Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
pci-octeon.c
Go to the documentation of this file.
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License. See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2005-2009 Cavium Networks
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/interrupt.h>
12 #include <linux/time.h>
13 #include <linux/delay.h>
14 #include <linux/swiotlb.h>
15 
16 #include <asm/time.h>
17 
18 #include <asm/octeon/octeon.h>
21 #include <asm/octeon/pci-octeon.h>
22 
23 #include <dma-coherence.h>
24 
25 #define USE_OCTEON_INTERNAL_ARBITER
26 
27 /*
28  * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
29  * addresses. Use PCI endian swapping 1 so no address swapping is
30  * necessary. The Linux io routines will endian swap the data.
31  */
32 #define OCTEON_PCI_IOSPACE_BASE 0x80011a0400000000ull
33 #define OCTEON_PCI_IOSPACE_SIZE (1ull<<32)
34 
35 /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
36 #define OCTEON_PCI_MEMSPACE_OFFSET (0x00011b0000000000ull)
37 
39 
45  struct {
58  } s;
59 };
60 
62  u8 slot, u8 pin);
64 
76 int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
77 {
79  return octeon_pcibios_map_irq(dev, slot, pin);
80  else
81  panic("octeon_pcibios_map_irq not set.");
82 }
83 
84 
85 /*
86  * Called to perform platform specific PCI setup
87  */
89 {
91  uint32_t dconfig;
92  int pos;
93  /*
94  * Force the Cache line setting to 64 bytes. The standard
95  * Linux bus scan doesn't seem to set it. Octeon really has
96  * 128 byte lines, but Intel bridges get really upset if you
97  * try and set values above 64 bytes. Value is specified in
98  * 32bit words.
99  */
100  pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
101  /* Set latency timers for all devices */
102  pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64);
103 
104  /* Enable reporting System errors and parity errors on all devices */
105  /* Enable parity checking and error reporting */
106  pci_read_config_word(dev, PCI_COMMAND, &config);
108  pci_write_config_word(dev, PCI_COMMAND, config);
109 
110  if (dev->subordinate) {
111  /* Set latency timers on sub bridges */
112  pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64);
113  /* More bridge error detection */
114  pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
116  pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
117  }
118 
119  /* Enable the PCIe normal error reporting */
120  config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */
121  config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */
122  config |= PCI_EXP_DEVCTL_FERE; /* Fatal Error Reporting */
123  config |= PCI_EXP_DEVCTL_URRE; /* Unsupported Request */
124  pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config);
125 
126  /* Find the Advanced Error Reporting capability */
128  if (pos) {
129  /* Clear Uncorrectable Error Status */
130  pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
131  &dconfig);
132  pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
133  dconfig);
134  /* Enable reporting of all uncorrectable errors */
135  /* Uncorrectable Error Mask - turned on bits disable errors */
136  pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
137  /*
138  * Leave severity at HW default. This only controls if
139  * errors are reported as uncorrectable or
140  * correctable, not if the error is reported.
141  */
142  /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
143  /* Clear Correctable Error Status */
144  pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
145  pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
146  /* Enable reporting of all correctable errors */
147  /* Correctable Error Mask - turned on bits disable errors */
148  pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
149  /* Advanced Error Capabilities */
150  pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
151  /* ECRC Generation Enable */
152  if (config & PCI_ERR_CAP_ECRC_GENC)
153  config |= PCI_ERR_CAP_ECRC_GENE;
154  /* ECRC Check Enable */
155  if (config & PCI_ERR_CAP_ECRC_CHKC)
156  config |= PCI_ERR_CAP_ECRC_CHKE;
157  pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
158  /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
159  /* Report all errors to the root complex */
160  pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
164  /* Clear the Root status register */
165  pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
166  pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
167  }
168 
169  dev->dev.archdata.dma_ops = octeon_pci_dma_map_ops;
170 
171  return 0;
172 }
173 
183 const char *octeon_get_pci_interrupts(void)
184 {
185  /*
186  * Returning an empty string causes the interrupts to be
187  * routed based on the PCI specification. From the PCI spec:
188  *
189  * INTA# of Device Number 0 is connected to IRQW on the system
190  * board. (Device Number has no significance regarding being
191  * located on the system board or in a connector.) INTA# of
192  * Device Number 1 is connected to IRQX on the system
193  * board. INTA# of Device Number 2 is connected to IRQY on the
194  * system board. INTA# of Device Number 3 is connected to IRQZ
195  * on the system board. The table below describes how each
196  * agent's INTx# lines are connected to the system board
197  * interrupt lines. The following equation can be used to
198  * determine to which INTx# signal on the system board a given
199  * device's INTx# line(s) is connected.
200  *
201  * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
202  * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
203  * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
204  * INTD# = 3)
205  */
206  switch (octeon_bootinfo->board_type) {
208  /* This is really the NAC38 */
209  return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
213  return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
215  return "AABCD";
218  default:
219  return "";
220  }
221 }
222 
235  u8 slot, u8 pin)
236 {
237  int irq_num;
238  const char *interrupts;
239  int dev_num;
240 
241  /* Get the board specific interrupt mapping */
242  interrupts = octeon_get_pci_interrupts();
243 
244  dev_num = dev->devfn >> 3;
245  if (dev_num < strlen(interrupts))
246  irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
248  else
249  irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
250  return irq_num;
251 }
252 
253 
254 /*
255  * Read a value from configuration space
256  */
257 static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
258  int reg, int size, u32 *val)
259 {
261 
262  pci_addr.u64 = 0;
263  pci_addr.s.upper = 2;
264  pci_addr.s.io = 1;
265  pci_addr.s.did = 3;
266  pci_addr.s.subdid = 1;
267  pci_addr.s.endian_swap = 1;
268  pci_addr.s.bus = bus->number;
269  pci_addr.s.dev = devfn >> 3;
270  pci_addr.s.func = devfn & 0x7;
271  pci_addr.s.reg = reg;
272 
273 #if PCI_CONFIG_SPACE_DELAY
275 #endif
276  switch (size) {
277  case 4:
278  *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
279  return PCIBIOS_SUCCESSFUL;
280  case 2:
281  *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
282  return PCIBIOS_SUCCESSFUL;
283  case 1:
284  *val = cvmx_read64_uint8(pci_addr.u64);
285  return PCIBIOS_SUCCESSFUL;
286  }
288 }
289 
290 
291 /*
292  * Write a value to PCI configuration space
293  */
294 static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
295  int reg, int size, u32 val)
296 {
298 
299  pci_addr.u64 = 0;
300  pci_addr.s.upper = 2;
301  pci_addr.s.io = 1;
302  pci_addr.s.did = 3;
303  pci_addr.s.subdid = 1;
304  pci_addr.s.endian_swap = 1;
305  pci_addr.s.bus = bus->number;
306  pci_addr.s.dev = devfn >> 3;
307  pci_addr.s.func = devfn & 0x7;
308  pci_addr.s.reg = reg;
309 
310 #if PCI_CONFIG_SPACE_DELAY
312 #endif
313  switch (size) {
314  case 4:
315  cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
316  return PCIBIOS_SUCCESSFUL;
317  case 2:
318  cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
319  return PCIBIOS_SUCCESSFUL;
320  case 1:
321  cvmx_write64_uint8(pci_addr.u64, val);
322  return PCIBIOS_SUCCESSFUL;
323  }
325 }
326 
327 
328 static struct pci_ops octeon_pci_ops = {
329  octeon_read_config,
330  octeon_write_config,
331 };
332 
333 static struct resource octeon_pci_mem_resource = {
334  .start = 0,
335  .end = 0,
336  .name = "Octeon PCI MEM",
337  .flags = IORESOURCE_MEM,
338 };
339 
340 /*
341  * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
342  * bridge
343  */
344 static struct resource octeon_pci_io_resource = {
345  .start = 0x4000,
346  .end = OCTEON_PCI_IOSPACE_SIZE - 1,
347  .name = "Octeon PCI IO",
348  .flags = IORESOURCE_IO,
349 };
350 
351 static struct pci_controller octeon_pci_controller = {
352  .pci_ops = &octeon_pci_ops,
353  .mem_resource = &octeon_pci_mem_resource,
354  .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
355  .io_resource = &octeon_pci_io_resource,
356  .io_offset = 0,
357  .io_map_base = OCTEON_PCI_IOSPACE_BASE,
358 };
359 
360 
361 /*
362  * Low level initialize the Octeon PCI controller
363  */
364 static void octeon_pci_initialize(void)
365 {
366  union cvmx_pci_cfg01 cfg01;
367  union cvmx_npi_ctl_status ctl_status;
368  union cvmx_pci_ctl_status_2 ctl_status_2;
369  union cvmx_pci_cfg19 cfg19;
370  union cvmx_pci_cfg16 cfg16;
371  union cvmx_pci_cfg22 cfg22;
372  union cvmx_pci_cfg56 cfg56;
373 
374  /* Reset the PCI Bus */
375  cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
376  cvmx_read_csr(CVMX_CIU_SOFT_PRST);
377 
378  udelay(2000); /* Hold PCI reset for 2 ms */
379 
380  ctl_status.u64 = 0; /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
381  ctl_status.s.max_word = 1;
382  ctl_status.s.timer = 1;
383  cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
384 
385  /* Deassert PCI reset and advertize PCX Host Mode Device Capability
386  (64b) */
387  cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
388  cvmx_read_csr(CVMX_CIU_SOFT_PRST);
389 
390  udelay(2000); /* Wait 2 ms after deasserting PCI reset */
391 
392  ctl_status_2.u32 = 0;
393  ctl_status_2.s.tsr_hwm = 1; /* Initializes to 0. Must be set
394  before any PCI reads. */
395  ctl_status_2.s.bar2pres = 1; /* Enable BAR2 */
396  ctl_status_2.s.bar2_enb = 1;
397  ctl_status_2.s.bar2_cax = 1; /* Don't use L2 */
398  ctl_status_2.s.bar2_esx = 1;
399  ctl_status_2.s.pmo_amod = 1; /* Round robin priority */
401  /* BAR1 hole */
402  ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
403  ctl_status_2.s.bb1_siz = 1; /* BAR1 is 2GB */
404  ctl_status_2.s.bb_ca = 1; /* Don't use L2 with big bars */
405  ctl_status_2.s.bb_es = 1; /* Big bar in byte swap mode */
406  ctl_status_2.s.bb1 = 1; /* BAR1 is big */
407  ctl_status_2.s.bb0 = 1; /* BAR0 is big */
408  }
409 
410  octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
411  udelay(2000); /* Wait 2 ms before doing PCI reads */
412 
413  ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
414  pr_notice("PCI Status: %s %s-bit\n",
415  ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
416  ctl_status_2.s.ap_64ad ? "64" : "32");
417 
419  union cvmx_pci_cnt_reg cnt_reg_start;
420  union cvmx_pci_cnt_reg cnt_reg_end;
421  unsigned long cycles, pci_clock;
422 
423  cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
424  cycles = read_c0_cvmcount();
425  udelay(1000);
426  cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
427  cycles = read_c0_cvmcount() - cycles;
428  pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
429  (cycles / (mips_hpt_frequency / 1000000));
430  pr_notice("PCI Clock: %lu MHz\n", pci_clock);
431  }
432 
433  /*
434  * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
435  * in PCI-X mode to allow four outstanding splits. Otherwise,
436  * should not change from its reset value. Don't write PCI_CFG19
437  * in PCI mode (0x82000001 reset value), write it to 0x82000004
438  * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
439  * MRBCM -> must be one.
440  */
441  if (ctl_status_2.s.ap_pcix) {
442  cfg19.u32 = 0;
443  /*
444  * Target Delayed/Split request outstanding maximum
445  * count. [1..31] and 0=32. NOTE: If the user
446  * programs these bits beyond the Designed Maximum
447  * outstanding count, then the designed maximum table
448  * depth will be used instead. No additional
449  * Deferred/Split transactions will be accepted if
450  * this outstanding maximum count is
451  * reached. Furthermore, no additional deferred/split
452  * transactions will be accepted if the I/O delay/ I/O
453  * Split Request outstanding maximum is reached.
454  */
455  cfg19.s.tdomc = 4;
456  /*
457  * Master Deferred Read Request Outstanding Max Count
458  * (PCI only). CR4C[26:24] Max SAC cycles MAX DAC
459  * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
460  * 5 2 110 6 3 111 7 3 For example, if these bits are
461  * programmed to 100, the core can support 2 DAC
462  * cycles, 4 SAC cycles or a combination of 1 DAC and
463  * 2 SAC cycles. NOTE: For the PCI-X maximum
464  * outstanding split transactions, refer to
465  * CRE0[22:20].
466  */
467  cfg19.s.mdrrmc = 2;
468  /*
469  * Master Request (Memory Read) Byte Count/Byte Enable
470  * select. 0 = Byte Enables valid. In PCI mode, a
471  * burst transaction cannot be performed using Memory
472  * Read command=4?h6. 1 = DWORD Byte Count valid
473  * (default). In PCI Mode, the memory read byte
474  * enables are automatically generated by the
475  * core. Note: N3 Master Request transaction sizes are
476  * always determined through the
477  * am_attr[<35:32>|<7:0>] field.
478  */
479  cfg19.s.mrbcm = 1;
480  octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
481  }
482 
483 
484  cfg01.u32 = 0;
485  cfg01.s.msae = 1; /* Memory Space Access Enable */
486  cfg01.s.me = 1; /* Master Enable */
487  cfg01.s.pee = 1; /* PERR# Enable */
488  cfg01.s.see = 1; /* System Error Enable */
489  cfg01.s.fbbe = 1; /* Fast Back to Back Transaction Enable */
490 
491  octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
492 
493 #ifdef USE_OCTEON_INTERNAL_ARBITER
494  /*
495  * When OCTEON is a PCI host, most systems will use OCTEON's
496  * internal arbiter, so must enable it before any PCI/PCI-X
497  * traffic can occur.
498  */
499  {
500  union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
501 
502  pci_int_arb_cfg.u64 = 0;
503  pci_int_arb_cfg.s.en = 1; /* Internal arbiter enable */
504  cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
505  }
506 #endif /* USE_OCTEON_INTERNAL_ARBITER */
507 
508  /*
509  * Preferably written to 1 to set MLTD. [RDSATI,TRTAE,
510  * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
511  * 1..7.
512  */
513  cfg16.u32 = 0;
514  cfg16.s.mltd = 1; /* Master Latency Timer Disable */
515  octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
516 
517  /*
518  * Should be written to 0x4ff00. MTTV -> must be zero.
519  * FLUSH -> must be 1. MRV -> should be 0xFF.
520  */
521  cfg22.u32 = 0;
522  /* Master Retry Value [1..255] and 0=infinite */
523  cfg22.s.mrv = 0xff;
524  /*
525  * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
526  * N3K operation.
527  */
528  cfg22.s.flush = 1;
529  octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
530 
531  /*
532  * MOST Indicates the maximum number of outstanding splits (in -1
533  * notation) when OCTEON is in PCI-X mode. PCI-X performance is
534  * affected by the MOST selection. Should generally be written
535  * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
536  * depending on the desired MOST of 3, 2, 1, or 0, respectively.
537  */
538  cfg56.u32 = 0;
539  cfg56.s.pxcid = 7; /* RO - PCI-X Capability ID */
540  cfg56.s.ncp = 0xe8; /* RO - Next Capability Pointer */
541  cfg56.s.dpere = 1; /* Data Parity Error Recovery Enable */
542  cfg56.s.roe = 1; /* Relaxed Ordering Enable */
543  cfg56.s.mmbc = 1; /* Maximum Memory Byte Count
544  [0=512B,1=1024B,2=2048B,3=4096B] */
545  cfg56.s.most = 3; /* Maximum outstanding Split transactions [0=1
546  .. 7=32] */
547 
548  octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
549 
550  /*
551  * Affects PCI performance when OCTEON services reads to its
552  * BAR1/BAR2. Refer to Section 10.6.1. The recommended values are
553  * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
554  * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
555  * these values need to be changed so they won't possibly prefetch off
556  * of the end of memory if PCI is DMAing a buffer at the end of
557  * memory. Note that these values differ from their reset values.
558  */
559  octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
560  octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
561  octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
562 }
563 
564 
565 /*
566  * Initialize the Octeon PCI controller
567  */
568 static int __init octeon_pci_setup(void)
569 {
571  int index;
572 
573  /* Only these chips have PCI */
574  if (octeon_has_feature(OCTEON_FEATURE_PCIE))
575  return 0;
576 
577  /* Point pcibios_map_irq() to the PCI version of it */
579 
580  /* Only use the big bars on chips that support it */
585  else
587 
588  /* PCI I/O and PCI MEM values */
589  set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
590  ioport_resource.start = 0;
592  if (!octeon_is_pci_host()) {
593  pr_notice("Not in host mode, PCI Controller not initialized\n");
594  return 0;
595  }
596 
597  pr_notice("%s Octeon big bar support\n",
599  OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
600 
601  octeon_pci_initialize();
602 
603  mem_access.u64 = 0;
604  mem_access.s.esr = 1; /* Endian-Swap on read. */
605  mem_access.s.esw = 1; /* Endian-Swap on write. */
606  mem_access.s.nsr = 0; /* No-Snoop on read. */
607  mem_access.s.nsw = 0; /* No-Snoop on write. */
608  mem_access.s.ror = 0; /* Relax Read on read. */
609  mem_access.s.row = 0; /* Relax Order on write. */
610  mem_access.s.ba = 0; /* PCI Address bits [63:36]. */
611  cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
612 
613  /*
614  * Remap the Octeon BAR 2 above all 32 bit devices
615  * (0x8000000000ul). This is done here so it is remapped
616  * before the readl()'s below. We don't want BAR2 overlapping
617  * with BAR0/BAR1 during these reads.
618  */
619  octeon_npi_write32(CVMX_NPI_PCI_CFG08,
620  (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
621  octeon_npi_write32(CVMX_NPI_PCI_CFG09,
622  (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
623 
625  /* Remap the Octeon BAR 0 to 0-2GB */
626  octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
627  octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
628 
629  /*
630  * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
631  * BAR 1 hole).
632  */
633  octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
634  octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
635 
636  /* BAR1 movable mappings set for identity mapping */
637  octeon_bar1_pci_phys = 0x80000000ull;
638  for (index = 0; index < 32; index++) {
639  union cvmx_pci_bar1_indexx bar1_index;
640 
641  bar1_index.u32 = 0;
642  /* Address bits[35:22] sent to L2C */
643  bar1_index.s.addr_idx =
644  (octeon_bar1_pci_phys >> 22) + index;
645  /* Don't put PCI accesses in L2. */
646  bar1_index.s.ca = 1;
647  /* Endian Swap Mode */
648  bar1_index.s.end_swp = 1;
649  /* Set '1' when the selected address range is valid. */
650  bar1_index.s.addr_v = 1;
651  octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
652  bar1_index.u32);
653  }
654 
655  /* Devices go after BAR1 */
656  octeon_pci_mem_resource.start =
657  OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
659  octeon_pci_mem_resource.end =
660  octeon_pci_mem_resource.start + (1ul << 30);
661  } else {
662  /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
663  octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
664  octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
665 
666  /* Remap the Octeon BAR 1 to map 0-128MB */
667  octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
668  octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
669 
670  /* BAR1 movable regions contiguous to cover the swiotlb */
672  virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1);
673 
674  for (index = 0; index < 32; index++) {
675  union cvmx_pci_bar1_indexx bar1_index;
676 
677  bar1_index.u32 = 0;
678  /* Address bits[35:22] sent to L2C */
679  bar1_index.s.addr_idx =
680  (octeon_bar1_pci_phys >> 22) + index;
681  /* Don't put PCI accesses in L2. */
682  bar1_index.s.ca = 1;
683  /* Endian Swap Mode */
684  bar1_index.s.end_swp = 1;
685  /* Set '1' when the selected address range is valid. */
686  bar1_index.s.addr_v = 1;
687  octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
688  bar1_index.u32);
689  }
690 
691  /* Devices go after BAR0 */
692  octeon_pci_mem_resource.start =
693  OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
694  (4ul << 10);
695  octeon_pci_mem_resource.end =
696  octeon_pci_mem_resource.start + (1ul << 30);
697  }
698 
699  register_pci_controller(&octeon_pci_controller);
700 
701  /*
702  * Clear any errors that might be pending from before the bus
703  * was setup properly.
704  */
705  cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
706 
708 
709  return 0;
710 }
711 
712 arch_initcall(octeon_pci_setup);