Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
s626.c
Go to the documentation of this file.
1 /*
2  comedi/drivers/s626.c
3  Sensoray s626 Comedi driver
4 
5  COMEDI - Linux Control and Measurement Device Interface
6  Copyright (C) 2000 David A. Schleef <[email protected]>
7 
8  Based on Sensoray Model 626 Linux driver Version 0.2
9  Copyright (C) 2002-2004 Sensoray Co., Inc.
10 
11  This program is free software; you can redistribute it and/or modify
12  it under the terms of the GNU General Public License as published by
13  the Free Software Foundation; either version 2 of the License, or
14  (at your option) any later version.
15 
16  This program is distributed in the hope that it will be useful,
17  but WITHOUT ANY WARRANTY; without even the implied warranty of
18  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19  GNU General Public License for more details.
20 
21  You should have received a copy of the GNU General Public License
22  along with this program; if not, write to the Free Software
23  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 
25 */
26 
27 /*
28 Driver: s626
29 Description: Sensoray 626 driver
30 Devices: [Sensoray] 626 (s626)
31 Authors: Gianluca Palli <[email protected]>,
32 Updated: Fri, 15 Feb 2008 10:28:42 +0000
33 Status: experimental
34 
35 Configuration options: not applicable, uses PCI auto config
36 
37 INSN_CONFIG instructions:
38  analog input:
39  none
40 
41  analog output:
42  none
43 
44  digital channel:
45  s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
46  supported configuration options:
47  INSN_CONFIG_DIO_QUERY
48  COMEDI_INPUT
49  COMEDI_OUTPUT
50 
51  encoder:
52  Every channel must be configured before reading.
53 
54  Example code
55 
56  insn.insn=INSN_CONFIG; //configuration instruction
57  insn.n=1; //number of operation (must be 1)
58  insn.data=&initialvalue; //initial value loaded into encoder
59  //during configuration
60  insn.subdev=5; //encoder subdevice
61  insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
62  //to configure
63 
64  comedi_do_insn(cf,&insn); //executing configuration
65 */
66 
67 #include <linux/interrupt.h>
68 #include <linux/kernel.h>
69 #include <linux/types.h>
70 
71 #include "../comedidev.h"
72 
73 #include "comedi_fc.h"
74 #include "s626.h"
75 
76 #define PCI_VENDOR_ID_S626 0x1131
77 #define PCI_DEVICE_ID_S626 0x7146
78 #define PCI_SUBVENDOR_ID_S626 0x6000
79 #define PCI_SUBDEVICE_ID_S626 0x0272
80 
81 struct s626_private {
83  uint8_t ai_cmd_running; /* ai_cmd is running */
84  uint8_t ai_continous; /* continous acquisition */
85  int ai_sample_count; /* number of samples to acquire */
86  unsigned int ai_sample_timer;
87  /* time between samples in units of the timer */
88  int ai_convert_count; /* conversion counter */
89  unsigned int ai_convert_timer;
90  /* time between conversion in units of the timer */
92  /* Counter interrupt enable mask for MISC2 register. */
93  uint8_t AdcItems; /* Number of items in ADC poll list. */
94  struct bufferDMA RPSBuf; /* DMA buffer used to hold ADC (RPS1) program. */
95  struct bufferDMA ANABuf;
96  /* DMA buffer used to receive ADC data and hold DAC data. */
98  /* Pointer to logical adrs of DMA buffer used to hold DAC data. */
99  uint16_t Dacpol; /* Image of DAC polarity register. */
100  uint8_t TrimSetpoint[12]; /* Images of TrimDAC setpoints */
101  /* Charge Enabled (0 or WRMISC2_CHARGE_ENABLE). */
103  /* I2C device address for onboard EEPROM (board rev dependent). */
104  /* short I2Cards; */
106 };
107 
108 struct dio_private {
118 };
119 
120 static struct dio_private dio_private_A = {
121  .RDDIn = LP_RDDINA,
122  .WRDOut = LP_WRDOUTA,
123  .RDEdgSel = LP_RDEDGSELA,
124  .WREdgSel = LP_WREDGSELA,
125  .RDCapSel = LP_RDCAPSELA,
126  .WRCapSel = LP_WRCAPSELA,
127  .RDCapFlg = LP_RDCAPFLGA,
128  .RDIntSel = LP_RDINTSELA,
129  .WRIntSel = LP_WRINTSELA,
130 };
131 
132 static struct dio_private dio_private_B = {
133  .RDDIn = LP_RDDINB,
134  .WRDOut = LP_WRDOUTB,
135  .RDEdgSel = LP_RDEDGSELB,
136  .WREdgSel = LP_WREDGSELB,
137  .RDCapSel = LP_RDCAPSELB,
138  .WRCapSel = LP_WRCAPSELB,
139  .RDCapFlg = LP_RDCAPFLGB,
140  .RDIntSel = LP_RDINTSELB,
141  .WRIntSel = LP_WRINTSELB,
142 };
143 
144 static struct dio_private dio_private_C = {
145  .RDDIn = LP_RDDINC,
146  .WRDOut = LP_WRDOUTC,
147  .RDEdgSel = LP_RDEDGSELC,
148  .WREdgSel = LP_WREDGSELC,
149  .RDCapSel = LP_RDCAPSELC,
150  .WRCapSel = LP_WRCAPSELC,
151  .RDCapFlg = LP_RDCAPFLGC,
152  .RDIntSel = LP_RDINTSELC,
153  .WRIntSel = LP_WRINTSELC,
154 };
155 
156 /* to group dio devices (48 bits mask and data are not allowed ???)
157 static struct dio_private *dio_private_word[]={
158  &dio_private_A,
159  &dio_private_B,
160  &dio_private_C,
161 };
162 */
163 
164 #define devpriv ((struct s626_private *)dev->private)
165 #define diopriv ((struct dio_private *)s->private)
166 
167 /* COUNTER OBJECT ------------------------------------------------ */
168 struct enc_private {
169  /* Pointers to functions that differ for A and B counters: */
170  uint16_t(*GetEnable) (struct comedi_device *dev, struct enc_private *); /* Return clock enable. */
171  uint16_t(*GetIntSrc) (struct comedi_device *dev, struct enc_private *); /* Return interrupt source. */
172  uint16_t(*GetLoadTrig) (struct comedi_device *dev, struct enc_private *); /* Return preload trigger source. */
173  uint16_t(*GetMode) (struct comedi_device *dev, struct enc_private *); /* Return standardized operating mode. */
174  void (*PulseIndex) (struct comedi_device *dev, struct enc_private *); /* Generate soft index strobe. */
175  void (*SetEnable) (struct comedi_device *dev, struct enc_private *, uint16_t enab); /* Program clock enable. */
176  void (*SetIntSrc) (struct comedi_device *dev, struct enc_private *, uint16_t IntSource); /* Program interrupt source. */
177  void (*SetLoadTrig) (struct comedi_device *dev, struct enc_private *, uint16_t Trig); /* Program preload trigger source. */
178  void (*SetMode) (struct comedi_device *dev, struct enc_private *, uint16_t Setup, uint16_t DisableIntSrc); /* Program standardized operating mode. */
179  void (*ResetCapFlags) (struct comedi_device *dev, struct enc_private *); /* Reset event capture flags. */
180 
181  uint16_t MyCRA; /* Address of CRA register. */
182  uint16_t MyCRB; /* Address of CRB register. */
183  uint16_t MyLatchLsw; /* Address of Latch least-significant-word */
184  /* register. */
185  uint16_t MyEventBits[4]; /* Bit translations for IntSrc -->RDMISC2. */
186 };
187 
188 #define encpriv ((struct enc_private *)(dev->subdevices+5)->private)
189 
190 /* Counter overflow/index event flag masks for RDMISC2. */
191 #define INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4)))
192 #define OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
193 #define EVBITS(C) { 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) }
194 
195 /* Translation table to map IntSrc into equivalent RDMISC2 event flag bits. */
196 /* static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) }; */
197 
198 /* enab/disable a function or test status bit(s) that are accessed */
199 /* through Main Control Registers 1 or 2. */
200 #define MC_ENABLE(REGADRS, CTRLWORD) writel(((uint32_t)(CTRLWORD) << 16) | (uint32_t)(CTRLWORD), devpriv->base_addr+(REGADRS))
201 
202 #define MC_DISABLE(REGADRS, CTRLWORD) writel((uint32_t)(CTRLWORD) << 16 , devpriv->base_addr+(REGADRS))
203 
204 #define MC_TEST(REGADRS, CTRLWORD) ((readl(devpriv->base_addr+(REGADRS)) & CTRLWORD) != 0)
205 
206 /* #define WR7146(REGARDS,CTRLWORD)
207  writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */
208 #define WR7146(REGARDS, CTRLWORD) writel(CTRLWORD, devpriv->base_addr+(REGARDS))
209 
210 /* #define RR7146(REGARDS)
211  readl((uint32_t)(devpriv->base_addr+(REGARDS))) */
212 #define RR7146(REGARDS) readl(devpriv->base_addr+(REGARDS))
213 
214 #define BUGFIX_STREG(REGADRS) (REGADRS - 4)
215 
216 /* Write a time slot control record to TSL2. */
217 #define VECTPORT(VECTNUM) (P_TSL2 + ((VECTNUM) << 2))
218 #define SETVECT(VECTNUM, VECTVAL) WR7146(VECTPORT(VECTNUM), (VECTVAL))
219 
220 /* Code macros used for constructing I2C command bytes. */
221 #define I2C_B2(ATTR, VAL) (((ATTR) << 6) | ((VAL) << 24))
222 #define I2C_B1(ATTR, VAL) (((ATTR) << 4) | ((VAL) << 16))
223 #define I2C_B0(ATTR, VAL) (((ATTR) << 2) | ((VAL) << 8))
224 
225 static const struct comedi_lrange s626_range_table = { 2, {
226  RANGE(-5, 5),
227  RANGE(-10, 10),
228  }
229 };
230 
231 /* Execute a DEBI transfer. This must be called from within a */
232 /* critical section. */
233 static void DEBItransfer(struct comedi_device *dev)
234 {
235  /* Initiate upload of shadow RAM to DEBI control register. */
237 
238  /* Wait for completion of upload from shadow RAM to DEBI control */
239  /* register. */
240  while (!MC_TEST(P_MC2, MC2_UPLD_DEBI))
241  ;
242 
243  /* Wait until DEBI transfer is done. */
244  while (RR7146(P_PSR) & PSR_DEBI_S)
245  ;
246 }
247 
248 /* Initialize the DEBI interface for all transfers. */
249 
250 static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr)
251 {
253 
254  /* Set up DEBI control register value in shadow RAM. */
256 
257  /* Execute the DEBI transfer. */
258  DEBItransfer(dev);
259 
260  /* Fetch target register value. */
261  retval = (uint16_t) RR7146(P_DEBIAD);
262 
263  /* Return register value. */
264  return retval;
265 }
266 
267 /* Write a value to a gate array register. */
268 static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata)
269 {
270 
271  /* Set up DEBI control register value in shadow RAM. */
273  WR7146(P_DEBIAD, wdata);
274 
275  /* Execute the DEBI transfer. */
276  DEBItransfer(dev);
277 }
278 
279 /* Replace the specified bits in a gate array register. Imports: mask
280  * specifies bits that are to be preserved, wdata is new value to be
281  * or'd with the masked original.
282  */
283 static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask,
284  uint16_t wdata)
285 {
286 
287  /* Copy target gate array register into P_DEBIAD register. */
289  /* Set up DEBI control reg value in shadow RAM. */
290  DEBItransfer(dev); /* Execute the DEBI Read transfer. */
291 
292  /* Write back the modified image. */
294  /* Set up DEBI control reg value in shadow RAM. */
295 
296  WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask));
297  /* Modify the register image. */
298  DEBItransfer(dev); /* Execute the DEBI Write transfer. */
299 }
300 
301 /* ************** EEPROM ACCESS FUNCTIONS ************** */
302 
303 static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val)
304 {
305  /* Write I2C command to I2C Transfer Control shadow register. */
306  WR7146(P_I2CCTRL, val);
307 
308  /* Upload I2C shadow registers into working registers and wait for */
309  /* upload confirmation. */
310 
312  while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
313  ;
314 
315  /* Wait until I2C bus transfer is finished or an error occurs. */
316  while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY)
317  ;
318 
319  /* Return non-zero if I2C error occurred. */
320  return RR7146(P_I2CCTRL) & I2C_ERR;
321 
322 }
323 
324 /* Read uint8_t from EEPROM. */
325 static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr)
326 {
327  uint8_t rtnval;
328 
329  /* Send EEPROM target address. */
330  if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW)
331  /* Byte2 = I2C command: write to I2C EEPROM device. */
332  | I2C_B1(I2C_ATTRSTOP, addr)
333  /* Byte1 = EEPROM internal target address. */
334  | I2C_B0(I2C_ATTRNOP, 0))) { /* Byte0 = Not sent. */
335  /* Abort function and declare error if handshake failed. */
336  return 0;
337  }
338  /* Execute EEPROM read. */
339  if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR)
340 
341  /* Byte2 = I2C */
342  /* command: read */
343  /* from I2C EEPROM */
344  /* device. */
345  |I2C_B1(I2C_ATTRSTOP, 0)
346 
347  /* Byte1 receives */
348  /* uint8_t from */
349  /* EEPROM. */
350  |I2C_B0(I2C_ATTRNOP, 0))) { /* Byte0 = Not sent. */
351 
352  /* Abort function and declare error if handshake failed. */
353  return 0;
354  }
355  /* Return copy of EEPROM value. */
356  rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16);
357  return rtnval;
358 }
359 
360 /* *********** DAC FUNCTIONS *********** */
361 
362 /* Slot 0 base settings. */
363 #define VECT0 (XSD2 | RSD3 | SIB_A2)
364 /* Slot 0 always shifts in 0xFF and store it to FB_BUFFER2. */
365 
366 /* TrimDac LogicalChan-to-PhysicalChan mapping table. */
367 static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
368 
369 /* TrimDac LogicalChan-to-EepromAdrs mapping table. */
370 static uint8_t trimadrs[] = { 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
371 
372 /* Private helper function: Transmit serial data to DAC via Audio
373  * channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
374  * Dacpol contains valid target image.
375  */
376 static void SendDAC(struct comedi_device *dev, uint32_t val)
377 {
378 
379  /* START THE SERIAL CLOCK RUNNING ------------- */
380 
381  /* Assert DAC polarity control and enable gating of DAC serial clock
382  * and audio bit stream signals. At this point in time we must be
383  * assured of being in time slot 0. If we are not in slot 0, the
384  * serial clock and audio stream signals will be disabled; this is
385  * because the following DEBIwrite statement (which enables signals
386  * to be passed through the gate array) would execute before the
387  * trailing edge of WS1/WS3 (which turns off the signals), thus
388  * causing the signals to be inactive during the DAC write.
389  */
390  DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);
391 
392  /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
393 
394  /* Copy DAC setpoint value to DAC's output DMA buffer. */
395 
396  /* WR7146( (uint32_t)devpriv->pDacWBuf, val ); */
397  *devpriv->pDacWBuf = val;
398 
399  /* enab the output DMA transfer. This will cause the DMAC to copy
400  * the DAC's data value to A2's output FIFO. The DMA transfer will
401  * then immediately terminate because the protection address is
402  * reached upon transfer of the first DWORD value.
403  */
405 
406  /* While the DMA transfer is executing ... */
407 
408  /* Reset Audio2 output FIFO's underflow flag (along with any other
409  * FIFO underflow/overflow flags). When set, this flag will
410  * indicate that we have emerged from slot 0.
411  */
413 
414  /* Wait for the DMA transfer to finish so that there will be data
415  * available in the FIFO when time slot 1 tries to transfer a DWORD
416  * from the FIFO to the output buffer register. We test for DMA
417  * Done by polling the DMAC enable flag; this flag is automatically
418  * cleared when the transfer has finished.
419  */
420  while ((RR7146(P_MC1) & MC1_A2OUT) != 0)
421  ;
422 
423  /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
424 
425  /* FIFO data is now available, so we enable execution of time slots
426  * 1 and higher by clearing the EOS flag in slot 0. Note that SD3
427  * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
428  * detection.
429  */
430  SETVECT(0, XSD2 | RSD3 | SIB_A2);
431 
432  /* Wait for slot 1 to execute to ensure that the Packet will be
433  * transmitted. This is detected by polling the Audio2 output FIFO
434  * underflow flag, which will be set when slot 1 execution has
435  * finished transferring the DAC's data DWORD from the output FIFO
436  * to the output buffer register.
437  */
438  while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0)
439  ;
440 
441  /* Set up to trap execution at slot 0 when the TSL sequencer cycles
442  * back to slot 0 after executing the EOS in slot 5. Also,
443  * simultaneously shift out and in the 0x00 that is ALWAYS the value
444  * stored in the last byte to be shifted out of the FIFO's DWORD
445  * buffer register.
446  */
447  SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);
448 
449  /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
450 
451  /* Wait for the TSL to finish executing all time slots before
452  * exiting this function. We must do this so that the next DAC
453  * write doesn't start, thereby enabling clock/chip select signals:
454  *
455  * 1. Before the TSL sequence cycles back to slot 0, which disables
456  * the clock/cs signal gating and traps slot // list execution.
457  * we have not yet finished slot 5 then the clock/cs signals are
458  * still gated and we have not finished transmitting the stream.
459  *
460  * 2. While slots 2-5 are executing due to a late slot 0 trap. In
461  * this case, the slot sequence is currently repeating, but with
462  * clock/cs signals disabled. We must wait for slot 0 to trap
463  * execution before setting up the next DAC setpoint DMA transfer
464  * and enabling the clock/cs signals. To detect the end of slot 5,
465  * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
466  * the TSL has not yet finished executing slot 5 ...
467  */
468  if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
469  /* The trap was set on time and we are still executing somewhere
470  * in slots 2-5, so we now wait for slot 0 to execute and trap
471  * TSL execution. This is detected when FB_BUFFER2 MSB changes
472  * from 0xFF to 0x00, which slot 0 causes to happen by shifting
473  * out/in on SD2 the 0x00 that is always referenced by slot 5.
474  */
475  while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0)
476  ;
477  }
478  /* Either (1) we were too late setting the slot 0 trap; the TSL
479  * sequencer restarted slot 0 before we could set the EOS trap flag,
480  * or (2) we were not late and execution is now trapped at slot 0.
481  * In either case, we must now change slot 0 so that it will store
482  * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
483  * In order to do this, we reprogram slot 0 so that it will shift in
484  * SD3, which is driven only by a pull-up resistor.
485  */
486  SETVECT(0, RSD3 | SIB_A2 | EOS);
487 
488  /* Wait for slot 0 to execute, at which time the TSL is setup for
489  * the next DAC write. This is detected when FB_BUFFER2 MSB changes
490  * from 0x00 to 0xFF.
491  */
492  while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0)
493  ;
494 }
495 
496 /* Private helper function: Write setpoint to an application DAC channel. */
497 static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata)
498 {
499  register uint16_t signmask;
500  register uint32_t WSImage;
501 
502  /* Adjust DAC data polarity and set up Polarity Control Register */
503  /* image. */
504  signmask = 1 << chan;
505  if (dacdata < 0) {
506  dacdata = -dacdata;
507  devpriv->Dacpol |= signmask;
508  } else
509  devpriv->Dacpol &= ~signmask;
510 
511  /* Limit DAC setpoint value to valid range. */
512  if ((uint16_t) dacdata > 0x1FFF)
513  dacdata = 0x1FFF;
514 
515  /* Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
516  * and V3 transmit the setpoint to the target DAC. V4 and V5 send
517  * data to a non-existent TrimDac channel just to keep the clock
518  * running after sending data to the target DAC. This is necessary
519  * to eliminate the clock glitch that would otherwise occur at the
520  * end of the target DAC's serial data stream. When the sequence
521  * restarts at V0 (after executing V5), the gate array automatically
522  * disables gating for the DAC clock and all DAC chip selects.
523  */
524 
525  WSImage = (chan & 2) ? WS1 : WS2;
526  /* Choose DAC chip select to be asserted. */
527  SETVECT(2, XSD2 | XFIFO_1 | WSImage);
528  /* Slot 2: Transmit high data byte to target DAC. */
529  SETVECT(3, XSD2 | XFIFO_0 | WSImage);
530  /* Slot 3: Transmit low data byte to target DAC. */
531  SETVECT(4, XSD2 | XFIFO_3 | WS3);
532  /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
533  SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS);
534  /* Slot 5: running after writing target DAC's low data byte. */
535 
536  /* Construct and transmit target DAC's serial packet:
537  * ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>,
538  * and D<12:0> is the DAC setpoint. Append a WORD value (that writes
539  * to a non-existent TrimDac channel) that serves to keep the clock
540  * running after the packet has been sent to the target DAC.
541  */
542  SendDAC(dev, 0x0F000000
543  /* Continue clock after target DAC data (write to non-existent trimdac). */
544  | 0x00004000
545  /* Address the two main dual-DAC devices (TSL's chip select enables
546  * target device). */
547  | ((uint32_t) (chan & 1) << 15)
548  /* Address the DAC channel within the device. */
549  | (uint32_t) dacdata); /* Include DAC setpoint data. */
550 
551 }
552 
553 static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
554  uint8_t DacData)
555 {
556  uint32_t chan;
557 
558  /* Save the new setpoint in case the application needs to read it back later. */
559  devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
560 
561  /* Map logical channel number to physical channel number. */
562  chan = (uint32_t) trimchan[LogicalChan];
563 
564  /* Set up TSL2 records for TrimDac write operation. All slots shift
565  * 0xFF in from pulled-up SD3 so that the end of the slot sequence
566  * can be detected.
567  */
568 
569  SETVECT(2, XSD2 | XFIFO_1 | WS3);
570  /* Slot 2: Send high uint8_t to target TrimDac. */
571  SETVECT(3, XSD2 | XFIFO_0 | WS3);
572  /* Slot 3: Send low uint8_t to target TrimDac. */
573  SETVECT(4, XSD2 | XFIFO_3 | WS1);
574  /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running. */
575  SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS);
576  /* Slot 5: Send NOP low uint8_t to DAC0. */
577 
578  /* Construct and transmit target DAC's serial packet:
579  * ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the
580  * DAC channel's address, and D<7:0> is the DAC setpoint. Append a
581  * WORD value (that writes a channel 0 NOP command to a non-existent
582  * main DAC channel) that serves to keep the clock running after the
583  * packet has been sent to the target DAC.
584  */
585 
586  /* Address the DAC channel within the trimdac device. */
587  SendDAC(dev, ((uint32_t) chan << 8)
588  | (uint32_t) DacData); /* Include DAC setpoint data. */
589 }
590 
591 static void LoadTrimDACs(struct comedi_device *dev)
592 {
593  register uint8_t i;
594 
595  /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
596  for (i = 0; i < ARRAY_SIZE(trimchan); i++)
597  WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
598 }
599 
600 /* ****** COUNTER FUNCTIONS ******* */
601 /* All counter functions address a specific counter by means of the
602  * "Counter" argument, which is a logical counter number. The Counter
603  * argument may have any of the following legal values: 0=0A, 1=1A,
604  * 2=2A, 3=0B, 4=1B, 5=2B.
605  */
606 
607 /* Read a counter's output latch. */
608 static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k)
609 {
610  register uint32_t value;
611 
612  /* Latch counts and fetch LSW of latched counts value. */
613  value = (uint32_t) DEBIread(dev, k->MyLatchLsw);
614 
615  /* Fetch MSW of latched counts and combine with LSW. */
616  value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);
617 
618  /* Return latched counts. */
619  return value;
620 }
621 
622 /* Return/set a counter pair's latch trigger source. 0: On read
623  * access, 1: A index latches A, 2: B index latches B, 3: A overflow
624  * latches B.
625  */
626 static void SetLatchSource(struct comedi_device *dev, struct enc_private *k,
627  uint16_t value)
628 {
629  DEBIreplace(dev, k->MyCRB,
631  (uint16_t) (value << CRBBIT_LATCHSRC));
632 }
633 
634 /* Write value into counter preload register. */
635 static void Preload(struct comedi_device *dev, struct enc_private *k,
636  uint32_t value)
637 {
638  DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value);
639  DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
640  (uint16_t) (value >> 16));
641 }
642 
643 static unsigned int s626_ai_reg_to_uint(int data)
644 {
645  unsigned int tempdata;
646 
647  tempdata = (data >> 18);
648  if (tempdata & 0x2000)
649  tempdata &= 0x1fff;
650  else
651  tempdata += (1 << 13);
652 
653  return tempdata;
654 }
655 
656 /* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data){ */
657 /* return 0; */
658 /* } */
659 
660 static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
661 {
662  unsigned int group;
663  unsigned int bitmask;
664  unsigned int status;
665 
666  /* select dio bank */
667  group = chan / 16;
668  bitmask = 1 << (chan - (16 * group));
669 
670  /* set channel to capture positive edge */
671  status = DEBIread(dev,
672  ((struct dio_private *)(dev->subdevices + 2 +
673  group)->private)->RDEdgSel);
674  DEBIwrite(dev,
675  ((struct dio_private *)(dev->subdevices + 2 +
676  group)->private)->WREdgSel,
677  bitmask | status);
678 
679  /* enable interrupt on selected channel */
680  status = DEBIread(dev,
681  ((struct dio_private *)(dev->subdevices + 2 +
682  group)->private)->RDIntSel);
683  DEBIwrite(dev,
684  ((struct dio_private *)(dev->subdevices + 2 +
685  group)->private)->WRIntSel,
686  bitmask | status);
687 
688  /* enable edge capture write command */
689  DEBIwrite(dev, LP_MISC1, MISC1_EDCAP);
690 
691  /* enable edge capture on selected channel */
692  status = DEBIread(dev,
693  ((struct dio_private *)(dev->subdevices + 2 +
694  group)->private)->RDCapSel);
695  DEBIwrite(dev,
696  ((struct dio_private *)(dev->subdevices + 2 +
697  group)->private)->WRCapSel,
698  bitmask | status);
699 
700  return 0;
701 }
702 
703 static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
704  unsigned int mask)
705 {
706  /* disable edge capture write command */
707  DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
708 
709  /* enable edge capture on selected channel */
710  DEBIwrite(dev,
711  ((struct dio_private *)(dev->subdevices + 2 +
712  group)->private)->WRCapSel, mask);
713 
714  return 0;
715 }
716 
717 static int s626_dio_clear_irq(struct comedi_device *dev)
718 {
719  unsigned int group;
720 
721  /* disable edge capture write command */
722  DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
723 
724  for (group = 0; group < S626_DIO_BANKS; group++) {
725  /* clear pending events and interrupt */
726  DEBIwrite(dev,
727  ((struct dio_private *)(dev->subdevices + 2 +
728  group)->private)->WRCapSel,
729  0xffff);
730  }
731 
732  return 0;
733 }
734 
735 static irqreturn_t s626_irq_handler(int irq, void *d)
736 {
737  struct comedi_device *dev = d;
738  struct comedi_subdevice *s;
739  struct comedi_cmd *cmd;
740  struct enc_private *k;
741  unsigned long flags;
742  int32_t *readaddr;
743  uint32_t irqtype, irqstatus;
744  int i = 0;
745  short tempdata;
746  uint8_t group;
747  uint16_t irqbit;
748 
749  if (dev->attached == 0)
750  return IRQ_NONE;
751  /* lock to avoid race with comedi_poll */
752  spin_lock_irqsave(&dev->spinlock, flags);
753 
754  /* save interrupt enable register state */
755  irqstatus = readl(devpriv->base_addr + P_IER);
756 
757  /* read interrupt type */
758  irqtype = readl(devpriv->base_addr + P_ISR);
759 
760  /* disable master interrupt */
761  writel(0, devpriv->base_addr + P_IER);
762 
763  /* clear interrupt */
764  writel(irqtype, devpriv->base_addr + P_ISR);
765 
766  switch (irqtype) {
767  case IRQ_RPS1: /* end_of_scan occurs */
768  /* manage ai subdevice */
769  s = dev->subdevices;
770  cmd = &(s->async->cmd);
771 
772  /* Init ptr to DMA buffer that holds new ADC data. We skip the
773  * first uint16_t in the buffer because it contains junk data from
774  * the final ADC of the previous poll list scan.
775  */
776  readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1;
777 
778  /* get the data and hand it over to comedi */
779  for (i = 0; i < (s->async->cmd.chanlist_len); i++) {
780  /* Convert ADC data to 16-bit integer values and copy to application */
781  /* buffer. */
782  tempdata = s626_ai_reg_to_uint((int)*readaddr);
783  readaddr++;
784 
785  /* put data into read buffer */
786  /* comedi_buf_put(s->async, tempdata); */
787  if (cfc_write_to_buffer(s, tempdata) == 0)
788  printk
789  ("s626_irq_handler: cfc_write_to_buffer error!\n");
790  }
791 
792  /* end of scan occurs */
793  s->async->events |= COMEDI_CB_EOS;
794 
795  if (!(devpriv->ai_continous))
796  devpriv->ai_sample_count--;
797  if (devpriv->ai_sample_count <= 0) {
798  devpriv->ai_cmd_running = 0;
799 
800  /* Stop RPS program. */
802 
803  /* send end of acquisition */
804  s->async->events |= COMEDI_CB_EOA;
805 
806  /* disable master interrupt */
807  irqstatus = 0;
808  }
809 
810  if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT)
811  s626_dio_set_irq(dev, cmd->scan_begin_arg);
812  /* tell comedi that data is there */
813  comedi_event(dev, s);
814  break;
815  case IRQ_GPIO3: /* check dio and conter interrupt */
816  /* manage ai subdevice */
817  s = dev->subdevices;
818  cmd = &(s->async->cmd);
819 
820  /* s626_dio_clear_irq(dev); */
821 
822  for (group = 0; group < S626_DIO_BANKS; group++) {
823  irqbit = 0;
824  /* read interrupt type */
825  irqbit = DEBIread(dev,
826  ((struct dio_private *)(dev->
827  subdevices +
828  2 +
829  group)->
830  private)->RDCapFlg);
831 
832  /* check if interrupt is generated from dio channels */
833  if (irqbit) {
834  s626_dio_reset_irq(dev, group, irqbit);
835  if (devpriv->ai_cmd_running) {
836  /* check if interrupt is an ai acquisition start trigger */
837  if ((irqbit >> (cmd->start_arg -
838  (16 * group)))
839  == 1 && cmd->start_src == TRIG_EXT) {
840  /* Start executing the RPS program. */
842 
843  if (cmd->scan_begin_src ==
844  TRIG_EXT) {
845  s626_dio_set_irq(dev,
846  cmd->scan_begin_arg);
847  }
848  }
849  if ((irqbit >> (cmd->scan_begin_arg -
850  (16 * group)))
851  == 1
852  && cmd->scan_begin_src ==
853  TRIG_EXT) {
854  /* Trigger ADC scan loop start by setting RPS Signal 0. */
856 
857  if (cmd->convert_src ==
858  TRIG_EXT) {
859  devpriv->ai_convert_count
860  = cmd->chanlist_len;
861 
862  s626_dio_set_irq(dev,
863  cmd->convert_arg);
864  }
865 
866  if (cmd->convert_src ==
867  TRIG_TIMER) {
868  k = &encpriv[5];
869  devpriv->ai_convert_count
870  = cmd->chanlist_len;
871  k->SetEnable(dev, k,
873  }
874  }
875  if ((irqbit >> (cmd->convert_arg -
876  (16 * group)))
877  == 1
878  && cmd->convert_src == TRIG_EXT) {
879  /* Trigger ADC scan loop start by setting RPS Signal 0. */
881 
882  devpriv->ai_convert_count--;
883 
884  if (devpriv->ai_convert_count >
885  0) {
886  s626_dio_set_irq(dev,
887  cmd->convert_arg);
888  }
889  }
890  }
891  break;
892  }
893  }
894 
895  /* read interrupt type */
896  irqbit = DEBIread(dev, LP_RDMISC2);
897 
898  /* check interrupt on counters */
899  if (irqbit & IRQ_COINT1A) {
900  k = &encpriv[0];
901 
902  /* clear interrupt capture flag */
903  k->ResetCapFlags(dev, k);
904  }
905  if (irqbit & IRQ_COINT2A) {
906  k = &encpriv[1];
907 
908  /* clear interrupt capture flag */
909  k->ResetCapFlags(dev, k);
910  }
911  if (irqbit & IRQ_COINT3A) {
912  k = &encpriv[2];
913 
914  /* clear interrupt capture flag */
915  k->ResetCapFlags(dev, k);
916  }
917  if (irqbit & IRQ_COINT1B) {
918  k = &encpriv[3];
919 
920  /* clear interrupt capture flag */
921  k->ResetCapFlags(dev, k);
922  }
923  if (irqbit & IRQ_COINT2B) {
924  k = &encpriv[4];
925 
926  /* clear interrupt capture flag */
927  k->ResetCapFlags(dev, k);
928 
929  if (devpriv->ai_convert_count > 0) {
930  devpriv->ai_convert_count--;
931  if (devpriv->ai_convert_count == 0)
932  k->SetEnable(dev, k, CLKENAB_INDEX);
933 
934  if (cmd->convert_src == TRIG_TIMER) {
935  /* Trigger ADC scan loop start by setting RPS Signal 0. */
937  }
938  }
939  }
940  if (irqbit & IRQ_COINT3B) {
941  k = &encpriv[5];
942 
943  /* clear interrupt capture flag */
944  k->ResetCapFlags(dev, k);
945 
946  if (cmd->scan_begin_src == TRIG_TIMER) {
947  /* Trigger ADC scan loop start by setting RPS Signal 0. */
949  }
950 
951  if (cmd->convert_src == TRIG_TIMER) {
952  k = &encpriv[4];
953  devpriv->ai_convert_count = cmd->chanlist_len;
954  k->SetEnable(dev, k, CLKENAB_ALWAYS);
955  }
956  }
957  }
958 
959  /* enable interrupt */
960  writel(irqstatus, devpriv->base_addr + P_IER);
961 
962  spin_unlock_irqrestore(&dev->spinlock, flags);
963  return IRQ_HANDLED;
964 }
965 
966 /*
967  * this functions build the RPS program for hardware driven acquistion
968  */
969 static void ResetADC(struct comedi_device *dev, uint8_t *ppl)
970 {
971  register uint32_t *pRPS;
972  uint32_t JmpAdrs;
973  uint16_t i;
974  uint16_t n;
975  uint32_t LocalPPL;
976  struct comedi_cmd *cmd = &(dev->subdevices->async->cmd);
977 
978  /* Stop RPS program in case it is currently running. */
980 
981  /* Set starting logical address to write RPS commands. */
982  pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;
983 
984  /* Initialize RPS instruction pointer. */
985  WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
986 
987  /* Construct RPS program in RPSBuf DMA buffer */
988 
989  if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
990  /* Wait for Start trigger. */
991  *pRPS++ = RPS_PAUSE | RPS_SIGADC;
992  *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
993  }
994 
995  /* SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
996  * because the first RPS DEBI Write following a non-RPS DEBI write
997  * seems to always fail. If we don't do this dummy write, the ADC
998  * gain might not be set to the value required for the first slot in
999  * the poll list; the ADC gain would instead remain unchanged from
1000  * the previously programmed value.
1001  */
1002  *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1003  /* Write DEBI Write command and address to shadow RAM. */
1004 
1005  *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1006  *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1007  /* Write DEBI immediate data to shadow RAM: */
1008 
1009  *pRPS++ = GSEL_BIPOLAR5V;
1010  /* arbitrary immediate data value. */
1011 
1012  *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1013  /* Reset "shadow RAM uploaded" flag. */
1014  *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
1015  *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to finish. */
1016 
1017  /* Digitize all slots in the poll list. This is implemented as a
1018  * for loop to limit the slot count to 16 in case the application
1019  * forgot to set the EOPL flag in the final slot.
1020  */
1021  for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) {
1022  /* Convert application's poll list item to private board class
1023  * format. Each app poll list item is an uint8_t with form
1024  * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1025  * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1026  */
1027  LocalPPL =
1028  (*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
1029  GSEL_BIPOLAR10V);
1030 
1031  /* Switch ADC analog gain. */
1032  *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); /* Write DEBI command */
1033  /* and address to */
1034  /* shadow RAM. */
1035  *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1036  *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); /* Write DEBI */
1037  /* immediate data to */
1038  /* shadow RAM. */
1039  *pRPS++ = LocalPPL;
1040  *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; /* Reset "shadow RAM uploaded" */
1041  /* flag. */
1042  *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
1043  *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to */
1044  /* finish. */
1045 
1046  /* Select ADC analog input channel. */
1047  *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1048  /* Write DEBI command and address to shadow RAM. */
1049  *pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
1050  *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1051  /* Write DEBI immediate data to shadow RAM. */
1052  *pRPS++ = LocalPPL;
1053  *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1054  /* Reset "shadow RAM uploaded" flag. */
1055 
1056  *pRPS++ = RPS_UPLOAD | RPS_DEBI;
1057  /* Invoke shadow RAM upload. */
1058 
1059  *pRPS++ = RPS_PAUSE | RPS_DEBI;
1060  /* Wait for shadow upload to finish. */
1061 
1062  /* Delay at least 10 microseconds for analog input settling.
1063  * Instead of padding with NOPs, we use RPS_JUMP instructions
1064  * here; this allows us to produce a longer delay than is
1065  * possible with NOPs because each RPS_JUMP flushes the RPS'
1066  * instruction prefetch pipeline.
1067  */
1068  JmpAdrs =
1069  (uint32_t) devpriv->RPSBuf.PhysicalBase +
1070  (uint32_t) ((unsigned long)pRPS -
1071  (unsigned long)devpriv->RPSBuf.LogicalBase);
1072  for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
1073  JmpAdrs += 8; /* Repeat to implement time delay: */
1074  *pRPS++ = RPS_JUMP; /* Jump to next RPS instruction. */
1075  *pRPS++ = JmpAdrs;
1076  }
1077 
1078  if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
1079  /* Wait for Start trigger. */
1080  *pRPS++ = RPS_PAUSE | RPS_SIGADC;
1081  *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1082  }
1083  /* Start ADC by pulsing GPIO1. */
1084  *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
1085  *pRPS++ = GPIO_BASE | GPIO1_LO;
1086  *pRPS++ = RPS_NOP;
1087  /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1088  *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
1089  *pRPS++ = GPIO_BASE | GPIO1_HI;
1090 
1091  /* Wait for ADC to complete (GPIO2 is asserted high when ADC not
1092  * busy) and for data from previous conversion to shift into FB
1093  * BUFFER 1 register.
1094  */
1095  *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
1096 
1097  /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
1098  *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
1099  *pRPS++ =
1100  (uint32_t) devpriv->ANABuf.PhysicalBase +
1101  (devpriv->AdcItems << 2);
1102 
1103  /* If this slot's EndOfPollList flag is set, all channels have */
1104  /* now been processed. */
1105  if (*ppl++ & EOPL) {
1106  devpriv->AdcItems++; /* Adjust poll list item count. */
1107  break; /* Exit poll list processing loop. */
1108  }
1109  }
1110 
1111  /* VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
1112  * ADC to stabilize for 2 microseconds before starting the final
1113  * (dummy) conversion. This delay is necessary to allow sufficient
1114  * time between last conversion finished and the start of the dummy
1115  * conversion. Without this delay, the last conversion's data value
1116  * is sometimes set to the previous conversion's data value.
1117  */
1118  for (n = 0; n < (2 * RPSCLK_PER_US); n++)
1119  *pRPS++ = RPS_NOP;
1120 
1121  /* Start a dummy conversion to cause the data from the last
1122  * conversion of interest to be shifted in.
1123  */
1124  *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
1125  *pRPS++ = GPIO_BASE | GPIO1_LO;
1126  *pRPS++ = RPS_NOP;
1127  /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1128  *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
1129  *pRPS++ = GPIO_BASE | GPIO1_HI;
1130 
1131  /* Wait for the data from the last conversion of interest to arrive
1132  * in FB BUFFER 1 register.
1133  */
1134  *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
1135 
1136  /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
1137  *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2); /* */
1138  *pRPS++ =
1139  (uint32_t) devpriv->ANABuf.PhysicalBase + (devpriv->AdcItems << 2);
1140 
1141  /* Indicate ADC scan loop is finished. */
1142  /* *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ; // Signal ReadADC() that scan is done. */
1143 
1144  /* invoke interrupt */
1145  if (devpriv->ai_cmd_running == 1) {
1146  *pRPS++ = RPS_IRQ;
1147  }
1148  /* Restart RPS program at its beginning. */
1149  *pRPS++ = RPS_JUMP; /* Branch to start of RPS program. */
1150  *pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase;
1151 
1152  /* End of RPS program build */
1153 }
1154 
1155 /* TO COMPLETE, IF NECESSARY */
1156 static int s626_ai_insn_config(struct comedi_device *dev,
1157  struct comedi_subdevice *s,
1158  struct comedi_insn *insn, unsigned int *data)
1159 {
1160 
1161  return -EINVAL;
1162 }
1163 
1164 /* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data) */
1165 /* { */
1166 /* register uint8_t i; */
1167 /* register int32_t *readaddr; */
1168 
1169 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1170 /* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1171 
1172 /* Wait until ADC scan loop is finished (RPS Signal 0 reset). */
1173 /* while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */
1174 
1175 /* Init ptr to DMA buffer that holds new ADC data. We skip the
1176  * first uint16_t in the buffer because it contains junk data from
1177  * the final ADC of the previous poll list scan.
1178  */
1179 /* readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */
1180 
1181 /* Convert ADC data to 16-bit integer values and copy to application buffer. */
1182 /* for ( i = 0; i < devpriv->AdcItems; i++ ) { */
1183 /* *data = s626_ai_reg_to_uint( *readaddr++ ); */
1184 /* data++; */
1185 /* } */
1186 
1187 /* return i; */
1188 /* } */
1189 
1190 static int s626_ai_insn_read(struct comedi_device *dev,
1191  struct comedi_subdevice *s,
1192  struct comedi_insn *insn, unsigned int *data)
1193 {
1194  uint16_t chan = CR_CHAN(insn->chanspec);
1195  uint16_t range = CR_RANGE(insn->chanspec);
1196  uint16_t AdcSpec = 0;
1197  uint32_t GpioImage;
1198  int n;
1199 
1200  /* interrupt call test */
1201 /* writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); */
1202  /* Writing a logical 1 into any of the RPS_PSR bits causes the
1203  * corresponding interrupt to be generated if enabled
1204  */
1205 
1206  /* Convert application's ADC specification into form
1207  * appropriate for register programming.
1208  */
1209  if (range == 0)
1210  AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V);
1211  else
1212  AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);
1213 
1214  /* Switch ADC analog gain. */
1215  DEBIwrite(dev, LP_GSEL, AdcSpec); /* Set gain. */
1216 
1217  /* Select ADC analog input channel. */
1218  DEBIwrite(dev, LP_ISEL, AdcSpec); /* Select channel. */
1219 
1220  for (n = 0; n < insn->n; n++) {
1221 
1222  /* Delay 10 microseconds for analog input settling. */
1223  udelay(10);
1224 
1225  /* Start ADC by pulsing GPIO1 low. */
1226  GpioImage = RR7146(P_GPIO);
1227  /* Assert ADC Start command */
1228  WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1229  /* and stretch it out. */
1230  WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1231  WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1232  /* Negate ADC Start command. */
1233  WR7146(P_GPIO, GpioImage | GPIO1_HI);
1234 
1235  /* Wait for ADC to complete (GPIO2 is asserted high when */
1236  /* ADC not busy) and for data from previous conversion to */
1237  /* shift into FB BUFFER 1 register. */
1238 
1239  /* Wait for ADC done. */
1240  while (!(RR7146(P_PSR) & PSR_GPIO2))
1241  ;
1242 
1243  /* Fetch ADC data. */
1244  if (n != 0)
1245  data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1246 
1247  /* Allow the ADC to stabilize for 4 microseconds before
1248  * starting the next (final) conversion. This delay is
1249  * necessary to allow sufficient time between last
1250  * conversion finished and the start of the next
1251  * conversion. Without this delay, the last conversion's
1252  * data value is sometimes set to the previous
1253  * conversion's data value.
1254  */
1255  udelay(4);
1256  }
1257 
1258  /* Start a dummy conversion to cause the data from the
1259  * previous conversion to be shifted in. */
1260  GpioImage = RR7146(P_GPIO);
1261 
1262  /* Assert ADC Start command */
1263  WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1264  /* and stretch it out. */
1265  WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1266  WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1267  /* Negate ADC Start command. */
1268  WR7146(P_GPIO, GpioImage | GPIO1_HI);
1269 
1270  /* Wait for the data to arrive in FB BUFFER 1 register. */
1271 
1272  /* Wait for ADC done. */
1273  while (!(RR7146(P_PSR) & PSR_GPIO2))
1274  ;
1275 
1276  /* Fetch ADC data from audio interface's input shift register. */
1277 
1278  /* Fetch ADC data. */
1279  if (n != 0)
1280  data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1281 
1282  return n;
1283 }
1284 
1285 static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd)
1286 {
1287 
1288  int n;
1289 
1290  for (n = 0; n < cmd->chanlist_len; n++) {
1291  if (CR_RANGE((cmd->chanlist)[n]) == 0)
1292  ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V);
1293  else
1294  ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V);
1295  }
1296  if (n != 0)
1297  ppl[n - 1] |= EOPL;
1298 
1299  return n;
1300 }
1301 
1302 static int s626_ai_inttrig(struct comedi_device *dev,
1303  struct comedi_subdevice *s, unsigned int trignum)
1304 {
1305  if (trignum != 0)
1306  return -EINVAL;
1307 
1308  /* Start executing the RPS program. */
1310 
1311  s->async->inttrig = NULL;
1312 
1313  return 1;
1314 }
1315 
1316 /* This function doesn't require a particular form, this is just what
1317  * happens to be used in some of the drivers. It should convert ns
1318  * nanoseconds to a counter value suitable for programming the device.
1319  * Also, it should adjust ns so that it cooresponds to the actual time
1320  * that the device will use. */
1321 static int s626_ns_to_timer(int *nanosec, int round_mode)
1322 {
1323  int divider, base;
1324 
1325  base = 500; /* 2MHz internal clock */
1326 
1327  switch (round_mode) {
1328  case TRIG_ROUND_NEAREST:
1329  default:
1330  divider = (*nanosec + base / 2) / base;
1331  break;
1332  case TRIG_ROUND_DOWN:
1333  divider = (*nanosec) / base;
1334  break;
1335  case TRIG_ROUND_UP:
1336  divider = (*nanosec + base - 1) / base;
1337  break;
1338  }
1339 
1340  *nanosec = base * divider;
1341  return divider - 1;
1342 }
1343 
1344 static void s626_timer_load(struct comedi_device *dev, struct enc_private *k,
1345  int tick)
1346 {
1347  uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
1348  /* index. */
1349  (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
1350  (CLKSRC_TIMER << BF_CLKSRC) | /* Operating mode is Timer. */
1351  (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
1352  (CNTDIR_DOWN << BF_CLKPOL) | /* Count direction is Down. */
1353  (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
1355  uint16_t valueSrclatch = LATCHSRC_A_INDXA;
1356  /* uint16_t enab=CLKENAB_ALWAYS; */
1357 
1358  k->SetMode(dev, k, Setup, FALSE);
1359 
1360  /* Set the preload register */
1361  Preload(dev, k, tick);
1362 
1363  /* Software index pulse forces the preload register to load */
1364  /* into the counter */
1365  k->SetLoadTrig(dev, k, 0);
1366  k->PulseIndex(dev, k);
1367 
1368  /* set reload on counter overflow */
1369  k->SetLoadTrig(dev, k, 1);
1370 
1371  /* set interrupt on overflow */
1372  k->SetIntSrc(dev, k, INTSRC_OVER);
1373 
1374  SetLatchSource(dev, k, valueSrclatch);
1375  /* k->SetEnable(dev,k,(uint16_t)(enab != 0)); */
1376 }
1377 
1378 /* TO COMPLETE */
1379 static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
1380 {
1381 
1382  uint8_t ppl[16];
1383  struct comedi_cmd *cmd = &s->async->cmd;
1384  struct enc_private *k;
1385  int tick;
1386 
1387  if (devpriv->ai_cmd_running) {
1388  printk(KERN_ERR "s626_ai_cmd: Another ai_cmd is running %d\n",
1389  dev->minor);
1390  return -EBUSY;
1391  }
1392  /* disable interrupt */
1393  writel(0, devpriv->base_addr + P_IER);
1394 
1395  /* clear interrupt request */
1396  writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR);
1397 
1398  /* clear any pending interrupt */
1399  s626_dio_clear_irq(dev);
1400  /* s626_enc_clear_irq(dev); */
1401 
1402  /* reset ai_cmd_running flag */
1403  devpriv->ai_cmd_running = 0;
1404 
1405  /* test if cmd is valid */
1406  if (cmd == NULL)
1407  return -EINVAL;
1408 
1409  if (dev->irq == 0) {
1410  comedi_error(dev,
1411  "s626_ai_cmd: cannot run command without an irq");
1412  return -EIO;
1413  }
1414 
1415  s626_ai_load_polllist(ppl, cmd);
1416  devpriv->ai_cmd_running = 1;
1417  devpriv->ai_convert_count = 0;
1418 
1419  switch (cmd->scan_begin_src) {
1420  case TRIG_FOLLOW:
1421  break;
1422  case TRIG_TIMER:
1423  /* set a conter to generate adc trigger at scan_begin_arg interval */
1424  k = &encpriv[5];
1425  tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1426  cmd->flags & TRIG_ROUND_MASK);
1427 
1428  /* load timer value and enable interrupt */
1429  s626_timer_load(dev, k, tick);
1430  k->SetEnable(dev, k, CLKENAB_ALWAYS);
1431  break;
1432  case TRIG_EXT:
1433  /* set the digital line and interrupt for scan trigger */
1434  if (cmd->start_src != TRIG_EXT)
1435  s626_dio_set_irq(dev, cmd->scan_begin_arg);
1436  break;
1437  }
1438 
1439  switch (cmd->convert_src) {
1440  case TRIG_NOW:
1441  break;
1442  case TRIG_TIMER:
1443  /* set a conter to generate adc trigger at convert_arg interval */
1444  k = &encpriv[4];
1445  tick = s626_ns_to_timer((int *)&cmd->convert_arg,
1446  cmd->flags & TRIG_ROUND_MASK);
1447 
1448  /* load timer value and enable interrupt */
1449  s626_timer_load(dev, k, tick);
1450  k->SetEnable(dev, k, CLKENAB_INDEX);
1451  break;
1452  case TRIG_EXT:
1453  /* set the digital line and interrupt for convert trigger */
1454  if (cmd->scan_begin_src != TRIG_EXT
1455  && cmd->start_src == TRIG_EXT)
1456  s626_dio_set_irq(dev, cmd->convert_arg);
1457  break;
1458  }
1459 
1460  switch (cmd->stop_src) {
1461  case TRIG_COUNT:
1462  /* data arrives as one packet */
1463  devpriv->ai_sample_count = cmd->stop_arg;
1464  devpriv->ai_continous = 0;
1465  break;
1466  case TRIG_NONE:
1467  /* continous acquisition */
1468  devpriv->ai_continous = 1;
1469  devpriv->ai_sample_count = 0;
1470  break;
1471  }
1472 
1473  ResetADC(dev, ppl);
1474 
1475  switch (cmd->start_src) {
1476  case TRIG_NOW:
1477  /* Trigger ADC scan loop start by setting RPS Signal 0. */
1478  /* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1479 
1480  /* Start executing the RPS program. */
1482 
1483  s->async->inttrig = NULL;
1484  break;
1485  case TRIG_EXT:
1486  /* configure DIO channel for acquisition trigger */
1487  s626_dio_set_irq(dev, cmd->start_arg);
1488 
1489  s->async->inttrig = NULL;
1490  break;
1491  case TRIG_INT:
1492  s->async->inttrig = s626_ai_inttrig;
1493  break;
1494  }
1495 
1496  /* enable interrupt */
1497  writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER);
1498 
1499  return 0;
1500 }
1501 
1502 static int s626_ai_cmdtest(struct comedi_device *dev,
1503  struct comedi_subdevice *s, struct comedi_cmd *cmd)
1504 {
1505  int err = 0;
1506  int tmp;
1507 
1508  /* Step 1 : check if triggers are trivially valid */
1509 
1510  err |= cfc_check_trigger_src(&cmd->start_src,
1511  TRIG_NOW | TRIG_INT | TRIG_EXT);
1512  err |= cfc_check_trigger_src(&cmd->scan_begin_src,
1514  err |= cfc_check_trigger_src(&cmd->convert_src,
1516  err |= cfc_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
1517  err |= cfc_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
1518 
1519  if (err)
1520  return 1;
1521 
1522  /* Step 2a : make sure trigger sources are unique */
1523 
1524  err |= cfc_check_trigger_is_unique(cmd->start_src);
1525  err |= cfc_check_trigger_is_unique(cmd->scan_begin_src);
1526  err |= cfc_check_trigger_is_unique(cmd->convert_src);
1527  err |= cfc_check_trigger_is_unique(cmd->stop_src);
1528 
1529  /* Step 2b : and mutually compatible */
1530 
1531  if (err)
1532  return 2;
1533 
1534  /* step 3: make sure arguments are trivially compatible */
1535 
1536  if (cmd->start_src != TRIG_EXT && cmd->start_arg != 0) {
1537  cmd->start_arg = 0;
1538  err++;
1539  }
1540 
1541  if (cmd->start_src == TRIG_EXT && cmd->start_arg > 39) {
1542  cmd->start_arg = 39;
1543  err++;
1544  }
1545 
1546  if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg > 39) {
1547  cmd->scan_begin_arg = 39;
1548  err++;
1549  }
1550 
1551  if (cmd->convert_src == TRIG_EXT && cmd->convert_arg > 39) {
1552  cmd->convert_arg = 39;
1553  err++;
1554  }
1555 #define MAX_SPEED 200000 /* in nanoseconds */
1556 #define MIN_SPEED 2000000000 /* in nanoseconds */
1557 
1558  if (cmd->scan_begin_src == TRIG_TIMER) {
1559  if (cmd->scan_begin_arg < MAX_SPEED) {
1560  cmd->scan_begin_arg = MAX_SPEED;
1561  err++;
1562  }
1563  if (cmd->scan_begin_arg > MIN_SPEED) {
1564  cmd->scan_begin_arg = MIN_SPEED;
1565  err++;
1566  }
1567  } else {
1568  /* external trigger */
1569  /* should be level/edge, hi/lo specification here */
1570  /* should specify multiple external triggers */
1571 /* if(cmd->scan_begin_arg>9){ */
1572 /* cmd->scan_begin_arg=9; */
1573 /* err++; */
1574 /* } */
1575  }
1576  if (cmd->convert_src == TRIG_TIMER) {
1577  if (cmd->convert_arg < MAX_SPEED) {
1578  cmd->convert_arg = MAX_SPEED;
1579  err++;
1580  }
1581  if (cmd->convert_arg > MIN_SPEED) {
1582  cmd->convert_arg = MIN_SPEED;
1583  err++;
1584  }
1585  } else {
1586  /* external trigger */
1587  /* see above */
1588 /* if(cmd->convert_arg>9){ */
1589 /* cmd->convert_arg=9; */
1590 /* err++; */
1591 /* } */
1592  }
1593 
1594  if (cmd->scan_end_arg != cmd->chanlist_len) {
1595  cmd->scan_end_arg = cmd->chanlist_len;
1596  err++;
1597  }
1598  if (cmd->stop_src == TRIG_COUNT) {
1599  if (cmd->stop_arg > 0x00ffffff) {
1600  cmd->stop_arg = 0x00ffffff;
1601  err++;
1602  }
1603  } else {
1604  /* TRIG_NONE */
1605  if (cmd->stop_arg != 0) {
1606  cmd->stop_arg = 0;
1607  err++;
1608  }
1609  }
1610 
1611  if (err)
1612  return 3;
1613 
1614  /* step 4: fix up any arguments */
1615 
1616  if (cmd->scan_begin_src == TRIG_TIMER) {
1617  tmp = cmd->scan_begin_arg;
1618  s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1619  cmd->flags & TRIG_ROUND_MASK);
1620  if (tmp != cmd->scan_begin_arg)
1621  err++;
1622  }
1623  if (cmd->convert_src == TRIG_TIMER) {
1624  tmp = cmd->convert_arg;
1625  s626_ns_to_timer((int *)&cmd->convert_arg,
1626  cmd->flags & TRIG_ROUND_MASK);
1627  if (tmp != cmd->convert_arg)
1628  err++;
1629  if (cmd->scan_begin_src == TRIG_TIMER &&
1630  cmd->scan_begin_arg <
1631  cmd->convert_arg * cmd->scan_end_arg) {
1632  cmd->scan_begin_arg =
1633  cmd->convert_arg * cmd->scan_end_arg;
1634  err++;
1635  }
1636  }
1637 
1638  if (err)
1639  return 4;
1640 
1641  return 0;
1642 }
1643 
1644 static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
1645 {
1646  /* Stop RPS program in case it is currently running. */
1648 
1649  /* disable master interrupt */
1650  writel(0, devpriv->base_addr + P_IER);
1651 
1652  devpriv->ai_cmd_running = 0;
1653 
1654  return 0;
1655 }
1656 
1657 static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
1658  struct comedi_insn *insn, unsigned int *data)
1659 {
1660 
1661  int i;
1662  uint16_t chan = CR_CHAN(insn->chanspec);
1663  int16_t dacdata;
1664 
1665  for (i = 0; i < insn->n; i++) {
1666  dacdata = (int16_t) data[i];
1667  devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i];
1668  dacdata -= (0x1fff);
1669 
1670  SetDAC(dev, chan, dacdata);
1671  }
1672 
1673  return i;
1674 }
1675 
1676 static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
1677  struct comedi_insn *insn, unsigned int *data)
1678 {
1679  int i;
1680 
1681  for (i = 0; i < insn->n; i++)
1682  data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
1683 
1684  return i;
1685 }
1686 
1687 /* *************** DIGITAL I/O FUNCTIONS ***************
1688  * All DIO functions address a group of DIO channels by means of
1689  * "group" argument. group may be 0, 1 or 2, which correspond to DIO
1690  * ports A, B and C, respectively.
1691  */
1692 
1693 static void s626_dio_init(struct comedi_device *dev)
1694 {
1695  uint16_t group;
1696  struct comedi_subdevice *s;
1697 
1698  /* Prepare to treat writes to WRCapSel as capture disables. */
1699  DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
1700 
1701  /* For each group of sixteen channels ... */
1702  for (group = 0; group < S626_DIO_BANKS; group++) {
1703  s = dev->subdevices + 2 + group;
1704  DEBIwrite(dev, diopriv->WRIntSel, 0); /* Disable all interrupts. */
1705  DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF); /* Disable all event */
1706  /* captures. */
1707  DEBIwrite(dev, diopriv->WREdgSel, 0); /* Init all DIOs to */
1708  /* default edge */
1709  /* polarity. */
1710  DEBIwrite(dev, diopriv->WRDOut, 0); /* Program all outputs */
1711  /* to inactive state. */
1712  }
1713 }
1714 
1715 /* DIO devices are slightly special. Although it is possible to
1716  * implement the insn_read/insn_write interface, it is much more
1717  * useful to applications if you implement the insn_bits interface.
1718  * This allows packed reading/writing of the DIO channels. The comedi
1719  * core can convert between insn_bits and insn_read/write */
1720 
1721 static int s626_dio_insn_bits(struct comedi_device *dev,
1722  struct comedi_subdevice *s,
1723  struct comedi_insn *insn, unsigned int *data)
1724 {
1725  /*
1726  * The insn data consists of a mask in data[0] and the new data in
1727  * data[1]. The mask defines which bits we are concerning about.
1728  * The new data must be anded with the mask. Each channel
1729  * corresponds to a bit.
1730  */
1731  if (data[0]) {
1732  /* Check if requested ports are configured for output */
1733  if ((s->io_bits & data[0]) != data[0])
1734  return -EIO;
1735 
1736  s->state &= ~data[0];
1737  s->state |= data[0] & data[1];
1738 
1739  /* Write out the new digital output lines */
1740 
1741  DEBIwrite(dev, diopriv->WRDOut, s->state);
1742  }
1743  data[1] = DEBIread(dev, diopriv->RDDIn);
1744 
1745  return insn->n;
1746 }
1747 
1748 static int s626_dio_insn_config(struct comedi_device *dev,
1749  struct comedi_subdevice *s,
1750  struct comedi_insn *insn, unsigned int *data)
1751 {
1752 
1753  switch (data[0]) {
1754  case INSN_CONFIG_DIO_QUERY:
1755  data[1] =
1756  (s->
1757  io_bits & (1 << CR_CHAN(insn->chanspec))) ? COMEDI_OUTPUT :
1758  COMEDI_INPUT;
1759  return insn->n;
1760  break;
1761  case COMEDI_INPUT:
1762  s->io_bits &= ~(1 << CR_CHAN(insn->chanspec));
1763  break;
1764  case COMEDI_OUTPUT:
1765  s->io_bits |= 1 << CR_CHAN(insn->chanspec);
1766  break;
1767  default:
1768  return -EINVAL;
1769  break;
1770  }
1771  DEBIwrite(dev, diopriv->WRDOut, s->io_bits);
1772 
1773  return 1;
1774 }
1775 
1776 /* Now this function initializes the value of the counter (data[0])
1777  and set the subdevice. To complete with trigger and interrupt
1778  configuration */
1779 /* FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating
1780  * what is being configured, but this function appears to be using data[0]
1781  * as a variable. */
1782 static int s626_enc_insn_config(struct comedi_device *dev,
1783  struct comedi_subdevice *s,
1784  struct comedi_insn *insn, unsigned int *data)
1785 {
1786  uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
1787  /* index. */
1788  (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
1789  (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is Counter. */
1790  (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
1791  /* ( CNTDIR_UP << BF_CLKPOL ) | // Count direction is Down. */
1792  (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
1794  /* uint16_t DisableIntSrc=TRUE; */
1795  /* uint32_t Preloadvalue; //Counter initial value */
1796  uint16_t valueSrclatch = LATCHSRC_AB_READ;
1797  uint16_t enab = CLKENAB_ALWAYS;
1798  struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
1799 
1800  /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
1801 
1802  k->SetMode(dev, k, Setup, TRUE);
1803  Preload(dev, k, data[0]);
1804  k->PulseIndex(dev, k);
1805  SetLatchSource(dev, k, valueSrclatch);
1806  k->SetEnable(dev, k, (uint16_t) (enab != 0));
1807 
1808  return insn->n;
1809 }
1810 
1811 static int s626_enc_insn_read(struct comedi_device *dev,
1812  struct comedi_subdevice *s,
1813  struct comedi_insn *insn, unsigned int *data)
1814 {
1815 
1816  int n;
1817  struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
1818 
1819  for (n = 0; n < insn->n; n++)
1820  data[n] = ReadLatch(dev, k);
1821 
1822  return n;
1823 }
1824 
1825 static int s626_enc_insn_write(struct comedi_device *dev,
1826  struct comedi_subdevice *s,
1827  struct comedi_insn *insn, unsigned int *data)
1828 {
1829 
1830  struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
1831 
1832  /* Set the preload register */
1833  Preload(dev, k, data[0]);
1834 
1835  /* Software index pulse forces the preload register to load */
1836  /* into the counter */
1837  k->SetLoadTrig(dev, k, 0);
1838  k->PulseIndex(dev, k);
1839  k->SetLoadTrig(dev, k, 2);
1840 
1841  return 1;
1842 }
1843 
1844 static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage)
1845 {
1846  DEBIwrite(dev, LP_MISC1, MISC1_WENABLE); /* enab writes to */
1847  /* MISC2 register. */
1848  DEBIwrite(dev, LP_WRMISC2, NewImage); /* Write new image to MISC2. */
1849  DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE); /* Disable writes to MISC2. */
1850 }
1851 
1852 static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma,
1853  size_t bsize)
1854 {
1855  struct pci_dev *pcidev = comedi_to_pci_dev(dev);
1856  void *vbptr;
1857  dma_addr_t vpptr;
1858 
1859  if (pdma == NULL)
1860  return;
1861  /* find the matching allocation from the board struct */
1862 
1863  vbptr = pdma->LogicalBase;
1864  vpptr = pdma->PhysicalBase;
1865  if (vbptr) {
1866  pci_free_consistent(pcidev, bsize, vbptr, vpptr);
1867  pdma->LogicalBase = NULL;
1868  pdma->PhysicalBase = 0;
1869  }
1870 }
1871 
1872 /* ****** PRIVATE COUNTER FUNCTIONS ****** */
1873 
1874 /* Reset a counter's index and overflow event capture flags. */
1875 
1876 static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k)
1877 {
1878  DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
1880 }
1881 
1882 static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k)
1883 {
1884  DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
1886 }
1887 
1888 /* Return counter setup in a format (COUNTER_SETUP) that is consistent */
1889 /* for both A and B counters. */
1890 
1891 static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k)
1892 {
1893  register uint16_t cra;
1894  register uint16_t crb;
1895  register uint16_t setup;
1896 
1897  /* Fetch CRA and CRB register images. */
1898  cra = DEBIread(dev, k->MyCRA);
1899  crb = DEBIread(dev, k->MyCRB);
1900 
1901  /* Populate the standardized counter setup bit fields. Note: */
1902  /* IndexSrc is restricted to ENC_X or IndxPol. */
1903  setup = ((cra & STDMSK_LOADSRC) /* LoadSrc = LoadSrcA. */
1904  |((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcA. */
1905  |((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC) /* IntSrc = IntSrcA. */
1906  |((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC) /* IndxSrc = IndxSrcA<1>. */
1907  |((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL) /* IndxPol = IndxPolA. */
1908  |((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB)); /* ClkEnab = ClkEnabA. */
1909 
1910  /* Adjust mode-dependent parameters. */
1911  if (cra & (2 << CRABIT_CLKSRC_A)) /* If Timer mode (ClkSrcA<1> == 1): */
1912  setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */
1913  |((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL) /* Set ClkPol to indicate count direction (ClkSrcA<0>). */
1914  |(MULT_X1 << STDBIT_CLKMULT)); /* ClkMult must be 1x in Timer mode. */
1915 
1916  else /* If Counter mode (ClkSrcA<1> == 0): */
1917  setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Counter mode. */
1918  |((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL) /* Pass through ClkPol. */
1919  |(((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ? /* Force ClkMult to 1x if not legal, else pass through. */
1920  (MULT_X1 << STDBIT_CLKMULT) :
1921  ((cra >> (CRABIT_CLKMULT_A -
1923 
1924  /* Return adjusted counter setup. */
1925  return setup;
1926 }
1927 
1928 static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k)
1929 {
1930  register uint16_t cra;
1931  register uint16_t crb;
1932  register uint16_t setup;
1933 
1934  /* Fetch CRA and CRB register images. */
1935  cra = DEBIread(dev, k->MyCRA);
1936  crb = DEBIread(dev, k->MyCRB);
1937 
1938  /* Populate the standardized counter setup bit fields. Note: */
1939  /* IndexSrc is restricted to ENC_X or IndxPol. */
1940  setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC) /* IntSrc = IntSrcB. */
1941  |((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcB. */
1942  |((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC) /* LoadSrc = LoadSrcB. */
1943  |((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL) /* IndxPol = IndxPolB. */
1944  |((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB) /* ClkEnab = ClkEnabB. */
1945  |((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC)); /* IndxSrc = IndxSrcB<1>. */
1946 
1947  /* Adjust mode-dependent parameters. */
1948  if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B)) /* If Extender mode (ClkMultB == MULT_X0): */
1949  setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC) /* Indicate Extender mode. */
1950  |(MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */
1951  |((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
1952 
1953  else if (cra & (2 << CRABIT_CLKSRC_B)) /* If Timer mode (ClkSrcB<1> == 1): */
1954  setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */
1955  |(MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */
1956  |((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
1957 
1958  else /* If Counter mode (ClkSrcB<1> == 0): */
1959  setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Timer mode. */
1960  |((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT) /* Clock multiplier is passed through. */
1961  |((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL)); /* Clock polarity is passed through. */
1962 
1963  /* Return adjusted counter setup. */
1964  return setup;
1965 }
1966 
1967 /*
1968  * Set the operating mode for the specified counter. The setup
1969  * parameter is treated as a COUNTER_SETUP data type. The following
1970  * parameters are programmable (all other parms are ignored): ClkMult,
1971  * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
1972  */
1973 
1974 static void SetMode_A(struct comedi_device *dev, struct enc_private *k,
1975  uint16_t Setup, uint16_t DisableIntSrc)
1976 {
1977  register uint16_t cra;
1978  register uint16_t crb;
1979  register uint16_t setup = Setup; /* Cache the Standard Setup. */
1980 
1981  /* Initialize CRA and CRB images. */
1982  cra = ((setup & CRAMSK_LOADSRC_A) /* Preload trigger is passed through. */
1983  |((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1)))); /* IndexSrc is restricted to ENC_X or IndxPol. */
1984 
1985  crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A /* Reset any pending CounterA event captures. */
1986  | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB))); /* Clock enable is passed through. */
1987 
1988  /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
1989  if (!DisableIntSrc)
1990  cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
1991  CRABIT_INTSRC_A));
1992 
1993  /* Populate all mode-dependent attributes of CRA & CRB images. */
1994  switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
1995  case CLKSRC_EXTENDER: /* Extender Mode: Force to Timer mode */
1996  /* (Extender valid only for B counters). */
1997 
1998  case CLKSRC_TIMER: /* Timer Mode: */
1999  cra |= ((2 << CRABIT_CLKSRC_A) /* ClkSrcA<1> selects system clock */
2000  |((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) /* with count direction (ClkSrcA<0>) obtained from ClkPol. */
2001  |(1 << CRABIT_CLKPOL_A) /* ClkPolA behaves as always-on clock enable. */
2002  |(MULT_X1 << CRABIT_CLKMULT_A)); /* ClkMult must be 1x. */
2003  break;
2004 
2005  default: /* Counter Mode: */
2006  cra |= (CLKSRC_COUNTER /* Select ENC_C and ENC_D as clock/direction inputs. */
2007  | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) /* Clock polarity is passed through. */
2008  |(((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force multiplier to x1 if not legal, otherwise pass through. */
2009  (MULT_X1 << CRABIT_CLKMULT_A) :
2010  ((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A -
2011  STDBIT_CLKMULT))));
2012  }
2013 
2014  /* Force positive index polarity if IndxSrc is software-driven only, */
2015  /* otherwise pass it through. */
2016  if (~setup & STDMSK_INDXSRC)
2017  cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A -
2018  STDBIT_INDXPOL));
2019 
2020  /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
2021  /* enable mask to indicate the counter interrupt is disabled. */
2022  if (DisableIntSrc)
2023  devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
2024 
2025  /* While retaining CounterB and LatchSrc configurations, program the */
2026  /* new counter operating mode. */
2027  DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra);
2028  DEBIreplace(dev, k->MyCRB,
2029  (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb);
2030 }
2031 
2032 static void SetMode_B(struct comedi_device *dev, struct enc_private *k,
2033  uint16_t Setup, uint16_t DisableIntSrc)
2034 {
2035  register uint16_t cra;
2036  register uint16_t crb;
2037  register uint16_t setup = Setup; /* Cache the Standard Setup. */
2038 
2039  /* Initialize CRA and CRB images. */
2040  cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)); /* IndexSrc field is restricted to ENC_X or IndxPol. */
2041 
2042  crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B /* Reset event captures and disable interrupts. */
2043  | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) /* Clock enable is passed through. */
2044  |((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B))); /* Preload trigger source is passed through. */
2045 
2046  /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
2047  if (!DisableIntSrc)
2048  crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
2049  CRBBIT_INTSRC_B));
2050 
2051  /* Populate all mode-dependent attributes of CRA & CRB images. */
2052  switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
2053  case CLKSRC_TIMER: /* Timer Mode: */
2054  cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB<1> selects system clock */
2055  |((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction (ClkSrcB<0>) obtained from ClkPol. */
2056  crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB behaves as always-on clock enable. */
2057  |(MULT_X1 << CRBBIT_CLKMULT_B)); /* ClkMultB must be 1x. */
2058  break;
2059 
2060  case CLKSRC_EXTENDER: /* Extender Mode: */
2061  cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB source is OverflowA (same as "timer") */
2062  |((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction obtained from ClkPol. */
2063  crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB controls IndexB -- always set to active. */
2064  |(MULT_X0 << CRBBIT_CLKMULT_B)); /* ClkMultB selects OverflowA as the clock source. */
2065  break;
2066 
2067  default: /* Counter Mode: */
2068  cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B); /* Select ENC_C and ENC_D as clock/direction inputs. */
2069  crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) /* ClkPol is passed through. */
2070  |(((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force ClkMult to x1 if not legal, otherwise pass through. */
2071  (MULT_X1 << CRBBIT_CLKMULT_B) :
2072  ((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B -
2073  STDBIT_CLKMULT))));
2074  }
2075 
2076  /* Force positive index polarity if IndxSrc is software-driven only, */
2077  /* otherwise pass it through. */
2078  if (~setup & STDMSK_INDXSRC)
2079  crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL -
2080  CRBBIT_INDXPOL_B));
2081 
2082  /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
2083  /* enable mask to indicate the counter interrupt is disabled. */
2084  if (DisableIntSrc)
2085  devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
2086 
2087  /* While retaining CounterA and LatchSrc configurations, program the */
2088  /* new counter operating mode. */
2089  DEBIreplace(dev, k->MyCRA,
2090  (uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra);
2091  DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb);
2092 }
2093 
2094 /* Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index. */
2095 
2096 static void SetEnable_A(struct comedi_device *dev, struct enc_private *k,
2097  uint16_t enab)
2098 {
2099  DEBIreplace(dev, k->MyCRB,
2101  (uint16_t) (enab << CRBBIT_CLKENAB_A));
2102 }
2103 
2104 static void SetEnable_B(struct comedi_device *dev, struct enc_private *k,
2105  uint16_t enab)
2106 {
2107  DEBIreplace(dev, k->MyCRB,
2109  (uint16_t) (enab << CRBBIT_CLKENAB_B));
2110 }
2111 
2112 static uint16_t GetEnable_A(struct comedi_device *dev, struct enc_private *k)
2113 {
2114  return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_A) & 1;
2115 }
2116 
2117 static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k)
2118 {
2119  return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1;
2120 }
2121 
2122 /*
2123  * static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k )
2124  * {
2125  * return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3;
2126  * }
2127  */
2128 
2129 /*
2130  * Return/set the event that will trigger transfer of the preload
2131  * register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
2132  * 2=OverflowA (B counters only), 3=disabled.
2133  */
2134 
2135 static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k,
2136  uint16_t Trig)
2137 {
2138  DEBIreplace(dev, k->MyCRA, (uint16_t) (~CRAMSK_LOADSRC_A),
2139  (uint16_t) (Trig << CRABIT_LOADSRC_A));
2140 }
2141 
2142 static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k,
2143  uint16_t Trig)
2144 {
2145  DEBIreplace(dev, k->MyCRB,
2147  (uint16_t) (Trig << CRBBIT_LOADSRC_B));
2148 }
2149 
2150 static uint16_t GetLoadTrig_A(struct comedi_device *dev, struct enc_private *k)
2151 {
2152  return (DEBIread(dev, k->MyCRA) >> CRABIT_LOADSRC_A) & 3;
2153 }
2154 
2155 static uint16_t GetLoadTrig_B(struct comedi_device *dev, struct enc_private *k)
2156 {
2157  return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3;
2158 }
2159 
2160 /* Return/set counter interrupt source and clear any captured
2161  * index/overflow events. IntSource: 0=Disabled, 1=OverflowOnly,
2162  * 2=IndexOnly, 3=IndexAndOverflow.
2163  */
2164 
2165 static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k,
2166  uint16_t IntSource)
2167 {
2168  /* Reset any pending counter overflow or index captures. */
2169  DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2171 
2172  /* Program counter interrupt source. */
2173  DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A,
2174  (uint16_t) (IntSource << CRABIT_INTSRC_A));
2175 
2176  /* Update MISC2 interrupt enable mask. */
2177  devpriv->CounterIntEnabs =
2178  (devpriv->CounterIntEnabs & ~k->
2179  MyEventBits[3]) | k->MyEventBits[IntSource];
2180 }
2181 
2182 static void SetIntSrc_B(struct comedi_device *dev, struct enc_private *k,
2183  uint16_t IntSource)
2184 {
2185  uint16_t crb;
2186 
2187  /* Cache writeable CRB register image. */
2188  crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;
2189 
2190  /* Reset any pending counter overflow or index captures. */
2191  DEBIwrite(dev, k->MyCRB,
2193 
2194  /* Program counter interrupt source. */
2195  DEBIwrite(dev, k->MyCRB,
2196  (uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource <<
2197  CRBBIT_INTSRC_B)));
2198 
2199  /* Update MISC2 interrupt enable mask. */
2200  devpriv->CounterIntEnabs =
2201  (devpriv->CounterIntEnabs & ~k->
2202  MyEventBits[3]) | k->MyEventBits[IntSource];
2203 }
2204 
2205 static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k)
2206 {
2207  return (DEBIread(dev, k->MyCRA) >> CRABIT_INTSRC_A) & 3;
2208 }
2209 
2210 static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k)
2211 {
2212  return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3;
2213 }
2214 
2215 /* Return/set the clock multiplier. */
2216 
2217 /* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
2218 /* { */
2219 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */
2220 /* } */
2221 
2222 /* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k ) */
2223 /* { */
2224 /* return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
2225 /* } */
2226 
2227 /* Return/set the clock polarity. */
2228 
2229 /* static void SetClkPol( struct comedi_device *dev,struct enc_private *k, uint16_t value ) */
2230 /* { */
2231 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */
2232 /* } */
2233 
2234 /* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k ) */
2235 /* { */
2236 /* return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
2237 /* } */
2238 
2239 /* Return/set the clock source. */
2240 
2241 /* static void SetClkSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value ) */
2242 /* { */
2243 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */
2244 /* } */
2245 
2246 /* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k ) */
2247 /* { */
2248 /* return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
2249 /* } */
2250 
2251 /* Return/set the index polarity. */
2252 
2253 /* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
2254 /* { */
2255 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */
2256 /* } */
2257 
2258 /* static uint16_t GetIndexPol(struct comedi_device *dev, struct enc_private *k ) */
2259 /* { */
2260 /* return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
2261 /* } */
2262 
2263 /* Return/set the index source. */
2264 
2265 /* static void SetIndexSrc(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
2266 /* { */
2267 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */
2268 /* } */
2269 
2270 /* static uint16_t GetIndexSrc(struct comedi_device *dev, struct enc_private *k ) */
2271 /* { */
2272 /* return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
2273 /* } */
2274 
2275 /* Generate an index pulse. */
2276 
2277 static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k)
2278 {
2279  register uint16_t cra;
2280 
2281  cra = DEBIread(dev, k->MyCRA); /* Pulse index. */
2282  DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A));
2283  DEBIwrite(dev, k->MyCRA, cra);
2284 }
2285 
2286 static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k)
2287 {
2288  register uint16_t crb;
2289 
2290  crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL; /* Pulse index. */
2291  DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B));
2292  DEBIwrite(dev, k->MyCRB, crb);
2293 }
2294 
2295 static struct enc_private enc_private_data[] = {
2296  {
2297  .GetEnable = GetEnable_A,
2298  .GetIntSrc = GetIntSrc_A,
2299  .GetLoadTrig = GetLoadTrig_A,
2300  .GetMode = GetMode_A,
2301  .PulseIndex = PulseIndex_A,
2302  .SetEnable = SetEnable_A,
2303  .SetIntSrc = SetIntSrc_A,
2304  .SetLoadTrig = SetLoadTrig_A,
2305  .SetMode = SetMode_A,
2306  .ResetCapFlags = ResetCapFlags_A,
2307  .MyCRA = LP_CR0A,
2308  .MyCRB = LP_CR0B,
2309  .MyLatchLsw = LP_CNTR0ALSW,
2310  .MyEventBits = EVBITS(0),
2311  }, {
2312  .GetEnable = GetEnable_A,
2313  .GetIntSrc = GetIntSrc_A,
2314  .GetLoadTrig = GetLoadTrig_A,
2315  .GetMode = GetMode_A,
2316  .PulseIndex = PulseIndex_A,
2317  .SetEnable = SetEnable_A,
2318  .SetIntSrc = SetIntSrc_A,
2319  .SetLoadTrig = SetLoadTrig_A,
2320  .SetMode = SetMode_A,
2321  .ResetCapFlags = ResetCapFlags_A,
2322  .MyCRA = LP_CR1A,
2323  .MyCRB = LP_CR1B,
2324  .MyLatchLsw = LP_CNTR1ALSW,
2325  .MyEventBits = EVBITS(1),
2326  }, {
2327  .GetEnable = GetEnable_A,
2328  .GetIntSrc = GetIntSrc_A,
2329  .GetLoadTrig = GetLoadTrig_A,
2330  .GetMode = GetMode_A,
2331  .PulseIndex = PulseIndex_A,
2332  .SetEnable = SetEnable_A,
2333  .SetIntSrc = SetIntSrc_A,
2334  .SetLoadTrig = SetLoadTrig_A,
2335  .SetMode = SetMode_A,
2336  .ResetCapFlags = ResetCapFlags_A,
2337  .MyCRA = LP_CR2A,
2338  .MyCRB = LP_CR2B,
2339  .MyLatchLsw = LP_CNTR2ALSW,
2340  .MyEventBits = EVBITS(2),
2341  }, {
2342  .GetEnable = GetEnable_B,
2343  .GetIntSrc = GetIntSrc_B,
2344  .GetLoadTrig = GetLoadTrig_B,
2345  .GetMode = GetMode_B,
2346  .PulseIndex = PulseIndex_B,
2347  .SetEnable = SetEnable_B,
2348  .SetIntSrc = SetIntSrc_B,
2349  .SetLoadTrig = SetLoadTrig_B,
2350  .SetMode = SetMode_B,
2351  .ResetCapFlags = ResetCapFlags_B,
2352  .MyCRA = LP_CR0A,
2353  .MyCRB = LP_CR0B,
2354  .MyLatchLsw = LP_CNTR0BLSW,
2355  .MyEventBits = EVBITS(3),
2356  }, {
2357  .GetEnable = GetEnable_B,
2358  .GetIntSrc = GetIntSrc_B,
2359  .GetLoadTrig = GetLoadTrig_B,
2360  .GetMode = GetMode_B,
2361  .PulseIndex = PulseIndex_B,
2362  .SetEnable = SetEnable_B,
2363  .SetIntSrc = SetIntSrc_B,
2364  .SetLoadTrig = SetLoadTrig_B,
2365  .SetMode = SetMode_B,
2366  .ResetCapFlags = ResetCapFlags_B,
2367  .MyCRA = LP_CR1A,
2368  .MyCRB = LP_CR1B,
2369  .MyLatchLsw = LP_CNTR1BLSW,
2370  .MyEventBits = EVBITS(4),
2371  }, {
2372  .GetEnable = GetEnable_B,
2373  .GetIntSrc = GetIntSrc_B,
2374  .GetLoadTrig = GetLoadTrig_B,
2375  .GetMode = GetMode_B,
2376  .PulseIndex = PulseIndex_B,
2377  .SetEnable = SetEnable_B,
2378  .SetIntSrc = SetIntSrc_B,
2379  .SetLoadTrig = SetLoadTrig_B,
2380  .SetMode = SetMode_B,
2381  .ResetCapFlags = ResetCapFlags_B,
2382  .MyCRA = LP_CR2A,
2383  .MyCRB = LP_CR2B,
2384  .MyLatchLsw = LP_CNTR2BLSW,
2385  .MyEventBits = EVBITS(5),
2386  },
2387 };
2388 
2389 static void CountersInit(struct comedi_device *dev)
2390 {
2391  int chan;
2392  struct enc_private *k;
2393  uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
2394  /* index. */
2395  (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
2396  (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is counter. */
2397  (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
2398  (CNTDIR_UP << BF_CLKPOL) | /* Count direction is up. */
2399  (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
2400  (CLKENAB_INDEX << BF_CLKENAB); /* Enabled by index */
2401 
2402  /* Disable all counter interrupts and clear any captured counter events. */
2403  for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
2404  k = &encpriv[chan];
2405  k->SetMode(dev, k, Setup, TRUE);
2406  k->SetIntSrc(dev, k, 0);
2407  k->ResetCapFlags(dev, k);
2408  k->SetEnable(dev, k, CLKENAB_ALWAYS);
2409  }
2410 }
2411 
2412 static int s626_allocate_dma_buffers(struct comedi_device *dev)
2413 {
2414  struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2415  void *addr;
2416  dma_addr_t appdma;
2417 
2418  addr = pci_alloc_consistent(pcidev, DMABUF_SIZE, &appdma);
2419  if (!addr)
2420  return -ENOMEM;
2421  devpriv->ANABuf.LogicalBase = addr;
2422  devpriv->ANABuf.PhysicalBase = appdma;
2423 
2424  addr = pci_alloc_consistent(pcidev, DMABUF_SIZE, &appdma);
2425  if (!addr)
2426  return -ENOMEM;
2427  devpriv->RPSBuf.LogicalBase = addr;
2428  devpriv->RPSBuf.PhysicalBase = appdma;
2429 
2430  return 0;
2431 }
2432 
2433 static void s626_initialize(struct comedi_device *dev)
2434 {
2435  dma_addr_t pPhysBuf;
2436  uint16_t chan;
2437  int i;
2438 
2439  /* Enable DEBI and audio pins, enable I2C interface */
2441 
2442  /*
2443  * Configure DEBI operating mode
2444  *
2445  * Local bus is 16 bits wide
2446  * Declare DEBI transfer timeout interval
2447  * Set up byte lane steering
2448  * Intel-compatible local bus (DEBI never times out)
2449  */
2453 
2454  /* Disable MMU paging */
2456 
2457  /* Init GPIO so that ADC Start* is negated */
2459 
2460  /* I2C device address for onboard eeprom (revb) */
2461  devpriv->I2CAdrs = 0xA0;
2462 
2463  /*
2464  * Issue an I2C ABORT command to halt any I2C
2465  * operation in progress and reset BUSY flag.
2466  */
2469  while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0)
2470  ;
2471 
2472  /*
2473  * Per SAA7146 data sheet, write to STATUS
2474  * reg twice to reset all I2C error flags.
2475  */
2476  for (i = 0; i < 2; i++) {
2478  MC_ENABLE(P_MC2, MC2_UPLD_IIC);
2479  while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
2480  ;
2481  }
2482 
2483  /*
2484  * Init audio interface functional attributes: set DAC/ADC
2485  * serial clock rates, invert DAC serial clock so that
2486  * DAC data setup times are satisfied, enable DAC serial
2487  * clock out.
2488  */
2490 
2491  /*
2492  * Set up TSL1 slot list, which is used to control the
2493  * accumulation of ADC data: RSD1 = shift data in on SD1.
2494  * SIB_A1 = store data uint8_t at next available location
2495  * in FB BUFFER1 register.
2496  */
2497  WR7146(P_TSL1, RSD1 | SIB_A1);
2498  WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS);
2499 
2500  /* Enable TSL1 slot list so that it executes all the time */
2502 
2503  /*
2504  * Initialize RPS registers used for ADC
2505  */
2506 
2507  /* Physical start of RPS program */
2508  WR7146(P_RPSADDR1, (uint32_t)devpriv->RPSBuf.PhysicalBase);
2509  /* RPS program performs no explicit mem writes */
2510  WR7146(P_RPSPAGE1, 0);
2511  /* Disable RPS timeouts */
2512  WR7146(P_RPS1_TOUT, 0);
2513 
2514 #if 0
2515  /*
2516  * SAA7146 BUG WORKAROUND
2517  *
2518  * Initialize SAA7146 ADC interface to a known state by
2519  * invoking ADCs until FB BUFFER 1 register shows that it
2520  * is correctly receiving ADC data. This is necessary
2521  * because the SAA7146 ADC interface does not start up in
2522  * a defined state after a PCI reset.
2523  */
2524 
2525  {
2526  uint8_t PollList;
2527  uint16_t AdcData;
2528  uint16_t StartVal;
2529  uint16_t index;
2530  unsigned int data[16];
2531 
2532  /* Create a simple polling list for analog input channel 0 */
2533  PollList = EOPL;
2534  ResetADC(dev, &PollList);
2535 
2536  /* Get initial ADC value */
2537  s626_ai_rinsn(dev, dev->subdevices, NULL, data);
2538  StartVal = data[0];
2539 
2540  /*
2541  * VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION.
2542  *
2543  * Invoke ADCs until the new ADC value differs from the initial
2544  * value or a timeout occurs. The timeout protects against the
2545  * possibility that the driver is restarting and the ADC data is a
2546  * fixed value resulting from the applied ADC analog input being
2547  * unusually quiet or at the rail.
2548  */
2549  for (index = 0; index < 500; index++) {
2550  s626_ai_rinsn(dev, dev->subdevices, NULL, data);
2551  AdcData = data[0];
2552  if (AdcData != StartVal)
2553  break;
2554  }
2555 
2556  }
2557 #endif /* SAA7146 BUG WORKAROUND */
2558 
2559  /*
2560  * Initialize the DAC interface
2561  */
2562 
2563  /*
2564  * Init Audio2's output DMAC attributes:
2565  * burst length = 1 DWORD
2566  * threshold = 1 DWORD.
2567  */
2568  WR7146(P_PCI_BT_A, 0);
2569 
2570  /*
2571  * Init Audio2's output DMA physical addresses. The protection
2572  * address is set to 1 DWORD past the base address so that a
2573  * single DWORD will be transferred each time a DMA transfer is
2574  * enabled.
2575  */
2576  pPhysBuf = devpriv->ANABuf.PhysicalBase +
2577  (DAC_WDMABUF_OS * sizeof(uint32_t));
2578  WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf);
2579  WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t)));
2580 
2581  /*
2582  * Cache Audio2's output DMA buffer logical address. This is
2583  * where DAC data is buffered for A2 output DMA transfers.
2584  */
2585  devpriv->pDacWBuf = (uint32_t *)devpriv->ANABuf.LogicalBase +
2587 
2588  /*
2589  * Audio2's output channels does not use paging. The
2590  * protection violation handling bit is set so that the
2591  * DMAC will automatically halt and its PCI address pointer
2592  * will be reset when the protection address is reached.
2593  */
2594  WR7146(P_PAGEA2_OUT, 8);
2595 
2596  /*
2597  * Initialize time slot list 2 (TSL2), which is used to control
2598  * the clock generation for and serialization of data to be sent
2599  * to the DAC devices. Slot 0 is a NOP that is used to trap TSL
2600  * execution; this permits other slots to be safely modified
2601  * without first turning off the TSL sequencer (which is
2602  * apparently impossible to do). Also, SD3 (which is driven by a
2603  * pull-up resistor) is shifted in and stored to the MSB of
2604  * FB_BUFFER2 to be used as evidence that the slot sequence has
2605  * not yet finished executing.
2606  */
2607 
2608  /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */
2609  SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS);
2610 
2611  /*
2612  * Initialize slot 1, which is constant. Slot 1 causes a
2613  * DWORD to be transferred from audio channel 2's output FIFO
2614  * to the FIFO's output buffer so that it can be serialized
2615  * and sent to the DAC during subsequent slots. All remaining
2616  * slots are dynamically populated as required by the target
2617  * DAC device.
2618  */
2619 
2620  /* Slot 1: Fetch DWORD from Audio2's output FIFO */
2621  SETVECT(1, LF_A2);
2622 
2623  /* Start DAC's audio interface (TSL2) running */
2625 
2626  /*
2627  * Init Trim DACs to calibrated values. Do it twice because the
2628  * SAA7146 audio channel does not always reset properly and
2629  * sometimes causes the first few TrimDAC writes to malfunction.
2630  */
2631  LoadTrimDACs(dev);
2632  LoadTrimDACs(dev);
2633 
2634  /*
2635  * Manually init all gate array hardware in case this is a soft
2636  * reset (we have no way of determining whether this is a warm
2637  * or cold start). This is necessary because the gate array will
2638  * reset only in response to a PCI hard reset; there is no soft
2639  * reset function.
2640  */
2641 
2642  /*
2643  * Init all DAC outputs to 0V and init all DAC setpoint and
2644  * polarity images.
2645  */
2646  for (chan = 0; chan < S626_DAC_CHANNELS; chan++)
2647  SetDAC(dev, chan, 0);
2648 
2649  /* Init counters */
2650  CountersInit(dev);
2651 
2652  /*
2653  * Without modifying the state of the Battery Backup enab, disable
2654  * the watchdog timer, set DIO channels 0-5 to operate in the
2655  * standard DIO (vs. counter overflow) mode, disable the battery
2656  * charger, and reset the watchdog interval selector to zero.
2657  */
2658  WriteMISC2(dev, (uint16_t)(DEBIread(dev, LP_RDMISC2) &
2660 
2661  /* Initialize the digital I/O subsystem */
2662  s626_dio_init(dev);
2663 
2664  /* enable interrupt test */
2665  /* writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER); */
2666 }
2667 
2668 static int s626_attach_pci(struct comedi_device *dev, struct pci_dev *pcidev)
2669 {
2670  struct comedi_subdevice *s;
2671  int ret;
2672 
2673  comedi_set_hw_dev(dev, &pcidev->dev);
2674  dev->board_name = dev->driver->driver_name;
2675 
2676  if (alloc_private(dev, sizeof(struct s626_private)) < 0)
2677  return -ENOMEM;
2678 
2679  ret = comedi_pci_enable(pcidev, dev->board_name);
2680  if (ret)
2681  return ret;
2682  dev->iobase = 1; /* detach needs this */
2683 
2684  devpriv->base_addr = ioremap(pci_resource_start(pcidev, 0),
2685  pci_resource_len(pcidev, 0));
2686  if (!devpriv->base_addr)
2687  return -ENOMEM;
2688 
2689  /* disable master interrupt */
2690  writel(0, devpriv->base_addr + P_IER);
2691 
2692  /* soft reset */
2693  writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1);
2694 
2695  /* DMA FIXME DMA// */
2696 
2697  ret = s626_allocate_dma_buffers(dev);
2698  if (ret)
2699  return ret;
2700 
2701  if (pcidev->irq) {
2702  ret = request_irq(pcidev->irq, s626_irq_handler, IRQF_SHARED,
2703  dev->board_name, dev);
2704 
2705  if (ret == 0)
2706  dev->irq = pcidev->irq;
2707  }
2708 
2709  ret = comedi_alloc_subdevices(dev, 6);
2710  if (ret)
2711  return ret;
2712 
2713  s = dev->subdevices + 0;
2714  /* analog input subdevice */
2715  dev->read_subdev = s;
2716  /* we support single-ended (ground) and differential */
2717  s->type = COMEDI_SUBD_AI;
2720  s->maxdata = (0xffff >> 2);
2721  s->range_table = &s626_range_table;
2723  s->insn_config = s626_ai_insn_config;
2724  s->insn_read = s626_ai_insn_read;
2725  s->do_cmd = s626_ai_cmd;
2726  s->do_cmdtest = s626_ai_cmdtest;
2727  s->cancel = s626_ai_cancel;
2728 
2729  s = dev->subdevices + 1;
2730  /* analog output subdevice */
2731  s->type = COMEDI_SUBD_AO;
2734  s->maxdata = (0x3fff);
2736  s->insn_write = s626_ao_winsn;
2737  s->insn_read = s626_ao_rinsn;
2738 
2739  s = dev->subdevices + 2;
2740  /* digital I/O subdevice */
2741  s->type = COMEDI_SUBD_DIO;
2743  s->n_chan = 16;
2744  s->maxdata = 1;
2745  s->io_bits = 0xffff;
2746  s->private = &dio_private_A;
2747  s->range_table = &range_digital;
2748  s->insn_config = s626_dio_insn_config;
2749  s->insn_bits = s626_dio_insn_bits;
2750 
2751  s = dev->subdevices + 3;
2752  /* digital I/O subdevice */
2753  s->type = COMEDI_SUBD_DIO;
2755  s->n_chan = 16;
2756  s->maxdata = 1;
2757  s->io_bits = 0xffff;
2758  s->private = &dio_private_B;
2759  s->range_table = &range_digital;
2760  s->insn_config = s626_dio_insn_config;
2761  s->insn_bits = s626_dio_insn_bits;
2762 
2763  s = dev->subdevices + 4;
2764  /* digital I/O subdevice */
2765  s->type = COMEDI_SUBD_DIO;
2767  s->n_chan = 16;
2768  s->maxdata = 1;
2769  s->io_bits = 0xffff;
2770  s->private = &dio_private_C;
2771  s->range_table = &range_digital;
2772  s->insn_config = s626_dio_insn_config;
2773  s->insn_bits = s626_dio_insn_bits;
2774 
2775  s = dev->subdevices + 5;
2776  /* encoder (counter) subdevice */
2780  s->private = enc_private_data;
2781  s->insn_config = s626_enc_insn_config;
2782  s->insn_read = s626_enc_insn_read;
2783  s->insn_write = s626_enc_insn_write;
2784  s->maxdata = 0xffffff;
2785  s->range_table = &range_unknown;
2786 
2787  s626_initialize(dev);
2788 
2789  dev_info(dev->class_dev, "%s attached\n", dev->board_name);
2790 
2791  return 0;
2792 }
2793 
2794 static void s626_detach(struct comedi_device *dev)
2795 {
2796  struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2797 
2798  if (devpriv) {
2799  /* stop ai_command */
2800  devpriv->ai_cmd_running = 0;
2801 
2802  if (devpriv->base_addr) {
2803  /* interrupt mask */
2804  WR7146(P_IER, 0); /* Disable master interrupt. */
2805  WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1); /* Clear board's IRQ status flag. */
2806 
2807  /* Disable the watchdog timer and battery charger. */
2808  WriteMISC2(dev, 0);
2809 
2810  /* Close all interfaces on 7146 device. */
2813 
2814  CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE);
2815  CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE);
2816  }
2817 
2818  if (dev->irq)
2819  free_irq(dev->irq, dev);
2820  if (devpriv->base_addr)
2821  iounmap(devpriv->base_addr);
2822  }
2823  if (pcidev) {
2824  if (dev->iobase)
2825  comedi_pci_disable(pcidev);
2826  }
2827 }
2828 
2829 static struct comedi_driver s626_driver = {
2830  .driver_name = "s626",
2831  .module = THIS_MODULE,
2832  .attach_pci = s626_attach_pci,
2833  .detach = s626_detach,
2834 };
2835 
2836 static int __devinit s626_pci_probe(struct pci_dev *dev,
2837  const struct pci_device_id *ent)
2838 {
2839  return comedi_pci_auto_config(dev, &s626_driver);
2840 }
2841 
2842 static void __devexit s626_pci_remove(struct pci_dev *dev)
2843 {
2845 }
2846 
2847 /*
2848  * For devices with vendor:device id == 0x1131:0x7146 you must specify
2849  * also subvendor:subdevice ids, because otherwise it will conflict with
2850  * Philips SAA7146 media/dvb based cards.
2851  */
2852 static DEFINE_PCI_DEVICE_TABLE(s626_pci_table) = {
2855  { 0 }
2856 };
2857 MODULE_DEVICE_TABLE(pci, s626_pci_table);
2858 
2859 static struct pci_driver s626_pci_driver = {
2860  .name = "s626",
2861  .id_table = s626_pci_table,
2862  .probe = s626_pci_probe,
2863  .remove = __devexit_p(s626_pci_remove),
2864 };
2865 module_comedi_pci_driver(s626_driver, s626_pci_driver);
2866 
2867 MODULE_AUTHOR("Gianluca Palli <[email protected]>");
2868 MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
2869 MODULE_LICENSE("GPL");