Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sa1100fb.c
Go to the documentation of this file.
1 /*
2  * linux/drivers/video/sa1100fb.c
3  *
4  * Copyright (C) 1999 Eric A. Thomas
5  * Based on acornfb.c Copyright (C) Russell King.
6  *
7  * This file is subject to the terms and conditions of the GNU General Public
8  * License. See the file COPYING in the main directory of this archive for
9  * more details.
10  *
11  * StrongARM 1100 LCD Controller Frame Buffer Driver
12  *
13  * Please direct your questions and comments on this driver to the following
14  * email address:
15  *
17  *
18  * Clean patches should be sent to the ARM Linux Patch System. Please see the
19  * following web page for more information:
20  *
21  * http://www.arm.linux.org.uk/developer/patches/info.shtml
22  *
23  * Thank you.
24  *
25  * Known problems:
26  * - With the Neponset plugged into an Assabet, LCD powerdown
27  * doesn't work (LCD stays powered up). Therefore we shouldn't
28  * blank the screen.
29  * - We don't limit the CPU clock rate nor the mode selection
30  * according to the available SDRAM bandwidth.
31  *
32  * Other notes:
33  * - Linear grayscale palettes and the kernel.
34  * Such code does not belong in the kernel. The kernel frame buffer
35  * drivers do not expect a linear colourmap, but a colourmap based on
36  * the VT100 standard mapping.
37  *
38  * If your _userspace_ requires a linear colourmap, then the setup of
39  * such a colourmap belongs _in userspace_, not in the kernel. Code
40  * to set the colourmap correctly from user space has been sent to
41  * David Neuer. It's around 8 lines of C code, plus another 4 to
42  * detect if we are using grayscale.
43  *
44  * - The following must never be specified in a panel definition:
45  * LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
46  *
47  * - The following should be specified:
48  * either LCCR0_Color or LCCR0_Mono
49  * either LCCR0_Sngl or LCCR0_Dual
50  * either LCCR0_Act or LCCR0_Pas
51  * either LCCR3_OutEnH or LCCD3_OutEnL
52  * either LCCR3_PixRsEdg or LCCR3_PixFlEdg
53  * either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
54  *
55  * Code Status:
56  * 1999/04/01:
57  * - Driver appears to be working for Brutus 320x200x8bpp mode. Other
58  * resolutions are working, but only the 8bpp mode is supported.
59  * Changes need to be made to the palette encode and decode routines
60  * to support 4 and 16 bpp modes.
61  * Driver is not designed to be a module. The FrameBuffer is statically
62  * allocated since dynamic allocation of a 300k buffer cannot be
63  * guaranteed.
64  *
65  * 1999/06/17:
66  * - FrameBuffer memory is now allocated at run-time when the
67  * driver is initialized.
68  *
69  * 2000/04/10: Nicolas Pitre <[email protected]>
70  * - Big cleanup for dynamic selection of machine type at run time.
71  *
72  * 2000/07/19: Jamey Hicks <[email protected]>
73  * - Support for Bitsy aka Compaq iPAQ H3600 added.
74  *
75  * 2000/08/07: Tak-Shing Chan <[email protected]>
76  * Jeff Sutherland <[email protected]>
77  * - Resolved an issue caused by a change made to the Assabet's PLD
78  * earlier this year which broke the framebuffer driver for newer
79  * Phase 4 Assabets. Some other parameters were changed to optimize
80  * for the Sharp display.
81  *
82  * 2000/08/09: Kunihiko IMAI <[email protected]>
83  * - XP860 support added
84  *
85  * 2000/08/19: Mark Huang <[email protected]>
86  * - Allows standard options to be passed on the kernel command line
87  * for most common passive displays.
88  *
89  * 2000/08/29:
90  * - s/save_flags_cli/local_irq_save/
91  * - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
92  *
93  * 2000/10/10: Erik Mouw <[email protected]>
94  * - Updated LART stuff. Fixed some minor bugs.
95  *
96  * 2000/10/30: Murphy Chen <[email protected]>
97  * - Pangolin support added
98  *
99  * 2000/10/31: Roman Jordan <[email protected]>
100  * - Huw Webpanel support added
101  *
102  * 2000/11/23: Eric Peng <[email protected]>
103  * - Freebird add
104  *
105  * 2001/02/07: Jamey Hicks <[email protected]>
106  * Cliff Brake <[email protected]>
107  * - Added PM callback
108  *
109  * 2001/05/26: <[email protected]>
110  * - Fix 16bpp so that (a) we use the right colours rather than some
111  * totally random colour depending on what was in page 0, and (b)
112  * we don't de-reference a NULL pointer.
113  * - remove duplicated implementation of consistent_alloc()
114  * - convert dma address types to dma_addr_t
115  * - remove unused 'montype' stuff
116  * - remove redundant zero inits of init_var after the initial
117  * memset.
118  * - remove allow_modeset (acornfb idea does not belong here)
119  *
120  * 2001/05/28: <[email protected]>
121  * - massive cleanup - move machine dependent data into structures
122  * - I've left various #warnings in - if you see one, and know
123  * the hardware concerned, please get in contact with me.
124  *
125  * 2001/05/31: <[email protected]>
126  * - Fix LCCR1 HSW value, fix all machine type specifications to
127  * keep values in line. (Please check your machine type specs)
128  *
129  * 2001/06/10: <[email protected]>
130  * - Fiddle with the LCD controller from task context only; mainly
131  * so that we can run with interrupts on, and sleep.
132  * - Convert #warnings into #errors. No pain, no gain. ;)
133  *
134  * 2001/06/14: <[email protected]>
135  * - Make the palette BPS value for 12bpp come out correctly.
136  * - Take notice of "greyscale" on any colour depth.
137  * - Make truecolor visuals use the RGB channel encoding information.
138  *
139  * 2001/07/02: <[email protected]>
140  * - Fix colourmap problems.
141  *
142  * 2001/07/13: <[email protected]>
143  * - Added support for the ICP LCD-Kit01 on LART. This LCD is
144  * manufactured by Prime View, model no V16C6448AB
145  *
146  * 2001/07/23: <[email protected]>
147  * - Hand merge version from handhelds.org CVS tree. See patch
148  * notes for 595/1 for more information.
149  * - Drop 12bpp (it's 16bpp with different colour register mappings).
150  * - This hardware can not do direct colour. Therefore we don't
151  * support it.
152  *
153  * 2001/07/27: <[email protected]>
154  * - Halve YRES on dual scan LCDs.
155  *
156  * 2001/08/22: <[email protected]>
157  * - Add b/w iPAQ pixclock value.
158  *
159  * 2001/10/12: <[email protected]>
160  * - Add patch 681/1 and clean up stork definitions.
161  */
162 
163 #include <linux/module.h>
164 #include <linux/kernel.h>
165 #include <linux/sched.h>
166 #include <linux/errno.h>
167 #include <linux/string.h>
168 #include <linux/interrupt.h>
169 #include <linux/slab.h>
170 #include <linux/mm.h>
171 #include <linux/fb.h>
172 #include <linux/delay.h>
173 #include <linux/init.h>
174 #include <linux/ioport.h>
175 #include <linux/cpufreq.h>
176 #include <linux/gpio.h>
177 #include <linux/platform_device.h>
178 #include <linux/dma-mapping.h>
179 #include <linux/mutex.h>
180 #include <linux/io.h>
181 
182 #include <video/sa1100fb.h>
183 
184 #include <mach/hardware.h>
185 #include <asm/mach-types.h>
186 #include <mach/shannon.h>
187 
188 /*
189  * Complain if VAR is out of range.
190  */
191 #define DEBUG_VAR 1
192 
193 #include "sa1100fb.h"
194 
195 static const struct sa1100fb_rgb rgb_4 = {
196  .red = { .offset = 0, .length = 4, },
197  .green = { .offset = 0, .length = 4, },
198  .blue = { .offset = 0, .length = 4, },
199  .transp = { .offset = 0, .length = 0, },
200 };
201 
202 static const struct sa1100fb_rgb rgb_8 = {
203  .red = { .offset = 0, .length = 8, },
204  .green = { .offset = 0, .length = 8, },
205  .blue = { .offset = 0, .length = 8, },
206  .transp = { .offset = 0, .length = 0, },
207 };
208 
209 static const struct sa1100fb_rgb def_rgb_16 = {
210  .red = { .offset = 11, .length = 5, },
211  .green = { .offset = 5, .length = 6, },
212  .blue = { .offset = 0, .length = 5, },
213  .transp = { .offset = 0, .length = 0, },
214 };
215 
216 
217 
218 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
219 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
220 
221 static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
222 {
223  unsigned long flags;
224 
225  local_irq_save(flags);
226  /*
227  * We need to handle two requests being made at the same time.
228  * There are two important cases:
229  * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
230  * We must perform the unblanking, which will do our REENABLE for us.
231  * 2. When we are blanking, but immediately unblank before we have
232  * blanked. We do the "REENABLE" thing here as well, just to be sure.
233  */
234  if (fbi->task_state == C_ENABLE && state == C_REENABLE)
235  state = (u_int) -1;
236  if (fbi->task_state == C_DISABLE && state == C_ENABLE)
237  state = C_REENABLE;
238 
239  if (state != (u_int)-1) {
240  fbi->task_state = state;
241  schedule_work(&fbi->task);
242  }
243  local_irq_restore(flags);
244 }
245 
246 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
247 {
248  chan &= 0xffff;
249  chan >>= 16 - bf->length;
250  return chan << bf->offset;
251 }
252 
253 /*
254  * Convert bits-per-pixel to a hardware palette PBS value.
255  */
256 static inline u_int palette_pbs(struct fb_var_screeninfo *var)
257 {
258  int ret = 0;
259  switch (var->bits_per_pixel) {
260  case 4: ret = 0 << 12; break;
261  case 8: ret = 1 << 12; break;
262  case 16: ret = 2 << 12; break;
263  }
264  return ret;
265 }
266 
267 static int
268 sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
269  u_int trans, struct fb_info *info)
270 {
271  struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
272  u_int val, ret = 1;
273 
274  if (regno < fbi->palette_size) {
275  val = ((red >> 4) & 0xf00);
276  val |= ((green >> 8) & 0x0f0);
277  val |= ((blue >> 12) & 0x00f);
278 
279  if (regno == 0)
280  val |= palette_pbs(&fbi->fb.var);
281 
282  fbi->palette_cpu[regno] = val;
283  ret = 0;
284  }
285  return ret;
286 }
287 
288 static int
289 sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
290  u_int trans, struct fb_info *info)
291 {
292  struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
293  unsigned int val;
294  int ret = 1;
295 
296  /*
297  * If inverse mode was selected, invert all the colours
298  * rather than the register number. The register number
299  * is what you poke into the framebuffer to produce the
300  * colour you requested.
301  */
302  if (fbi->inf->cmap_inverse) {
303  red = 0xffff - red;
304  green = 0xffff - green;
305  blue = 0xffff - blue;
306  }
307 
308  /*
309  * If greyscale is true, then we convert the RGB value
310  * to greyscale no mater what visual we are using.
311  */
312  if (fbi->fb.var.grayscale)
313  red = green = blue = (19595 * red + 38470 * green +
314  7471 * blue) >> 16;
315 
316  switch (fbi->fb.fix.visual) {
317  case FB_VISUAL_TRUECOLOR:
318  /*
319  * 12 or 16-bit True Colour. We encode the RGB value
320  * according to the RGB bitfield information.
321  */
322  if (regno < 16) {
323  u32 *pal = fbi->fb.pseudo_palette;
324 
325  val = chan_to_field(red, &fbi->fb.var.red);
326  val |= chan_to_field(green, &fbi->fb.var.green);
327  val |= chan_to_field(blue, &fbi->fb.var.blue);
328 
329  pal[regno] = val;
330  ret = 0;
331  }
332  break;
333 
336  ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
337  break;
338  }
339 
340  return ret;
341 }
342 
343 #ifdef CONFIG_CPU_FREQ
344 /*
345  * sa1100fb_display_dma_period()
346  * Calculate the minimum period (in picoseconds) between two DMA
347  * requests for the LCD controller. If we hit this, it means we're
348  * doing nothing but LCD DMA.
349  */
350 static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
351 {
352  /*
353  * Period = pixclock * bits_per_byte * bytes_per_transfer
354  * / memory_bits_per_pixel;
355  */
356  return var->pixclock * 8 * 16 / var->bits_per_pixel;
357 }
358 #endif
359 
360 /*
361  * sa1100fb_check_var():
362  * Round up in the following order: bits_per_pixel, xres,
363  * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
364  * bitfields, horizontal timing, vertical timing.
365  */
366 static int
367 sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
368 {
369  struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
370  int rgbidx;
371 
372  if (var->xres < MIN_XRES)
373  var->xres = MIN_XRES;
374  if (var->yres < MIN_YRES)
375  var->yres = MIN_YRES;
376  if (var->xres > fbi->inf->xres)
377  var->xres = fbi->inf->xres;
378  if (var->yres > fbi->inf->yres)
379  var->yres = fbi->inf->yres;
380  var->xres_virtual = max(var->xres_virtual, var->xres);
381  var->yres_virtual = max(var->yres_virtual, var->yres);
382 
383  dev_dbg(fbi->dev, "var->bits_per_pixel=%d\n", var->bits_per_pixel);
384  switch (var->bits_per_pixel) {
385  case 4:
386  rgbidx = RGB_4;
387  break;
388  case 8:
389  rgbidx = RGB_8;
390  break;
391  case 16:
392  rgbidx = RGB_16;
393  break;
394  default:
395  return -EINVAL;
396  }
397 
398  /*
399  * Copy the RGB parameters for this display
400  * from the machine specific parameters.
401  */
402  var->red = fbi->rgb[rgbidx]->red;
403  var->green = fbi->rgb[rgbidx]->green;
404  var->blue = fbi->rgb[rgbidx]->blue;
405  var->transp = fbi->rgb[rgbidx]->transp;
406 
407  dev_dbg(fbi->dev, "RGBT length = %d:%d:%d:%d\n",
408  var->red.length, var->green.length, var->blue.length,
409  var->transp.length);
410 
411  dev_dbg(fbi->dev, "RGBT offset = %d:%d:%d:%d\n",
412  var->red.offset, var->green.offset, var->blue.offset,
413  var->transp.offset);
414 
415 #ifdef CONFIG_CPU_FREQ
416  dev_dbg(fbi->dev, "dma period = %d ps, clock = %d kHz\n",
417  sa1100fb_display_dma_period(var),
419 #endif
420 
421  return 0;
422 }
423 
424 static void sa1100fb_set_visual(struct sa1100fb_info *fbi, u32 visual)
425 {
426  if (fbi->inf->set_visual)
427  fbi->inf->set_visual(visual);
428 }
429 
430 /*
431  * sa1100fb_set_par():
432  * Set the user defined part of the display for the specified console
433  */
434 static int sa1100fb_set_par(struct fb_info *info)
435 {
436  struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
437  struct fb_var_screeninfo *var = &info->var;
438  unsigned long palette_mem_size;
439 
440  dev_dbg(fbi->dev, "set_par\n");
441 
442  if (var->bits_per_pixel == 16)
443  fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
444  else if (!fbi->inf->cmap_static)
445  fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
446  else {
447  /*
448  * Some people have weird ideas about wanting static
449  * pseudocolor maps. I suspect their user space
450  * applications are broken.
451  */
452  fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
453  }
454 
455  fbi->fb.fix.line_length = var->xres_virtual *
456  var->bits_per_pixel / 8;
457  fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
458 
459  palette_mem_size = fbi->palette_size * sizeof(u16);
460 
461  dev_dbg(fbi->dev, "palette_mem_size = 0x%08lx\n", palette_mem_size);
462 
463  fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
464  fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
465 
466  /*
467  * Set (any) board control register to handle new color depth
468  */
469  sa1100fb_set_visual(fbi, fbi->fb.fix.visual);
470  sa1100fb_activate_var(var, fbi);
471 
472  return 0;
473 }
474 
475 #if 0
476 static int
477 sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
478  struct fb_info *info)
479 {
480  struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
481 
482  /*
483  * Make sure the user isn't doing something stupid.
484  */
485  if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->inf->cmap_static))
486  return -EINVAL;
487 
488  return gen_set_cmap(cmap, kspc, con, info);
489 }
490 #endif
491 
492 /*
493  * Formal definition of the VESA spec:
494  * On
495  * This refers to the state of the display when it is in full operation
496  * Stand-By
497  * This defines an optional operating state of minimal power reduction with
498  * the shortest recovery time
499  * Suspend
500  * This refers to a level of power management in which substantial power
501  * reduction is achieved by the display. The display can have a longer
502  * recovery time from this state than from the Stand-by state
503  * Off
504  * This indicates that the display is consuming the lowest level of power
505  * and is non-operational. Recovery from this state may optionally require
506  * the user to manually power on the monitor
507  *
508  * Now, the fbdev driver adds an additional state, (blank), where they
509  * turn off the video (maybe by colormap tricks), but don't mess with the
510  * video itself: think of it semantically between on and Stand-By.
511  *
512  * So here's what we should do in our fbdev blank routine:
513  *
514  * VESA_NO_BLANKING (mode 0) Video on, front/back light on
515  * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off
516  * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off
517  * VESA_POWERDOWN (mode 3) Video off, front/back light off
518  *
519  * This will match the matrox implementation.
520  */
521 /*
522  * sa1100fb_blank():
523  * Blank the display by setting all palette values to zero. Note, the
524  * 12 and 16 bpp modes don't really use the palette, so this will not
525  * blank the display in all modes.
526  */
527 static int sa1100fb_blank(int blank, struct fb_info *info)
528 {
529  struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
530  int i;
531 
532  dev_dbg(fbi->dev, "sa1100fb_blank: blank=%d\n", blank);
533 
534  switch (blank) {
535  case FB_BLANK_POWERDOWN:
538  case FB_BLANK_NORMAL:
539  if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
540  fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
541  for (i = 0; i < fbi->palette_size; i++)
542  sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
543  sa1100fb_schedule_work(fbi, C_DISABLE);
544  break;
545 
546  case FB_BLANK_UNBLANK:
547  if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
548  fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
549  fb_set_cmap(&fbi->fb.cmap, info);
550  sa1100fb_schedule_work(fbi, C_ENABLE);
551  }
552  return 0;
553 }
554 
555 static int sa1100fb_mmap(struct fb_info *info,
556  struct vm_area_struct *vma)
557 {
558  struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
559  unsigned long start, len, off = vma->vm_pgoff << PAGE_SHIFT;
560 
561  if (off < info->fix.smem_len) {
562  vma->vm_pgoff += 1; /* skip over the palette */
563  return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
564  fbi->map_dma, fbi->map_size);
565  }
566 
567  start = info->fix.mmio_start;
568  len = PAGE_ALIGN((start & ~PAGE_MASK) + info->fix.mmio_len);
569 
570  if ((vma->vm_end - vma->vm_start + off) > len)
571  return -EINVAL;
572 
573  off += start & PAGE_MASK;
574  vma->vm_pgoff = off >> PAGE_SHIFT;
575  vma->vm_flags |= VM_IO;
577  return io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
578  vma->vm_end - vma->vm_start,
579  vma->vm_page_prot);
580 }
581 
582 static struct fb_ops sa1100fb_ops = {
583  .owner = THIS_MODULE,
584  .fb_check_var = sa1100fb_check_var,
585  .fb_set_par = sa1100fb_set_par,
586 // .fb_set_cmap = sa1100fb_set_cmap,
587  .fb_setcolreg = sa1100fb_setcolreg,
588  .fb_fillrect = cfb_fillrect,
589  .fb_copyarea = cfb_copyarea,
590  .fb_imageblit = cfb_imageblit,
591  .fb_blank = sa1100fb_blank,
592  .fb_mmap = sa1100fb_mmap,
593 };
594 
595 /*
596  * Calculate the PCD value from the clock rate (in picoseconds).
597  * We take account of the PPCR clock setting.
598  */
599 static inline unsigned int get_pcd(unsigned int pixclock, unsigned int cpuclock)
600 {
601  unsigned int pcd = cpuclock / 100;
602 
603  pcd *= pixclock;
604  pcd /= 10000000;
605 
606  return pcd + 1; /* make up for integer math truncations */
607 }
608 
609 /*
610  * sa1100fb_activate_var():
611  * Configures LCD Controller based on entries in var parameter. Settings are
612  * only written to the controller if changes were made.
613  */
614 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
615 {
616  struct sa1100fb_lcd_reg new_regs;
617  u_int half_screen_size, yres, pcd;
618  u_long flags;
619 
620  dev_dbg(fbi->dev, "Configuring SA1100 LCD\n");
621 
622  dev_dbg(fbi->dev, "var: xres=%d hslen=%d lm=%d rm=%d\n",
623  var->xres, var->hsync_len,
624  var->left_margin, var->right_margin);
625  dev_dbg(fbi->dev, "var: yres=%d vslen=%d um=%d bm=%d\n",
626  var->yres, var->vsync_len,
627  var->upper_margin, var->lower_margin);
628 
629 #if DEBUG_VAR
630  if (var->xres < 16 || var->xres > 1024)
631  dev_err(fbi->dev, "%s: invalid xres %d\n",
632  fbi->fb.fix.id, var->xres);
633  if (var->hsync_len < 1 || var->hsync_len > 64)
634  dev_err(fbi->dev, "%s: invalid hsync_len %d\n",
635  fbi->fb.fix.id, var->hsync_len);
636  if (var->left_margin < 1 || var->left_margin > 255)
637  dev_err(fbi->dev, "%s: invalid left_margin %d\n",
638  fbi->fb.fix.id, var->left_margin);
639  if (var->right_margin < 1 || var->right_margin > 255)
640  dev_err(fbi->dev, "%s: invalid right_margin %d\n",
641  fbi->fb.fix.id, var->right_margin);
642  if (var->yres < 1 || var->yres > 1024)
643  dev_err(fbi->dev, "%s: invalid yres %d\n",
644  fbi->fb.fix.id, var->yres);
645  if (var->vsync_len < 1 || var->vsync_len > 64)
646  dev_err(fbi->dev, "%s: invalid vsync_len %d\n",
647  fbi->fb.fix.id, var->vsync_len);
648  if (var->upper_margin < 0 || var->upper_margin > 255)
649  dev_err(fbi->dev, "%s: invalid upper_margin %d\n",
650  fbi->fb.fix.id, var->upper_margin);
651  if (var->lower_margin < 0 || var->lower_margin > 255)
652  dev_err(fbi->dev, "%s: invalid lower_margin %d\n",
653  fbi->fb.fix.id, var->lower_margin);
654 #endif
655 
656  new_regs.lccr0 = fbi->inf->lccr0 |
659 
660  new_regs.lccr1 =
661  LCCR1_DisWdth(var->xres) +
665 
666  /*
667  * If we have a dual scan LCD, then we need to halve
668  * the YRES parameter.
669  */
670  yres = var->yres;
671  if (fbi->inf->lccr0 & LCCR0_Dual)
672  yres /= 2;
673 
674  new_regs.lccr2 =
675  LCCR2_DisHght(yres) +
679 
680  pcd = get_pcd(var->pixclock, cpufreq_get(0));
681  new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->inf->lccr3 |
684 
685  dev_dbg(fbi->dev, "nlccr0 = 0x%08lx\n", new_regs.lccr0);
686  dev_dbg(fbi->dev, "nlccr1 = 0x%08lx\n", new_regs.lccr1);
687  dev_dbg(fbi->dev, "nlccr2 = 0x%08lx\n", new_regs.lccr2);
688  dev_dbg(fbi->dev, "nlccr3 = 0x%08lx\n", new_regs.lccr3);
689 
690  half_screen_size = var->bits_per_pixel;
691  half_screen_size = half_screen_size * var->xres * var->yres / 16;
692 
693  /* Update shadow copy atomically */
694  local_irq_save(flags);
695  fbi->dbar1 = fbi->palette_dma;
696  fbi->dbar2 = fbi->screen_dma + half_screen_size;
697 
698  fbi->reg_lccr0 = new_regs.lccr0;
699  fbi->reg_lccr1 = new_regs.lccr1;
700  fbi->reg_lccr2 = new_regs.lccr2;
701  fbi->reg_lccr3 = new_regs.lccr3;
702  local_irq_restore(flags);
703 
704  /*
705  * Only update the registers if the controller is enabled
706  * and something has changed.
707  */
708  if (readl_relaxed(fbi->base + LCCR0) != fbi->reg_lccr0 ||
709  readl_relaxed(fbi->base + LCCR1) != fbi->reg_lccr1 ||
710  readl_relaxed(fbi->base + LCCR2) != fbi->reg_lccr2 ||
711  readl_relaxed(fbi->base + LCCR3) != fbi->reg_lccr3 ||
712  readl_relaxed(fbi->base + DBAR1) != fbi->dbar1 ||
713  readl_relaxed(fbi->base + DBAR2) != fbi->dbar2)
714  sa1100fb_schedule_work(fbi, C_REENABLE);
715 
716  return 0;
717 }
718 
719 /*
720  * NOTE! The following functions are purely helpers for set_ctrlr_state.
721  * Do not call them directly; set_ctrlr_state does the correct serialisation
722  * to ensure that things happen in the right way 100% of time time.
723  * -- rmk
724  */
725 static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
726 {
727  dev_dbg(fbi->dev, "backlight o%s\n", on ? "n" : "ff");
728 
729  if (fbi->inf->backlight_power)
730  fbi->inf->backlight_power(on);
731 }
732 
733 static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
734 {
735  dev_dbg(fbi->dev, "LCD power o%s\n", on ? "n" : "ff");
736 
737  if (fbi->inf->lcd_power)
738  fbi->inf->lcd_power(on);
739 }
740 
741 static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
742 {
743  u_int mask = 0;
744 
745  /*
746  * Enable GPIO<9:2> for LCD use if:
747  * 1. Active display, or
748  * 2. Color Dual Passive display
749  *
750  * see table 11.8 on page 11-27 in the SA1100 manual
751  * -- Erik.
752  *
753  * SA1110 spec update nr. 25 says we can and should
754  * clear LDD15 to 12 for 4 or 8bpp modes with active
755  * panels.
756  */
757  if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
758  (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
760 
761  if (fbi->fb.var.bits_per_pixel > 8 ||
764 
765  }
766 
767  if (mask) {
768  unsigned long flags;
769 
770  /*
771  * SA-1100 requires the GPIO direction register set
772  * appropriately for the alternate function. Hence
773  * we set it here via bitmask rather than excessive
774  * fiddling via the GPIO subsystem - and even then
775  * we'll still have to deal with GAFR.
776  */
777  local_irq_save(flags);
778  GPDR |= mask;
779  GAFR |= mask;
780  local_irq_restore(flags);
781  }
782 }
783 
784 static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
785 {
786  dev_dbg(fbi->dev, "Enabling LCD controller\n");
787 
788  /*
789  * Make sure the mode bits are present in the first palette entry
790  */
791  fbi->palette_cpu[0] &= 0xcfff;
792  fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
793 
794  /* Sequence from 11.7.10 */
795  writel_relaxed(fbi->reg_lccr3, fbi->base + LCCR3);
796  writel_relaxed(fbi->reg_lccr2, fbi->base + LCCR2);
797  writel_relaxed(fbi->reg_lccr1, fbi->base + LCCR1);
798  writel_relaxed(fbi->reg_lccr0 & ~LCCR0_LEN, fbi->base + LCCR0);
799  writel_relaxed(fbi->dbar1, fbi->base + DBAR1);
800  writel_relaxed(fbi->dbar2, fbi->base + DBAR2);
801  writel_relaxed(fbi->reg_lccr0 | LCCR0_LEN, fbi->base + LCCR0);
802 
803  if (machine_is_shannon())
805 
806  dev_dbg(fbi->dev, "DBAR1: 0x%08x\n", readl_relaxed(fbi->base + DBAR1));
807  dev_dbg(fbi->dev, "DBAR2: 0x%08x\n", readl_relaxed(fbi->base + DBAR2));
808  dev_dbg(fbi->dev, "LCCR0: 0x%08x\n", readl_relaxed(fbi->base + LCCR0));
809  dev_dbg(fbi->dev, "LCCR1: 0x%08x\n", readl_relaxed(fbi->base + LCCR1));
810  dev_dbg(fbi->dev, "LCCR2: 0x%08x\n", readl_relaxed(fbi->base + LCCR2));
811  dev_dbg(fbi->dev, "LCCR3: 0x%08x\n", readl_relaxed(fbi->base + LCCR3));
812 }
813 
814 static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
815 {
817  u32 lccr0;
818 
819  dev_dbg(fbi->dev, "Disabling LCD controller\n");
820 
821  if (machine_is_shannon())
823 
825  add_wait_queue(&fbi->ctrlr_wait, &wait);
826 
827  /* Clear LCD Status Register */
828  writel_relaxed(~0, fbi->base + LCSR);
829 
830  lccr0 = readl_relaxed(fbi->base + LCCR0);
831  lccr0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */
832  writel_relaxed(lccr0, fbi->base + LCCR0);
833  lccr0 &= ~LCCR0_LEN; /* Disable LCD Controller */
834  writel_relaxed(lccr0, fbi->base + LCCR0);
835 
836  schedule_timeout(20 * HZ / 1000);
838 }
839 
840 /*
841  * sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
842  */
843 static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id)
844 {
845  struct sa1100fb_info *fbi = dev_id;
846  unsigned int lcsr = readl_relaxed(fbi->base + LCSR);
847 
848  if (lcsr & LCSR_LDD) {
849  u32 lccr0 = readl_relaxed(fbi->base + LCCR0) | LCCR0_LDM;
850  writel_relaxed(lccr0, fbi->base + LCCR0);
851  wake_up(&fbi->ctrlr_wait);
852  }
853 
854  writel_relaxed(lcsr, fbi->base + LCSR);
855  return IRQ_HANDLED;
856 }
857 
858 /*
859  * This function must be called from task context only, since it will
860  * sleep when disabling the LCD controller, or if we get two contending
861  * processes trying to alter state.
862  */
863 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
864 {
865  u_int old_state;
866 
867  mutex_lock(&fbi->ctrlr_lock);
868 
869  old_state = fbi->state;
870 
871  /*
872  * Hack around fbcon initialisation.
873  */
874  if (old_state == C_STARTUP && state == C_REENABLE)
875  state = C_ENABLE;
876 
877  switch (state) {
878  case C_DISABLE_CLKCHANGE:
879  /*
880  * Disable controller for clock change. If the
881  * controller is already disabled, then do nothing.
882  */
883  if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
884  fbi->state = state;
885  sa1100fb_disable_controller(fbi);
886  }
887  break;
888 
889  case C_DISABLE_PM:
890  case C_DISABLE:
891  /*
892  * Disable controller
893  */
894  if (old_state != C_DISABLE) {
895  fbi->state = state;
896 
897  __sa1100fb_backlight_power(fbi, 0);
898  if (old_state != C_DISABLE_CLKCHANGE)
899  sa1100fb_disable_controller(fbi);
900  __sa1100fb_lcd_power(fbi, 0);
901  }
902  break;
903 
904  case C_ENABLE_CLKCHANGE:
905  /*
906  * Enable the controller after clock change. Only
907  * do this if we were disabled for the clock change.
908  */
909  if (old_state == C_DISABLE_CLKCHANGE) {
910  fbi->state = C_ENABLE;
911  sa1100fb_enable_controller(fbi);
912  }
913  break;
914 
915  case C_REENABLE:
916  /*
917  * Re-enable the controller only if it was already
918  * enabled. This is so we reprogram the control
919  * registers.
920  */
921  if (old_state == C_ENABLE) {
922  sa1100fb_disable_controller(fbi);
923  sa1100fb_setup_gpio(fbi);
924  sa1100fb_enable_controller(fbi);
925  }
926  break;
927 
928  case C_ENABLE_PM:
929  /*
930  * Re-enable the controller after PM. This is not
931  * perfect - think about the case where we were doing
932  * a clock change, and we suspended half-way through.
933  */
934  if (old_state != C_DISABLE_PM)
935  break;
936  /* fall through */
937 
938  case C_ENABLE:
939  /*
940  * Power up the LCD screen, enable controller, and
941  * turn on the backlight.
942  */
943  if (old_state != C_ENABLE) {
944  fbi->state = C_ENABLE;
945  sa1100fb_setup_gpio(fbi);
946  __sa1100fb_lcd_power(fbi, 1);
947  sa1100fb_enable_controller(fbi);
948  __sa1100fb_backlight_power(fbi, 1);
949  }
950  break;
951  }
952  mutex_unlock(&fbi->ctrlr_lock);
953 }
954 
955 /*
956  * Our LCD controller task (which is called when we blank or unblank)
957  * via keventd.
958  */
959 static void sa1100fb_task(struct work_struct *w)
960 {
961  struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task);
962  u_int state = xchg(&fbi->task_state, -1);
963 
964  set_ctrlr_state(fbi, state);
965 }
966 
967 #ifdef CONFIG_CPU_FREQ
968 /*
969  * Calculate the minimum DMA period over all displays that we own.
970  * This, together with the SDRAM bandwidth defines the slowest CPU
971  * frequency that can be selected.
972  */
973 static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi)
974 {
975 #if 0
976  unsigned int min_period = (unsigned int)-1;
977  int i;
978 
979  for (i = 0; i < MAX_NR_CONSOLES; i++) {
980  struct display *disp = &fb_display[i];
981  unsigned int period;
982 
983  /*
984  * Do we own this display?
985  */
986  if (disp->fb_info != &fbi->fb)
987  continue;
988 
989  /*
990  * Ok, calculate its DMA period
991  */
992  period = sa1100fb_display_dma_period(&disp->var);
993  if (period < min_period)
994  min_period = period;
995  }
996 
997  return min_period;
998 #else
999  /*
1000  * FIXME: we need to verify _all_ consoles.
1001  */
1002  return sa1100fb_display_dma_period(&fbi->fb.var);
1003 #endif
1004 }
1005 
1006 /*
1007  * CPU clock speed change handler. We need to adjust the LCD timing
1008  * parameters when the CPU clock is adjusted by the power management
1009  * subsystem.
1010  */
1011 static int
1012 sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
1013  void *data)
1014 {
1015  struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
1016  struct cpufreq_freqs *f = data;
1017  u_int pcd;
1018 
1019  switch (val) {
1020  case CPUFREQ_PRECHANGE:
1021  set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1022  break;
1023 
1024  case CPUFREQ_POSTCHANGE:
1025  pcd = get_pcd(fbi->fb.var.pixclock, f->new);
1026  fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
1027  set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1028  break;
1029  }
1030  return 0;
1031 }
1032 
1033 static int
1034 sa1100fb_freq_policy(struct notifier_block *nb, unsigned long val,
1035  void *data)
1036 {
1037  struct sa1100fb_info *fbi = TO_INF(nb, freq_policy);
1038  struct cpufreq_policy *policy = data;
1039 
1040  switch (val) {
1041  case CPUFREQ_ADJUST:
1042  case CPUFREQ_INCOMPATIBLE:
1043  dev_dbg(fbi->dev, "min dma period: %d ps, "
1044  "new clock %d kHz\n", sa1100fb_min_dma_period(fbi),
1045  policy->max);
1046  /* todo: fill in min/max values */
1047  break;
1048  case CPUFREQ_NOTIFY:
1049  do {} while(0);
1050  /* todo: panic if min/max values aren't fulfilled
1051  * [can't really happen unless there's a bug in the
1052  * CPU policy verififcation process *
1053  */
1054  break;
1055  }
1056  return 0;
1057 }
1058 #endif
1059 
1060 #ifdef CONFIG_PM
1061 /*
1062  * Power management hooks. Note that we won't be called from IRQ context,
1063  * unlike the blank functions above, so we may sleep.
1064  */
1065 static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state)
1066 {
1067  struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1068 
1069  set_ctrlr_state(fbi, C_DISABLE_PM);
1070  return 0;
1071 }
1072 
1073 static int sa1100fb_resume(struct platform_device *dev)
1074 {
1075  struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1076 
1077  set_ctrlr_state(fbi, C_ENABLE_PM);
1078  return 0;
1079 }
1080 #else
1081 #define sa1100fb_suspend NULL
1082 #define sa1100fb_resume NULL
1083 #endif
1084 
1085 /*
1086  * sa1100fb_map_video_memory():
1087  * Allocates the DRAM memory for the frame buffer. This buffer is
1088  * remapped into a non-cached, non-buffered, memory region to
1089  * allow palette and pixel writes to occur without flushing the
1090  * cache. Once this area is remapped, all virtual memory
1091  * access to the video memory should occur at the new region.
1092  */
1093 static int __devinit sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
1094 {
1095  /*
1096  * We reserve one page for the palette, plus the size
1097  * of the framebuffer.
1098  */
1099  fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1100  fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
1101  &fbi->map_dma, GFP_KERNEL);
1102 
1103  if (fbi->map_cpu) {
1104  fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1105  fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1106  /*
1107  * FIXME: this is actually the wrong thing to place in
1108  * smem_start. But fbdev suffers from the problem that
1109  * it needs an API which doesn't exist (in this case,
1110  * dma_writecombine_mmap)
1111  */
1112  fbi->fb.fix.smem_start = fbi->screen_dma;
1113  }
1114 
1115  return fbi->map_cpu ? 0 : -ENOMEM;
1116 }
1117 
1118 /* Fake monspecs to fill in fbinfo structure */
1119 static struct fb_monspecs monspecs __devinitdata = {
1120  .hfmin = 30000,
1121  .hfmax = 70000,
1122  .vfmin = 50,
1123  .vfmax = 65,
1124 };
1125 
1126 
1127 static struct sa1100fb_info * __devinit sa1100fb_init_fbinfo(struct device *dev)
1128 {
1129  struct sa1100fb_mach_info *inf = dev->platform_data;
1130  struct sa1100fb_info *fbi;
1131  unsigned i;
1132 
1133  fbi = kmalloc(sizeof(struct sa1100fb_info) + sizeof(u32) * 16,
1134  GFP_KERNEL);
1135  if (!fbi)
1136  return NULL;
1137 
1138  memset(fbi, 0, sizeof(struct sa1100fb_info));
1139  fbi->dev = dev;
1140 
1141  strcpy(fbi->fb.fix.id, SA1100_NAME);
1142 
1143  fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1144  fbi->fb.fix.type_aux = 0;
1145  fbi->fb.fix.xpanstep = 0;
1146  fbi->fb.fix.ypanstep = 0;
1147  fbi->fb.fix.ywrapstep = 0;
1148  fbi->fb.fix.accel = FB_ACCEL_NONE;
1149 
1150  fbi->fb.var.nonstd = 0;
1151  fbi->fb.var.activate = FB_ACTIVATE_NOW;
1152  fbi->fb.var.height = -1;
1153  fbi->fb.var.width = -1;
1154  fbi->fb.var.accel_flags = 0;
1155  fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
1156 
1157  fbi->fb.fbops = &sa1100fb_ops;
1158  fbi->fb.flags = FBINFO_DEFAULT;
1159  fbi->fb.monspecs = monspecs;
1160  fbi->fb.pseudo_palette = (fbi + 1);
1161 
1162  fbi->rgb[RGB_4] = &rgb_4;
1163  fbi->rgb[RGB_8] = &rgb_8;
1164  fbi->rgb[RGB_16] = &def_rgb_16;
1165 
1166  /*
1167  * People just don't seem to get this. We don't support
1168  * anything but correct entries now, so panic if someone
1169  * does something stupid.
1170  */
1171  if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
1172  inf->pixclock == 0)
1173  panic("sa1100fb error: invalid LCCR3 fields set or zero "
1174  "pixclock.");
1175 
1176  fbi->fb.var.xres = inf->xres;
1177  fbi->fb.var.xres_virtual = inf->xres;
1178  fbi->fb.var.yres = inf->yres;
1179  fbi->fb.var.yres_virtual = inf->yres;
1180  fbi->fb.var.bits_per_pixel = inf->bpp;
1181  fbi->fb.var.pixclock = inf->pixclock;
1182  fbi->fb.var.hsync_len = inf->hsync_len;
1183  fbi->fb.var.left_margin = inf->left_margin;
1184  fbi->fb.var.right_margin = inf->right_margin;
1185  fbi->fb.var.vsync_len = inf->vsync_len;
1186  fbi->fb.var.upper_margin = inf->upper_margin;
1187  fbi->fb.var.lower_margin = inf->lower_margin;
1188  fbi->fb.var.sync = inf->sync;
1189  fbi->fb.var.grayscale = inf->cmap_greyscale;
1190  fbi->state = C_STARTUP;
1191  fbi->task_state = (u_char)-1;
1192  fbi->fb.fix.smem_len = inf->xres * inf->yres *
1193  inf->bpp / 8;
1194  fbi->inf = inf;
1195 
1196  /* Copy the RGB bitfield overrides */
1197  for (i = 0; i < NR_RGB; i++)
1198  if (inf->rgb[i])
1199  fbi->rgb[i] = inf->rgb[i];
1200 
1202  INIT_WORK(&fbi->task, sa1100fb_task);
1203  mutex_init(&fbi->ctrlr_lock);
1204 
1205  return fbi;
1206 }
1207 
1208 static int __devinit sa1100fb_probe(struct platform_device *pdev)
1209 {
1210  struct sa1100fb_info *fbi;
1211  struct resource *res;
1212  int ret, irq;
1213 
1214  if (!pdev->dev.platform_data) {
1215  dev_err(&pdev->dev, "no platform LCD data\n");
1216  return -EINVAL;
1217  }
1218 
1219  res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1220  irq = platform_get_irq(pdev, 0);
1221  if (irq < 0 || !res)
1222  return -EINVAL;
1223 
1224  if (!request_mem_region(res->start, resource_size(res), "LCD"))
1225  return -EBUSY;
1226 
1227  fbi = sa1100fb_init_fbinfo(&pdev->dev);
1228  ret = -ENOMEM;
1229  if (!fbi)
1230  goto failed;
1231 
1232  fbi->base = ioremap(res->start, resource_size(res));
1233  if (!fbi->base)
1234  goto failed;
1235 
1236  /* Initialize video memory */
1237  ret = sa1100fb_map_video_memory(fbi);
1238  if (ret)
1239  goto failed;
1240 
1241  ret = request_irq(irq, sa1100fb_handle_irq, 0, "LCD", fbi);
1242  if (ret) {
1243  dev_err(&pdev->dev, "request_irq failed: %d\n", ret);
1244  goto failed;
1245  }
1246 
1247  if (machine_is_shannon()) {
1249  GPIOF_OUT_INIT_LOW, "display enable");
1250  if (ret)
1251  goto err_free_irq;
1252  }
1253 
1254  /*
1255  * This makes sure that our colour bitfield
1256  * descriptors are correctly initialised.
1257  */
1258  sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
1259 
1260  platform_set_drvdata(pdev, fbi);
1261 
1262  ret = register_framebuffer(&fbi->fb);
1263  if (ret < 0)
1264  goto err_reg_fb;
1265 
1266 #ifdef CONFIG_CPU_FREQ
1267  fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
1268  fbi->freq_policy.notifier_call = sa1100fb_freq_policy;
1271 #endif
1272 
1273  /* This driver cannot be unloaded at the moment */
1274  return 0;
1275 
1276  err_reg_fb:
1277  if (machine_is_shannon())
1279  err_free_irq:
1280  free_irq(irq, fbi);
1281  failed:
1282  if (fbi)
1283  iounmap(fbi->base);
1284  platform_set_drvdata(pdev, NULL);
1285  kfree(fbi);
1286  release_mem_region(res->start, resource_size(res));
1287  return ret;
1288 }
1289 
1290 static struct platform_driver sa1100fb_driver = {
1291  .probe = sa1100fb_probe,
1292  .suspend = sa1100fb_suspend,
1293  .resume = sa1100fb_resume,
1294  .driver = {
1295  .name = "sa11x0-fb",
1296  .owner = THIS_MODULE,
1297  },
1298 };
1299 
1301 {
1302  if (fb_get_options("sa1100fb", NULL))
1303  return -ENODEV;
1304 
1305  return platform_driver_register(&sa1100fb_driver);
1306 }
1307 
1309 {
1310 #if 0
1311  char *this_opt;
1312 
1313  if (!options || !*options)
1314  return 0;
1315 
1316  while ((this_opt = strsep(&options, ",")) != NULL) {
1317 
1318  if (!strncmp(this_opt, "bpp:", 4))
1319  current_par.max_bpp =
1320  simple_strtoul(this_opt + 4, NULL, 0);
1321 
1322  if (!strncmp(this_opt, "lccr0:", 6))
1323  lcd_shadow.lccr0 =
1324  simple_strtoul(this_opt + 6, NULL, 0);
1325  if (!strncmp(this_opt, "lccr1:", 6)) {
1326  lcd_shadow.lccr1 =
1327  simple_strtoul(this_opt + 6, NULL, 0);
1328  current_par.max_xres =
1329  (lcd_shadow.lccr1 & 0x3ff) + 16;
1330  }
1331  if (!strncmp(this_opt, "lccr2:", 6)) {
1332  lcd_shadow.lccr2 =
1333  simple_strtoul(this_opt + 6, NULL, 0);
1334  current_par.max_yres =
1335  (lcd_shadow.
1336  lccr0 & LCCR0_SDS) ? ((lcd_shadow.
1337  lccr2 & 0x3ff) +
1338  1) *
1339  2 : ((lcd_shadow.lccr2 & 0x3ff) + 1);
1340  }
1341  if (!strncmp(this_opt, "lccr3:", 6))
1342  lcd_shadow.lccr3 =
1343  simple_strtoul(this_opt + 6, NULL, 0);
1344  }
1345 #endif
1346  return 0;
1347 }
1348 
1350 MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1351 MODULE_LICENSE("GPL");