Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
vx222_ops.c
Go to the documentation of this file.
1 /*
2  * Driver for Digigram VX222 V2/Mic soundcards
3  *
4  * VX222-specific low-level routines
5  *
6  * Copyright (c) 2002 by Takashi Iwai <[email protected]>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21  */
22 
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/firmware.h>
26 #include <linux/mutex.h>
27 
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <asm/io.h>
32 #include "vx222.h"
33 
34 
35 static int vx2_reg_offset[VX_REG_MAX] = {
36  [VX_ICR] = 0x00,
37  [VX_CVR] = 0x04,
38  [VX_ISR] = 0x08,
39  [VX_IVR] = 0x0c,
40  [VX_RXH] = 0x14,
41  [VX_RXM] = 0x18,
42  [VX_RXL] = 0x1c,
43  [VX_DMA] = 0x10,
44  [VX_CDSP] = 0x20,
45  [VX_CFG] = 0x24,
46  [VX_RUER] = 0x28,
47  [VX_DATA] = 0x2c,
48  [VX_STATUS] = 0x30,
49  [VX_LOFREQ] = 0x34,
50  [VX_HIFREQ] = 0x38,
51  [VX_CSUER] = 0x3c,
52  [VX_SELMIC] = 0x40,
53  [VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
54  [VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate
55  [VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate
56  [VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
57  [VX_CNTRL] = 0x50, // VX_CNTRL_REGISTER_OFFSET
58  [VX_GPIOC] = 0x54, // VX_GPIOC (new with PLX9030)
59 };
60 
61 static int vx2_reg_index[VX_REG_MAX] = {
62  [VX_ICR] = 1,
63  [VX_CVR] = 1,
64  [VX_ISR] = 1,
65  [VX_IVR] = 1,
66  [VX_RXH] = 1,
67  [VX_RXM] = 1,
68  [VX_RXL] = 1,
69  [VX_DMA] = 1,
70  [VX_CDSP] = 1,
71  [VX_CFG] = 1,
72  [VX_RUER] = 1,
73  [VX_DATA] = 1,
74  [VX_STATUS] = 1,
75  [VX_LOFREQ] = 1,
76  [VX_HIFREQ] = 1,
77  [VX_CSUER] = 1,
78  [VX_SELMIC] = 1,
79  [VX_COMPOT] = 1,
80  [VX_SCOMPR] = 1,
81  [VX_GLIMIT] = 1,
82  [VX_INTCSR] = 0, /* on the PLX */
83  [VX_CNTRL] = 0, /* on the PLX */
84  [VX_GPIOC] = 0, /* on the PLX */
85 };
86 
87 static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg)
88 {
89  struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
90  return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
91 }
92 
97 static unsigned char vx2_inb(struct vx_core *chip, int offset)
98 {
99  return inb(vx2_reg_addr(chip, offset));
100 }
101 
107 static void vx2_outb(struct vx_core *chip, int offset, unsigned char val)
108 {
109  outb(val, vx2_reg_addr(chip, offset));
110  /*
111  printk(KERN_DEBUG "outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
112  */
113 }
114 
119 static unsigned int vx2_inl(struct vx_core *chip, int offset)
120 {
121  return inl(vx2_reg_addr(chip, offset));
122 }
123 
129 static void vx2_outl(struct vx_core *chip, int offset, unsigned int val)
130 {
131  /*
132  printk(KERN_DEBUG "outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
133  */
134  outl(val, vx2_reg_addr(chip, offset));
135 }
136 
137 /*
138  * redefine macros to call directly
139  */
140 #undef vx_inb
141 #define vx_inb(chip,reg) vx2_inb((struct vx_core*)(chip), VX_##reg)
142 #undef vx_outb
143 #define vx_outb(chip,reg,val) vx2_outb((struct vx_core*)(chip), VX_##reg, val)
144 #undef vx_inl
145 #define vx_inl(chip,reg) vx2_inl((struct vx_core*)(chip), VX_##reg)
146 #undef vx_outl
147 #define vx_outl(chip,reg,val) vx2_outl((struct vx_core*)(chip), VX_##reg, val)
148 
149 
150 /*
151  * vx_reset_dsp - reset the DSP
152  */
153 
154 #define XX_DSP_RESET_WAIT_TIME 2 /* ms */
155 
156 static void vx2_reset_dsp(struct vx_core *_chip)
157 {
158  struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
159 
160  /* set the reset dsp bit to 0 */
161  vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);
162 
164 
166  /* set the reset dsp bit to 1 */
167  vx_outl(chip, CDSP, chip->regCDSP);
168 }
169 
170 
171 static int vx2_test_xilinx(struct vx_core *_chip)
172 {
173  struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
174  unsigned int data;
175 
176  snd_printdd("testing xilinx...\n");
177  /* This test uses several write/read sequences on TEST0 and TEST1 bits
178  * to figure out whever or not the xilinx was correctly loaded
179  */
180 
181  /* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
182  vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
183  vx_inl(chip, ISR);
184  data = vx_inl(chip, STATUS);
185  if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) {
186  snd_printdd("bad!\n");
187  return -ENODEV;
188  }
189 
190  /* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
191  vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
192  vx_inl(chip, ISR);
193  data = vx_inl(chip, STATUS);
194  if (! (data & VX_STATUS_VAL_TEST0_MASK)) {
195  snd_printdd("bad! #2\n");
196  return -ENODEV;
197  }
198 
199  if (_chip->type == VX_TYPE_BOARD) {
200  /* not implemented on VX_2_BOARDS */
201  /* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
202  vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
203  vx_inl(chip, ISR);
204  data = vx_inl(chip, STATUS);
205  if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) {
206  snd_printdd("bad! #3\n");
207  return -ENODEV;
208  }
209 
210  /* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
211  vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
212  vx_inl(chip, ISR);
213  data = vx_inl(chip, STATUS);
214  if (! (data & VX_STATUS_VAL_TEST1_MASK)) {
215  snd_printdd("bad! #4\n");
216  return -ENODEV;
217  }
218  }
219  snd_printdd("ok, xilinx fine.\n");
220  return 0;
221 }
222 
223 
228 static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write)
229 {
230  /* Interrupt mode and HREQ pin enabled for host transmit data transfers
231  * (in case of the use of the pseudo-dma facility).
232  */
233  vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);
234 
235  /* Reset the pseudo-dma register (in case of the use of the
236  * pseudo-dma facility).
237  */
238  vx_outl(chip, RESET_DMA, 0);
239 }
240 
241 /*
242  * vx_release_pseudo_dma - disable the pseudo-DMA mode
243  */
244 static inline void vx2_release_pseudo_dma(struct vx_core *chip)
245 {
246  /* HREQ pin disabled. */
247  vx_outl(chip, ICR, 0);
248 }
249 
250 
251 
252 /* pseudo-dma write */
253 static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime,
254  struct vx_pipe *pipe, int count)
255 {
256  unsigned long port = vx2_reg_addr(chip, VX_DMA);
257  int offset = pipe->hw_ptr;
258  u32 *addr = (u32 *)(runtime->dma_area + offset);
259 
260  if (snd_BUG_ON(count % 4))
261  return;
262 
263  vx2_setup_pseudo_dma(chip, 1);
264 
265  /* Transfer using pseudo-dma.
266  */
267  if (offset + count > pipe->buffer_bytes) {
268  int length = pipe->buffer_bytes - offset;
269  count -= length;
270  length >>= 2; /* in 32bit words */
271  /* Transfer using pseudo-dma. */
272  while (length-- > 0) {
273  outl(cpu_to_le32(*addr), port);
274  addr++;
275  }
276  addr = (u32 *)runtime->dma_area;
277  pipe->hw_ptr = 0;
278  }
279  pipe->hw_ptr += count;
280  count >>= 2; /* in 32bit words */
281  /* Transfer using pseudo-dma. */
282  while (count-- > 0) {
283  outl(cpu_to_le32(*addr), port);
284  addr++;
285  }
286 
287  vx2_release_pseudo_dma(chip);
288 }
289 
290 
291 /* pseudo dma read */
292 static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime,
293  struct vx_pipe *pipe, int count)
294 {
295  int offset = pipe->hw_ptr;
296  u32 *addr = (u32 *)(runtime->dma_area + offset);
297  unsigned long port = vx2_reg_addr(chip, VX_DMA);
298 
299  if (snd_BUG_ON(count % 4))
300  return;
301 
302  vx2_setup_pseudo_dma(chip, 0);
303  /* Transfer using pseudo-dma.
304  */
305  if (offset + count > pipe->buffer_bytes) {
306  int length = pipe->buffer_bytes - offset;
307  count -= length;
308  length >>= 2; /* in 32bit words */
309  /* Transfer using pseudo-dma. */
310  while (length-- > 0)
311  *addr++ = le32_to_cpu(inl(port));
312  addr = (u32 *)runtime->dma_area;
313  pipe->hw_ptr = 0;
314  }
315  pipe->hw_ptr += count;
316  count >>= 2; /* in 32bit words */
317  /* Transfer using pseudo-dma. */
318  while (count-- > 0)
319  *addr++ = le32_to_cpu(inl(port));
320 
321  vx2_release_pseudo_dma(chip);
322 }
323 
324 #define VX_XILINX_RESET_MASK 0x40000000
325 #define VX_USERBIT0_MASK 0x00000004
326 #define VX_USERBIT1_MASK 0x00000020
327 #define VX_CNTRL_REGISTER_VALUE 0x00172012
328 
329 /*
330  * transfer counts bits to PLX
331  */
332 static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data)
333 {
334  unsigned int i;
335 
336  for (i = 0; i < counts; i++) {
337  unsigned int val;
338 
339  /* set the clock bit to 0. */
341  vx2_outl(chip, port, val);
342  vx2_inl(chip, port);
343  udelay(1);
344 
345  if (data & (1 << i))
346  val |= VX_USERBIT1_MASK;
347  else
348  val &= ~VX_USERBIT1_MASK;
349  vx2_outl(chip, port, val);
350  vx2_inl(chip, port);
351 
352  /* set the clock bit to 1. */
353  val |= VX_USERBIT0_MASK;
354  vx2_outl(chip, port, val);
355  vx2_inl(chip, port);
356  udelay(1);
357  }
358  return 0;
359 }
360 
361 /*
362  * load the xilinx image
363  */
364 static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx)
365 {
366  unsigned int i;
367  unsigned int port;
368  const unsigned char *image;
369 
370  /* XILINX reset (wait at least 1 millisecond between reset on and off). */
372  vx_inl(chip, CNTRL);
373  msleep(10);
375  vx_inl(chip, CNTRL);
376  msleep(10);
377 
378  if (chip->type == VX_TYPE_BOARD)
379  port = VX_CNTRL;
380  else
381  port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
382 
383  image = xilinx->data;
384  for (i = 0; i < xilinx->size; i++, image++) {
385  if (put_xilinx_data(chip, port, 8, *image) < 0)
386  return -EINVAL;
387  /* don't take too much time in this loop... */
388  cond_resched();
389  }
390  put_xilinx_data(chip, port, 4, 0xff); /* end signature */
391 
392  msleep(200);
393 
394  /* test after loading (is buggy with VX222) */
395  if (chip->type != VX_TYPE_BOARD) {
396  /* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
397  i = vx_inl(chip, GPIOC);
398  if (i & 0x0100)
399  return 0;
400  snd_printk(KERN_ERR "vx222: xilinx test failed after load, GPIOC=0x%x\n", i);
401  return -EINVAL;
402  }
403 
404  return 0;
405 }
406 
407 
408 /*
409  * load the boot/dsp images
410  */
411 static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp)
412 {
413  int err;
414 
415  switch (index) {
416  case 1:
417  /* xilinx image */
418  if ((err = vx2_load_xilinx_binary(vx, dsp)) < 0)
419  return err;
420  if ((err = vx2_test_xilinx(vx)) < 0)
421  return err;
422  return 0;
423  case 2:
424  /* DSP boot */
425  return snd_vx_dsp_boot(vx, dsp);
426  case 3:
427  /* DSP image */
428  return snd_vx_dsp_load(vx, dsp);
429  default:
430  snd_BUG();
431  return -EINVAL;
432  }
433 }
434 
435 
436 /*
437  * vx_test_and_ack - test and acknowledge interrupt
438  *
439  * called from irq hander, too
440  *
441  * spinlock held!
442  */
443 static int vx2_test_and_ack(struct vx_core *chip)
444 {
445  /* not booted yet? */
446  if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
447  return -ENXIO;
448 
449  if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
450  return -EIO;
451 
452  /* ok, interrupts generated, now ack it */
453  /* set ACQUIT bit up and down */
454  vx_outl(chip, STATUS, 0);
455  /* useless read just to spend some time and maintain
456  * the ACQUIT signal up for a while ( a bus cycle )
457  */
458  vx_inl(chip, STATUS);
459  /* ack */
460  vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
461  /* useless read just to spend some time and maintain
462  * the ACQUIT signal up for a while ( a bus cycle ) */
463  vx_inl(chip, STATUS);
464  /* clear */
465  vx_outl(chip, STATUS, 0);
466 
467  return 0;
468 }
469 
470 
471 /*
472  * vx_validate_irq - enable/disable IRQ
473  */
474 static void vx2_validate_irq(struct vx_core *_chip, int enable)
475 {
476  struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
477 
478  /* Set the interrupt enable bit to 1 in CDSP register */
479  if (enable) {
480  /* Set the PCI interrupt enable bit to 1.*/
483  } else {
484  /* Set the PCI interrupt enable bit to 0. */
487  }
488  vx_outl(chip, CDSP, chip->regCDSP);
489 }
490 
491 
492 /*
493  * write an AKM codec data (24bit)
494  */
495 static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data)
496 {
497  unsigned int i;
498 
499  vx_inl(chip, HIFREQ);
500 
501  /* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
502  for (i = 0; i < 24; i++, data <<= 1)
503  vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
504  /* Terminate access to codec registers */
505  vx_inl(chip, RUER);
506 }
507 
508 
509 #define AKM_CODEC_POWER_CONTROL_CMD 0xA007
510 #define AKM_CODEC_RESET_ON_CMD 0xA100
511 #define AKM_CODEC_RESET_OFF_CMD 0xA103
512 #define AKM_CODEC_CLOCK_FORMAT_CMD 0xA240
513 #define AKM_CODEC_MUTE_CMD 0xA38D
514 #define AKM_CODEC_UNMUTE_CMD 0xA30D
515 #define AKM_CODEC_LEFT_LEVEL_CMD 0xA400
516 #define AKM_CODEC_RIGHT_LEVEL_CMD 0xA500
517 
518 static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = {
519  0x7f, // [000] = +0.000 dB -> AKM(0x7f) = +0.000 dB error(+0.000 dB)
520  0x7d, // [001] = -0.500 dB -> AKM(0x7d) = -0.572 dB error(-0.072 dB)
521  0x7c, // [002] = -1.000 dB -> AKM(0x7c) = -0.873 dB error(+0.127 dB)
522  0x7a, // [003] = -1.500 dB -> AKM(0x7a) = -1.508 dB error(-0.008 dB)
523  0x79, // [004] = -2.000 dB -> AKM(0x79) = -1.844 dB error(+0.156 dB)
524  0x77, // [005] = -2.500 dB -> AKM(0x77) = -2.557 dB error(-0.057 dB)
525  0x76, // [006] = -3.000 dB -> AKM(0x76) = -2.937 dB error(+0.063 dB)
526  0x75, // [007] = -3.500 dB -> AKM(0x75) = -3.334 dB error(+0.166 dB)
527  0x73, // [008] = -4.000 dB -> AKM(0x73) = -4.188 dB error(-0.188 dB)
528  0x72, // [009] = -4.500 dB -> AKM(0x72) = -4.648 dB error(-0.148 dB)
529  0x71, // [010] = -5.000 dB -> AKM(0x71) = -5.134 dB error(-0.134 dB)
530  0x70, // [011] = -5.500 dB -> AKM(0x70) = -5.649 dB error(-0.149 dB)
531  0x6f, // [012] = -6.000 dB -> AKM(0x6f) = -6.056 dB error(-0.056 dB)
532  0x6d, // [013] = -6.500 dB -> AKM(0x6d) = -6.631 dB error(-0.131 dB)
533  0x6c, // [014] = -7.000 dB -> AKM(0x6c) = -6.933 dB error(+0.067 dB)
534  0x6a, // [015] = -7.500 dB -> AKM(0x6a) = -7.571 dB error(-0.071 dB)
535  0x69, // [016] = -8.000 dB -> AKM(0x69) = -7.909 dB error(+0.091 dB)
536  0x67, // [017] = -8.500 dB -> AKM(0x67) = -8.626 dB error(-0.126 dB)
537  0x66, // [018] = -9.000 dB -> AKM(0x66) = -9.008 dB error(-0.008 dB)
538  0x65, // [019] = -9.500 dB -> AKM(0x65) = -9.407 dB error(+0.093 dB)
539  0x64, // [020] = -10.000 dB -> AKM(0x64) = -9.826 dB error(+0.174 dB)
540  0x62, // [021] = -10.500 dB -> AKM(0x62) = -10.730 dB error(-0.230 dB)
541  0x61, // [022] = -11.000 dB -> AKM(0x61) = -11.219 dB error(-0.219 dB)
542  0x60, // [023] = -11.500 dB -> AKM(0x60) = -11.738 dB error(-0.238 dB)
543  0x5f, // [024] = -12.000 dB -> AKM(0x5f) = -12.149 dB error(-0.149 dB)
544  0x5e, // [025] = -12.500 dB -> AKM(0x5e) = -12.434 dB error(+0.066 dB)
545  0x5c, // [026] = -13.000 dB -> AKM(0x5c) = -13.033 dB error(-0.033 dB)
546  0x5b, // [027] = -13.500 dB -> AKM(0x5b) = -13.350 dB error(+0.150 dB)
547  0x59, // [028] = -14.000 dB -> AKM(0x59) = -14.018 dB error(-0.018 dB)
548  0x58, // [029] = -14.500 dB -> AKM(0x58) = -14.373 dB error(+0.127 dB)
549  0x56, // [030] = -15.000 dB -> AKM(0x56) = -15.130 dB error(-0.130 dB)
550  0x55, // [031] = -15.500 dB -> AKM(0x55) = -15.534 dB error(-0.034 dB)
551  0x54, // [032] = -16.000 dB -> AKM(0x54) = -15.958 dB error(+0.042 dB)
552  0x53, // [033] = -16.500 dB -> AKM(0x53) = -16.404 dB error(+0.096 dB)
553  0x52, // [034] = -17.000 dB -> AKM(0x52) = -16.874 dB error(+0.126 dB)
554  0x51, // [035] = -17.500 dB -> AKM(0x51) = -17.371 dB error(+0.129 dB)
555  0x50, // [036] = -18.000 dB -> AKM(0x50) = -17.898 dB error(+0.102 dB)
556  0x4e, // [037] = -18.500 dB -> AKM(0x4e) = -18.605 dB error(-0.105 dB)
557  0x4d, // [038] = -19.000 dB -> AKM(0x4d) = -18.905 dB error(+0.095 dB)
558  0x4b, // [039] = -19.500 dB -> AKM(0x4b) = -19.538 dB error(-0.038 dB)
559  0x4a, // [040] = -20.000 dB -> AKM(0x4a) = -19.872 dB error(+0.128 dB)
560  0x48, // [041] = -20.500 dB -> AKM(0x48) = -20.583 dB error(-0.083 dB)
561  0x47, // [042] = -21.000 dB -> AKM(0x47) = -20.961 dB error(+0.039 dB)
562  0x46, // [043] = -21.500 dB -> AKM(0x46) = -21.356 dB error(+0.144 dB)
563  0x44, // [044] = -22.000 dB -> AKM(0x44) = -22.206 dB error(-0.206 dB)
564  0x43, // [045] = -22.500 dB -> AKM(0x43) = -22.664 dB error(-0.164 dB)
565  0x42, // [046] = -23.000 dB -> AKM(0x42) = -23.147 dB error(-0.147 dB)
566  0x41, // [047] = -23.500 dB -> AKM(0x41) = -23.659 dB error(-0.159 dB)
567  0x40, // [048] = -24.000 dB -> AKM(0x40) = -24.203 dB error(-0.203 dB)
568  0x3f, // [049] = -24.500 dB -> AKM(0x3f) = -24.635 dB error(-0.135 dB)
569  0x3e, // [050] = -25.000 dB -> AKM(0x3e) = -24.935 dB error(+0.065 dB)
570  0x3c, // [051] = -25.500 dB -> AKM(0x3c) = -25.569 dB error(-0.069 dB)
571  0x3b, // [052] = -26.000 dB -> AKM(0x3b) = -25.904 dB error(+0.096 dB)
572  0x39, // [053] = -26.500 dB -> AKM(0x39) = -26.615 dB error(-0.115 dB)
573  0x38, // [054] = -27.000 dB -> AKM(0x38) = -26.994 dB error(+0.006 dB)
574  0x37, // [055] = -27.500 dB -> AKM(0x37) = -27.390 dB error(+0.110 dB)
575  0x36, // [056] = -28.000 dB -> AKM(0x36) = -27.804 dB error(+0.196 dB)
576  0x34, // [057] = -28.500 dB -> AKM(0x34) = -28.699 dB error(-0.199 dB)
577  0x33, // [058] = -29.000 dB -> AKM(0x33) = -29.183 dB error(-0.183 dB)
578  0x32, // [059] = -29.500 dB -> AKM(0x32) = -29.696 dB error(-0.196 dB)
579  0x31, // [060] = -30.000 dB -> AKM(0x31) = -30.241 dB error(-0.241 dB)
580  0x31, // [061] = -30.500 dB -> AKM(0x31) = -30.241 dB error(+0.259 dB)
581  0x30, // [062] = -31.000 dB -> AKM(0x30) = -30.823 dB error(+0.177 dB)
582  0x2e, // [063] = -31.500 dB -> AKM(0x2e) = -31.610 dB error(-0.110 dB)
583  0x2d, // [064] = -32.000 dB -> AKM(0x2d) = -31.945 dB error(+0.055 dB)
584  0x2b, // [065] = -32.500 dB -> AKM(0x2b) = -32.659 dB error(-0.159 dB)
585  0x2a, // [066] = -33.000 dB -> AKM(0x2a) = -33.038 dB error(-0.038 dB)
586  0x29, // [067] = -33.500 dB -> AKM(0x29) = -33.435 dB error(+0.065 dB)
587  0x28, // [068] = -34.000 dB -> AKM(0x28) = -33.852 dB error(+0.148 dB)
588  0x27, // [069] = -34.500 dB -> AKM(0x27) = -34.289 dB error(+0.211 dB)
589  0x25, // [070] = -35.000 dB -> AKM(0x25) = -35.235 dB error(-0.235 dB)
590  0x24, // [071] = -35.500 dB -> AKM(0x24) = -35.750 dB error(-0.250 dB)
591  0x24, // [072] = -36.000 dB -> AKM(0x24) = -35.750 dB error(+0.250 dB)
592  0x23, // [073] = -36.500 dB -> AKM(0x23) = -36.297 dB error(+0.203 dB)
593  0x22, // [074] = -37.000 dB -> AKM(0x22) = -36.881 dB error(+0.119 dB)
594  0x21, // [075] = -37.500 dB -> AKM(0x21) = -37.508 dB error(-0.008 dB)
595  0x20, // [076] = -38.000 dB -> AKM(0x20) = -38.183 dB error(-0.183 dB)
596  0x1f, // [077] = -38.500 dB -> AKM(0x1f) = -38.726 dB error(-0.226 dB)
597  0x1e, // [078] = -39.000 dB -> AKM(0x1e) = -39.108 dB error(-0.108 dB)
598  0x1d, // [079] = -39.500 dB -> AKM(0x1d) = -39.507 dB error(-0.007 dB)
599  0x1c, // [080] = -40.000 dB -> AKM(0x1c) = -39.926 dB error(+0.074 dB)
600  0x1b, // [081] = -40.500 dB -> AKM(0x1b) = -40.366 dB error(+0.134 dB)
601  0x1a, // [082] = -41.000 dB -> AKM(0x1a) = -40.829 dB error(+0.171 dB)
602  0x19, // [083] = -41.500 dB -> AKM(0x19) = -41.318 dB error(+0.182 dB)
603  0x18, // [084] = -42.000 dB -> AKM(0x18) = -41.837 dB error(+0.163 dB)
604  0x17, // [085] = -42.500 dB -> AKM(0x17) = -42.389 dB error(+0.111 dB)
605  0x16, // [086] = -43.000 dB -> AKM(0x16) = -42.978 dB error(+0.022 dB)
606  0x15, // [087] = -43.500 dB -> AKM(0x15) = -43.610 dB error(-0.110 dB)
607  0x14, // [088] = -44.000 dB -> AKM(0x14) = -44.291 dB error(-0.291 dB)
608  0x14, // [089] = -44.500 dB -> AKM(0x14) = -44.291 dB error(+0.209 dB)
609  0x13, // [090] = -45.000 dB -> AKM(0x13) = -45.031 dB error(-0.031 dB)
610  0x12, // [091] = -45.500 dB -> AKM(0x12) = -45.840 dB error(-0.340 dB)
611  0x12, // [092] = -46.000 dB -> AKM(0x12) = -45.840 dB error(+0.160 dB)
612  0x11, // [093] = -46.500 dB -> AKM(0x11) = -46.731 dB error(-0.231 dB)
613  0x11, // [094] = -47.000 dB -> AKM(0x11) = -46.731 dB error(+0.269 dB)
614  0x10, // [095] = -47.500 dB -> AKM(0x10) = -47.725 dB error(-0.225 dB)
615  0x10, // [096] = -48.000 dB -> AKM(0x10) = -47.725 dB error(+0.275 dB)
616  0x0f, // [097] = -48.500 dB -> AKM(0x0f) = -48.553 dB error(-0.053 dB)
617  0x0e, // [098] = -49.000 dB -> AKM(0x0e) = -49.152 dB error(-0.152 dB)
618  0x0d, // [099] = -49.500 dB -> AKM(0x0d) = -49.796 dB error(-0.296 dB)
619  0x0d, // [100] = -50.000 dB -> AKM(0x0d) = -49.796 dB error(+0.204 dB)
620  0x0c, // [101] = -50.500 dB -> AKM(0x0c) = -50.491 dB error(+0.009 dB)
621  0x0b, // [102] = -51.000 dB -> AKM(0x0b) = -51.247 dB error(-0.247 dB)
622  0x0b, // [103] = -51.500 dB -> AKM(0x0b) = -51.247 dB error(+0.253 dB)
623  0x0a, // [104] = -52.000 dB -> AKM(0x0a) = -52.075 dB error(-0.075 dB)
624  0x0a, // [105] = -52.500 dB -> AKM(0x0a) = -52.075 dB error(+0.425 dB)
625  0x09, // [106] = -53.000 dB -> AKM(0x09) = -52.990 dB error(+0.010 dB)
626  0x09, // [107] = -53.500 dB -> AKM(0x09) = -52.990 dB error(+0.510 dB)
627  0x08, // [108] = -54.000 dB -> AKM(0x08) = -54.013 dB error(-0.013 dB)
628  0x08, // [109] = -54.500 dB -> AKM(0x08) = -54.013 dB error(+0.487 dB)
629  0x07, // [110] = -55.000 dB -> AKM(0x07) = -55.173 dB error(-0.173 dB)
630  0x07, // [111] = -55.500 dB -> AKM(0x07) = -55.173 dB error(+0.327 dB)
631  0x06, // [112] = -56.000 dB -> AKM(0x06) = -56.512 dB error(-0.512 dB)
632  0x06, // [113] = -56.500 dB -> AKM(0x06) = -56.512 dB error(-0.012 dB)
633  0x06, // [114] = -57.000 dB -> AKM(0x06) = -56.512 dB error(+0.488 dB)
634  0x05, // [115] = -57.500 dB -> AKM(0x05) = -58.095 dB error(-0.595 dB)
635  0x05, // [116] = -58.000 dB -> AKM(0x05) = -58.095 dB error(-0.095 dB)
636  0x05, // [117] = -58.500 dB -> AKM(0x05) = -58.095 dB error(+0.405 dB)
637  0x05, // [118] = -59.000 dB -> AKM(0x05) = -58.095 dB error(+0.905 dB)
638  0x04, // [119] = -59.500 dB -> AKM(0x04) = -60.034 dB error(-0.534 dB)
639  0x04, // [120] = -60.000 dB -> AKM(0x04) = -60.034 dB error(-0.034 dB)
640  0x04, // [121] = -60.500 dB -> AKM(0x04) = -60.034 dB error(+0.466 dB)
641  0x04, // [122] = -61.000 dB -> AKM(0x04) = -60.034 dB error(+0.966 dB)
642  0x03, // [123] = -61.500 dB -> AKM(0x03) = -62.532 dB error(-1.032 dB)
643  0x03, // [124] = -62.000 dB -> AKM(0x03) = -62.532 dB error(-0.532 dB)
644  0x03, // [125] = -62.500 dB -> AKM(0x03) = -62.532 dB error(-0.032 dB)
645  0x03, // [126] = -63.000 dB -> AKM(0x03) = -62.532 dB error(+0.468 dB)
646  0x03, // [127] = -63.500 dB -> AKM(0x03) = -62.532 dB error(+0.968 dB)
647  0x03, // [128] = -64.000 dB -> AKM(0x03) = -62.532 dB error(+1.468 dB)
648  0x02, // [129] = -64.500 dB -> AKM(0x02) = -66.054 dB error(-1.554 dB)
649  0x02, // [130] = -65.000 dB -> AKM(0x02) = -66.054 dB error(-1.054 dB)
650  0x02, // [131] = -65.500 dB -> AKM(0x02) = -66.054 dB error(-0.554 dB)
651  0x02, // [132] = -66.000 dB -> AKM(0x02) = -66.054 dB error(-0.054 dB)
652  0x02, // [133] = -66.500 dB -> AKM(0x02) = -66.054 dB error(+0.446 dB)
653  0x02, // [134] = -67.000 dB -> AKM(0x02) = -66.054 dB error(+0.946 dB)
654  0x02, // [135] = -67.500 dB -> AKM(0x02) = -66.054 dB error(+1.446 dB)
655  0x02, // [136] = -68.000 dB -> AKM(0x02) = -66.054 dB error(+1.946 dB)
656  0x02, // [137] = -68.500 dB -> AKM(0x02) = -66.054 dB error(+2.446 dB)
657  0x02, // [138] = -69.000 dB -> AKM(0x02) = -66.054 dB error(+2.946 dB)
658  0x01, // [139] = -69.500 dB -> AKM(0x01) = -72.075 dB error(-2.575 dB)
659  0x01, // [140] = -70.000 dB -> AKM(0x01) = -72.075 dB error(-2.075 dB)
660  0x01, // [141] = -70.500 dB -> AKM(0x01) = -72.075 dB error(-1.575 dB)
661  0x01, // [142] = -71.000 dB -> AKM(0x01) = -72.075 dB error(-1.075 dB)
662  0x01, // [143] = -71.500 dB -> AKM(0x01) = -72.075 dB error(-0.575 dB)
663  0x01, // [144] = -72.000 dB -> AKM(0x01) = -72.075 dB error(-0.075 dB)
664  0x01, // [145] = -72.500 dB -> AKM(0x01) = -72.075 dB error(+0.425 dB)
665  0x01, // [146] = -73.000 dB -> AKM(0x01) = -72.075 dB error(+0.925 dB)
666  0x00}; // [147] = -73.500 dB -> AKM(0x00) = mute error(+infini)
667 
668 /*
669  * pseudo-codec write entry
670  */
671 static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data)
672 {
673  unsigned int val;
674 
675  if (reg == XX_CODEC_DAC_CONTROL_REGISTER) {
676  vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
677  return;
678  }
679 
680  /* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
681  a look up table, as there is no linear matching between the driver codec values
682  and the real dBu value
683  */
684  if (snd_BUG_ON(data >= sizeof(vx2_akm_gains_lut)))
685  return;
686 
687  switch (reg) {
690  break;
693  break;
694  default:
695  snd_BUG();
696  return;
697  }
698  val |= vx2_akm_gains_lut[data];
699 
700  vx2_write_codec_reg(chip, val);
701 }
702 
703 
704 /*
705  * write codec bit for old VX222 board
706  */
707 static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data)
708 {
709  int i;
710 
711  /* activate access to codec registers */
712  vx_inl(chip, HIFREQ);
713 
714  for (i = 0; i < 24; i++, data <<= 1)
715  vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
716 
717  /* Terminate access to codec registers */
718  vx_inl(chip, RUER);
719 }
720 
721 
722 /*
723  * reset codec bit
724  */
725 static void vx2_reset_codec(struct vx_core *_chip)
726 {
727  struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
728 
729  /* Set the reset CODEC bit to 0. */
730  vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
731  vx_inl(chip, CDSP);
732  msleep(10);
733  /* Set the reset CODEC bit to 1. */
735  vx_outl(chip, CDSP, chip->regCDSP);
736  vx_inl(chip, CDSP);
737  if (_chip->type == VX_TYPE_BOARD) {
738  msleep(1);
739  return;
740  }
741 
742  msleep(5); /* additionnel wait time for AKM's */
743 
744  vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */
745 
746  vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */
747  vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */
748  vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */
749 
750  if (_chip->type == VX_TYPE_MIC) {
751  /* set up the micro input selector */
755 
756  /* reset phantom power supply */
758 
759  vx_outl(_chip, SELMIC, chip->regSELMIC);
760  }
761 }
762 
763 
764 /*
765  * change the audio source
766  */
767 static void vx2_change_audio_source(struct vx_core *_chip, int src)
768 {
769  struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
770 
771  switch (src) {
774  break;
775  default:
776  chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
777  break;
778  }
779  vx_outl(chip, CFG, chip->regCFG);
780 }
781 
782 
783 /*
784  * set the clock source
785  */
786 static void vx2_set_clock_source(struct vx_core *_chip, int source)
787 {
788  struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
789 
790  if (source == INTERNAL_QUARTZ)
792  else
794  vx_outl(chip, CFG, chip->regCFG);
795 }
796 
797 /*
798  * reset the board
799  */
800 static void vx2_reset_board(struct vx_core *_chip, int cold_reset)
801 {
802  struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
803 
804  /* initialize the register values */
806  chip->regCFG = 0;
807 }
808 
809 
810 
811 /*
812  * input level controls for VX222 Mic
813  */
814 
815 /* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
816  * 318 = 210 + 36 + 36 + 36 (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
817  * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
818  */
819 #define V2_MICRO_LEVEL_RANGE (318 - 255)
820 
821 static void vx2_set_input_level(struct snd_vx222 *chip)
822 {
823  int i, miclevel, preamp;
824  unsigned int data;
825 
826  miclevel = chip->mic_level;
827  miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
828  preamp = 0;
829  while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */
830  preamp++; /* raise pre ampli + 18dB */
831  miclevel -= (18 * 2); /* lower level 18 dB (*2 because of 0.5 dB steps !) */
832  }
833  if (snd_BUG_ON(preamp >= 4))
834  return;
835 
836  /* set pre-amp level */
839  vx_outl(chip, SELMIC, chip->regSELMIC);
840 
841  data = (unsigned int)miclevel << 16 |
842  (unsigned int)chip->input_level[1] << 8 |
843  (unsigned int)chip->input_level[0];
844  vx_inl(chip, DATA); /* Activate input level programming */
845 
846  /* We have to send 32 bits (4 x 8 bits) */
847  for (i = 0; i < 32; i++, data <<= 1)
848  vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));
849 
850  vx_inl(chip, RUER); /* Terminate input level programming */
851 }
852 
853 
854 #define MIC_LEVEL_MAX 0xff
855 
856 static const DECLARE_TLV_DB_SCALE(db_scale_mic, -6450, 50, 0);
857 
858 /*
859  * controls API for input levels
860  */
861 
862 /* input levels */
863 static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
864 {
866  uinfo->count = 2;
867  uinfo->value.integer.min = 0;
868  uinfo->value.integer.max = MIC_LEVEL_MAX;
869  return 0;
870 }
871 
872 static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
873 {
874  struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
875  struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
876  mutex_lock(&_chip->mixer_mutex);
877  ucontrol->value.integer.value[0] = chip->input_level[0];
878  ucontrol->value.integer.value[1] = chip->input_level[1];
879  mutex_unlock(&_chip->mixer_mutex);
880  return 0;
881 }
882 
883 static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
884 {
885  struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
886  struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
887  if (ucontrol->value.integer.value[0] < 0 ||
888  ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
889  return -EINVAL;
890  if (ucontrol->value.integer.value[1] < 0 ||
891  ucontrol->value.integer.value[1] > MIC_LEVEL_MAX)
892  return -EINVAL;
893  mutex_lock(&_chip->mixer_mutex);
894  if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
895  chip->input_level[1] != ucontrol->value.integer.value[1]) {
896  chip->input_level[0] = ucontrol->value.integer.value[0];
897  chip->input_level[1] = ucontrol->value.integer.value[1];
898  vx2_set_input_level(chip);
899  mutex_unlock(&_chip->mixer_mutex);
900  return 1;
901  }
902  mutex_unlock(&_chip->mixer_mutex);
903  return 0;
904 }
905 
906 /* mic level */
907 static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
908 {
910  uinfo->count = 1;
911  uinfo->value.integer.min = 0;
912  uinfo->value.integer.max = MIC_LEVEL_MAX;
913  return 0;
914 }
915 
916 static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
917 {
918  struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
919  struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
920  ucontrol->value.integer.value[0] = chip->mic_level;
921  return 0;
922 }
923 
924 static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
925 {
926  struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
927  struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
928  if (ucontrol->value.integer.value[0] < 0 ||
929  ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
930  return -EINVAL;
931  mutex_lock(&_chip->mixer_mutex);
932  if (chip->mic_level != ucontrol->value.integer.value[0]) {
933  chip->mic_level = ucontrol->value.integer.value[0];
934  vx2_set_input_level(chip);
935  mutex_unlock(&_chip->mixer_mutex);
936  return 1;
937  }
938  mutex_unlock(&_chip->mixer_mutex);
939  return 0;
940 }
941 
942 static struct snd_kcontrol_new vx_control_input_level = {
946  .name = "Capture Volume",
947  .info = vx_input_level_info,
948  .get = vx_input_level_get,
949  .put = vx_input_level_put,
950  .tlv = { .p = db_scale_mic },
951 };
952 
953 static struct snd_kcontrol_new vx_control_mic_level = {
957  .name = "Mic Capture Volume",
958  .info = vx_mic_level_info,
959  .get = vx_mic_level_get,
960  .put = vx_mic_level_put,
961  .tlv = { .p = db_scale_mic },
962 };
963 
964 /*
965  * FIXME: compressor/limiter implementation is missing yet...
966  */
967 
968 static int vx2_add_mic_controls(struct vx_core *_chip)
969 {
970  struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
971  int err;
972 
973  if (_chip->type != VX_TYPE_MIC)
974  return 0;
975 
976  /* mute input levels */
977  chip->input_level[0] = chip->input_level[1] = 0;
978  chip->mic_level = 0;
979  vx2_set_input_level(chip);
980 
981  /* controls */
982  if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip))) < 0)
983  return err;
984  if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip))) < 0)
985  return err;
986 
987  return 0;
988 }
989 
990 
991 /*
992  * callbacks
993  */
995  .in8 = vx2_inb,
996  .in32 = vx2_inl,
997  .out8 = vx2_outb,
998  .out32 = vx2_outl,
999  .test_and_ack = vx2_test_and_ack,
1000  .validate_irq = vx2_validate_irq,
1001  .akm_write = vx2_write_akm,
1002  .reset_codec = vx2_reset_codec,
1003  .change_audio_source = vx2_change_audio_source,
1004  .set_clock_source = vx2_set_clock_source,
1005  .load_dsp = vx2_load_dsp,
1006  .reset_dsp = vx2_reset_dsp,
1007  .reset_board = vx2_reset_board,
1008  .dma_write = vx2_dma_write,
1009  .dma_read = vx2_dma_read,
1010  .add_controls = vx2_add_mic_controls,
1011 };
1012 
1013 /* for old VX222 board */
1015  .in8 = vx2_inb,
1016  .in32 = vx2_inl,
1017  .out8 = vx2_outb,
1018  .out32 = vx2_outl,
1019  .test_and_ack = vx2_test_and_ack,
1020  .validate_irq = vx2_validate_irq,
1021  .write_codec = vx2_old_write_codec_bit,
1022  .reset_codec = vx2_reset_codec,
1023  .change_audio_source = vx2_change_audio_source,
1024  .set_clock_source = vx2_set_clock_source,
1025  .load_dsp = vx2_load_dsp,
1026  .reset_dsp = vx2_reset_dsp,
1027  .reset_board = vx2_reset_board,
1028  .dma_write = vx2_dma_write,
1029  .dma_read = vx2_dma_read,
1030 };
1031