Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
pktcdvd.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2000 Jens Axboe <[email protected]>
3  * Copyright (C) 2001-2004 Peter Osterlund <[email protected]>
4  * Copyright (C) 2006 Thomas Maier <[email protected]>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License. See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom make_request_fn function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46 
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/compat.h>
52 #include <linux/kthread.h>
53 #include <linux/errno.h>
54 #include <linux/spinlock.h>
55 #include <linux/file.h>
56 #include <linux/proc_fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/miscdevice.h>
59 #include <linux/freezer.h>
60 #include <linux/mutex.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_ioctl.h>
64 #include <scsi/scsi.h>
65 #include <linux/debugfs.h>
66 #include <linux/device.h>
67 
68 #include <asm/uaccess.h>
69 
70 #define DRIVER_NAME "pktcdvd"
71 
72 #if PACKET_DEBUG
73 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
74 #else
75 #define DPRINTK(fmt, args...)
76 #endif
77 
78 #if PACKET_DEBUG > 1
79 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
80 #else
81 #define VPRINTK(fmt, args...)
82 #endif
83 
84 #define MAX_SPEED 0xffff
85 
86 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
87 
88 static DEFINE_MUTEX(pktcdvd_mutex);
89 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
90 static struct proc_dir_entry *pkt_proc;
91 static int pktdev_major;
92 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
93 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
94 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
95 static mempool_t *psd_pool;
96 
97 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
98 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
99 
100 /* forward declaration */
101 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
102 static int pkt_remove_dev(dev_t pkt_dev);
103 static int pkt_seq_show(struct seq_file *m, void *p);
104 
105 
106 
107 /*
108  * create and register a pktcdvd kernel object.
109  */
110 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
111  const char* name,
112  struct kobject* parent,
113  struct kobj_type* ktype)
114 {
115  struct pktcdvd_kobj *p;
116  int error;
117 
118  p = kzalloc(sizeof(*p), GFP_KERNEL);
119  if (!p)
120  return NULL;
121  p->pd = pd;
122  error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
123  if (error) {
124  kobject_put(&p->kobj);
125  return NULL;
126  }
128  return p;
129 }
130 /*
131  * remove a pktcdvd kernel object.
132  */
133 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
134 {
135  if (p)
136  kobject_put(&p->kobj);
137 }
138 /*
139  * default release function for pktcdvd kernel objects.
140  */
141 static void pkt_kobj_release(struct kobject *kobj)
142 {
143  kfree(to_pktcdvdkobj(kobj));
144 }
145 
146 
147 /**********************************************************
148  *
149  * sysfs interface for pktcdvd
150  * by (C) 2006 Thomas Maier <[email protected]>
151  *
152  **********************************************************/
153 
154 #define DEF_ATTR(_obj,_name,_mode) \
155  static struct attribute _obj = { .name = _name, .mode = _mode }
156 
157 /**********************************************************
158  /sys/class/pktcdvd/pktcdvd[0-7]/
159  stat/reset
160  stat/packets_started
161  stat/packets_finished
162  stat/kb_written
163  stat/kb_read
164  stat/kb_read_gather
165  write_queue/size
166  write_queue/congestion_off
167  write_queue/congestion_on
168  **********************************************************/
169 
170 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
171 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
172 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
173 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
174 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
175 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
176 
177 static struct attribute *kobj_pkt_attrs_stat[] = {
178  &kobj_pkt_attr_st1,
179  &kobj_pkt_attr_st2,
180  &kobj_pkt_attr_st3,
181  &kobj_pkt_attr_st4,
182  &kobj_pkt_attr_st5,
183  &kobj_pkt_attr_st6,
184  NULL
185 };
186 
187 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
188 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
189 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
190 
191 static struct attribute *kobj_pkt_attrs_wqueue[] = {
192  &kobj_pkt_attr_wq1,
193  &kobj_pkt_attr_wq2,
194  &kobj_pkt_attr_wq3,
195  NULL
196 };
197 
198 static ssize_t kobj_pkt_show(struct kobject *kobj,
199  struct attribute *attr, char *data)
200 {
201  struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
202  int n = 0;
203  int v;
204  if (strcmp(attr->name, "packets_started") == 0) {
205  n = sprintf(data, "%lu\n", pd->stats.pkt_started);
206 
207  } else if (strcmp(attr->name, "packets_finished") == 0) {
208  n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
209 
210  } else if (strcmp(attr->name, "kb_written") == 0) {
211  n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
212 
213  } else if (strcmp(attr->name, "kb_read") == 0) {
214  n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
215 
216  } else if (strcmp(attr->name, "kb_read_gather") == 0) {
217  n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
218 
219  } else if (strcmp(attr->name, "size") == 0) {
220  spin_lock(&pd->lock);
221  v = pd->bio_queue_size;
222  spin_unlock(&pd->lock);
223  n = sprintf(data, "%d\n", v);
224 
225  } else if (strcmp(attr->name, "congestion_off") == 0) {
226  spin_lock(&pd->lock);
227  v = pd->write_congestion_off;
228  spin_unlock(&pd->lock);
229  n = sprintf(data, "%d\n", v);
230 
231  } else if (strcmp(attr->name, "congestion_on") == 0) {
232  spin_lock(&pd->lock);
233  v = pd->write_congestion_on;
234  spin_unlock(&pd->lock);
235  n = sprintf(data, "%d\n", v);
236  }
237  return n;
238 }
239 
240 static void init_write_congestion_marks(int* lo, int* hi)
241 {
242  if (*hi > 0) {
243  *hi = max(*hi, 500);
244  *hi = min(*hi, 1000000);
245  if (*lo <= 0)
246  *lo = *hi - 100;
247  else {
248  *lo = min(*lo, *hi - 100);
249  *lo = max(*lo, 100);
250  }
251  } else {
252  *hi = -1;
253  *lo = -1;
254  }
255 }
256 
257 static ssize_t kobj_pkt_store(struct kobject *kobj,
258  struct attribute *attr,
259  const char *data, size_t len)
260 {
261  struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
262  int val;
263 
264  if (strcmp(attr->name, "reset") == 0 && len > 0) {
265  pd->stats.pkt_started = 0;
266  pd->stats.pkt_ended = 0;
267  pd->stats.secs_w = 0;
268  pd->stats.secs_rg = 0;
269  pd->stats.secs_r = 0;
270 
271  } else if (strcmp(attr->name, "congestion_off") == 0
272  && sscanf(data, "%d", &val) == 1) {
273  spin_lock(&pd->lock);
275  init_write_congestion_marks(&pd->write_congestion_off,
276  &pd->write_congestion_on);
277  spin_unlock(&pd->lock);
278 
279  } else if (strcmp(attr->name, "congestion_on") == 0
280  && sscanf(data, "%d", &val) == 1) {
281  spin_lock(&pd->lock);
282  pd->write_congestion_on = val;
283  init_write_congestion_marks(&pd->write_congestion_off,
284  &pd->write_congestion_on);
285  spin_unlock(&pd->lock);
286  }
287  return len;
288 }
289 
290 static const struct sysfs_ops kobj_pkt_ops = {
291  .show = kobj_pkt_show,
292  .store = kobj_pkt_store
293 };
294 static struct kobj_type kobj_pkt_type_stat = {
295  .release = pkt_kobj_release,
296  .sysfs_ops = &kobj_pkt_ops,
297  .default_attrs = kobj_pkt_attrs_stat
298 };
299 static struct kobj_type kobj_pkt_type_wqueue = {
300  .release = pkt_kobj_release,
301  .sysfs_ops = &kobj_pkt_ops,
302  .default_attrs = kobj_pkt_attrs_wqueue
303 };
304 
305 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
306 {
307  if (class_pktcdvd) {
308  pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
309  "%s", pd->name);
310  if (IS_ERR(pd->dev))
311  pd->dev = NULL;
312  }
313  if (pd->dev) {
314  pd->kobj_stat = pkt_kobj_create(pd, "stat",
315  &pd->dev->kobj,
316  &kobj_pkt_type_stat);
317  pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
318  &pd->dev->kobj,
319  &kobj_pkt_type_wqueue);
320  }
321 }
322 
323 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
324 {
325  pkt_kobj_remove(pd->kobj_stat);
326  pkt_kobj_remove(pd->kobj_wqueue);
327  if (class_pktcdvd)
328  device_unregister(pd->dev);
329 }
330 
331 
332 /********************************************************************
333  /sys/class/pktcdvd/
334  add map block device
335  remove unmap packet dev
336  device_map show mappings
337  *******************************************************************/
338 
339 static void class_pktcdvd_release(struct class *cls)
340 {
341  kfree(cls);
342 }
343 static ssize_t class_pktcdvd_show_map(struct class *c,
344  struct class_attribute *attr,
345  char *data)
346 {
347  int n = 0;
348  int idx;
350  for (idx = 0; idx < MAX_WRITERS; idx++) {
351  struct pktcdvd_device *pd = pkt_devs[idx];
352  if (!pd)
353  continue;
354  n += sprintf(data+n, "%s %u:%u %u:%u\n",
355  pd->name,
356  MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
357  MAJOR(pd->bdev->bd_dev),
358  MINOR(pd->bdev->bd_dev));
359  }
360  mutex_unlock(&ctl_mutex);
361  return n;
362 }
363 
364 static ssize_t class_pktcdvd_store_add(struct class *c,
365  struct class_attribute *attr,
366  const char *buf,
367  size_t count)
368 {
369  unsigned int major, minor;
370 
371  if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
372  /* pkt_setup_dev() expects caller to hold reference to self */
373  if (!try_module_get(THIS_MODULE))
374  return -ENODEV;
375 
376  pkt_setup_dev(MKDEV(major, minor), NULL);
377 
378  module_put(THIS_MODULE);
379 
380  return count;
381  }
382 
383  return -EINVAL;
384 }
385 
386 static ssize_t class_pktcdvd_store_remove(struct class *c,
387  struct class_attribute *attr,
388  const char *buf,
389  size_t count)
390 {
391  unsigned int major, minor;
392  if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
393  pkt_remove_dev(MKDEV(major, minor));
394  return count;
395  }
396  return -EINVAL;
397 }
398 
399 static struct class_attribute class_pktcdvd_attrs[] = {
400  __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
401  __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
402  __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
404 };
405 
406 
407 static int pkt_sysfs_init(void)
408 {
409  int ret = 0;
410 
411  /*
412  * create control files in sysfs
413  * /sys/class/pktcdvd/...
414  */
415  class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
416  if (!class_pktcdvd)
417  return -ENOMEM;
418  class_pktcdvd->name = DRIVER_NAME;
419  class_pktcdvd->owner = THIS_MODULE;
420  class_pktcdvd->class_release = class_pktcdvd_release;
421  class_pktcdvd->class_attrs = class_pktcdvd_attrs;
422  ret = class_register(class_pktcdvd);
423  if (ret) {
424  kfree(class_pktcdvd);
425  class_pktcdvd = NULL;
426  printk(DRIVER_NAME": failed to create class pktcdvd\n");
427  return ret;
428  }
429  return 0;
430 }
431 
432 static void pkt_sysfs_cleanup(void)
433 {
434  if (class_pktcdvd)
435  class_destroy(class_pktcdvd);
436  class_pktcdvd = NULL;
437 }
438 
439 /********************************************************************
440  entries in debugfs
441 
442  /sys/kernel/debug/pktcdvd[0-7]/
443  info
444 
445  *******************************************************************/
446 
447 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
448 {
449  return pkt_seq_show(m, p);
450 }
451 
452 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
453 {
454  return single_open(file, pkt_debugfs_seq_show, inode->i_private);
455 }
456 
457 static const struct file_operations debug_fops = {
458  .open = pkt_debugfs_fops_open,
459  .read = seq_read,
460  .llseek = seq_lseek,
461  .release = single_release,
462  .owner = THIS_MODULE,
463 };
464 
465 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
466 {
467  if (!pkt_debugfs_root)
468  return;
469  pd->dfs_f_info = NULL;
470  pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
471  if (IS_ERR(pd->dfs_d_root)) {
472  pd->dfs_d_root = NULL;
473  return;
474  }
475  pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
476  pd->dfs_d_root, pd, &debug_fops);
477  if (IS_ERR(pd->dfs_f_info)) {
478  pd->dfs_f_info = NULL;
479  return;
480  }
481 }
482 
483 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
484 {
485  if (!pkt_debugfs_root)
486  return;
487  if (pd->dfs_f_info)
489  pd->dfs_f_info = NULL;
490  if (pd->dfs_d_root)
492  pd->dfs_d_root = NULL;
493 }
494 
495 static void pkt_debugfs_init(void)
496 {
497  pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
498  if (IS_ERR(pkt_debugfs_root)) {
499  pkt_debugfs_root = NULL;
500  return;
501  }
502 }
503 
504 static void pkt_debugfs_cleanup(void)
505 {
506  if (!pkt_debugfs_root)
507  return;
508  debugfs_remove(pkt_debugfs_root);
509  pkt_debugfs_root = NULL;
510 }
511 
512 /* ----------------------------------------------------------*/
513 
514 
515 static void pkt_bio_finished(struct pktcdvd_device *pd)
516 {
517  BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
518  if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
519  VPRINTK(DRIVER_NAME": queue empty\n");
520  atomic_set(&pd->iosched.attention, 1);
521  wake_up(&pd->wqueue);
522  }
523 }
524 
525 /*
526  * Allocate a packet_data struct
527  */
528 static struct packet_data *pkt_alloc_packet_data(int frames)
529 {
530  int i;
531  struct packet_data *pkt;
532 
533  pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
534  if (!pkt)
535  goto no_pkt;
536 
537  pkt->frames = frames;
538  pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
539  if (!pkt->w_bio)
540  goto no_bio;
541 
542  for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
544  if (!pkt->pages[i])
545  goto no_page;
546  }
547 
548  spin_lock_init(&pkt->lock);
549  bio_list_init(&pkt->orig_bios);
550 
551  for (i = 0; i < frames; i++) {
552  struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
553  if (!bio)
554  goto no_rd_bio;
555 
556  pkt->r_bios[i] = bio;
557  }
558 
559  return pkt;
560 
561 no_rd_bio:
562  for (i = 0; i < frames; i++) {
563  struct bio *bio = pkt->r_bios[i];
564  if (bio)
565  bio_put(bio);
566  }
567 
568 no_page:
569  for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
570  if (pkt->pages[i])
571  __free_page(pkt->pages[i]);
572  bio_put(pkt->w_bio);
573 no_bio:
574  kfree(pkt);
575 no_pkt:
576  return NULL;
577 }
578 
579 /*
580  * Free a packet_data struct
581  */
582 static void pkt_free_packet_data(struct packet_data *pkt)
583 {
584  int i;
585 
586  for (i = 0; i < pkt->frames; i++) {
587  struct bio *bio = pkt->r_bios[i];
588  if (bio)
589  bio_put(bio);
590  }
591  for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
592  __free_page(pkt->pages[i]);
593  bio_put(pkt->w_bio);
594  kfree(pkt);
595 }
596 
597 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
598 {
599  struct packet_data *pkt, *next;
600 
601  BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
602 
603  list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
604  pkt_free_packet_data(pkt);
605  }
606  INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
607 }
608 
609 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
610 {
611  struct packet_data *pkt;
612 
613  BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
614 
615  while (nr_packets > 0) {
616  pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
617  if (!pkt) {
618  pkt_shrink_pktlist(pd);
619  return 0;
620  }
621  pkt->id = nr_packets;
622  pkt->pd = pd;
623  list_add(&pkt->list, &pd->cdrw.pkt_free_list);
624  nr_packets--;
625  }
626  return 1;
627 }
628 
629 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
630 {
631  struct rb_node *n = rb_next(&node->rb_node);
632  if (!n)
633  return NULL;
634  return rb_entry(n, struct pkt_rb_node, rb_node);
635 }
636 
637 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
638 {
639  rb_erase(&node->rb_node, &pd->bio_queue);
640  mempool_free(node, pd->rb_pool);
641  pd->bio_queue_size--;
642  BUG_ON(pd->bio_queue_size < 0);
643 }
644 
645 /*
646  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
647  */
648 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
649 {
650  struct rb_node *n = pd->bio_queue.rb_node;
651  struct rb_node *next;
652  struct pkt_rb_node *tmp;
653 
654  if (!n) {
655  BUG_ON(pd->bio_queue_size > 0);
656  return NULL;
657  }
658 
659  for (;;) {
660  tmp = rb_entry(n, struct pkt_rb_node, rb_node);
661  if (s <= tmp->bio->bi_sector)
662  next = n->rb_left;
663  else
664  next = n->rb_right;
665  if (!next)
666  break;
667  n = next;
668  }
669 
670  if (s > tmp->bio->bi_sector) {
671  tmp = pkt_rbtree_next(tmp);
672  if (!tmp)
673  return NULL;
674  }
675  BUG_ON(s > tmp->bio->bi_sector);
676  return tmp;
677 }
678 
679 /*
680  * Insert a node into the pd->bio_queue rb tree.
681  */
682 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
683 {
684  struct rb_node **p = &pd->bio_queue.rb_node;
685  struct rb_node *parent = NULL;
686  sector_t s = node->bio->bi_sector;
687  struct pkt_rb_node *tmp;
688 
689  while (*p) {
690  parent = *p;
691  tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
692  if (s < tmp->bio->bi_sector)
693  p = &(*p)->rb_left;
694  else
695  p = &(*p)->rb_right;
696  }
697  rb_link_node(&node->rb_node, parent, p);
698  rb_insert_color(&node->rb_node, &pd->bio_queue);
699  pd->bio_queue_size++;
700 }
701 
702 /*
703  * Send a packet_command to the underlying block device and
704  * wait for completion.
705  */
706 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
707 {
708  struct request_queue *q = bdev_get_queue(pd->bdev);
709  struct request *rq;
710  int ret = 0;
711 
712  rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
713  WRITE : READ, __GFP_WAIT);
714 
715  if (cgc->buflen) {
716  if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
717  goto out;
718  }
719 
720  rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
721  memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
722 
723  rq->timeout = 60*HZ;
724  rq->cmd_type = REQ_TYPE_BLOCK_PC;
725  if (cgc->quiet)
726  rq->cmd_flags |= REQ_QUIET;
727 
728  blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
729  if (rq->errors)
730  ret = -EIO;
731 out:
732  blk_put_request(rq);
733  return ret;
734 }
735 
736 /*
737  * A generic sense dump / resolve mechanism should be implemented across
738  * all ATAPI + SCSI devices.
739  */
740 static void pkt_dump_sense(struct packet_command *cgc)
741 {
742  static char *info[9] = { "No sense", "Recovered error", "Not ready",
743  "Medium error", "Hardware error", "Illegal request",
744  "Unit attention", "Data protect", "Blank check" };
745  int i;
746  struct request_sense *sense = cgc->sense;
747 
748  printk(DRIVER_NAME":");
749  for (i = 0; i < CDROM_PACKET_SIZE; i++)
750  printk(" %02x", cgc->cmd[i]);
751  printk(" - ");
752 
753  if (sense == NULL) {
754  printk("no sense\n");
755  return;
756  }
757 
758  printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
759 
760  if (sense->sense_key > 8) {
761  printk(" (INVALID)\n");
762  return;
763  }
764 
765  printk(" (%s)\n", info[sense->sense_key]);
766 }
767 
768 /*
769  * flush the drive cache to media
770  */
771 static int pkt_flush_cache(struct pktcdvd_device *pd)
772 {
773  struct packet_command cgc;
774 
776  cgc.cmd[0] = GPCMD_FLUSH_CACHE;
777  cgc.quiet = 1;
778 
779  /*
780  * the IMMED bit -- we default to not setting it, although that
781  * would allow a much faster close, this is safer
782  */
783 #if 0
784  cgc.cmd[1] = 1 << 1;
785 #endif
786  return pkt_generic_packet(pd, &cgc);
787 }
788 
789 /*
790  * speed is given as the normal factor, e.g. 4 for 4x
791  */
792 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
793  unsigned write_speed, unsigned read_speed)
794 {
795  struct packet_command cgc;
796  struct request_sense sense;
797  int ret;
798 
800  cgc.sense = &sense;
801  cgc.cmd[0] = GPCMD_SET_SPEED;
802  cgc.cmd[2] = (read_speed >> 8) & 0xff;
803  cgc.cmd[3] = read_speed & 0xff;
804  cgc.cmd[4] = (write_speed >> 8) & 0xff;
805  cgc.cmd[5] = write_speed & 0xff;
806 
807  if ((ret = pkt_generic_packet(pd, &cgc)))
808  pkt_dump_sense(&cgc);
809 
810  return ret;
811 }
812 
813 /*
814  * Queue a bio for processing by the low-level CD device. Must be called
815  * from process context.
816  */
817 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
818 {
819  spin_lock(&pd->iosched.lock);
820  if (bio_data_dir(bio) == READ)
821  bio_list_add(&pd->iosched.read_queue, bio);
822  else
823  bio_list_add(&pd->iosched.write_queue, bio);
824  spin_unlock(&pd->iosched.lock);
825 
826  atomic_set(&pd->iosched.attention, 1);
827  wake_up(&pd->wqueue);
828 }
829 
830 /*
831  * Process the queued read/write requests. This function handles special
832  * requirements for CDRW drives:
833  * - A cache flush command must be inserted before a read request if the
834  * previous request was a write.
835  * - Switching between reading and writing is slow, so don't do it more often
836  * than necessary.
837  * - Optimize for throughput at the expense of latency. This means that streaming
838  * writes will never be interrupted by a read, but if the drive has to seek
839  * before the next write, switch to reading instead if there are any pending
840  * read requests.
841  * - Set the read speed according to current usage pattern. When only reading
842  * from the device, it's best to use the highest possible read speed, but
843  * when switching often between reading and writing, it's better to have the
844  * same read and write speeds.
845  */
846 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
847 {
848 
849  if (atomic_read(&pd->iosched.attention) == 0)
850  return;
851  atomic_set(&pd->iosched.attention, 0);
852 
853  for (;;) {
854  struct bio *bio;
855  int reads_queued, writes_queued;
856 
857  spin_lock(&pd->iosched.lock);
858  reads_queued = !bio_list_empty(&pd->iosched.read_queue);
859  writes_queued = !bio_list_empty(&pd->iosched.write_queue);
860  spin_unlock(&pd->iosched.lock);
861 
862  if (!reads_queued && !writes_queued)
863  break;
864 
865  if (pd->iosched.writing) {
866  int need_write_seek = 1;
867  spin_lock(&pd->iosched.lock);
868  bio = bio_list_peek(&pd->iosched.write_queue);
869  spin_unlock(&pd->iosched.lock);
870  if (bio && (bio->bi_sector == pd->iosched.last_write))
871  need_write_seek = 0;
872  if (need_write_seek && reads_queued) {
873  if (atomic_read(&pd->cdrw.pending_bios) > 0) {
874  VPRINTK(DRIVER_NAME": write, waiting\n");
875  break;
876  }
877  pkt_flush_cache(pd);
878  pd->iosched.writing = 0;
879  }
880  } else {
881  if (!reads_queued && writes_queued) {
882  if (atomic_read(&pd->cdrw.pending_bios) > 0) {
883  VPRINTK(DRIVER_NAME": read, waiting\n");
884  break;
885  }
886  pd->iosched.writing = 1;
887  }
888  }
889 
890  spin_lock(&pd->iosched.lock);
891  if (pd->iosched.writing)
892  bio = bio_list_pop(&pd->iosched.write_queue);
893  else
894  bio = bio_list_pop(&pd->iosched.read_queue);
895  spin_unlock(&pd->iosched.lock);
896 
897  if (!bio)
898  continue;
899 
900  if (bio_data_dir(bio) == READ)
901  pd->iosched.successive_reads += bio->bi_size >> 10;
902  else {
903  pd->iosched.successive_reads = 0;
904  pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
905  }
906  if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
907  if (pd->read_speed == pd->write_speed) {
908  pd->read_speed = MAX_SPEED;
909  pkt_set_speed(pd, pd->write_speed, pd->read_speed);
910  }
911  } else {
912  if (pd->read_speed != pd->write_speed) {
913  pd->read_speed = pd->write_speed;
914  pkt_set_speed(pd, pd->write_speed, pd->read_speed);
915  }
916  }
917 
918  atomic_inc(&pd->cdrw.pending_bios);
920  }
921 }
922 
923 /*
924  * Special care is needed if the underlying block device has a small
925  * max_phys_segments value.
926  */
927 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
928 {
929  if ((pd->settings.size << 9) / CD_FRAMESIZE
930  <= queue_max_segments(q)) {
931  /*
932  * The cdrom device can handle one segment/frame
933  */
935  return 0;
936  } else if ((pd->settings.size << 9) / PAGE_SIZE
937  <= queue_max_segments(q)) {
938  /*
939  * We can handle this case at the expense of some extra memory
940  * copies during write operations
941  */
943  return 0;
944  } else {
945  printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
946  return -EIO;
947  }
948 }
949 
950 /*
951  * Copy CD_FRAMESIZE bytes from src_bio into a destination page
952  */
953 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
954 {
955  unsigned int copy_size = CD_FRAMESIZE;
956 
957  while (copy_size > 0) {
958  struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
959  void *vfrom = kmap_atomic(src_bvl->bv_page) +
960  src_bvl->bv_offset + offs;
961  void *vto = page_address(dst_page) + dst_offs;
962  int len = min_t(int, copy_size, src_bvl->bv_len - offs);
963 
964  BUG_ON(len < 0);
965  memcpy(vto, vfrom, len);
966  kunmap_atomic(vfrom);
967 
968  seg++;
969  offs = 0;
970  dst_offs += len;
971  copy_size -= len;
972  }
973 }
974 
975 /*
976  * Copy all data for this packet to pkt->pages[], so that
977  * a) The number of required segments for the write bio is minimized, which
978  * is necessary for some scsi controllers.
979  * b) The data can be used as cache to avoid read requests if we receive a
980  * new write request for the same zone.
981  */
982 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
983 {
984  int f, p, offs;
985 
986  /* Copy all data to pkt->pages[] */
987  p = 0;
988  offs = 0;
989  for (f = 0; f < pkt->frames; f++) {
990  if (bvec[f].bv_page != pkt->pages[p]) {
991  void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset;
992  void *vto = page_address(pkt->pages[p]) + offs;
993  memcpy(vto, vfrom, CD_FRAMESIZE);
994  kunmap_atomic(vfrom);
995  bvec[f].bv_page = pkt->pages[p];
996  bvec[f].bv_offset = offs;
997  } else {
998  BUG_ON(bvec[f].bv_offset != offs);
999  }
1000  offs += CD_FRAMESIZE;
1001  if (offs >= PAGE_SIZE) {
1002  offs = 0;
1003  p++;
1004  }
1005  }
1006 }
1007 
1008 static void pkt_end_io_read(struct bio *bio, int err)
1009 {
1010  struct packet_data *pkt = bio->bi_private;
1011  struct pktcdvd_device *pd = pkt->pd;
1012  BUG_ON(!pd);
1013 
1014  VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1015  (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1016 
1017  if (err)
1018  atomic_inc(&pkt->io_errors);
1019  if (atomic_dec_and_test(&pkt->io_wait)) {
1020  atomic_inc(&pkt->run_sm);
1021  wake_up(&pd->wqueue);
1022  }
1023  pkt_bio_finished(pd);
1024 }
1025 
1026 static void pkt_end_io_packet_write(struct bio *bio, int err)
1027 {
1028  struct packet_data *pkt = bio->bi_private;
1029  struct pktcdvd_device *pd = pkt->pd;
1030  BUG_ON(!pd);
1031 
1032  VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1033 
1034  pd->stats.pkt_ended++;
1035 
1036  pkt_bio_finished(pd);
1037  atomic_dec(&pkt->io_wait);
1038  atomic_inc(&pkt->run_sm);
1039  wake_up(&pd->wqueue);
1040 }
1041 
1042 /*
1043  * Schedule reads for the holes in a packet
1044  */
1045 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1046 {
1047  int frames_read = 0;
1048  struct bio *bio;
1049  int f;
1050  char written[PACKET_MAX_SIZE];
1051 
1052  BUG_ON(bio_list_empty(&pkt->orig_bios));
1053 
1054  atomic_set(&pkt->io_wait, 0);
1055  atomic_set(&pkt->io_errors, 0);
1056 
1057  /*
1058  * Figure out which frames we need to read before we can write.
1059  */
1060  memset(written, 0, sizeof(written));
1061  spin_lock(&pkt->lock);
1062  bio_list_for_each(bio, &pkt->orig_bios) {
1063  int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1064  int num_frames = bio->bi_size / CD_FRAMESIZE;
1065  pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1066  BUG_ON(first_frame < 0);
1067  BUG_ON(first_frame + num_frames > pkt->frames);
1068  for (f = first_frame; f < first_frame + num_frames; f++)
1069  written[f] = 1;
1070  }
1071  spin_unlock(&pkt->lock);
1072 
1073  if (pkt->cache_valid) {
1074  VPRINTK("pkt_gather_data: zone %llx cached\n",
1075  (unsigned long long)pkt->sector);
1076  goto out_account;
1077  }
1078 
1079  /*
1080  * Schedule reads for missing parts of the packet.
1081  */
1082  for (f = 0; f < pkt->frames; f++) {
1083  int p, offset;
1084 
1085  if (written[f])
1086  continue;
1087 
1088  bio = pkt->r_bios[f];
1089  bio_reset(bio);
1090  bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1091  bio->bi_bdev = pd->bdev;
1092  bio->bi_end_io = pkt_end_io_read;
1093  bio->bi_private = pkt;
1094 
1095  p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1096  offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1097  VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1098  f, pkt->pages[p], offset);
1099  if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1100  BUG();
1101 
1102  atomic_inc(&pkt->io_wait);
1103  bio->bi_rw = READ;
1104  pkt_queue_bio(pd, bio);
1105  frames_read++;
1106  }
1107 
1108 out_account:
1109  VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1110  frames_read, (unsigned long long)pkt->sector);
1111  pd->stats.pkt_started++;
1112  pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1113 }
1114 
1115 /*
1116  * Find a packet matching zone, or the least recently used packet if
1117  * there is no match.
1118  */
1119 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1120 {
1121  struct packet_data *pkt;
1122 
1123  list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1124  if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1125  list_del_init(&pkt->list);
1126  if (pkt->sector != zone)
1127  pkt->cache_valid = 0;
1128  return pkt;
1129  }
1130  }
1131  BUG();
1132  return NULL;
1133 }
1134 
1135 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1136 {
1137  if (pkt->cache_valid) {
1138  list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1139  } else {
1140  list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1141  }
1142 }
1143 
1144 /*
1145  * recover a failed write, query for relocation if possible
1146  *
1147  * returns 1 if recovery is possible, or 0 if not
1148  *
1149  */
1150 static int pkt_start_recovery(struct packet_data *pkt)
1151 {
1152  /*
1153  * FIXME. We need help from the file system to implement
1154  * recovery handling.
1155  */
1156  return 0;
1157 #if 0
1158  struct request *rq = pkt->rq;
1159  struct pktcdvd_device *pd = rq->rq_disk->private_data;
1160  struct block_device *pkt_bdev;
1161  struct super_block *sb = NULL;
1162  unsigned long old_block, new_block;
1163  sector_t new_sector;
1164 
1165  pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1166  if (pkt_bdev) {
1167  sb = get_super(pkt_bdev);
1168  bdput(pkt_bdev);
1169  }
1170 
1171  if (!sb)
1172  return 0;
1173 
1174  if (!sb->s_op->relocate_blocks)
1175  goto out;
1176 
1177  old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1178  if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1179  goto out;
1180 
1181  new_sector = new_block * (CD_FRAMESIZE >> 9);
1182  pkt->sector = new_sector;
1183 
1184  pkt->bio->bi_sector = new_sector;
1185  pkt->bio->bi_next = NULL;
1186  pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1187  pkt->bio->bi_idx = 0;
1188 
1189  BUG_ON(pkt->bio->bi_rw != REQ_WRITE);
1190  BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1191  BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1192  BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1193  BUG_ON(pkt->bio->bi_private != pkt);
1194 
1195  drop_super(sb);
1196  return 1;
1197 
1198 out:
1199  drop_super(sb);
1200  return 0;
1201 #endif
1202 }
1203 
1204 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1205 {
1206 #if PACKET_DEBUG > 1
1207  static const char *state_name[] = {
1208  "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1209  };
1210  enum packet_data_state old_state = pkt->state;
1211  VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1212  state_name[old_state], state_name[state]);
1213 #endif
1214  pkt->state = state;
1215 }
1216 
1217 /*
1218  * Scan the work queue to see if we can start a new packet.
1219  * returns non-zero if any work was done.
1220  */
1221 static int pkt_handle_queue(struct pktcdvd_device *pd)
1222 {
1223  struct packet_data *pkt, *p;
1224  struct bio *bio = NULL;
1225  sector_t zone = 0; /* Suppress gcc warning */
1226  struct pkt_rb_node *node, *first_node;
1227  struct rb_node *n;
1228  int wakeup;
1229 
1230  VPRINTK("handle_queue\n");
1231 
1232  atomic_set(&pd->scan_queue, 0);
1233 
1234  if (list_empty(&pd->cdrw.pkt_free_list)) {
1235  VPRINTK("handle_queue: no pkt\n");
1236  return 0;
1237  }
1238 
1239  /*
1240  * Try to find a zone we are not already working on.
1241  */
1242  spin_lock(&pd->lock);
1243  first_node = pkt_rbtree_find(pd, pd->current_sector);
1244  if (!first_node) {
1245  n = rb_first(&pd->bio_queue);
1246  if (n)
1247  first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1248  }
1249  node = first_node;
1250  while (node) {
1251  bio = node->bio;
1252  zone = ZONE(bio->bi_sector, pd);
1253  list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1254  if (p->sector == zone) {
1255  bio = NULL;
1256  goto try_next_bio;
1257  }
1258  }
1259  break;
1260 try_next_bio:
1261  node = pkt_rbtree_next(node);
1262  if (!node) {
1263  n = rb_first(&pd->bio_queue);
1264  if (n)
1265  node = rb_entry(n, struct pkt_rb_node, rb_node);
1266  }
1267  if (node == first_node)
1268  node = NULL;
1269  }
1270  spin_unlock(&pd->lock);
1271  if (!bio) {
1272  VPRINTK("handle_queue: no bio\n");
1273  return 0;
1274  }
1275 
1276  pkt = pkt_get_packet_data(pd, zone);
1277 
1278  pd->current_sector = zone + pd->settings.size;
1279  pkt->sector = zone;
1280  BUG_ON(pkt->frames != pd->settings.size >> 2);
1281  pkt->write_size = 0;
1282 
1283  /*
1284  * Scan work queue for bios in the same zone and link them
1285  * to this packet.
1286  */
1287  spin_lock(&pd->lock);
1288  VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1289  while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1290  bio = node->bio;
1291  VPRINTK("pkt_handle_queue: found zone=%llx\n",
1292  (unsigned long long)ZONE(bio->bi_sector, pd));
1293  if (ZONE(bio->bi_sector, pd) != zone)
1294  break;
1295  pkt_rbtree_erase(pd, node);
1296  spin_lock(&pkt->lock);
1297  bio_list_add(&pkt->orig_bios, bio);
1298  pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1299  spin_unlock(&pkt->lock);
1300  }
1301  /* check write congestion marks, and if bio_queue_size is
1302  below, wake up any waiters */
1303  wakeup = (pd->write_congestion_on > 0
1304  && pd->bio_queue_size <= pd->write_congestion_off);
1305  spin_unlock(&pd->lock);
1306  if (wakeup) {
1307  clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1308  BLK_RW_ASYNC);
1309  }
1310 
1311  pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1312  pkt_set_state(pkt, PACKET_WAITING_STATE);
1313  atomic_set(&pkt->run_sm, 1);
1314 
1315  spin_lock(&pd->cdrw.active_list_lock);
1316  list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1317  spin_unlock(&pd->cdrw.active_list_lock);
1318 
1319  return 1;
1320 }
1321 
1322 /*
1323  * Assemble a bio to write one packet and queue the bio for processing
1324  * by the underlying block device.
1325  */
1326 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1327 {
1328  struct bio *bio;
1329  int f;
1330  int frames_write;
1331  struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1332 
1333  for (f = 0; f < pkt->frames; f++) {
1334  bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1335  bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1336  }
1337 
1338  /*
1339  * Fill-in bvec with data from orig_bios.
1340  */
1341  frames_write = 0;
1342  spin_lock(&pkt->lock);
1343  bio_list_for_each(bio, &pkt->orig_bios) {
1344  int segment = bio->bi_idx;
1345  int src_offs = 0;
1346  int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1347  int num_frames = bio->bi_size / CD_FRAMESIZE;
1348  BUG_ON(first_frame < 0);
1349  BUG_ON(first_frame + num_frames > pkt->frames);
1350  for (f = first_frame; f < first_frame + num_frames; f++) {
1351  struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1352 
1353  while (src_offs >= src_bvl->bv_len) {
1354  src_offs -= src_bvl->bv_len;
1355  segment++;
1356  BUG_ON(segment >= bio->bi_vcnt);
1357  src_bvl = bio_iovec_idx(bio, segment);
1358  }
1359 
1360  if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1361  bvec[f].bv_page = src_bvl->bv_page;
1362  bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1363  } else {
1364  pkt_copy_bio_data(bio, segment, src_offs,
1365  bvec[f].bv_page, bvec[f].bv_offset);
1366  }
1367  src_offs += CD_FRAMESIZE;
1368  frames_write++;
1369  }
1370  }
1371  pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1372  spin_unlock(&pkt->lock);
1373 
1374  VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1375  frames_write, (unsigned long long)pkt->sector);
1376  BUG_ON(frames_write != pkt->write_size);
1377 
1378  if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1379  pkt_make_local_copy(pkt, bvec);
1380  pkt->cache_valid = 1;
1381  } else {
1382  pkt->cache_valid = 0;
1383  }
1384 
1385  /* Start the write request */
1386  bio_reset(pkt->w_bio);
1387  pkt->w_bio->bi_sector = pkt->sector;
1388  pkt->w_bio->bi_bdev = pd->bdev;
1389  pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1390  pkt->w_bio->bi_private = pkt;
1391  for (f = 0; f < pkt->frames; f++)
1392  if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1393  BUG();
1394  VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1395 
1396  atomic_set(&pkt->io_wait, 1);
1397  pkt->w_bio->bi_rw = WRITE;
1398  pkt_queue_bio(pd, pkt->w_bio);
1399 }
1400 
1401 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1402 {
1403  struct bio *bio;
1404 
1405  if (!uptodate)
1406  pkt->cache_valid = 0;
1407 
1408  /* Finish all bios corresponding to this packet */
1409  while ((bio = bio_list_pop(&pkt->orig_bios)))
1410  bio_endio(bio, uptodate ? 0 : -EIO);
1411 }
1412 
1413 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1414 {
1415  int uptodate;
1416 
1417  VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1418 
1419  for (;;) {
1420  switch (pkt->state) {
1421  case PACKET_WAITING_STATE:
1422  if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1423  return;
1424 
1425  pkt->sleep_time = 0;
1426  pkt_gather_data(pd, pkt);
1427  pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1428  break;
1429 
1431  if (atomic_read(&pkt->io_wait) > 0)
1432  return;
1433 
1434  if (atomic_read(&pkt->io_errors) > 0) {
1435  pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1436  } else {
1437  pkt_start_write(pd, pkt);
1438  }
1439  break;
1440 
1442  if (atomic_read(&pkt->io_wait) > 0)
1443  return;
1444 
1445  if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1446  pkt_set_state(pkt, PACKET_FINISHED_STATE);
1447  } else {
1448  pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1449  }
1450  break;
1451 
1452  case PACKET_RECOVERY_STATE:
1453  if (pkt_start_recovery(pkt)) {
1454  pkt_start_write(pd, pkt);
1455  } else {
1456  VPRINTK("No recovery possible\n");
1457  pkt_set_state(pkt, PACKET_FINISHED_STATE);
1458  }
1459  break;
1460 
1461  case PACKET_FINISHED_STATE:
1462  uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1463  pkt_finish_packet(pkt, uptodate);
1464  return;
1465 
1466  default:
1467  BUG();
1468  break;
1469  }
1470  }
1471 }
1472 
1473 static void pkt_handle_packets(struct pktcdvd_device *pd)
1474 {
1475  struct packet_data *pkt, *next;
1476 
1477  VPRINTK("pkt_handle_packets\n");
1478 
1479  /*
1480  * Run state machine for active packets
1481  */
1482  list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1483  if (atomic_read(&pkt->run_sm) > 0) {
1484  atomic_set(&pkt->run_sm, 0);
1485  pkt_run_state_machine(pd, pkt);
1486  }
1487  }
1488 
1489  /*
1490  * Move no longer active packets to the free list
1491  */
1492  spin_lock(&pd->cdrw.active_list_lock);
1493  list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1494  if (pkt->state == PACKET_FINISHED_STATE) {
1495  list_del(&pkt->list);
1496  pkt_put_packet_data(pd, pkt);
1497  pkt_set_state(pkt, PACKET_IDLE_STATE);
1498  atomic_set(&pd->scan_queue, 1);
1499  }
1500  }
1501  spin_unlock(&pd->cdrw.active_list_lock);
1502 }
1503 
1504 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1505 {
1506  struct packet_data *pkt;
1507  int i;
1508 
1509  for (i = 0; i < PACKET_NUM_STATES; i++)
1510  states[i] = 0;
1511 
1512  spin_lock(&pd->cdrw.active_list_lock);
1513  list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1514  states[pkt->state]++;
1515  }
1516  spin_unlock(&pd->cdrw.active_list_lock);
1517 }
1518 
1519 /*
1520  * kcdrwd is woken up when writes have been queued for one of our
1521  * registered devices
1522  */
1523 static int kcdrwd(void *foobar)
1524 {
1525  struct pktcdvd_device *pd = foobar;
1526  struct packet_data *pkt;
1527  long min_sleep_time, residue;
1528 
1529  set_user_nice(current, -20);
1530  set_freezable();
1531 
1532  for (;;) {
1534 
1535  /*
1536  * Wait until there is something to do
1537  */
1538  add_wait_queue(&pd->wqueue, &wait);
1539  for (;;) {
1541 
1542  /* Check if we need to run pkt_handle_queue */
1543  if (atomic_read(&pd->scan_queue) > 0)
1544  goto work_to_do;
1545 
1546  /* Check if we need to run the state machine for some packet */
1547  list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1548  if (atomic_read(&pkt->run_sm) > 0)
1549  goto work_to_do;
1550  }
1551 
1552  /* Check if we need to process the iosched queues */
1553  if (atomic_read(&pd->iosched.attention) != 0)
1554  goto work_to_do;
1555 
1556  /* Otherwise, go to sleep */
1557  if (PACKET_DEBUG > 1) {
1558  int states[PACKET_NUM_STATES];
1559  pkt_count_states(pd, states);
1560  VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1561  states[0], states[1], states[2], states[3],
1562  states[4], states[5]);
1563  }
1564 
1565  min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1566  list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1567  if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1568  min_sleep_time = pkt->sleep_time;
1569  }
1570 
1571  VPRINTK("kcdrwd: sleeping\n");
1572  residue = schedule_timeout(min_sleep_time);
1573  VPRINTK("kcdrwd: wake up\n");
1574 
1575  /* make swsusp happy with our thread */
1576  try_to_freeze();
1577 
1578  list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1579  if (!pkt->sleep_time)
1580  continue;
1581  pkt->sleep_time -= min_sleep_time - residue;
1582  if (pkt->sleep_time <= 0) {
1583  pkt->sleep_time = 0;
1584  atomic_inc(&pkt->run_sm);
1585  }
1586  }
1587 
1588  if (kthread_should_stop())
1589  break;
1590  }
1591 work_to_do:
1593  remove_wait_queue(&pd->wqueue, &wait);
1594 
1595  if (kthread_should_stop())
1596  break;
1597 
1598  /*
1599  * if pkt_handle_queue returns true, we can queue
1600  * another request.
1601  */
1602  while (pkt_handle_queue(pd))
1603  ;
1604 
1605  /*
1606  * Handle packet state machine
1607  */
1608  pkt_handle_packets(pd);
1609 
1610  /*
1611  * Handle iosched queues
1612  */
1613  pkt_iosched_process_queue(pd);
1614  }
1615 
1616  return 0;
1617 }
1618 
1619 static void pkt_print_settings(struct pktcdvd_device *pd)
1620 {
1621  printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1622  printk("%u blocks, ", pd->settings.size >> 2);
1623  printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1624 }
1625 
1626 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1627 {
1628  memset(cgc->cmd, 0, sizeof(cgc->cmd));
1629 
1630  cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1631  cgc->cmd[2] = page_code | (page_control << 6);
1632  cgc->cmd[7] = cgc->buflen >> 8;
1633  cgc->cmd[8] = cgc->buflen & 0xff;
1635  return pkt_generic_packet(pd, cgc);
1636 }
1637 
1638 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1639 {
1640  memset(cgc->cmd, 0, sizeof(cgc->cmd));
1641  memset(cgc->buffer, 0, 2);
1642  cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1643  cgc->cmd[1] = 0x10; /* PF */
1644  cgc->cmd[7] = cgc->buflen >> 8;
1645  cgc->cmd[8] = cgc->buflen & 0xff;
1647  return pkt_generic_packet(pd, cgc);
1648 }
1649 
1650 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1651 {
1652  struct packet_command cgc;
1653  int ret;
1654 
1655  /* set up command and get the disc info */
1656  init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1657  cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1658  cgc.cmd[8] = cgc.buflen = 2;
1659  cgc.quiet = 1;
1660 
1661  if ((ret = pkt_generic_packet(pd, &cgc)))
1662  return ret;
1663 
1664  /* not all drives have the same disc_info length, so requeue
1665  * packet with the length the drive tells us it can supply
1666  */
1668  sizeof(di->disc_information_length);
1669 
1670  if (cgc.buflen > sizeof(disc_information))
1671  cgc.buflen = sizeof(disc_information);
1672 
1673  cgc.cmd[8] = cgc.buflen;
1674  return pkt_generic_packet(pd, &cgc);
1675 }
1676 
1677 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1678 {
1679  struct packet_command cgc;
1680  int ret;
1681 
1682  init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1684  cgc.cmd[1] = type & 3;
1685  cgc.cmd[4] = (track & 0xff00) >> 8;
1686  cgc.cmd[5] = track & 0xff;
1687  cgc.cmd[8] = 8;
1688  cgc.quiet = 1;
1689 
1690  if ((ret = pkt_generic_packet(pd, &cgc)))
1691  return ret;
1692 
1694  sizeof(ti->track_information_length);
1695 
1696  if (cgc.buflen > sizeof(track_information))
1697  cgc.buflen = sizeof(track_information);
1698 
1699  cgc.cmd[8] = cgc.buflen;
1700  return pkt_generic_packet(pd, &cgc);
1701 }
1702 
1703 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1704  long *last_written)
1705 {
1706  disc_information di;
1707  track_information ti;
1708  __u32 last_track;
1709  int ret = -1;
1710 
1711  if ((ret = pkt_get_disc_info(pd, &di)))
1712  return ret;
1713 
1714  last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1715  if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1716  return ret;
1717 
1718  /* if this track is blank, try the previous. */
1719  if (ti.blank) {
1720  last_track--;
1721  if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1722  return ret;
1723  }
1724 
1725  /* if last recorded field is valid, return it. */
1726  if (ti.lra_v) {
1727  *last_written = be32_to_cpu(ti.last_rec_address);
1728  } else {
1729  /* make it up instead */
1730  *last_written = be32_to_cpu(ti.track_start) +
1731  be32_to_cpu(ti.track_size);
1732  if (ti.free_blocks)
1733  *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1734  }
1735  return 0;
1736 }
1737 
1738 /*
1739  * write mode select package based on pd->settings
1740  */
1741 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1742 {
1743  struct packet_command cgc;
1744  struct request_sense sense;
1745  write_param_page *wp;
1746  char buffer[128];
1747  int ret, size;
1748 
1749  /* doesn't apply to DVD+RW or DVD-RAM */
1750  if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1751  return 0;
1752 
1753  memset(buffer, 0, sizeof(buffer));
1754  init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1755  cgc.sense = &sense;
1756  if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1757  pkt_dump_sense(&cgc);
1758  return ret;
1759  }
1760 
1761  size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1762  pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1763  if (size > sizeof(buffer))
1764  size = sizeof(buffer);
1765 
1766  /*
1767  * now get it all
1768  */
1769  init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1770  cgc.sense = &sense;
1771  if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1772  pkt_dump_sense(&cgc);
1773  return ret;
1774  }
1775 
1776  /*
1777  * write page is offset header + block descriptor length
1778  */
1779  wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1780 
1781  wp->fp = pd->settings.fp;
1782  wp->track_mode = pd->settings.track_mode;
1783  wp->write_type = pd->settings.write_type;
1784  wp->data_block_type = pd->settings.block_mode;
1785 
1786  wp->multi_session = 0;
1787 
1788 #ifdef PACKET_USE_LS
1789  wp->link_size = 7;
1790  wp->ls_v = 1;
1791 #endif
1792 
1793  if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1794  wp->session_format = 0;
1795  wp->subhdr2 = 0x20;
1796  } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1797  wp->session_format = 0x20;
1798  wp->subhdr2 = 8;
1799 #if 0
1800  wp->mcn[0] = 0x80;
1801  memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1802 #endif
1803  } else {
1804  /*
1805  * paranoia
1806  */
1807  printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1808  return 1;
1809  }
1810  wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1811 
1812  cgc.buflen = cgc.cmd[8] = size;
1813  if ((ret = pkt_mode_select(pd, &cgc))) {
1814  pkt_dump_sense(&cgc);
1815  return ret;
1816  }
1817 
1818  pkt_print_settings(pd);
1819  return 0;
1820 }
1821 
1822 /*
1823  * 1 -- we can write to this track, 0 -- we can't
1824  */
1825 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1826 {
1827  switch (pd->mmc3_profile) {
1828  case 0x1a: /* DVD+RW */
1829  case 0x12: /* DVD-RAM */
1830  /* The track is always writable on DVD+RW/DVD-RAM */
1831  return 1;
1832  default:
1833  break;
1834  }
1835 
1836  if (!ti->packet || !ti->fp)
1837  return 0;
1838 
1839  /*
1840  * "good" settings as per Mt Fuji.
1841  */
1842  if (ti->rt == 0 && ti->blank == 0)
1843  return 1;
1844 
1845  if (ti->rt == 0 && ti->blank == 1)
1846  return 1;
1847 
1848  if (ti->rt == 1 && ti->blank == 0)
1849  return 1;
1850 
1851  printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1852  return 0;
1853 }
1854 
1855 /*
1856  * 1 -- we can write to this disc, 0 -- we can't
1857  */
1858 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1859 {
1860  switch (pd->mmc3_profile) {
1861  case 0x0a: /* CD-RW */
1862  case 0xffff: /* MMC3 not supported */
1863  break;
1864  case 0x1a: /* DVD+RW */
1865  case 0x13: /* DVD-RW */
1866  case 0x12: /* DVD-RAM */
1867  return 1;
1868  default:
1869  VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1870  return 0;
1871  }
1872 
1873  /*
1874  * for disc type 0xff we should probably reserve a new track.
1875  * but i'm not sure, should we leave this to user apps? probably.
1876  */
1877  if (di->disc_type == 0xff) {
1878  printk(DRIVER_NAME": Unknown disc. No track?\n");
1879  return 0;
1880  }
1881 
1882  if (di->disc_type != 0x20 && di->disc_type != 0) {
1883  printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1884  return 0;
1885  }
1886 
1887  if (di->erasable == 0) {
1888  printk(DRIVER_NAME": Disc not erasable\n");
1889  return 0;
1890  }
1891 
1892  if (di->border_status == PACKET_SESSION_RESERVED) {
1893  printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1894  return 0;
1895  }
1896 
1897  return 1;
1898 }
1899 
1900 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1901 {
1902  struct packet_command cgc;
1903  unsigned char buf[12];
1904  disc_information di;
1905  track_information ti;
1906  int ret, track;
1907 
1908  init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1909  cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1910  cgc.cmd[8] = 8;
1911  ret = pkt_generic_packet(pd, &cgc);
1912  pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1913 
1914  memset(&di, 0, sizeof(disc_information));
1915  memset(&ti, 0, sizeof(track_information));
1916 
1917  if ((ret = pkt_get_disc_info(pd, &di))) {
1918  printk("failed get_disc\n");
1919  return ret;
1920  }
1921 
1922  if (!pkt_writable_disc(pd, &di))
1923  return -EROFS;
1924 
1925  pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1926 
1927  track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1928  if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1929  printk(DRIVER_NAME": failed get_track\n");
1930  return ret;
1931  }
1932 
1933  if (!pkt_writable_track(pd, &ti)) {
1934  printk(DRIVER_NAME": can't write to this track\n");
1935  return -EROFS;
1936  }
1937 
1938  /*
1939  * we keep packet size in 512 byte units, makes it easier to
1940  * deal with request calculations.
1941  */
1942  pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1943  if (pd->settings.size == 0) {
1944  printk(DRIVER_NAME": detected zero packet size!\n");
1945  return -ENXIO;
1946  }
1947  if (pd->settings.size > PACKET_MAX_SECTORS) {
1948  printk(DRIVER_NAME": packet size is too big\n");
1949  return -EROFS;
1950  }
1951  pd->settings.fp = ti.fp;
1952  pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1953 
1954  if (ti.nwa_v) {
1955  pd->nwa = be32_to_cpu(ti.next_writable);
1957  }
1958 
1959  /*
1960  * in theory we could use lra on -RW media as well and just zero
1961  * blocks that haven't been written yet, but in practice that
1962  * is just a no-go. we'll use that for -R, naturally.
1963  */
1964  if (ti.lra_v) {
1965  pd->lra = be32_to_cpu(ti.last_rec_address);
1967  } else {
1968  pd->lra = 0xffffffff;
1970  }
1971 
1972  /*
1973  * fine for now
1974  */
1975  pd->settings.link_loss = 7;
1976  pd->settings.write_type = 0; /* packet */
1977  pd->settings.track_mode = ti.track_mode;
1978 
1979  /*
1980  * mode1 or mode2 disc
1981  */
1982  switch (ti.data_mode) {
1983  case PACKET_MODE1:
1984  pd->settings.block_mode = PACKET_BLOCK_MODE1;
1985  break;
1986  case PACKET_MODE2:
1987  pd->settings.block_mode = PACKET_BLOCK_MODE2;
1988  break;
1989  default:
1990  printk(DRIVER_NAME": unknown data mode\n");
1991  return -EROFS;
1992  }
1993  return 0;
1994 }
1995 
1996 /*
1997  * enable/disable write caching on drive
1998  */
1999 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
2000  int set)
2001 {
2002  struct packet_command cgc;
2003  struct request_sense sense;
2004  unsigned char buf[64];
2005  int ret;
2006 
2007  init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2008  cgc.sense = &sense;
2009  cgc.buflen = pd->mode_offset + 12;
2010 
2011  /*
2012  * caching mode page might not be there, so quiet this command
2013  */
2014  cgc.quiet = 1;
2015 
2016  if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2017  return ret;
2018 
2019  buf[pd->mode_offset + 10] |= (!!set << 2);
2020 
2021  cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2022  ret = pkt_mode_select(pd, &cgc);
2023  if (ret) {
2024  printk(DRIVER_NAME": write caching control failed\n");
2025  pkt_dump_sense(&cgc);
2026  } else if (!ret && set)
2027  printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2028  return ret;
2029 }
2030 
2031 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2032 {
2033  struct packet_command cgc;
2034 
2037  cgc.cmd[4] = lockflag ? 1 : 0;
2038  return pkt_generic_packet(pd, &cgc);
2039 }
2040 
2041 /*
2042  * Returns drive maximum write speed
2043  */
2044 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
2045  unsigned *write_speed)
2046 {
2047  struct packet_command cgc;
2048  struct request_sense sense;
2049  unsigned char buf[256+18];
2050  unsigned char *cap_buf;
2051  int ret, offset;
2052 
2053  cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2054  init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2055  cgc.sense = &sense;
2056 
2057  ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2058  if (ret) {
2059  cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2060  sizeof(struct mode_page_header);
2061  ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2062  if (ret) {
2063  pkt_dump_sense(&cgc);
2064  return ret;
2065  }
2066  }
2067 
2068  offset = 20; /* Obsoleted field, used by older drives */
2069  if (cap_buf[1] >= 28)
2070  offset = 28; /* Current write speed selected */
2071  if (cap_buf[1] >= 30) {
2072  /* If the drive reports at least one "Logical Unit Write
2073  * Speed Performance Descriptor Block", use the information
2074  * in the first block. (contains the highest speed)
2075  */
2076  int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2077  if (num_spdb > 0)
2078  offset = 34;
2079  }
2080 
2081  *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2082  return 0;
2083 }
2084 
2085 /* These tables from cdrecord - I don't have orange book */
2086 /* standard speed CD-RW (1-4x) */
2087 static char clv_to_speed[16] = {
2088  /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2089  0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2090 };
2091 /* high speed CD-RW (-10x) */
2092 static char hs_clv_to_speed[16] = {
2093  /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2094  0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2095 };
2096 /* ultra high speed CD-RW */
2097 static char us_clv_to_speed[16] = {
2098  /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2099  0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2100 };
2101 
2102 /*
2103  * reads the maximum media speed from ATIP
2104  */
2105 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2106  unsigned *speed)
2107 {
2108  struct packet_command cgc;
2109  struct request_sense sense;
2110  unsigned char buf[64];
2111  unsigned int size, st, sp;
2112  int ret;
2113 
2114  init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2115  cgc.sense = &sense;
2116  cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2117  cgc.cmd[1] = 2;
2118  cgc.cmd[2] = 4; /* READ ATIP */
2119  cgc.cmd[8] = 2;
2120  ret = pkt_generic_packet(pd, &cgc);
2121  if (ret) {
2122  pkt_dump_sense(&cgc);
2123  return ret;
2124  }
2125  size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2126  if (size > sizeof(buf))
2127  size = sizeof(buf);
2128 
2129  init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2130  cgc.sense = &sense;
2131  cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2132  cgc.cmd[1] = 2;
2133  cgc.cmd[2] = 4;
2134  cgc.cmd[8] = size;
2135  ret = pkt_generic_packet(pd, &cgc);
2136  if (ret) {
2137  pkt_dump_sense(&cgc);
2138  return ret;
2139  }
2140 
2141  if (!(buf[6] & 0x40)) {
2142  printk(DRIVER_NAME": Disc type is not CD-RW\n");
2143  return 1;
2144  }
2145  if (!(buf[6] & 0x4)) {
2146  printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2147  return 1;
2148  }
2149 
2150  st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2151 
2152  sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2153 
2154  /* Info from cdrecord */
2155  switch (st) {
2156  case 0: /* standard speed */
2157  *speed = clv_to_speed[sp];
2158  break;
2159  case 1: /* high speed */
2160  *speed = hs_clv_to_speed[sp];
2161  break;
2162  case 2: /* ultra high speed */
2163  *speed = us_clv_to_speed[sp];
2164  break;
2165  default:
2166  printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2167  return 1;
2168  }
2169  if (*speed) {
2170  printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2171  return 0;
2172  } else {
2173  printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2174  return 1;
2175  }
2176 }
2177 
2178 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2179 {
2180  struct packet_command cgc;
2181  struct request_sense sense;
2182  int ret;
2183 
2184  VPRINTK(DRIVER_NAME": Performing OPC\n");
2185 
2187  cgc.sense = &sense;
2188  cgc.timeout = 60*HZ;
2189  cgc.cmd[0] = GPCMD_SEND_OPC;
2190  cgc.cmd[1] = 1;
2191  if ((ret = pkt_generic_packet(pd, &cgc)))
2192  pkt_dump_sense(&cgc);
2193  return ret;
2194 }
2195 
2196 static int pkt_open_write(struct pktcdvd_device *pd)
2197 {
2198  int ret;
2199  unsigned int write_speed, media_write_speed, read_speed;
2200 
2201  if ((ret = pkt_probe_settings(pd))) {
2202  VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2203  return ret;
2204  }
2205 
2206  if ((ret = pkt_set_write_settings(pd))) {
2207  DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2208  return -EIO;
2209  }
2210 
2211  pkt_write_caching(pd, USE_WCACHING);
2212 
2213  if ((ret = pkt_get_max_speed(pd, &write_speed)))
2214  write_speed = 16 * 177;
2215  switch (pd->mmc3_profile) {
2216  case 0x13: /* DVD-RW */
2217  case 0x1a: /* DVD+RW */
2218  case 0x12: /* DVD-RAM */
2219  DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2220  break;
2221  default:
2222  if ((ret = pkt_media_speed(pd, &media_write_speed)))
2223  media_write_speed = 16;
2224  write_speed = min(write_speed, media_write_speed * 177);
2225  DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2226  break;
2227  }
2228  read_speed = write_speed;
2229 
2230  if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2231  DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2232  return -EIO;
2233  }
2234  pd->write_speed = write_speed;
2235  pd->read_speed = read_speed;
2236 
2237  if ((ret = pkt_perform_opc(pd))) {
2238  DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2239  }
2240 
2241  return 0;
2242 }
2243 
2244 /*
2245  * called at open time.
2246  */
2247 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2248 {
2249  int ret;
2250  long lba;
2251  struct request_queue *q;
2252 
2253  /*
2254  * We need to re-open the cdrom device without O_NONBLOCK to be able
2255  * to read/write from/to it. It is already opened in O_NONBLOCK mode
2256  * so bdget() can't fail.
2257  */
2258  bdget(pd->bdev->bd_dev);
2259  if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2260  goto out;
2261 
2262  if ((ret = pkt_get_last_written(pd, &lba))) {
2263  printk(DRIVER_NAME": pkt_get_last_written failed\n");
2264  goto out_putdev;
2265  }
2266 
2267  set_capacity(pd->disk, lba << 2);
2268  set_capacity(pd->bdev->bd_disk, lba << 2);
2269  bd_set_size(pd->bdev, (loff_t)lba << 11);
2270 
2271  q = bdev_get_queue(pd->bdev);
2272  if (write) {
2273  if ((ret = pkt_open_write(pd)))
2274  goto out_putdev;
2275  /*
2276  * Some CDRW drives can not handle writes larger than one packet,
2277  * even if the size is a multiple of the packet size.
2278  */
2279  spin_lock_irq(q->queue_lock);
2280  blk_queue_max_hw_sectors(q, pd->settings.size);
2281  spin_unlock_irq(q->queue_lock);
2282  set_bit(PACKET_WRITABLE, &pd->flags);
2283  } else {
2284  pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2286  }
2287 
2288  if ((ret = pkt_set_segment_merging(pd, q)))
2289  goto out_putdev;
2290 
2291  if (write) {
2292  if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2293  printk(DRIVER_NAME": not enough memory for buffers\n");
2294  ret = -ENOMEM;
2295  goto out_putdev;
2296  }
2297  printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2298  }
2299 
2300  return 0;
2301 
2302 out_putdev:
2304 out:
2305  return ret;
2306 }
2307 
2308 /*
2309  * called when the device is closed. makes sure that the device flushes
2310  * the internal cache before we close.
2311  */
2312 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2313 {
2314  if (flush && pkt_flush_cache(pd))
2315  DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2316 
2317  pkt_lock_door(pd, 0);
2318 
2319  pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2321 
2322  pkt_shrink_pktlist(pd);
2323 }
2324 
2325 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2326 {
2327  if (dev_minor >= MAX_WRITERS)
2328  return NULL;
2329  return pkt_devs[dev_minor];
2330 }
2331 
2332 static int pkt_open(struct block_device *bdev, fmode_t mode)
2333 {
2334  struct pktcdvd_device *pd = NULL;
2335  int ret;
2336 
2337  VPRINTK(DRIVER_NAME": entering open\n");
2338 
2339  mutex_lock(&pktcdvd_mutex);
2340  mutex_lock(&ctl_mutex);
2341  pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2342  if (!pd) {
2343  ret = -ENODEV;
2344  goto out;
2345  }
2346  BUG_ON(pd->refcnt < 0);
2347 
2348  pd->refcnt++;
2349  if (pd->refcnt > 1) {
2350  if ((mode & FMODE_WRITE) &&
2351  !test_bit(PACKET_WRITABLE, &pd->flags)) {
2352  ret = -EBUSY;
2353  goto out_dec;
2354  }
2355  } else {
2356  ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2357  if (ret)
2358  goto out_dec;
2359  /*
2360  * needed here as well, since ext2 (among others) may change
2361  * the blocksize at mount time
2362  */
2363  set_blocksize(bdev, CD_FRAMESIZE);
2364  }
2365 
2366  mutex_unlock(&ctl_mutex);
2367  mutex_unlock(&pktcdvd_mutex);
2368  return 0;
2369 
2370 out_dec:
2371  pd->refcnt--;
2372 out:
2373  VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2374  mutex_unlock(&ctl_mutex);
2375  mutex_unlock(&pktcdvd_mutex);
2376  return ret;
2377 }
2378 
2379 static int pkt_close(struct gendisk *disk, fmode_t mode)
2380 {
2381  struct pktcdvd_device *pd = disk->private_data;
2382  int ret = 0;
2383 
2384  mutex_lock(&pktcdvd_mutex);
2385  mutex_lock(&ctl_mutex);
2386  pd->refcnt--;
2387  BUG_ON(pd->refcnt < 0);
2388  if (pd->refcnt == 0) {
2389  int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2390  pkt_release_dev(pd, flush);
2391  }
2392  mutex_unlock(&ctl_mutex);
2393  mutex_unlock(&pktcdvd_mutex);
2394  return ret;
2395 }
2396 
2397 
2398 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2399 {
2400  struct packet_stacked_data *psd = bio->bi_private;
2401  struct pktcdvd_device *pd = psd->pd;
2402 
2403  bio_put(bio);
2404  bio_endio(psd->bio, err);
2405  mempool_free(psd, psd_pool);
2406  pkt_bio_finished(pd);
2407 }
2408 
2409 static void pkt_make_request(struct request_queue *q, struct bio *bio)
2410 {
2411  struct pktcdvd_device *pd;
2412  char b[BDEVNAME_SIZE];
2413  sector_t zone;
2414  struct packet_data *pkt;
2415  int was_empty, blocked_bio;
2416  struct pkt_rb_node *node;
2417 
2418  pd = q->queuedata;
2419  if (!pd) {
2420  printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2421  goto end_io;
2422  }
2423 
2424  /*
2425  * Clone READ bios so we can have our own bi_end_io callback.
2426  */
2427  if (bio_data_dir(bio) == READ) {
2428  struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2429  struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2430 
2431  psd->pd = pd;
2432  psd->bio = bio;
2433  cloned_bio->bi_bdev = pd->bdev;
2434  cloned_bio->bi_private = psd;
2435  cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2436  pd->stats.secs_r += bio->bi_size >> 9;
2437  pkt_queue_bio(pd, cloned_bio);
2438  return;
2439  }
2440 
2441  if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2442  printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2443  pd->name, (unsigned long long)bio->bi_sector);
2444  goto end_io;
2445  }
2446 
2447  if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2448  printk(DRIVER_NAME": wrong bio size\n");
2449  goto end_io;
2450  }
2451 
2452  blk_queue_bounce(q, &bio);
2453 
2454  zone = ZONE(bio->bi_sector, pd);
2455  VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2456  (unsigned long long)bio->bi_sector,
2457  (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2458 
2459  /* Check if we have to split the bio */
2460  {
2461  struct bio_pair *bp;
2462  sector_t last_zone;
2463  int first_sectors;
2464 
2465  last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2466  if (last_zone != zone) {
2467  BUG_ON(last_zone != zone + pd->settings.size);
2468  first_sectors = last_zone - bio->bi_sector;
2469  bp = bio_split(bio, first_sectors);
2470  BUG_ON(!bp);
2471  pkt_make_request(q, &bp->bio1);
2472  pkt_make_request(q, &bp->bio2);
2473  bio_pair_release(bp);
2474  return;
2475  }
2476  }
2477 
2478  /*
2479  * If we find a matching packet in state WAITING or READ_WAIT, we can
2480  * just append this bio to that packet.
2481  */
2482  spin_lock(&pd->cdrw.active_list_lock);
2483  blocked_bio = 0;
2484  list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2485  if (pkt->sector == zone) {
2486  spin_lock(&pkt->lock);
2487  if ((pkt->state == PACKET_WAITING_STATE) ||
2488  (pkt->state == PACKET_READ_WAIT_STATE)) {
2489  bio_list_add(&pkt->orig_bios, bio);
2490  pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2491  if ((pkt->write_size >= pkt->frames) &&
2492  (pkt->state == PACKET_WAITING_STATE)) {
2493  atomic_inc(&pkt->run_sm);
2494  wake_up(&pd->wqueue);
2495  }
2496  spin_unlock(&pkt->lock);
2497  spin_unlock(&pd->cdrw.active_list_lock);
2498  return;
2499  } else {
2500  blocked_bio = 1;
2501  }
2502  spin_unlock(&pkt->lock);
2503  }
2504  }
2505  spin_unlock(&pd->cdrw.active_list_lock);
2506 
2507  /*
2508  * Test if there is enough room left in the bio work queue
2509  * (queue size >= congestion on mark).
2510  * If not, wait till the work queue size is below the congestion off mark.
2511  */
2512  spin_lock(&pd->lock);
2513  if (pd->write_congestion_on > 0
2514  && pd->bio_queue_size >= pd->write_congestion_on) {
2515  set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2516  do {
2517  spin_unlock(&pd->lock);
2519  spin_lock(&pd->lock);
2520  } while(pd->bio_queue_size > pd->write_congestion_off);
2521  }
2522  spin_unlock(&pd->lock);
2523 
2524  /*
2525  * No matching packet found. Store the bio in the work queue.
2526  */
2527  node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2528  node->bio = bio;
2529  spin_lock(&pd->lock);
2530  BUG_ON(pd->bio_queue_size < 0);
2531  was_empty = (pd->bio_queue_size == 0);
2532  pkt_rbtree_insert(pd, node);
2533  spin_unlock(&pd->lock);
2534 
2535  /*
2536  * Wake up the worker thread.
2537  */
2538  atomic_set(&pd->scan_queue, 1);
2539  if (was_empty) {
2540  /* This wake_up is required for correct operation */
2541  wake_up(&pd->wqueue);
2542  } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2543  /*
2544  * This wake up is not required for correct operation,
2545  * but improves performance in some cases.
2546  */
2547  wake_up(&pd->wqueue);
2548  }
2549  return;
2550 end_io:
2551  bio_io_error(bio);
2552 }
2553 
2554 
2555 
2556 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2557  struct bio_vec *bvec)
2558 {
2559  struct pktcdvd_device *pd = q->queuedata;
2560  sector_t zone = ZONE(bmd->bi_sector, pd);
2561  int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2562  int remaining = (pd->settings.size << 9) - used;
2563  int remaining2;
2564 
2565  /*
2566  * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2567  * boundary, pkt_make_request() will split the bio.
2568  */
2569  remaining2 = PAGE_SIZE - bmd->bi_size;
2570  remaining = max(remaining, remaining2);
2571 
2572  BUG_ON(remaining < 0);
2573  return remaining;
2574 }
2575 
2576 static void pkt_init_queue(struct pktcdvd_device *pd)
2577 {
2578  struct request_queue *q = pd->disk->queue;
2579 
2580  blk_queue_make_request(q, pkt_make_request);
2583  blk_queue_merge_bvec(q, pkt_merge_bvec);
2584  q->queuedata = pd;
2585 }
2586 
2587 static int pkt_seq_show(struct seq_file *m, void *p)
2588 {
2589  struct pktcdvd_device *pd = m->private;
2590  char *msg;
2591  char bdev_buf[BDEVNAME_SIZE];
2592  int states[PACKET_NUM_STATES];
2593 
2594  seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2595  bdevname(pd->bdev, bdev_buf));
2596 
2597  seq_printf(m, "\nSettings:\n");
2598  seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2599 
2600  if (pd->settings.write_type == 0)
2601  msg = "Packet";
2602  else
2603  msg = "Unknown";
2604  seq_printf(m, "\twrite type:\t\t%s\n", msg);
2605 
2606  seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2607  seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2608 
2609  seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2610 
2611  if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2612  msg = "Mode 1";
2613  else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2614  msg = "Mode 2";
2615  else
2616  msg = "Unknown";
2617  seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2618 
2619  seq_printf(m, "\nStatistics:\n");
2620  seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2621  seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2622  seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2623  seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2624  seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2625 
2626  seq_printf(m, "\nMisc:\n");
2627  seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2628  seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2629  seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2630  seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2631  seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2632  seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2633 
2634  seq_printf(m, "\nQueue state:\n");
2635  seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2636  seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2637  seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2638 
2639  pkt_count_states(pd, states);
2640  seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2641  states[0], states[1], states[2], states[3], states[4], states[5]);
2642 
2643  seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2645  pd->write_congestion_on);
2646  return 0;
2647 }
2648 
2649 static int pkt_seq_open(struct inode *inode, struct file *file)
2650 {
2651  return single_open(file, pkt_seq_show, PDE(inode)->data);
2652 }
2653 
2654 static const struct file_operations pkt_proc_fops = {
2655  .open = pkt_seq_open,
2656  .read = seq_read,
2657  .llseek = seq_lseek,
2658  .release = single_release
2659 };
2660 
2661 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2662 {
2663  int i;
2664  int ret = 0;
2665  char b[BDEVNAME_SIZE];
2666  struct block_device *bdev;
2667 
2668  if (pd->pkt_dev == dev) {
2669  printk(DRIVER_NAME": Recursive setup not allowed\n");
2670  return -EBUSY;
2671  }
2672  for (i = 0; i < MAX_WRITERS; i++) {
2673  struct pktcdvd_device *pd2 = pkt_devs[i];
2674  if (!pd2)
2675  continue;
2676  if (pd2->bdev->bd_dev == dev) {
2677  printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2678  return -EBUSY;
2679  }
2680  if (pd2->pkt_dev == dev) {
2681  printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2682  return -EBUSY;
2683  }
2684  }
2685 
2686  bdev = bdget(dev);
2687  if (!bdev)
2688  return -ENOMEM;
2689  ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2690  if (ret)
2691  return ret;
2692 
2693  /* This is safe, since we have a reference from open(). */
2694  __module_get(THIS_MODULE);
2695 
2696  pd->bdev = bdev;
2697  set_blocksize(bdev, CD_FRAMESIZE);
2698 
2699  pkt_init_queue(pd);
2700 
2701  atomic_set(&pd->cdrw.pending_bios, 0);
2702  pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2703  if (IS_ERR(pd->cdrw.thread)) {
2704  printk(DRIVER_NAME": can't start kernel thread\n");
2705  ret = -ENOMEM;
2706  goto out_mem;
2707  }
2708 
2709  proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2710  DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2711  return 0;
2712 
2713 out_mem:
2715  /* This is safe: open() is still holding a reference. */
2716  module_put(THIS_MODULE);
2717  return ret;
2718 }
2719 
2720 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2721 {
2722  struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2723  int ret;
2724 
2725  VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd,
2726  MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2727 
2728  mutex_lock(&pktcdvd_mutex);
2729  switch (cmd) {
2730  case CDROMEJECT:
2731  /*
2732  * The door gets locked when the device is opened, so we
2733  * have to unlock it or else the eject command fails.
2734  */
2735  if (pd->refcnt == 1)
2736  pkt_lock_door(pd, 0);
2737  /* fallthru */
2738  /*
2739  * forward selected CDROM ioctls to CD-ROM, for UDF
2740  */
2741  case CDROMMULTISESSION:
2742  case CDROMREADTOCENTRY:
2743  case CDROM_LAST_WRITTEN:
2744  case CDROM_SEND_PACKET:
2746  ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2747  break;
2748 
2749  default:
2750  VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2751  ret = -ENOTTY;
2752  }
2753  mutex_unlock(&pktcdvd_mutex);
2754 
2755  return ret;
2756 }
2757 
2758 static unsigned int pkt_check_events(struct gendisk *disk,
2759  unsigned int clearing)
2760 {
2761  struct pktcdvd_device *pd = disk->private_data;
2762  struct gendisk *attached_disk;
2763 
2764  if (!pd)
2765  return 0;
2766  if (!pd->bdev)
2767  return 0;
2768  attached_disk = pd->bdev->bd_disk;
2769  if (!attached_disk || !attached_disk->fops->check_events)
2770  return 0;
2771  return attached_disk->fops->check_events(attached_disk, clearing);
2772 }
2773 
2774 static const struct block_device_operations pktcdvd_ops = {
2775  .owner = THIS_MODULE,
2776  .open = pkt_open,
2777  .release = pkt_close,
2778  .ioctl = pkt_ioctl,
2779  .check_events = pkt_check_events,
2780 };
2781 
2782 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2783 {
2784  return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2785 }
2786 
2787 /*
2788  * Set up mapping from pktcdvd device to CD-ROM device.
2789  */
2790 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2791 {
2792  int idx;
2793  int ret = -ENOMEM;
2794  struct pktcdvd_device *pd;
2795  struct gendisk *disk;
2796 
2798 
2799  for (idx = 0; idx < MAX_WRITERS; idx++)
2800  if (!pkt_devs[idx])
2801  break;
2802  if (idx == MAX_WRITERS) {
2803  printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2804  ret = -EBUSY;
2805  goto out_mutex;
2806  }
2807 
2808  pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2809  if (!pd)
2810  goto out_mutex;
2811 
2812  pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2813  sizeof(struct pkt_rb_node));
2814  if (!pd->rb_pool)
2815  goto out_mem;
2816 
2817  INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2818  INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2819  spin_lock_init(&pd->cdrw.active_list_lock);
2820 
2821  spin_lock_init(&pd->lock);
2822  spin_lock_init(&pd->iosched.lock);
2823  bio_list_init(&pd->iosched.read_queue);
2824  bio_list_init(&pd->iosched.write_queue);
2825  sprintf(pd->name, DRIVER_NAME"%d", idx);
2827  pd->bio_queue = RB_ROOT;
2828 
2829  pd->write_congestion_on = write_congestion_on;
2830  pd->write_congestion_off = write_congestion_off;
2831 
2832  disk = alloc_disk(1);
2833  if (!disk)
2834  goto out_mem;
2835  pd->disk = disk;
2836  disk->major = pktdev_major;
2837  disk->first_minor = idx;
2838  disk->fops = &pktcdvd_ops;
2839  disk->flags = GENHD_FL_REMOVABLE;
2840  strcpy(disk->disk_name, pd->name);
2841  disk->devnode = pktcdvd_devnode;
2842  disk->private_data = pd;
2843  disk->queue = blk_alloc_queue(GFP_KERNEL);
2844  if (!disk->queue)
2845  goto out_mem2;
2846 
2847  pd->pkt_dev = MKDEV(pktdev_major, idx);
2848  ret = pkt_new_dev(pd, dev);
2849  if (ret)
2850  goto out_new_dev;
2851 
2852  /* inherit events of the host device */
2853  disk->events = pd->bdev->bd_disk->events;
2854  disk->async_events = pd->bdev->bd_disk->async_events;
2855 
2856  add_disk(disk);
2857 
2858  pkt_sysfs_dev_new(pd);
2859  pkt_debugfs_dev_new(pd);
2860 
2861  pkt_devs[idx] = pd;
2862  if (pkt_dev)
2863  *pkt_dev = pd->pkt_dev;
2864 
2865  mutex_unlock(&ctl_mutex);
2866  return 0;
2867 
2868 out_new_dev:
2869  blk_cleanup_queue(disk->queue);
2870 out_mem2:
2871  put_disk(disk);
2872 out_mem:
2873  if (pd->rb_pool)
2874  mempool_destroy(pd->rb_pool);
2875  kfree(pd);
2876 out_mutex:
2877  mutex_unlock(&ctl_mutex);
2878  printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2879  return ret;
2880 }
2881 
2882 /*
2883  * Tear down mapping from pktcdvd device to CD-ROM device.
2884  */
2885 static int pkt_remove_dev(dev_t pkt_dev)
2886 {
2887  struct pktcdvd_device *pd;
2888  int idx;
2889  int ret = 0;
2890 
2892 
2893  for (idx = 0; idx < MAX_WRITERS; idx++) {
2894  pd = pkt_devs[idx];
2895  if (pd && (pd->pkt_dev == pkt_dev))
2896  break;
2897  }
2898  if (idx == MAX_WRITERS) {
2899  DPRINTK(DRIVER_NAME": dev not setup\n");
2900  ret = -ENXIO;
2901  goto out;
2902  }
2903 
2904  if (pd->refcnt > 0) {
2905  ret = -EBUSY;
2906  goto out;
2907  }
2908  if (!IS_ERR(pd->cdrw.thread))
2909  kthread_stop(pd->cdrw.thread);
2910 
2911  pkt_devs[idx] = NULL;
2912 
2913  pkt_debugfs_dev_remove(pd);
2914  pkt_sysfs_dev_remove(pd);
2915 
2917 
2918  remove_proc_entry(pd->name, pkt_proc);
2919  DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2920 
2921  del_gendisk(pd->disk);
2922  blk_cleanup_queue(pd->disk->queue);
2923  put_disk(pd->disk);
2924 
2925  mempool_destroy(pd->rb_pool);
2926  kfree(pd);
2927 
2928  /* This is safe: open() is still holding a reference. */
2929  module_put(THIS_MODULE);
2930 
2931 out:
2932  mutex_unlock(&ctl_mutex);
2933  return ret;
2934 }
2935 
2936 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2937 {
2938  struct pktcdvd_device *pd;
2939 
2941 
2942  pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2943  if (pd) {
2944  ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2945  ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2946  } else {
2947  ctrl_cmd->dev = 0;
2948  ctrl_cmd->pkt_dev = 0;
2949  }
2950  ctrl_cmd->num_devices = MAX_WRITERS;
2951 
2952  mutex_unlock(&ctl_mutex);
2953 }
2954 
2955 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2956 {
2957  void __user *argp = (void __user *)arg;
2958  struct pkt_ctrl_command ctrl_cmd;
2959  int ret = 0;
2960  dev_t pkt_dev = 0;
2961 
2962  if (cmd != PACKET_CTRL_CMD)
2963  return -ENOTTY;
2964 
2965  if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2966  return -EFAULT;
2967 
2968  switch (ctrl_cmd.command) {
2969  case PKT_CTRL_CMD_SETUP:
2970  if (!capable(CAP_SYS_ADMIN))
2971  return -EPERM;
2972  ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2973  ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2974  break;
2975  case PKT_CTRL_CMD_TEARDOWN:
2976  if (!capable(CAP_SYS_ADMIN))
2977  return -EPERM;
2978  ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2979  break;
2980  case PKT_CTRL_CMD_STATUS:
2981  pkt_get_status(&ctrl_cmd);
2982  break;
2983  default:
2984  return -ENOTTY;
2985  }
2986 
2987  if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2988  return -EFAULT;
2989  return ret;
2990 }
2991 
2992 #ifdef CONFIG_COMPAT
2993 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2994 {
2995  return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2996 }
2997 #endif
2998 
2999 static const struct file_operations pkt_ctl_fops = {
3000  .open = nonseekable_open,
3001  .unlocked_ioctl = pkt_ctl_ioctl,
3002 #ifdef CONFIG_COMPAT
3003  .compat_ioctl = pkt_ctl_compat_ioctl,
3004 #endif
3005  .owner = THIS_MODULE,
3006  .llseek = no_llseek,
3007 };
3008 
3009 static struct miscdevice pkt_misc = {
3010  .minor = MISC_DYNAMIC_MINOR,
3011  .name = DRIVER_NAME,
3012  .nodename = "pktcdvd/control",
3013  .fops = &pkt_ctl_fops
3014 };
3015 
3016 static int __init pkt_init(void)
3017 {
3018  int ret;
3019 
3020  mutex_init(&ctl_mutex);
3021 
3022  psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3023  sizeof(struct packet_stacked_data));
3024  if (!psd_pool)
3025  return -ENOMEM;
3026 
3027  ret = register_blkdev(pktdev_major, DRIVER_NAME);
3028  if (ret < 0) {
3029  printk(DRIVER_NAME": Unable to register block device\n");
3030  goto out2;
3031  }
3032  if (!pktdev_major)
3033  pktdev_major = ret;
3034 
3035  ret = pkt_sysfs_init();
3036  if (ret)
3037  goto out;
3038 
3039  pkt_debugfs_init();
3040 
3041  ret = misc_register(&pkt_misc);
3042  if (ret) {
3043  printk(DRIVER_NAME": Unable to register misc device\n");
3044  goto out_misc;
3045  }
3046 
3047  pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
3048 
3049  return 0;
3050 
3051 out_misc:
3052  pkt_debugfs_cleanup();
3053  pkt_sysfs_cleanup();
3054 out:
3055  unregister_blkdev(pktdev_major, DRIVER_NAME);
3056 out2:
3057  mempool_destroy(psd_pool);
3058  return ret;
3059 }
3060 
3061 static void __exit pkt_exit(void)
3062 {
3063  remove_proc_entry("driver/"DRIVER_NAME, NULL);
3064  misc_deregister(&pkt_misc);
3065 
3066  pkt_debugfs_cleanup();
3067  pkt_sysfs_cleanup();
3068 
3069  unregister_blkdev(pktdev_major, DRIVER_NAME);
3070  mempool_destroy(psd_pool);
3071 }
3072 
3073 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3074 MODULE_AUTHOR("Jens Axboe <[email protected]>");
3075 MODULE_LICENSE("GPL");
3076 
3077 module_init(pkt_init);
3078 module_exit(pkt_exit);