Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
stmmac_main.c
Go to the documentation of this file.
1 /*******************************************************************************
2  This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3  ST Ethernet IPs are built around a Synopsys IP Core.
4 
5  Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7  This program is free software; you can redistribute it and/or modify it
8  under the terms and conditions of the GNU General Public License,
9  version 2, as published by the Free Software Foundation.
10 
11  This program is distributed in the hope it will be useful, but WITHOUT
12  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14  more details.
15 
16  You should have received a copy of the GNU General Public License along with
17  this program; if not, write to the Free Software Foundation, Inc.,
18  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20  The full GNU General Public License is included in this distribution in
21  the file called "COPYING".
22 
23  Author: Giuseppe Cavallaro <[email protected]>
24 
25  Documentation available at:
26  http://www.stlinux.com
27  Support available at:
28  https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #ifdef CONFIG_STMMAC_DEBUG_FS
47 #include <linux/debugfs.h>
48 #include <linux/seq_file.h>
49 #endif
50 #include "stmmac.h"
51 
52 #undef STMMAC_DEBUG
53 /*#define STMMAC_DEBUG*/
54 #ifdef STMMAC_DEBUG
55 #define DBG(nlevel, klevel, fmt, args...) \
56  ((void)(netif_msg_##nlevel(priv) && \
57  printk(KERN_##klevel fmt, ## args)))
58 #else
59 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
60 #endif
61 
62 #undef STMMAC_RX_DEBUG
63 /*#define STMMAC_RX_DEBUG*/
64 #ifdef STMMAC_RX_DEBUG
65 #define RX_DBG(fmt, args...) printk(fmt, ## args)
66 #else
67 #define RX_DBG(fmt, args...) do { } while (0)
68 #endif
69 
70 #undef STMMAC_XMIT_DEBUG
71 /*#define STMMAC_XMIT_DEBUG*/
72 #ifdef STMMAC_TX_DEBUG
73 #define TX_DBG(fmt, args...) printk(fmt, ## args)
74 #else
75 #define TX_DBG(fmt, args...) do { } while (0)
76 #endif
77 
78 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
79 #define JUMBO_LEN 9000
80 
81 /* Module parameters */
82 #define TX_TIMEO 5000 /* default 5 seconds */
83 static int watchdog = TX_TIMEO;
85 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
86 
87 static int debug = -1; /* -1: default, 0: no output, 16: all */
89 MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
90 
91 int phyaddr = -1;
93 MODULE_PARM_DESC(phyaddr, "Physical device address");
94 
95 #define DMA_TX_SIZE 256
96 static int dma_txsize = DMA_TX_SIZE;
97 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
99 
100 #define DMA_RX_SIZE 256
101 static int dma_rxsize = DMA_RX_SIZE;
102 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
103 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
104 
105 static int flow_ctrl = FLOW_OFF;
107 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
108 
109 static int pause = PAUSE_TIME;
111 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
112 
113 #define TC_DEFAULT 64
114 static int tc = TC_DEFAULT;
115 module_param(tc, int, S_IRUGO | S_IWUSR);
116 MODULE_PARM_DESC(tc, "DMA threshold control value");
117 
118 /* Pay attention to tune this parameter; take care of both
119  * hardware capability and network stabitily/performance impact.
120  * Many tests showed that ~4ms latency seems to be good enough. */
121 #ifdef CONFIG_STMMAC_TIMER
122 #define DEFAULT_PERIODIC_RATE 256
123 static int tmrate = DEFAULT_PERIODIC_RATE;
124 module_param(tmrate, int, S_IRUGO | S_IWUSR);
125 MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
126 #endif
127 
128 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB
129 static int buf_sz = DMA_BUFFER_SIZE;
130 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
131 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
132 
133 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
136 
137 #define STMMAC_DEFAULT_LPI_TIMER 1000
138 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
139 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
140 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
141 #define STMMAC_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))
142 
143 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
144 
145 #ifdef CONFIG_STMMAC_DEBUG_FS
146 static int stmmac_init_fs(struct net_device *dev);
147 static void stmmac_exit_fs(void);
148 #endif
149 
155 static void stmmac_verify_args(void)
156 {
157  if (unlikely(watchdog < 0))
158  watchdog = TX_TIMEO;
159  if (unlikely(dma_rxsize < 0))
160  dma_rxsize = DMA_RX_SIZE;
161  if (unlikely(dma_txsize < 0))
162  dma_txsize = DMA_TX_SIZE;
163  if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
164  buf_sz = DMA_BUFFER_SIZE;
165  if (unlikely(flow_ctrl > 1))
167  else if (likely(flow_ctrl < 0))
169  if (unlikely((pause < 0) || (pause > 0xffff)))
170  pause = PAUSE_TIME;
171  if (eee_timer < 0)
172  eee_timer = STMMAC_DEFAULT_LPI_TIMER;
173 }
174 
175 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
176 {
177  u32 clk_rate;
178 
179  clk_rate = clk_get_rate(priv->stmmac_clk);
180 
181  /* Platform provided default clk_csr would be assumed valid
182  * for all other cases except for the below mentioned ones. */
183  if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
184  if (clk_rate < CSR_F_35M)
185  priv->clk_csr = STMMAC_CSR_20_35M;
186  else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
187  priv->clk_csr = STMMAC_CSR_35_60M;
188  else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
189  priv->clk_csr = STMMAC_CSR_60_100M;
190  else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
192  else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
194  else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
196  } /* For values higher than the IEEE 802.3 specified frequency
197  * we can not estimate the proper divider as it is not known
198  * the frequency of clk_csr_i. So we do not change the default
199  * divider. */
200 }
201 
202 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
203 static void print_pkt(unsigned char *buf, int len)
204 {
205  int j;
206  pr_info("len = %d byte, buf addr: 0x%p", len, buf);
207  for (j = 0; j < len; j++) {
208  if ((j % 16) == 0)
209  pr_info("\n %03x:", j);
210  pr_info(" %02x", buf[j]);
211  }
212  pr_info("\n");
213 }
214 #endif
215 
216 /* minimum number of free TX descriptors required to wake up TX process */
217 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
218 
219 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
220 {
221  return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
222 }
223 
224 /* On some ST platforms, some HW system configuraton registers have to be
225  * set according to the link speed negotiated.
226  */
227 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
228 {
229  struct phy_device *phydev = priv->phydev;
230 
231  if (likely(priv->plat->fix_mac_speed))
232  priv->plat->fix_mac_speed(priv->plat->bsp_priv,
233  phydev->speed);
234 }
235 
236 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
237 {
238  /* Check and enter in LPI mode */
239  if ((priv->dirty_tx == priv->cur_tx) &&
240  (priv->tx_path_in_lpi_mode == false))
241  priv->hw->mac->set_eee_mode(priv->ioaddr);
242 }
243 
245 {
246  /* Exit and disable EEE in case of we are are in LPI state. */
247  priv->hw->mac->reset_eee_mode(priv->ioaddr);
249  priv->tx_path_in_lpi_mode = false;
250 }
251 
259 static void stmmac_eee_ctrl_timer(unsigned long arg)
260 {
261  struct stmmac_priv *priv = (struct stmmac_priv *)arg;
262 
263  stmmac_enable_eee_mode(priv);
264  mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
265 }
266 
276 bool stmmac_eee_init(struct stmmac_priv *priv)
277 {
278  bool ret = false;
279 
280  /* MAC core supports the EEE feature. */
281  if (priv->dma_cap.eee) {
282  /* Check if the PHY supports EEE */
283  if (phy_init_eee(priv->phydev, 1))
284  goto out;
285 
286  priv->eee_active = 1;
287  init_timer(&priv->eee_ctrl_timer);
288  priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
289  priv->eee_ctrl_timer.data = (unsigned long)priv;
290  priv->eee_ctrl_timer.expires = STMMAC_LPI_TIMER(eee_timer);
291  add_timer(&priv->eee_ctrl_timer);
292 
293  priv->hw->mac->set_eee_timer(priv->ioaddr,
295  priv->tx_lpi_timer);
296 
297  pr_info("stmmac: Energy-Efficient Ethernet initialized\n");
298 
299  ret = true;
300  }
301 out:
302  return ret;
303 }
304 
305 static void stmmac_eee_adjust(struct stmmac_priv *priv)
306 {
307  /* When the EEE has been already initialised we have to
308  * modify the PLS bit in the LPI ctrl & status reg according
309  * to the PHY link status. For this reason.
310  */
311  if (priv->eee_enabled)
312  priv->hw->mac->set_eee_pls(priv->ioaddr, priv->phydev->link);
313 }
314 
320 static void stmmac_adjust_link(struct net_device *dev)
321 {
322  struct stmmac_priv *priv = netdev_priv(dev);
323  struct phy_device *phydev = priv->phydev;
324  unsigned long flags;
325  int new_state = 0;
326  unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
327 
328  if (phydev == NULL)
329  return;
330 
331  DBG(probe, DEBUG, "stmmac_adjust_link: called. address %d link %d\n",
332  phydev->addr, phydev->link);
333 
334  spin_lock_irqsave(&priv->lock, flags);
335 
336  if (phydev->link) {
337  u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
338 
339  /* Now we make sure that we can be in full duplex mode.
340  * If not, we operate in half-duplex mode. */
341  if (phydev->duplex != priv->oldduplex) {
342  new_state = 1;
343  if (!(phydev->duplex))
344  ctrl &= ~priv->hw->link.duplex;
345  else
346  ctrl |= priv->hw->link.duplex;
347  priv->oldduplex = phydev->duplex;
348  }
349  /* Flow Control operation */
350  if (phydev->pause)
351  priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
352  fc, pause_time);
353 
354  if (phydev->speed != priv->speed) {
355  new_state = 1;
356  switch (phydev->speed) {
357  case 1000:
358  if (likely(priv->plat->has_gmac))
359  ctrl &= ~priv->hw->link.port;
360  stmmac_hw_fix_mac_speed(priv);
361  break;
362  case 100:
363  case 10:
364  if (priv->plat->has_gmac) {
365  ctrl |= priv->hw->link.port;
366  if (phydev->speed == SPEED_100) {
367  ctrl |= priv->hw->link.speed;
368  } else {
369  ctrl &= ~(priv->hw->link.speed);
370  }
371  } else {
372  ctrl &= ~priv->hw->link.port;
373  }
374  stmmac_hw_fix_mac_speed(priv);
375  break;
376  default:
377  if (netif_msg_link(priv))
378  pr_warning("%s: Speed (%d) is not 10"
379  " or 100!\n", dev->name, phydev->speed);
380  break;
381  }
382 
383  priv->speed = phydev->speed;
384  }
385 
386  writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
387 
388  if (!priv->oldlink) {
389  new_state = 1;
390  priv->oldlink = 1;
391  }
392  } else if (priv->oldlink) {
393  new_state = 1;
394  priv->oldlink = 0;
395  priv->speed = 0;
396  priv->oldduplex = -1;
397  }
398 
399  if (new_state && netif_msg_link(priv))
400  phy_print_status(phydev);
401 
402  stmmac_eee_adjust(priv);
403 
404  spin_unlock_irqrestore(&priv->lock, flags);
405 
406  DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
407 }
408 
417 static int stmmac_init_phy(struct net_device *dev)
418 {
419  struct stmmac_priv *priv = netdev_priv(dev);
420  struct phy_device *phydev;
421  char phy_id_fmt[MII_BUS_ID_SIZE + 3];
422  char bus_id[MII_BUS_ID_SIZE];
423  int interface = priv->plat->interface;
424  priv->oldlink = 0;
425  priv->speed = 0;
426  priv->oldduplex = -1;
427 
428  if (priv->plat->phy_bus_name)
429  snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
430  priv->plat->phy_bus_name, priv->plat->bus_id);
431  else
432  snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
433  priv->plat->bus_id);
434 
435  snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
436  priv->plat->phy_addr);
437  pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id_fmt);
438 
439  phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, 0,
440  interface);
441 
442  if (IS_ERR(phydev)) {
443  pr_err("%s: Could not attach to PHY\n", dev->name);
444  return PTR_ERR(phydev);
445  }
446 
447  /* Stop Advertising 1000BASE Capability if interface is not GMII */
452 
453  /*
454  * Broken HW is sometimes missing the pull-up resistor on the
455  * MDIO line, which results in reads to non-existent devices returning
456  * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
457  * device as well.
458  * Note: phydev->phy_id is the result of reading the UID PHY registers.
459  */
460  if (phydev->phy_id == 0) {
461  phy_disconnect(phydev);
462  return -ENODEV;
463  }
464  pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
465  " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
466 
467  priv->phydev = phydev;
468 
469  return 0;
470 }
471 
478 static void display_ring(struct dma_desc *p, int size)
479 {
480  struct tmp_s {
481  u64 a;
482  unsigned int b;
483  unsigned int c;
484  };
485  int i;
486  for (i = 0; i < size; i++) {
487  struct tmp_s *x = (struct tmp_s *)(p + i);
488  pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
489  i, (unsigned int)virt_to_phys(&p[i]),
490  (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
491  x->b, x->c);
492  pr_info("\n");
493  }
494 }
495 
496 static int stmmac_set_bfsize(int mtu, int bufsize)
497 {
498  int ret = bufsize;
499 
500  if (mtu >= BUF_SIZE_4KiB)
501  ret = BUF_SIZE_8KiB;
502  else if (mtu >= BUF_SIZE_2KiB)
503  ret = BUF_SIZE_4KiB;
504  else if (mtu >= DMA_BUFFER_SIZE)
505  ret = BUF_SIZE_2KiB;
506  else
507  ret = DMA_BUFFER_SIZE;
508 
509  return ret;
510 }
511 
519 static void init_dma_desc_rings(struct net_device *dev)
520 {
521  int i;
522  struct stmmac_priv *priv = netdev_priv(dev);
523  struct sk_buff *skb;
524  unsigned int txsize = priv->dma_tx_size;
525  unsigned int rxsize = priv->dma_rx_size;
526  unsigned int bfsize;
527  int dis_ic = 0;
528  int des3_as_data_buf = 0;
529 
530  /* Set the max buffer size according to the DESC mode
531  * and the MTU. Note that RING mode allows 16KiB bsize. */
532  bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
533 
534  if (bfsize == BUF_SIZE_16KiB)
535  des3_as_data_buf = 1;
536  else
537  bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
538 
539 #ifdef CONFIG_STMMAC_TIMER
540  /* Disable interrupts on completion for the reception if timer is on */
541  if (likely(priv->tm->enable))
542  dis_ic = 1;
543 #endif
544 
545  DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
546  txsize, rxsize, bfsize);
547 
548  priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
549  priv->rx_skbuff =
550  kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
551  priv->dma_rx =
552  (struct dma_desc *)dma_alloc_coherent(priv->device,
553  rxsize *
554  sizeof(struct dma_desc),
555  &priv->dma_rx_phy,
556  GFP_KERNEL);
557  priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
558  GFP_KERNEL);
559  priv->dma_tx =
560  (struct dma_desc *)dma_alloc_coherent(priv->device,
561  txsize *
562  sizeof(struct dma_desc),
563  &priv->dma_tx_phy,
564  GFP_KERNEL);
565 
566  if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
567  pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
568  return;
569  }
570 
571  DBG(probe, INFO, "stmmac (%s) DMA desc: virt addr (Rx %p, "
572  "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
573  dev->name, priv->dma_rx, priv->dma_tx,
574  (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
575 
576  /* RX INITIALIZATION */
577  DBG(probe, INFO, "stmmac: SKB addresses:\n"
578  "skb\t\tskb data\tdma data\n");
579 
580  for (i = 0; i < rxsize; i++) {
581  struct dma_desc *p = priv->dma_rx + i;
582 
583  skb = __netdev_alloc_skb(dev, bfsize + NET_IP_ALIGN,
584  GFP_KERNEL);
585  if (unlikely(skb == NULL)) {
586  pr_err("%s: Rx init fails; skb is NULL\n", __func__);
587  break;
588  }
589  skb_reserve(skb, NET_IP_ALIGN);
590  priv->rx_skbuff[i] = skb;
591  priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
592  bfsize, DMA_FROM_DEVICE);
593 
594  p->des2 = priv->rx_skbuff_dma[i];
595 
596  priv->hw->ring->init_desc3(des3_as_data_buf, p);
597 
598  DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
599  priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
600  }
601  priv->cur_rx = 0;
602  priv->dirty_rx = (unsigned int)(i - rxsize);
603  priv->dma_buf_sz = bfsize;
604  buf_sz = bfsize;
605 
606  /* TX INITIALIZATION */
607  for (i = 0; i < txsize; i++) {
608  priv->tx_skbuff[i] = NULL;
609  priv->dma_tx[i].des2 = 0;
610  }
611 
612  /* In case of Chained mode this sets the des3 to the next
613  * element in the chain */
614  priv->hw->ring->init_dma_chain(priv->dma_rx, priv->dma_rx_phy, rxsize);
615  priv->hw->ring->init_dma_chain(priv->dma_tx, priv->dma_tx_phy, txsize);
616 
617  priv->dirty_tx = 0;
618  priv->cur_tx = 0;
619 
620  /* Clear the Rx/Tx descriptors */
621  priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
622  priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
623 
624  if (netif_msg_hw(priv)) {
625  pr_info("RX descriptor ring:\n");
626  display_ring(priv->dma_rx, rxsize);
627  pr_info("TX descriptor ring:\n");
628  display_ring(priv->dma_tx, txsize);
629  }
630 }
631 
632 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
633 {
634  int i;
635 
636  for (i = 0; i < priv->dma_rx_size; i++) {
637  if (priv->rx_skbuff[i]) {
638  dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
639  priv->dma_buf_sz, DMA_FROM_DEVICE);
640  dev_kfree_skb_any(priv->rx_skbuff[i]);
641  }
642  priv->rx_skbuff[i] = NULL;
643  }
644 }
645 
646 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
647 {
648  int i;
649 
650  for (i = 0; i < priv->dma_tx_size; i++) {
651  if (priv->tx_skbuff[i] != NULL) {
652  struct dma_desc *p = priv->dma_tx + i;
653  if (p->des2)
654  dma_unmap_single(priv->device, p->des2,
655  priv->hw->desc->get_tx_len(p),
656  DMA_TO_DEVICE);
657  dev_kfree_skb_any(priv->tx_skbuff[i]);
658  priv->tx_skbuff[i] = NULL;
659  }
660  }
661 }
662 
663 static void free_dma_desc_resources(struct stmmac_priv *priv)
664 {
665  /* Release the DMA TX/RX socket buffers */
666  dma_free_rx_skbufs(priv);
667  dma_free_tx_skbufs(priv);
668 
669  /* Free the region of consistent memory previously allocated for
670  * the DMA */
672  priv->dma_tx_size * sizeof(struct dma_desc),
673  priv->dma_tx, priv->dma_tx_phy);
675  priv->dma_rx_size * sizeof(struct dma_desc),
676  priv->dma_rx, priv->dma_rx_phy);
677  kfree(priv->rx_skbuff_dma);
678  kfree(priv->rx_skbuff);
679  kfree(priv->tx_skbuff);
680 }
681 
688 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
689 {
690  if (likely(priv->plat->force_sf_dma_mode ||
691  ((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
692  /*
693  * In case of GMAC, SF mode can be enabled
694  * to perform the TX COE in HW. This depends on:
695  * 1) TX COE if actually supported
696  * 2) There is no bugged Jumbo frame support
697  * that needs to not insert csum in the TDES.
698  */
699  priv->hw->dma->dma_mode(priv->ioaddr,
701  tc = SF_DMA_MODE;
702  } else
703  priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
704 }
705 
711 static void stmmac_tx(struct stmmac_priv *priv)
712 {
713  unsigned int txsize = priv->dma_tx_size;
714 
715  spin_lock(&priv->tx_lock);
716 
717  while (priv->dirty_tx != priv->cur_tx) {
718  int last;
719  unsigned int entry = priv->dirty_tx % txsize;
720  struct sk_buff *skb = priv->tx_skbuff[entry];
721  struct dma_desc *p = priv->dma_tx + entry;
722 
723  /* Check if the descriptor is owned by the DMA. */
724  if (priv->hw->desc->get_tx_owner(p))
725  break;
726 
727  /* Verify tx error by looking at the last segment */
728  last = priv->hw->desc->get_tx_ls(p);
729  if (likely(last)) {
730  int tx_error =
731  priv->hw->desc->tx_status(&priv->dev->stats,
732  &priv->xstats, p,
733  priv->ioaddr);
734  if (likely(tx_error == 0)) {
735  priv->dev->stats.tx_packets++;
736  priv->xstats.tx_pkt_n++;
737  } else
738  priv->dev->stats.tx_errors++;
739  }
740  TX_DBG("%s: curr %d, dirty %d\n", __func__,
741  priv->cur_tx, priv->dirty_tx);
742 
743  if (likely(p->des2))
744  dma_unmap_single(priv->device, p->des2,
745  priv->hw->desc->get_tx_len(p),
746  DMA_TO_DEVICE);
747  priv->hw->ring->clean_desc3(p);
748 
749  if (likely(skb != NULL)) {
750  dev_kfree_skb(skb);
751  priv->tx_skbuff[entry] = NULL;
752  }
753 
754  priv->hw->desc->release_tx_desc(p);
755 
756  priv->dirty_tx++;
757  }
758  if (unlikely(netif_queue_stopped(priv->dev) &&
759  stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
760  netif_tx_lock(priv->dev);
761  if (netif_queue_stopped(priv->dev) &&
762  stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
763  TX_DBG("%s: restart transmit\n", __func__);
764  netif_wake_queue(priv->dev);
765  }
766  netif_tx_unlock(priv->dev);
767  }
768 
769  if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
770  stmmac_enable_eee_mode(priv);
771  mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
772  }
773  spin_unlock(&priv->tx_lock);
774 }
775 
776 static inline void stmmac_enable_irq(struct stmmac_priv *priv)
777 {
778 #ifdef CONFIG_STMMAC_TIMER
779  if (likely(priv->tm->enable))
780  priv->tm->timer_start(tmrate);
781  else
782 #endif
783  priv->hw->dma->enable_dma_irq(priv->ioaddr);
784 }
785 
786 static inline void stmmac_disable_irq(struct stmmac_priv *priv)
787 {
788 #ifdef CONFIG_STMMAC_TIMER
789  if (likely(priv->tm->enable))
790  priv->tm->timer_stop();
791  else
792 #endif
793  priv->hw->dma->disable_dma_irq(priv->ioaddr);
794 }
795 
796 static int stmmac_has_work(struct stmmac_priv *priv)
797 {
798  unsigned int has_work = 0;
799  int rxret, tx_work = 0;
800 
801  rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
802  (priv->cur_rx % priv->dma_rx_size));
803 
804  if (priv->dirty_tx != priv->cur_tx)
805  tx_work = 1;
806 
807  if (likely(!rxret || tx_work))
808  has_work = 1;
809 
810  return has_work;
811 }
812 
813 static inline void _stmmac_schedule(struct stmmac_priv *priv)
814 {
815  if (likely(stmmac_has_work(priv))) {
816  stmmac_disable_irq(priv);
817  napi_schedule(&priv->napi);
818  }
819 }
820 
821 #ifdef CONFIG_STMMAC_TIMER
822 void stmmac_schedule(struct net_device *dev)
823 {
824  struct stmmac_priv *priv = netdev_priv(dev);
825 
826  priv->xstats.sched_timer_n++;
827 
828  _stmmac_schedule(priv);
829 }
830 
831 static void stmmac_no_timer_started(unsigned int x)
832 {;
833 };
834 
835 static void stmmac_no_timer_stopped(void)
836 {;
837 };
838 #endif
839 
846 static void stmmac_tx_err(struct stmmac_priv *priv)
847 {
848  netif_stop_queue(priv->dev);
849 
850  priv->hw->dma->stop_tx(priv->ioaddr);
851  dma_free_tx_skbufs(priv);
852  priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
853  priv->dirty_tx = 0;
854  priv->cur_tx = 0;
855  priv->hw->dma->start_tx(priv->ioaddr);
856 
857  priv->dev->stats.tx_errors++;
858  netif_wake_queue(priv->dev);
859 }
860 
861 
862 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
863 {
864  int status;
865 
866  status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
867  if (likely(status == handle_tx_rx))
868  _stmmac_schedule(priv);
869 
870  else if (unlikely(status == tx_hard_error_bump_tc)) {
871  /* Try to bump up the dma threshold on this failure */
872  if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
873  tc += 64;
874  priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
875  priv->xstats.threshold = tc;
876  }
877  } else if (unlikely(status == tx_hard_error))
878  stmmac_tx_err(priv);
879 }
880 
881 static void stmmac_mmc_setup(struct stmmac_priv *priv)
882 {
885 
886  /* Mask MMC irq, counters are managed in SW and registers
887  * are cleared on each READ eventually. */
889 
890  if (priv->dma_cap.rmon) {
891  dwmac_mmc_ctrl(priv->ioaddr, mode);
892  memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
893  } else
894  pr_info(" No MAC Management Counters available\n");
895 }
896 
897 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
898 {
899  u32 hwid = priv->hw->synopsys_uid;
900 
901  /* Only check valid Synopsys Id because old MAC chips
902  * have no HW registers where get the ID */
903  if (likely(hwid)) {
904  u32 uid = ((hwid & 0x0000ff00) >> 8);
905  u32 synid = (hwid & 0x000000ff);
906 
907  pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
908  uid, synid);
909 
910  return synid;
911  }
912  return 0;
913 }
914 
920 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
921 {
922  if (priv->plat->enh_desc) {
923  pr_info(" Enhanced/Alternate descriptors\n");
924  priv->hw->desc = &enh_desc_ops;
925  } else {
926  pr_info(" Normal descriptors\n");
927  priv->hw->desc = &ndesc_ops;
928  }
929 }
930 
940 static int stmmac_get_hw_features(struct stmmac_priv *priv)
941 {
942  u32 hw_cap = 0;
943 
944  if (priv->hw->dma->get_hw_feature) {
945  hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
946 
947  priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
948  priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
949  priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
950  priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
951  priv->dma_cap.multi_addr =
952  (hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
953  priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
954  priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
955  priv->dma_cap.pmt_remote_wake_up =
956  (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
957  priv->dma_cap.pmt_magic_frame =
958  (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
959  /* MMC */
960  priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
961  /* IEEE 1588-2002*/
962  priv->dma_cap.time_stamp =
963  (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
964  /* IEEE 1588-2008*/
965  priv->dma_cap.atime_stamp =
966  (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
967  /* 802.3az - Energy-Efficient Ethernet (EEE) */
968  priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
969  priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
970  /* TX and RX csum */
971  priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
972  priv->dma_cap.rx_coe_type1 =
973  (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
974  priv->dma_cap.rx_coe_type2 =
975  (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
976  priv->dma_cap.rxfifo_over_2048 =
977  (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
978  /* TX and RX number of channels */
979  priv->dma_cap.number_rx_channel =
980  (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
981  priv->dma_cap.number_tx_channel =
982  (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
983  /* Alternate (enhanced) DESC mode*/
984  priv->dma_cap.enh_desc =
985  (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
986 
987  }
988 
989  return hw_cap;
990 }
991 
992 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
993 {
994  /* verify if the MAC address is valid, in case of failures it
995  * generates a random MAC address */
996  if (!is_valid_ether_addr(priv->dev->dev_addr)) {
997  priv->hw->mac->get_umac_addr((void __iomem *)
998  priv->dev->base_addr,
999  priv->dev->dev_addr, 0);
1000  if (!is_valid_ether_addr(priv->dev->dev_addr))
1001  eth_hw_addr_random(priv->dev);
1002  }
1003  pr_warning("%s: device MAC address %pM\n", priv->dev->name,
1004  priv->dev->dev_addr);
1005 }
1006 
1007 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1008 {
1009  int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1010  int mixed_burst = 0;
1011 
1012  /* Some DMA parameters can be passed from the platform;
1013  * in case of these are not passed we keep a default
1014  * (good for all the chips) and init the DMA! */
1015  if (priv->plat->dma_cfg) {
1016  pbl = priv->plat->dma_cfg->pbl;
1017  fixed_burst = priv->plat->dma_cfg->fixed_burst;
1018  mixed_burst = priv->plat->dma_cfg->mixed_burst;
1019  burst_len = priv->plat->dma_cfg->burst_len;
1020  }
1021 
1022  return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1023  burst_len, priv->dma_tx_phy,
1024  priv->dma_rx_phy);
1025 }
1026 
1036 static int stmmac_open(struct net_device *dev)
1037 {
1038  struct stmmac_priv *priv = netdev_priv(dev);
1039  int ret;
1040 
1041 #ifdef CONFIG_STMMAC_TIMER
1042  priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
1043  if (unlikely(priv->tm == NULL))
1044  return -ENOMEM;
1045 
1046  priv->tm->freq = tmrate;
1047 
1048  /* Test if the external timer can be actually used.
1049  * In case of failure continue without timer. */
1050  if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
1051  pr_warning("stmmaceth: cannot attach the external timer.\n");
1052  priv->tm->freq = 0;
1053  priv->tm->timer_start = stmmac_no_timer_started;
1054  priv->tm->timer_stop = stmmac_no_timer_stopped;
1055  } else
1056  priv->tm->enable = 1;
1057 #endif
1058  clk_prepare_enable(priv->stmmac_clk);
1059 
1060  stmmac_check_ether_addr(priv);
1061 
1062  ret = stmmac_init_phy(dev);
1063  if (unlikely(ret)) {
1064  pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
1065  goto open_error;
1066  }
1067 
1068  /* Create and initialize the TX/RX descriptors chains. */
1069  priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1070  priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1071  priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1072  init_dma_desc_rings(dev);
1073 
1074  /* DMA initialization and SW reset */
1075  ret = stmmac_init_dma_engine(priv);
1076  if (ret < 0) {
1077  pr_err("%s: DMA initialization failed\n", __func__);
1078  goto open_error;
1079  }
1080 
1081  /* Copy the MAC addr into the HW */
1082  priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1083 
1084  /* If required, perform hw setup of the bus. */
1085  if (priv->plat->bus_setup)
1086  priv->plat->bus_setup(priv->ioaddr);
1087 
1088  /* Initialize the MAC Core */
1089  priv->hw->mac->core_init(priv->ioaddr);
1090 
1091  /* Request the IRQ lines */
1092  ret = request_irq(dev->irq, stmmac_interrupt,
1093  IRQF_SHARED, dev->name, dev);
1094  if (unlikely(ret < 0)) {
1095  pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1096  __func__, dev->irq, ret);
1097  goto open_error;
1098  }
1099 
1100  /* Request the Wake IRQ in case of another line is used for WoL */
1101  if (priv->wol_irq != dev->irq) {
1102  ret = request_irq(priv->wol_irq, stmmac_interrupt,
1103  IRQF_SHARED, dev->name, dev);
1104  if (unlikely(ret < 0)) {
1105  pr_err("%s: ERROR: allocating the ext WoL IRQ %d "
1106  "(error: %d)\n", __func__, priv->wol_irq, ret);
1107  goto open_error_wolirq;
1108  }
1109  }
1110 
1111  /* Request the IRQ lines */
1112  if (priv->lpi_irq != -ENXIO) {
1113  ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1114  dev->name, dev);
1115  if (unlikely(ret < 0)) {
1116  pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1117  __func__, priv->lpi_irq, ret);
1118  goto open_error_lpiirq;
1119  }
1120  }
1121 
1122  /* Enable the MAC Rx/Tx */
1123  stmmac_set_mac(priv->ioaddr, true);
1124 
1125  /* Set the HW DMA mode and the COE */
1126  stmmac_dma_operation_mode(priv);
1127 
1128  /* Extra statistics */
1129  memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1130  priv->xstats.threshold = tc;
1131 
1132  stmmac_mmc_setup(priv);
1133 
1134 #ifdef CONFIG_STMMAC_DEBUG_FS
1135  ret = stmmac_init_fs(dev);
1136  if (ret < 0)
1137  pr_warning("%s: failed debugFS registration\n", __func__);
1138 #endif
1139  /* Start the ball rolling... */
1140  DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1141  priv->hw->dma->start_tx(priv->ioaddr);
1142  priv->hw->dma->start_rx(priv->ioaddr);
1143 
1144 #ifdef CONFIG_STMMAC_TIMER
1145  priv->tm->timer_start(tmrate);
1146 #endif
1147 
1148  /* Dump DMA/MAC registers */
1149  if (netif_msg_hw(priv)) {
1150  priv->hw->mac->dump_regs(priv->ioaddr);
1151  priv->hw->dma->dump_regs(priv->ioaddr);
1152  }
1153 
1154  if (priv->phydev)
1155  phy_start(priv->phydev);
1156 
1158  priv->eee_enabled = stmmac_eee_init(priv);
1159 
1160  napi_enable(&priv->napi);
1161  netif_start_queue(dev);
1162 
1163  return 0;
1164 
1165 open_error_lpiirq:
1166  if (priv->wol_irq != dev->irq)
1167  free_irq(priv->wol_irq, dev);
1168 
1169 open_error_wolirq:
1170  free_irq(dev->irq, dev);
1171 
1172 open_error:
1173 #ifdef CONFIG_STMMAC_TIMER
1174  kfree(priv->tm);
1175 #endif
1176  if (priv->phydev)
1177  phy_disconnect(priv->phydev);
1178 
1179  clk_disable_unprepare(priv->stmmac_clk);
1180 
1181  return ret;
1182 }
1183 
1190 static int stmmac_release(struct net_device *dev)
1191 {
1192  struct stmmac_priv *priv = netdev_priv(dev);
1193 
1194  if (priv->eee_enabled)
1196 
1197  /* Stop and disconnect the PHY */
1198  if (priv->phydev) {
1199  phy_stop(priv->phydev);
1200  phy_disconnect(priv->phydev);
1201  priv->phydev = NULL;
1202  }
1203 
1204  netif_stop_queue(dev);
1205 
1206 #ifdef CONFIG_STMMAC_TIMER
1207  /* Stop and release the timer */
1209  if (priv->tm != NULL)
1210  kfree(priv->tm);
1211 #endif
1212  napi_disable(&priv->napi);
1213 
1214  /* Free the IRQ lines */
1215  free_irq(dev->irq, dev);
1216  if (priv->wol_irq != dev->irq)
1217  free_irq(priv->wol_irq, dev);
1218  if (priv->lpi_irq != -ENXIO)
1219  free_irq(priv->lpi_irq, dev);
1220 
1221  /* Stop TX/RX DMA and clear the descriptors */
1222  priv->hw->dma->stop_tx(priv->ioaddr);
1223  priv->hw->dma->stop_rx(priv->ioaddr);
1224 
1225  /* Release and free the Rx/Tx resources */
1226  free_dma_desc_resources(priv);
1227 
1228  /* Disable the MAC Rx/Tx */
1229  stmmac_set_mac(priv->ioaddr, false);
1230 
1231  netif_carrier_off(dev);
1232 
1233 #ifdef CONFIG_STMMAC_DEBUG_FS
1234  stmmac_exit_fs();
1235 #endif
1236  clk_disable_unprepare(priv->stmmac_clk);
1237 
1238  return 0;
1239 }
1240 
1247 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1248 {
1249  struct stmmac_priv *priv = netdev_priv(dev);
1250  unsigned int txsize = priv->dma_tx_size;
1251  unsigned int entry;
1252  int i, csum_insertion = 0;
1253  int nfrags = skb_shinfo(skb)->nr_frags;
1254  struct dma_desc *desc, *first;
1255  unsigned int nopaged_len = skb_headlen(skb);
1256 
1257  if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1258  if (!netif_queue_stopped(dev)) {
1259  netif_stop_queue(dev);
1260  /* This is a hard error, log it. */
1261  pr_err("%s: BUG! Tx Ring full when queue awake\n",
1262  __func__);
1263  }
1264  return NETDEV_TX_BUSY;
1265  }
1266 
1267  spin_lock(&priv->tx_lock);
1268 
1269  if (priv->tx_path_in_lpi_mode)
1271 
1272  entry = priv->cur_tx % txsize;
1273 
1274 #ifdef STMMAC_XMIT_DEBUG
1275  if ((skb->len > ETH_FRAME_LEN) || nfrags)
1276  pr_info("stmmac xmit:\n"
1277  "\tskb addr %p - len: %d - nopaged_len: %d\n"
1278  "\tn_frags: %d - ip_summed: %d - %s gso\n",
1279  skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1280  !skb_is_gso(skb) ? "isn't" : "is");
1281 #endif
1282 
1283  csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1284 
1285  desc = priv->dma_tx + entry;
1286  first = desc;
1287 
1288 #ifdef STMMAC_XMIT_DEBUG
1289  if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1290  pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1291  "\t\tn_frags: %d, ip_summed: %d\n",
1292  skb->len, nopaged_len, nfrags, skb->ip_summed);
1293 #endif
1294  priv->tx_skbuff[entry] = skb;
1295 
1296  if (priv->hw->ring->is_jumbo_frm(skb->len, priv->plat->enh_desc)) {
1297  entry = priv->hw->ring->jumbo_frm(priv, skb, csum_insertion);
1298  desc = priv->dma_tx + entry;
1299  } else {
1300  desc->des2 = dma_map_single(priv->device, skb->data,
1301  nopaged_len, DMA_TO_DEVICE);
1302  priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1303  csum_insertion);
1304  }
1305 
1306  for (i = 0; i < nfrags; i++) {
1307  const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1308  int len = skb_frag_size(frag);
1309 
1310  entry = (++priv->cur_tx) % txsize;
1311  desc = priv->dma_tx + entry;
1312 
1313  TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1314  desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1315  DMA_TO_DEVICE);
1316  priv->tx_skbuff[entry] = NULL;
1317  priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1318  wmb();
1319  priv->hw->desc->set_tx_owner(desc);
1320  wmb();
1321  }
1322 
1323  /* Interrupt on completition only for the latest segment */
1324  priv->hw->desc->close_tx_desc(desc);
1325 
1326 #ifdef CONFIG_STMMAC_TIMER
1327  /* Clean IC while using timer */
1328  if (likely(priv->tm->enable))
1329  priv->hw->desc->clear_tx_ic(desc);
1330 #endif
1331 
1332  wmb();
1333 
1334  /* To avoid raise condition */
1335  priv->hw->desc->set_tx_owner(first);
1336  wmb();
1337 
1338  priv->cur_tx++;
1339 
1340 #ifdef STMMAC_XMIT_DEBUG
1341  if (netif_msg_pktdata(priv)) {
1342  pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1343  "first=%p, nfrags=%d\n",
1344  (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1345  entry, first, nfrags);
1346  display_ring(priv->dma_tx, txsize);
1347  pr_info(">>> frame to be transmitted: ");
1348  print_pkt(skb->data, skb->len);
1349  }
1350 #endif
1351  if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1352  TX_DBG("%s: stop transmitted packets\n", __func__);
1353  netif_stop_queue(dev);
1354  }
1355 
1356  dev->stats.tx_bytes += skb->len;
1357 
1358  skb_tx_timestamp(skb);
1359 
1360  priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1361 
1362  spin_unlock(&priv->tx_lock);
1363 
1364  return NETDEV_TX_OK;
1365 }
1366 
1367 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1368 {
1369  unsigned int rxsize = priv->dma_rx_size;
1370  int bfsize = priv->dma_buf_sz;
1371  struct dma_desc *p = priv->dma_rx;
1372 
1373  for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1374  unsigned int entry = priv->dirty_rx % rxsize;
1375  if (likely(priv->rx_skbuff[entry] == NULL)) {
1376  struct sk_buff *skb;
1377 
1378  skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1379 
1380  if (unlikely(skb == NULL))
1381  break;
1382 
1383  priv->rx_skbuff[entry] = skb;
1384  priv->rx_skbuff_dma[entry] =
1385  dma_map_single(priv->device, skb->data, bfsize,
1386  DMA_FROM_DEVICE);
1387 
1388  (p + entry)->des2 = priv->rx_skbuff_dma[entry];
1389 
1390  if (unlikely(priv->plat->has_gmac))
1391  priv->hw->ring->refill_desc3(bfsize, p + entry);
1392 
1393  RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1394  }
1395  wmb();
1396  priv->hw->desc->set_rx_owner(p + entry);
1397  wmb();
1398  }
1399 }
1400 
1401 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1402 {
1403  unsigned int rxsize = priv->dma_rx_size;
1404  unsigned int entry = priv->cur_rx % rxsize;
1405  unsigned int next_entry;
1406  unsigned int count = 0;
1407  struct dma_desc *p = priv->dma_rx + entry;
1408  struct dma_desc *p_next;
1409 
1410 #ifdef STMMAC_RX_DEBUG
1411  if (netif_msg_hw(priv)) {
1412  pr_debug(">>> stmmac_rx: descriptor ring:\n");
1413  display_ring(priv->dma_rx, rxsize);
1414  }
1415 #endif
1416  while (!priv->hw->desc->get_rx_owner(p)) {
1417  int status;
1418 
1419  if (count >= limit)
1420  break;
1421 
1422  count++;
1423 
1424  next_entry = (++priv->cur_rx) % rxsize;
1425  p_next = priv->dma_rx + next_entry;
1426  prefetch(p_next);
1427 
1428  /* read the status of the incoming frame */
1429  status = (priv->hw->desc->rx_status(&priv->dev->stats,
1430  &priv->xstats, p));
1431  if (unlikely(status == discard_frame))
1432  priv->dev->stats.rx_errors++;
1433  else {
1434  struct sk_buff *skb;
1435  int frame_len;
1436 
1437  frame_len = priv->hw->desc->get_rx_frame_len(p,
1438  priv->plat->rx_coe);
1439  /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
1440  * Type frames (LLC/LLC-SNAP) */
1441  if (unlikely(status != llc_snap))
1442  frame_len -= ETH_FCS_LEN;
1443 #ifdef STMMAC_RX_DEBUG
1444  if (frame_len > ETH_FRAME_LEN)
1445  pr_debug("\tRX frame size %d, COE status: %d\n",
1446  frame_len, status);
1447 
1448  if (netif_msg_hw(priv))
1449  pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1450  p, entry, p->des2);
1451 #endif
1452  skb = priv->rx_skbuff[entry];
1453  if (unlikely(!skb)) {
1454  pr_err("%s: Inconsistent Rx descriptor chain\n",
1455  priv->dev->name);
1456  priv->dev->stats.rx_dropped++;
1457  break;
1458  }
1459  prefetch(skb->data - NET_IP_ALIGN);
1460  priv->rx_skbuff[entry] = NULL;
1461 
1462  skb_put(skb, frame_len);
1463  dma_unmap_single(priv->device,
1464  priv->rx_skbuff_dma[entry],
1465  priv->dma_buf_sz, DMA_FROM_DEVICE);
1466 #ifdef STMMAC_RX_DEBUG
1467  if (netif_msg_pktdata(priv)) {
1468  pr_info(" frame received (%dbytes)", frame_len);
1469  print_pkt(skb->data, frame_len);
1470  }
1471 #endif
1472  skb->protocol = eth_type_trans(skb, priv->dev);
1473 
1474  if (unlikely(!priv->plat->rx_coe)) {
1475  /* No RX COE for old mac10/100 devices */
1476  skb_checksum_none_assert(skb);
1477  netif_receive_skb(skb);
1478  } else {
1480  napi_gro_receive(&priv->napi, skb);
1481  }
1482 
1483  priv->dev->stats.rx_packets++;
1484  priv->dev->stats.rx_bytes += frame_len;
1485  }
1486  entry = next_entry;
1487  p = p_next; /* use prefetched values */
1488  }
1489 
1490  stmmac_rx_refill(priv);
1491 
1492  priv->xstats.rx_pkt_n += count;
1493 
1494  return count;
1495 }
1496 
1506 static int stmmac_poll(struct napi_struct *napi, int budget)
1507 {
1508  struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1509  int work_done = 0;
1510 
1511  priv->xstats.poll_n++;
1512  stmmac_tx(priv);
1513  work_done = stmmac_rx(priv, budget);
1514 
1515  if (work_done < budget) {
1516  napi_complete(napi);
1517  stmmac_enable_irq(priv);
1518  }
1519  return work_done;
1520 }
1521 
1530 static void stmmac_tx_timeout(struct net_device *dev)
1531 {
1532  struct stmmac_priv *priv = netdev_priv(dev);
1533 
1534  /* Clear Tx resources and restart transmitting again */
1535  stmmac_tx_err(priv);
1536 }
1537 
1538 /* Configuration changes (passed on by ifconfig) */
1539 static int stmmac_config(struct net_device *dev, struct ifmap *map)
1540 {
1541  if (dev->flags & IFF_UP) /* can't act on a running interface */
1542  return -EBUSY;
1543 
1544  /* Don't allow changing the I/O address */
1545  if (map->base_addr != dev->base_addr) {
1546  pr_warning("%s: can't change I/O address\n", dev->name);
1547  return -EOPNOTSUPP;
1548  }
1549 
1550  /* Don't allow changing the IRQ */
1551  if (map->irq != dev->irq) {
1552  pr_warning("%s: can't change IRQ number %d\n",
1553  dev->name, dev->irq);
1554  return -EOPNOTSUPP;
1555  }
1556 
1557  /* ignore other fields */
1558  return 0;
1559 }
1560 
1570 static void stmmac_set_rx_mode(struct net_device *dev)
1571 {
1572  struct stmmac_priv *priv = netdev_priv(dev);
1573 
1574  spin_lock(&priv->lock);
1575  priv->hw->mac->set_filter(dev, priv->synopsys_id);
1576  spin_unlock(&priv->lock);
1577 }
1578 
1590 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1591 {
1592  struct stmmac_priv *priv = netdev_priv(dev);
1593  int max_mtu;
1594 
1595  if (netif_running(dev)) {
1596  pr_err("%s: must be stopped to change its MTU\n", dev->name);
1597  return -EBUSY;
1598  }
1599 
1600  if (priv->plat->enh_desc)
1601  max_mtu = JUMBO_LEN;
1602  else
1603  max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1604 
1605  if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1606  pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1607  return -EINVAL;
1608  }
1609 
1610  dev->mtu = new_mtu;
1612 
1613  return 0;
1614 }
1615 
1616 static netdev_features_t stmmac_fix_features(struct net_device *dev,
1618 {
1619  struct stmmac_priv *priv = netdev_priv(dev);
1620 
1621  if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
1622  features &= ~NETIF_F_RXCSUM;
1623  else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
1624  features &= ~NETIF_F_IPV6_CSUM;
1625  if (!priv->plat->tx_coe)
1626  features &= ~NETIF_F_ALL_CSUM;
1627 
1628  /* Some GMAC devices have a bugged Jumbo frame support that
1629  * needs to have the Tx COE disabled for oversized frames
1630  * (due to limited buffer sizes). In this case we disable
1631  * the TX csum insertionin the TDES and not use SF. */
1632  if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
1633  features &= ~NETIF_F_ALL_CSUM;
1634 
1635  return features;
1636 }
1637 
1638 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1639 {
1640  struct net_device *dev = (struct net_device *)dev_id;
1641  struct stmmac_priv *priv = netdev_priv(dev);
1642 
1643  if (unlikely(!dev)) {
1644  pr_err("%s: invalid dev pointer\n", __func__);
1645  return IRQ_NONE;
1646  }
1647 
1648  /* To handle GMAC own interrupts */
1649  if (priv->plat->has_gmac) {
1650  int status = priv->hw->mac->host_irq_status((void __iomem *)
1651  dev->base_addr);
1652  if (unlikely(status)) {
1653  if (status & core_mmc_tx_irq)
1654  priv->xstats.mmc_tx_irq_n++;
1655  if (status & core_mmc_rx_irq)
1656  priv->xstats.mmc_rx_irq_n++;
1657  if (status & core_mmc_rx_csum_offload_irq)
1658  priv->xstats.mmc_rx_csum_offload_irq_n++;
1659  if (status & core_irq_receive_pmt_irq)
1660  priv->xstats.irq_receive_pmt_irq_n++;
1661 
1662  /* For LPI we need to save the tx status */
1663  if (status & core_irq_tx_path_in_lpi_mode) {
1664  priv->xstats.irq_tx_path_in_lpi_mode_n++;
1665  priv->tx_path_in_lpi_mode = true;
1666  }
1667  if (status & core_irq_tx_path_exit_lpi_mode) {
1668  priv->xstats.irq_tx_path_exit_lpi_mode_n++;
1669  priv->tx_path_in_lpi_mode = false;
1670  }
1671  if (status & core_irq_rx_path_in_lpi_mode)
1672  priv->xstats.irq_rx_path_in_lpi_mode_n++;
1673  if (status & core_irq_rx_path_exit_lpi_mode)
1674  priv->xstats.irq_rx_path_exit_lpi_mode_n++;
1675  }
1676  }
1677 
1678  /* To handle DMA interrupts */
1679  stmmac_dma_interrupt(priv);
1680 
1681  return IRQ_HANDLED;
1682 }
1683 
1684 #ifdef CONFIG_NET_POLL_CONTROLLER
1685 /* Polling receive - used by NETCONSOLE and other diagnostic tools
1686  * to allow network I/O with interrupts disabled. */
1687 static void stmmac_poll_controller(struct net_device *dev)
1688 {
1689  disable_irq(dev->irq);
1690  stmmac_interrupt(dev->irq, dev);
1691  enable_irq(dev->irq);
1692 }
1693 #endif
1694 
1705 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1706 {
1707  struct stmmac_priv *priv = netdev_priv(dev);
1708  int ret;
1709 
1710  if (!netif_running(dev))
1711  return -EINVAL;
1712 
1713  if (!priv->phydev)
1714  return -EINVAL;
1715 
1716  ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1717 
1718  return ret;
1719 }
1720 
1721 #ifdef CONFIG_STMMAC_DEBUG_FS
1722 static struct dentry *stmmac_fs_dir;
1723 static struct dentry *stmmac_rings_status;
1724 static struct dentry *stmmac_dma_cap;
1725 
1726 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
1727 {
1728  struct tmp_s {
1729  u64 a;
1730  unsigned int b;
1731  unsigned int c;
1732  };
1733  int i;
1734  struct net_device *dev = seq->private;
1735  struct stmmac_priv *priv = netdev_priv(dev);
1736 
1737  seq_printf(seq, "=======================\n");
1738  seq_printf(seq, " RX descriptor ring\n");
1739  seq_printf(seq, "=======================\n");
1740 
1741  for (i = 0; i < priv->dma_rx_size; i++) {
1742  struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
1743  seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1744  i, (unsigned int)(x->a),
1745  (unsigned int)((x->a) >> 32), x->b, x->c);
1746  seq_printf(seq, "\n");
1747  }
1748 
1749  seq_printf(seq, "\n");
1750  seq_printf(seq, "=======================\n");
1751  seq_printf(seq, " TX descriptor ring\n");
1752  seq_printf(seq, "=======================\n");
1753 
1754  for (i = 0; i < priv->dma_tx_size; i++) {
1755  struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
1756  seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1757  i, (unsigned int)(x->a),
1758  (unsigned int)((x->a) >> 32), x->b, x->c);
1759  seq_printf(seq, "\n");
1760  }
1761 
1762  return 0;
1763 }
1764 
1765 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
1766 {
1767  return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
1768 }
1769 
1770 static const struct file_operations stmmac_rings_status_fops = {
1771  .owner = THIS_MODULE,
1772  .open = stmmac_sysfs_ring_open,
1773  .read = seq_read,
1774  .llseek = seq_lseek,
1775  .release = single_release,
1776 };
1777 
1778 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
1779 {
1780  struct net_device *dev = seq->private;
1781  struct stmmac_priv *priv = netdev_priv(dev);
1782 
1783  if (!priv->hw_cap_support) {
1784  seq_printf(seq, "DMA HW features not supported\n");
1785  return 0;
1786  }
1787 
1788  seq_printf(seq, "==============================\n");
1789  seq_printf(seq, "\tDMA HW features\n");
1790  seq_printf(seq, "==============================\n");
1791 
1792  seq_printf(seq, "\t10/100 Mbps %s\n",
1793  (priv->dma_cap.mbps_10_100) ? "Y" : "N");
1794  seq_printf(seq, "\t1000 Mbps %s\n",
1795  (priv->dma_cap.mbps_1000) ? "Y" : "N");
1796  seq_printf(seq, "\tHalf duple %s\n",
1797  (priv->dma_cap.half_duplex) ? "Y" : "N");
1798  seq_printf(seq, "\tHash Filter: %s\n",
1799  (priv->dma_cap.hash_filter) ? "Y" : "N");
1800  seq_printf(seq, "\tMultiple MAC address registers: %s\n",
1801  (priv->dma_cap.multi_addr) ? "Y" : "N");
1802  seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
1803  (priv->dma_cap.pcs) ? "Y" : "N");
1804  seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
1805  (priv->dma_cap.sma_mdio) ? "Y" : "N");
1806  seq_printf(seq, "\tPMT Remote wake up: %s\n",
1807  (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
1808  seq_printf(seq, "\tPMT Magic Frame: %s\n",
1809  (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
1810  seq_printf(seq, "\tRMON module: %s\n",
1811  (priv->dma_cap.rmon) ? "Y" : "N");
1812  seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
1813  (priv->dma_cap.time_stamp) ? "Y" : "N");
1814  seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
1815  (priv->dma_cap.atime_stamp) ? "Y" : "N");
1816  seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
1817  (priv->dma_cap.eee) ? "Y" : "N");
1818  seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
1819  seq_printf(seq, "\tChecksum Offload in TX: %s\n",
1820  (priv->dma_cap.tx_coe) ? "Y" : "N");
1821  seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
1822  (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
1823  seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
1824  (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
1825  seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
1826  (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
1827  seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
1828  priv->dma_cap.number_rx_channel);
1829  seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
1830  priv->dma_cap.number_tx_channel);
1831  seq_printf(seq, "\tEnhanced descriptors: %s\n",
1832  (priv->dma_cap.enh_desc) ? "Y" : "N");
1833 
1834  return 0;
1835 }
1836 
1837 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
1838 {
1839  return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
1840 }
1841 
1842 static const struct file_operations stmmac_dma_cap_fops = {
1843  .owner = THIS_MODULE,
1844  .open = stmmac_sysfs_dma_cap_open,
1845  .read = seq_read,
1846  .llseek = seq_lseek,
1847  .release = single_release,
1848 };
1849 
1850 static int stmmac_init_fs(struct net_device *dev)
1851 {
1852  /* Create debugfs entries */
1853  stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
1854 
1855  if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
1856  pr_err("ERROR %s, debugfs create directory failed\n",
1858 
1859  return -ENOMEM;
1860  }
1861 
1862  /* Entry to report DMA RX/TX rings */
1863  stmmac_rings_status = debugfs_create_file("descriptors_status",
1864  S_IRUGO, stmmac_fs_dir, dev,
1865  &stmmac_rings_status_fops);
1866 
1867  if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
1868  pr_info("ERROR creating stmmac ring debugfs file\n");
1869  debugfs_remove(stmmac_fs_dir);
1870 
1871  return -ENOMEM;
1872  }
1873 
1874  /* Entry to report the DMA HW features */
1875  stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
1876  dev, &stmmac_dma_cap_fops);
1877 
1878  if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
1879  pr_info("ERROR creating stmmac MMC debugfs file\n");
1880  debugfs_remove(stmmac_rings_status);
1881  debugfs_remove(stmmac_fs_dir);
1882 
1883  return -ENOMEM;
1884  }
1885 
1886  return 0;
1887 }
1888 
1889 static void stmmac_exit_fs(void)
1890 {
1891  debugfs_remove(stmmac_rings_status);
1892  debugfs_remove(stmmac_dma_cap);
1893  debugfs_remove(stmmac_fs_dir);
1894 }
1895 #endif /* CONFIG_STMMAC_DEBUG_FS */
1896 
1897 static const struct net_device_ops stmmac_netdev_ops = {
1898  .ndo_open = stmmac_open,
1899  .ndo_start_xmit = stmmac_xmit,
1900  .ndo_stop = stmmac_release,
1901  .ndo_change_mtu = stmmac_change_mtu,
1902  .ndo_fix_features = stmmac_fix_features,
1903  .ndo_set_rx_mode = stmmac_set_rx_mode,
1904  .ndo_tx_timeout = stmmac_tx_timeout,
1905  .ndo_do_ioctl = stmmac_ioctl,
1906  .ndo_set_config = stmmac_config,
1907 #ifdef CONFIG_NET_POLL_CONTROLLER
1908  .ndo_poll_controller = stmmac_poll_controller,
1909 #endif
1910  .ndo_set_mac_address = eth_mac_addr,
1911 };
1912 
1922 static int stmmac_hw_init(struct stmmac_priv *priv)
1923 {
1924  int ret = 0;
1925  struct mac_device_info *mac;
1926 
1927  /* Identify the MAC HW device */
1928  if (priv->plat->has_gmac) {
1929  priv->dev->priv_flags |= IFF_UNICAST_FLT;
1930  mac = dwmac1000_setup(priv->ioaddr);
1931  } else {
1932  mac = dwmac100_setup(priv->ioaddr);
1933  }
1934  if (!mac)
1935  return -ENOMEM;
1936 
1937  priv->hw = mac;
1938 
1939  /* To use the chained or ring mode */
1940  priv->hw->ring = &ring_mode_ops;
1941 
1942  /* Get and dump the chip ID */
1943  priv->synopsys_id = stmmac_get_synopsys_id(priv);
1944 
1945  /* Get the HW capability (new GMAC newer than 3.50a) */
1946  priv->hw_cap_support = stmmac_get_hw_features(priv);
1947  if (priv->hw_cap_support) {
1948  pr_info(" DMA HW capability register supported");
1949 
1950  /* We can override some gmac/dma configuration fields: e.g.
1951  * enh_desc, tx_coe (e.g. that are passed through the
1952  * platform) with the values from the HW capability
1953  * register (if supported).
1954  */
1955  priv->plat->enh_desc = priv->dma_cap.enh_desc;
1956  priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
1957 
1958  priv->plat->tx_coe = priv->dma_cap.tx_coe;
1959 
1960  if (priv->dma_cap.rx_coe_type2)
1961  priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
1962  else if (priv->dma_cap.rx_coe_type1)
1963  priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
1964 
1965  } else
1966  pr_info(" No HW DMA feature register supported");
1967 
1968  /* Select the enhnaced/normal descriptor structures */
1969  stmmac_selec_desc_mode(priv);
1970 
1971  /* Enable the IPC (Checksum Offload) and check if the feature has been
1972  * enabled during the core configuration. */
1973  ret = priv->hw->mac->rx_ipc(priv->ioaddr);
1974  if (!ret) {
1975  pr_warning(" RX IPC Checksum Offload not configured.\n");
1976  priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1977  }
1978 
1979  if (priv->plat->rx_coe)
1980  pr_info(" RX Checksum Offload Engine supported (type %d)\n",
1981  priv->plat->rx_coe);
1982  if (priv->plat->tx_coe)
1983  pr_info(" TX Checksum insertion supported\n");
1984 
1985  if (priv->plat->pmt) {
1986  pr_info(" Wake-Up On Lan supported\n");
1988  }
1989 
1990  return ret;
1991 }
1992 
2003  void __iomem *addr)
2004 {
2005  int ret = 0;
2006  struct net_device *ndev = NULL;
2007  struct stmmac_priv *priv;
2008 
2009  ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2010  if (!ndev)
2011  return NULL;
2012 
2013  SET_NETDEV_DEV(ndev, device);
2014 
2015  priv = netdev_priv(ndev);
2016  priv->device = device;
2017  priv->dev = ndev;
2018 
2019  ether_setup(ndev);
2020 
2021  stmmac_set_ethtool_ops(ndev);
2022  priv->pause = pause;
2023  priv->plat = plat_dat;
2024  priv->ioaddr = addr;
2025  priv->dev->base_addr = (unsigned long)addr;
2026 
2027  /* Verify driver arguments */
2028  stmmac_verify_args();
2029 
2030  /* Override with kernel parameters if supplied XXX CRS XXX
2031  * this needs to have multiple instances */
2032  if ((phyaddr >= 0) && (phyaddr <= 31))
2033  priv->plat->phy_addr = phyaddr;
2034 
2035  /* Init MAC and get the capabilities */
2036  stmmac_hw_init(priv);
2037 
2038  ndev->netdev_ops = &stmmac_netdev_ops;
2039 
2042  ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2044 #ifdef STMMAC_VLAN_TAG_USED
2045  /* Both mac100 and gmac support receive VLAN tag detection */
2046  ndev->features |= NETIF_F_HW_VLAN_RX;
2047 #endif
2048  priv->msg_enable = netif_msg_init(debug, default_msg_level);
2049 
2050  if (flow_ctrl)
2051  priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
2052 
2053  netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2054 
2055  spin_lock_init(&priv->lock);
2056  spin_lock_init(&priv->tx_lock);
2057 
2058  ret = register_netdev(ndev);
2059  if (ret) {
2060  pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2061  goto error_netdev_register;
2062  }
2063 
2065  if (IS_ERR(priv->stmmac_clk)) {
2066  pr_warning("%s: warning: cannot get CSR clock\n", __func__);
2067  goto error_clk_get;
2068  }
2069 
2070  /* If a specific clk_csr value is passed from the platform
2071  * this means that the CSR Clock Range selection cannot be
2072  * changed at run-time and it is fixed. Viceversa the driver'll try to
2073  * set the MDC clock dynamically according to the csr actual
2074  * clock input.
2075  */
2076  if (!priv->plat->clk_csr)
2077  stmmac_clk_csr_set(priv);
2078  else
2079  priv->clk_csr = priv->plat->clk_csr;
2080 
2081  /* MDIO bus Registration */
2082  ret = stmmac_mdio_register(ndev);
2083  if (ret < 0) {
2084  pr_debug("%s: MDIO bus (id: %d) registration failed",
2085  __func__, priv->plat->bus_id);
2086  goto error_mdio_register;
2087  }
2088 
2089  return priv;
2090 
2091 error_mdio_register:
2092  clk_put(priv->stmmac_clk);
2093 error_clk_get:
2094  unregister_netdev(ndev);
2095 error_netdev_register:
2096  netif_napi_del(&priv->napi);
2097  free_netdev(ndev);
2098 
2099  return NULL;
2100 }
2101 
2109 {
2110  struct stmmac_priv *priv = netdev_priv(ndev);
2111 
2112  pr_info("%s:\n\tremoving driver", __func__);
2113 
2114  priv->hw->dma->stop_rx(priv->ioaddr);
2115  priv->hw->dma->stop_tx(priv->ioaddr);
2116 
2117  stmmac_set_mac(priv->ioaddr, false);
2118  stmmac_mdio_unregister(ndev);
2119  netif_carrier_off(ndev);
2120  unregister_netdev(ndev);
2121  free_netdev(ndev);
2122 
2123  return 0;
2124 }
2125 
2126 #ifdef CONFIG_PM
2127 int stmmac_suspend(struct net_device *ndev)
2128 {
2129  struct stmmac_priv *priv = netdev_priv(ndev);
2130  int dis_ic = 0;
2131  unsigned long flags;
2132 
2133  if (!ndev || !netif_running(ndev))
2134  return 0;
2135 
2136  if (priv->phydev)
2137  phy_stop(priv->phydev);
2138 
2139  spin_lock_irqsave(&priv->lock, flags);
2140 
2141  netif_device_detach(ndev);
2142  netif_stop_queue(ndev);
2143 
2144 #ifdef CONFIG_STMMAC_TIMER
2145  priv->tm->timer_stop();
2146  if (likely(priv->tm->enable))
2147  dis_ic = 1;
2148 #endif
2149  napi_disable(&priv->napi);
2150 
2151  /* Stop TX/RX DMA */
2152  priv->hw->dma->stop_tx(priv->ioaddr);
2153  priv->hw->dma->stop_rx(priv->ioaddr);
2154  /* Clear the Rx/Tx descriptors */
2155  priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
2156  dis_ic);
2157  priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
2158 
2159  /* Enable Power down mode by programming the PMT regs */
2160  if (device_may_wakeup(priv->device))
2161  priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2162  else {
2163  stmmac_set_mac(priv->ioaddr, false);
2164  /* Disable clock in case of PWM is off */
2165  clk_disable_unprepare(priv->stmmac_clk);
2166  }
2167  spin_unlock_irqrestore(&priv->lock, flags);
2168  return 0;
2169 }
2170 
2171 int stmmac_resume(struct net_device *ndev)
2172 {
2173  struct stmmac_priv *priv = netdev_priv(ndev);
2174  unsigned long flags;
2175 
2176  if (!netif_running(ndev))
2177  return 0;
2178 
2179  spin_lock_irqsave(&priv->lock, flags);
2180 
2181  /* Power Down bit, into the PM register, is cleared
2182  * automatically as soon as a magic packet or a Wake-up frame
2183  * is received. Anyway, it's better to manually clear
2184  * this bit because it can generate problems while resuming
2185  * from another devices (e.g. serial console). */
2186  if (device_may_wakeup(priv->device))
2187  priv->hw->mac->pmt(priv->ioaddr, 0);
2188  else
2189  /* enable the clk prevously disabled */
2190  clk_prepare_enable(priv->stmmac_clk);
2191 
2192  netif_device_attach(ndev);
2193 
2194  /* Enable the MAC and DMA */
2195  stmmac_set_mac(priv->ioaddr, true);
2196  priv->hw->dma->start_tx(priv->ioaddr);
2197  priv->hw->dma->start_rx(priv->ioaddr);
2198 
2199 #ifdef CONFIG_STMMAC_TIMER
2200  if (likely(priv->tm->enable))
2201  priv->tm->timer_start(tmrate);
2202 #endif
2203  napi_enable(&priv->napi);
2204 
2205  netif_start_queue(ndev);
2206 
2207  spin_unlock_irqrestore(&priv->lock, flags);
2208 
2209  if (priv->phydev)
2210  phy_start(priv->phydev);
2211 
2212  return 0;
2213 }
2214 
2215 int stmmac_freeze(struct net_device *ndev)
2216 {
2217  if (!ndev || !netif_running(ndev))
2218  return 0;
2219 
2220  return stmmac_release(ndev);
2221 }
2222 
2223 int stmmac_restore(struct net_device *ndev)
2224 {
2225  if (!ndev || !netif_running(ndev))
2226  return 0;
2227 
2228  return stmmac_open(ndev);
2229 }
2230 #endif /* CONFIG_PM */
2231 
2232 /* Driver can be configured w/ and w/ both PCI and Platf drivers
2233  * depending on the configuration selected.
2234  */
2235 static int __init stmmac_init(void)
2236 {
2237  int err_plt = 0;
2238  int err_pci = 0;
2239 
2240  err_plt = stmmac_register_platform();
2241  err_pci = stmmac_register_pci();
2242 
2243  if ((err_pci) && (err_plt)) {
2244  pr_err("stmmac: driver registration failed\n");
2245  return -EINVAL;
2246  }
2247 
2248  return 0;
2249 }
2250 
2251 static void __exit stmmac_exit(void)
2252 {
2253  stmmac_unregister_platform();
2254  stmmac_unregister_pci();
2255 }
2256 
2257 module_init(stmmac_init);
2258 module_exit(stmmac_exit);
2259 
2260 #ifndef MODULE
2261 static int __init stmmac_cmdline_opt(char *str)
2262 {
2263  char *opt;
2264 
2265  if (!str || !*str)
2266  return -EINVAL;
2267  while ((opt = strsep(&str, ",")) != NULL) {
2268  if (!strncmp(opt, "debug:", 6)) {
2269  if (kstrtoint(opt + 6, 0, &debug))
2270  goto err;
2271  } else if (!strncmp(opt, "phyaddr:", 8)) {
2272  if (kstrtoint(opt + 8, 0, &phyaddr))
2273  goto err;
2274  } else if (!strncmp(opt, "dma_txsize:", 11)) {
2275  if (kstrtoint(opt + 11, 0, &dma_txsize))
2276  goto err;
2277  } else if (!strncmp(opt, "dma_rxsize:", 11)) {
2278  if (kstrtoint(opt + 11, 0, &dma_rxsize))
2279  goto err;
2280  } else if (!strncmp(opt, "buf_sz:", 7)) {
2281  if (kstrtoint(opt + 7, 0, &buf_sz))
2282  goto err;
2283  } else if (!strncmp(opt, "tc:", 3)) {
2284  if (kstrtoint(opt + 3, 0, &tc))
2285  goto err;
2286  } else if (!strncmp(opt, "watchdog:", 9)) {
2287  if (kstrtoint(opt + 9, 0, &watchdog))
2288  goto err;
2289  } else if (!strncmp(opt, "flow_ctrl:", 10)) {
2290  if (kstrtoint(opt + 10, 0, &flow_ctrl))
2291  goto err;
2292  } else if (!strncmp(opt, "pause:", 6)) {
2293  if (kstrtoint(opt + 6, 0, &pause))
2294  goto err;
2295  } else if (!strncmp(opt, "eee_timer:", 6)) {
2296  if (kstrtoint(opt + 10, 0, &eee_timer))
2297  goto err;
2298 #ifdef CONFIG_STMMAC_TIMER
2299  } else if (!strncmp(opt, "tmrate:", 7)) {
2300  if (kstrtoint(opt + 7, 0, &tmrate))
2301  goto err;
2302 #endif
2303  }
2304  }
2305  return 0;
2306 
2307 err:
2308  pr_err("%s: ERROR broken module parameter conversion", __func__);
2309  return -EINVAL;
2310 }
2311 
2312 __setup("stmmaceth=", stmmac_cmdline_opt);
2313 #endif
2314 
2315 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2316 MODULE_AUTHOR("Giuseppe Cavallaro <[email protected]>");
2317 MODULE_LICENSE("GPL");