  hwsq_kick = 0x00000003;
783  } else {
784  hwsq_data = 0x080000;
785  hwsq_kick = 0x00000001;
786  }
787  /* upload hwsq ucode */
788  nv_mask(device, 0x001098, 0x00000008, 0x00000000);
789  nv_wr32(device, 0x001304, 0x00000000);
790  if (nv_device(drm->device)->chipset >= 0x92)
791  nv_wr32(device, 0x001318, 0x00000000);
792  for (i = 0; i < hwsq->len / 4; i++)
793  nv_wr32(device, hwsq_data + (i * 4), hwsq->ptr.u32[i]);
794  nv_mask(device, 0x001098, 0x00000018, 0x00000018);
795 
796  /* launch, and wait for completion */
797  nv_wr32(device, 0x00130c, hwsq_kick);
798  if (!nv_wait(device, 0x001308, 0x00000100, 0x00000000)) {
799  NV_ERROR(drm, "hwsq ucode exec timed out\n");
800  NV_ERROR(drm, "0x001308: 0x%08x\n", nv_rd32(device, 0x001308));
801  for (i = 0; i < hwsq->len / 4; i++) {
802  NV_ERROR(drm, "0x%06x: 0x%08x\n", 0x1400 + (i * 4),
803  nv_rd32(device, 0x001400 + (i * 4)));
804  }
805 
806  return -EIO;
807  }
808 
809  return 0;
810 }
811 
812 int
813 nv50_pm_clocks_set(struct drm_device *dev, void *data)
814 {
815  struct nouveau_device *device = nouveau_dev(dev);
816  struct nv50_pm_state *info = data;
817  struct bit_entry M;
818  int ret = -EBUSY;
819 
820  /* halt and idle execution engines */
821  nv_mask(device, 0x002504, 0x00000001, 0x00000001);
822  if (!nv_wait(device, 0x002504, 0x00000010, 0x00000010))
823  goto resume;
824  if (!nv_wait(device, 0x00251c, 0x0000003f, 0x0000003f))
825  goto resume;
826 
827  /* program memory clock, if necessary - must come before engine clock
828  * reprogramming due to how we construct the hwsq scripts in pre()
829  */
830 #define nouveau_bios_init_exec(a,b) nouveau_bios_run_init_table((a), (b), NULL, 0)
831  if (info->mclk_hwsq.len) {
832  /* execute some scripts that do ??? from the vbios.. */
833  if (!bit_table(dev, 'M', &M) && M.version == 1) {
834  if (M.length >= 6)
835  nouveau_bios_init_exec(dev, ROM16(M.data[5]));
836  if (M.length >= 8)
837  nouveau_bios_init_exec(dev, ROM16(M.data[7]));
838  if (M.length >= 10)
839  nouveau_bios_init_exec(dev, ROM16(M.data[9]));
840  nouveau_bios_init_exec(dev, info->mscript);
841  }
842 
843  ret = prog_hwsq(dev, &info->mclk_hwsq);
844  if (ret)
845  goto resume;
846  }
847 
848  /* program engine clocks */
849  ret = prog_hwsq(dev, &info->eclk_hwsq);
850 
851 resume:
852  nv_mask(device, 0x002504, 0x00000001, 0x00000000);
853  kfree(info);
854  return ret;
855 }