LLVM API Documentation
00001 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the CriticalAntiDepBreaker class, which 00011 // implements register anti-dependence breaking along a blocks 00012 // critical path during post-RA scheduler. 00013 // 00014 //===----------------------------------------------------------------------===// 00015 00016 #include "CriticalAntiDepBreaker.h" 00017 #include "llvm/CodeGen/MachineBasicBlock.h" 00018 #include "llvm/CodeGen/MachineFrameInfo.h" 00019 #include "llvm/Support/Debug.h" 00020 #include "llvm/Support/ErrorHandling.h" 00021 #include "llvm/Support/raw_ostream.h" 00022 #include "llvm/Target/TargetInstrInfo.h" 00023 #include "llvm/Target/TargetMachine.h" 00024 #include "llvm/Target/TargetRegisterInfo.h" 00025 #include "llvm/Target/TargetSubtargetInfo.h" 00026 00027 using namespace llvm; 00028 00029 #define DEBUG_TYPE "post-RA-sched" 00030 00031 CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi, 00032 const RegisterClassInfo &RCI) 00033 : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()), 00034 TII(MF.getSubtarget().getInstrInfo()), 00035 TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI), 00036 Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0), 00037 DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {} 00038 00039 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() { 00040 } 00041 00042 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { 00043 const unsigned BBSize = BB->size(); 00044 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) { 00045 // Clear out the register class data. 00046 Classes[i] = nullptr; 00047 00048 // Initialize the indices to indicate that no registers are live. 00049 KillIndices[i] = ~0u; 00050 DefIndices[i] = BBSize; 00051 } 00052 00053 // Clear "do not change" set. 00054 KeepRegs.reset(); 00055 00056 bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn()); 00057 00058 // Examine the live-in regs of all successors. 00059 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 00060 SE = BB->succ_end(); SI != SE; ++SI) 00061 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 00062 E = (*SI)->livein_end(); I != E; ++I) { 00063 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) { 00064 unsigned Reg = *AI; 00065 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 00066 KillIndices[Reg] = BBSize; 00067 DefIndices[Reg] = ~0u; 00068 } 00069 } 00070 00071 // Mark live-out callee-saved registers. In a return block this is 00072 // all callee-saved registers. In non-return this is any 00073 // callee-saved register that is not saved in the prolog. 00074 const MachineFrameInfo *MFI = MF.getFrameInfo(); 00075 BitVector Pristine = MFI->getPristineRegs(BB); 00076 for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) { 00077 if (!IsReturnBlock && !Pristine.test(*I)) continue; 00078 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) { 00079 unsigned Reg = *AI; 00080 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 00081 KillIndices[Reg] = BBSize; 00082 DefIndices[Reg] = ~0u; 00083 } 00084 } 00085 } 00086 00087 void CriticalAntiDepBreaker::FinishBlock() { 00088 RegRefs.clear(); 00089 KeepRegs.reset(); 00090 } 00091 00092 void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count, 00093 unsigned InsertPosIndex) { 00094 // Kill instructions can define registers but are really nops, and there might 00095 // be a real definition earlier that needs to be paired with uses dominated by 00096 // this kill. 00097 00098 // FIXME: It may be possible to remove the isKill() restriction once PR18663 00099 // has been properly fixed. There can be value in processing kills as seen in 00100 // the AggressiveAntiDepBreaker class. 00101 if (MI->isDebugValue() || MI->isKill()) 00102 return; 00103 assert(Count < InsertPosIndex && "Instruction index out of expected range!"); 00104 00105 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { 00106 if (KillIndices[Reg] != ~0u) { 00107 // If Reg is currently live, then mark that it can't be renamed as 00108 // we don't know the extent of its live-range anymore (now that it 00109 // has been scheduled). 00110 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 00111 KillIndices[Reg] = Count; 00112 } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) { 00113 // Any register which was defined within the previous scheduling region 00114 // may have been rescheduled and its lifetime may overlap with registers 00115 // in ways not reflected in our current liveness state. For each such 00116 // register, adjust the liveness state to be conservatively correct. 00117 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 00118 00119 // Move the def index to the end of the previous region, to reflect 00120 // that the def could theoretically have been scheduled at the end. 00121 DefIndices[Reg] = InsertPosIndex; 00122 } 00123 } 00124 00125 PrescanInstruction(MI); 00126 ScanInstruction(MI, Count); 00127 } 00128 00129 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up 00130 /// critical path. 00131 static const SDep *CriticalPathStep(const SUnit *SU) { 00132 const SDep *Next = nullptr; 00133 unsigned NextDepth = 0; 00134 // Find the predecessor edge with the greatest depth. 00135 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); 00136 P != PE; ++P) { 00137 const SUnit *PredSU = P->getSUnit(); 00138 unsigned PredLatency = P->getLatency(); 00139 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; 00140 // In the case of a latency tie, prefer an anti-dependency edge over 00141 // other types of edges. 00142 if (NextDepth < PredTotalLatency || 00143 (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { 00144 NextDepth = PredTotalLatency; 00145 Next = &*P; 00146 } 00147 } 00148 return Next; 00149 } 00150 00151 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) { 00152 // It's not safe to change register allocation for source operands of 00153 // instructions that have special allocation requirements. Also assume all 00154 // registers used in a call must not be changed (ABI). 00155 // FIXME: The issue with predicated instruction is more complex. We are being 00156 // conservative here because the kill markers cannot be trusted after 00157 // if-conversion: 00158 // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14] 00159 // ... 00160 // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395] 00161 // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12] 00162 // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8) 00163 // 00164 // The first R6 kill is not really a kill since it's killed by a predicated 00165 // instruction which may not be executed. The second R6 def may or may not 00166 // re-define R6 so it's not safe to change it since the last R6 use cannot be 00167 // changed. 00168 bool Special = MI->isCall() || 00169 MI->hasExtraSrcRegAllocReq() || 00170 TII->isPredicated(MI); 00171 00172 // Scan the register operands for this instruction and update 00173 // Classes and RegRefs. 00174 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 00175 MachineOperand &MO = MI->getOperand(i); 00176 if (!MO.isReg()) continue; 00177 unsigned Reg = MO.getReg(); 00178 if (Reg == 0) continue; 00179 const TargetRegisterClass *NewRC = nullptr; 00180 00181 if (i < MI->getDesc().getNumOperands()) 00182 NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF); 00183 00184 // For now, only allow the register to be changed if its register 00185 // class is consistent across all uses. 00186 if (!Classes[Reg] && NewRC) 00187 Classes[Reg] = NewRC; 00188 else if (!NewRC || Classes[Reg] != NewRC) 00189 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 00190 00191 // Now check for aliases. 00192 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { 00193 // If an alias of the reg is used during the live range, give up. 00194 // Note that this allows us to skip checking if AntiDepReg 00195 // overlaps with any of the aliases, among other things. 00196 unsigned AliasReg = *AI; 00197 if (Classes[AliasReg]) { 00198 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); 00199 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 00200 } 00201 } 00202 00203 // If we're still willing to consider this register, note the reference. 00204 if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1)) 00205 RegRefs.insert(std::make_pair(Reg, &MO)); 00206 00207 // If this reg is tied and live (Classes[Reg] is set to -1), we can't change 00208 // it or any of its sub or super regs. We need to use KeepRegs to mark the 00209 // reg because not all uses of the same reg within an instruction are 00210 // necessarily tagged as tied. 00211 // Example: an x86 "xor %eax, %eax" will have one source operand tied to the 00212 // def register but not the second (see PR20020 for details). 00213 // FIXME: can this check be relaxed to account for undef uses 00214 // of a register? In the above 'xor' example, the uses of %eax are undef, so 00215 // earlier instructions could still replace %eax even though the 'xor' 00216 // itself can't be changed. 00217 if (MI->isRegTiedToUseOperand(i) && 00218 Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) { 00219 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 00220 SubRegs.isValid(); ++SubRegs) { 00221 KeepRegs.set(*SubRegs); 00222 } 00223 for (MCSuperRegIterator SuperRegs(Reg, TRI); 00224 SuperRegs.isValid(); ++SuperRegs) { 00225 KeepRegs.set(*SuperRegs); 00226 } 00227 } 00228 00229 if (MO.isUse() && Special) { 00230 if (!KeepRegs.test(Reg)) { 00231 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 00232 SubRegs.isValid(); ++SubRegs) 00233 KeepRegs.set(*SubRegs); 00234 } 00235 } 00236 } 00237 } 00238 00239 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI, 00240 unsigned Count) { 00241 // Update liveness. 00242 // Proceeding upwards, registers that are defed but not used in this 00243 // instruction are now dead. 00244 assert(!MI->isKill() && "Attempting to scan a kill instruction"); 00245 00246 if (!TII->isPredicated(MI)) { 00247 // Predicated defs are modeled as read + write, i.e. similar to two 00248 // address updates. 00249 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 00250 MachineOperand &MO = MI->getOperand(i); 00251 00252 if (MO.isRegMask()) 00253 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) 00254 if (MO.clobbersPhysReg(i)) { 00255 DefIndices[i] = Count; 00256 KillIndices[i] = ~0u; 00257 KeepRegs.reset(i); 00258 Classes[i] = nullptr; 00259 RegRefs.erase(i); 00260 } 00261 00262 if (!MO.isReg()) continue; 00263 unsigned Reg = MO.getReg(); 00264 if (Reg == 0) continue; 00265 if (!MO.isDef()) continue; 00266 00267 // If we've already marked this reg as unchangeable, carry on. 00268 if (KeepRegs.test(Reg)) continue; 00269 00270 // Ignore two-addr defs. 00271 if (MI->isRegTiedToUseOperand(i)) continue; 00272 00273 // For the reg itself and all subregs: update the def to current; 00274 // reset the kill state, any restrictions, and references. 00275 for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) { 00276 unsigned SubregReg = *SRI; 00277 DefIndices[SubregReg] = Count; 00278 KillIndices[SubregReg] = ~0u; 00279 KeepRegs.reset(SubregReg); 00280 Classes[SubregReg] = nullptr; 00281 RegRefs.erase(SubregReg); 00282 } 00283 // Conservatively mark super-registers as unusable. 00284 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) 00285 Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1); 00286 } 00287 } 00288 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 00289 MachineOperand &MO = MI->getOperand(i); 00290 if (!MO.isReg()) continue; 00291 unsigned Reg = MO.getReg(); 00292 if (Reg == 0) continue; 00293 if (!MO.isUse()) continue; 00294 00295 const TargetRegisterClass *NewRC = nullptr; 00296 if (i < MI->getDesc().getNumOperands()) 00297 NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF); 00298 00299 // For now, only allow the register to be changed if its register 00300 // class is consistent across all uses. 00301 if (!Classes[Reg] && NewRC) 00302 Classes[Reg] = NewRC; 00303 else if (!NewRC || Classes[Reg] != NewRC) 00304 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 00305 00306 RegRefs.insert(std::make_pair(Reg, &MO)); 00307 00308 // It wasn't previously live but now it is, this is a kill. 00309 // Repeat for all aliases. 00310 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 00311 unsigned AliasReg = *AI; 00312 if (KillIndices[AliasReg] == ~0u) { 00313 KillIndices[AliasReg] = Count; 00314 DefIndices[AliasReg] = ~0u; 00315 } 00316 } 00317 } 00318 } 00319 00320 // Check all machine operands that reference the antidependent register and must 00321 // be replaced by NewReg. Return true if any of their parent instructions may 00322 // clobber the new register. 00323 // 00324 // Note: AntiDepReg may be referenced by a two-address instruction such that 00325 // it's use operand is tied to a def operand. We guard against the case in which 00326 // the two-address instruction also defines NewReg, as may happen with 00327 // pre/postincrement loads. In this case, both the use and def operands are in 00328 // RegRefs because the def is inserted by PrescanInstruction and not erased 00329 // during ScanInstruction. So checking for an instruction with definitions of 00330 // both NewReg and AntiDepReg covers it. 00331 bool 00332 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin, 00333 RegRefIter RegRefEnd, 00334 unsigned NewReg) 00335 { 00336 for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) { 00337 MachineOperand *RefOper = I->second; 00338 00339 // Don't allow the instruction defining AntiDepReg to earlyclobber its 00340 // operands, in case they may be assigned to NewReg. In this case antidep 00341 // breaking must fail, but it's too rare to bother optimizing. 00342 if (RefOper->isDef() && RefOper->isEarlyClobber()) 00343 return true; 00344 00345 // Handle cases in which this instruction defines NewReg. 00346 MachineInstr *MI = RefOper->getParent(); 00347 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 00348 const MachineOperand &CheckOper = MI->getOperand(i); 00349 00350 if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg)) 00351 return true; 00352 00353 if (!CheckOper.isReg() || !CheckOper.isDef() || 00354 CheckOper.getReg() != NewReg) 00355 continue; 00356 00357 // Don't allow the instruction to define NewReg and AntiDepReg. 00358 // When AntiDepReg is renamed it will be an illegal op. 00359 if (RefOper->isDef()) 00360 return true; 00361 00362 // Don't allow an instruction using AntiDepReg to be earlyclobbered by 00363 // NewReg. 00364 if (CheckOper.isEarlyClobber()) 00365 return true; 00366 00367 // Don't allow inline asm to define NewReg at all. Who knows what it's 00368 // doing with it. 00369 if (MI->isInlineAsm()) 00370 return true; 00371 } 00372 } 00373 return false; 00374 } 00375 00376 unsigned CriticalAntiDepBreaker:: 00377 findSuitableFreeRegister(RegRefIter RegRefBegin, 00378 RegRefIter RegRefEnd, 00379 unsigned AntiDepReg, 00380 unsigned LastNewReg, 00381 const TargetRegisterClass *RC, 00382 SmallVectorImpl<unsigned> &Forbid) 00383 { 00384 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC); 00385 for (unsigned i = 0; i != Order.size(); ++i) { 00386 unsigned NewReg = Order[i]; 00387 // Don't replace a register with itself. 00388 if (NewReg == AntiDepReg) continue; 00389 // Don't replace a register with one that was recently used to repair 00390 // an anti-dependence with this AntiDepReg, because that would 00391 // re-introduce that anti-dependence. 00392 if (NewReg == LastNewReg) continue; 00393 // If any instructions that define AntiDepReg also define the NewReg, it's 00394 // not suitable. For example, Instruction with multiple definitions can 00395 // result in this condition. 00396 if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue; 00397 // If NewReg is dead and NewReg's most recent def is not before 00398 // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg. 00399 assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) 00400 && "Kill and Def maps aren't consistent for AntiDepReg!"); 00401 assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) 00402 && "Kill and Def maps aren't consistent for NewReg!"); 00403 if (KillIndices[NewReg] != ~0u || 00404 Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) || 00405 KillIndices[AntiDepReg] > DefIndices[NewReg]) 00406 continue; 00407 // If NewReg overlaps any of the forbidden registers, we can't use it. 00408 bool Forbidden = false; 00409 for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(), 00410 ite = Forbid.end(); it != ite; ++it) 00411 if (TRI->regsOverlap(NewReg, *it)) { 00412 Forbidden = true; 00413 break; 00414 } 00415 if (Forbidden) continue; 00416 return NewReg; 00417 } 00418 00419 // No registers are free and available! 00420 return 0; 00421 } 00422 00423 unsigned CriticalAntiDepBreaker:: 00424 BreakAntiDependencies(const std::vector<SUnit>& SUnits, 00425 MachineBasicBlock::iterator Begin, 00426 MachineBasicBlock::iterator End, 00427 unsigned InsertPosIndex, 00428 DbgValueVector &DbgValues) { 00429 // The code below assumes that there is at least one instruction, 00430 // so just duck out immediately if the block is empty. 00431 if (SUnits.empty()) return 0; 00432 00433 // Keep a map of the MachineInstr*'s back to the SUnit representing them. 00434 // This is used for updating debug information. 00435 // 00436 // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap 00437 DenseMap<MachineInstr*,const SUnit*> MISUnitMap; 00438 00439 // Find the node at the bottom of the critical path. 00440 const SUnit *Max = nullptr; 00441 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 00442 const SUnit *SU = &SUnits[i]; 00443 MISUnitMap[SU->getInstr()] = SU; 00444 if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency) 00445 Max = SU; 00446 } 00447 00448 #ifndef NDEBUG 00449 { 00450 DEBUG(dbgs() << "Critical path has total latency " 00451 << (Max->getDepth() + Max->Latency) << "\n"); 00452 DEBUG(dbgs() << "Available regs:"); 00453 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { 00454 if (KillIndices[Reg] == ~0u) 00455 DEBUG(dbgs() << " " << TRI->getName(Reg)); 00456 } 00457 DEBUG(dbgs() << '\n'); 00458 } 00459 #endif 00460 00461 // Track progress along the critical path through the SUnit graph as we walk 00462 // the instructions. 00463 const SUnit *CriticalPathSU = Max; 00464 MachineInstr *CriticalPathMI = CriticalPathSU->getInstr(); 00465 00466 // Consider this pattern: 00467 // A = ... 00468 // ... = A 00469 // A = ... 00470 // ... = A 00471 // A = ... 00472 // ... = A 00473 // A = ... 00474 // ... = A 00475 // There are three anti-dependencies here, and without special care, 00476 // we'd break all of them using the same register: 00477 // A = ... 00478 // ... = A 00479 // B = ... 00480 // ... = B 00481 // B = ... 00482 // ... = B 00483 // B = ... 00484 // ... = B 00485 // because at each anti-dependence, B is the first register that 00486 // isn't A which is free. This re-introduces anti-dependencies 00487 // at all but one of the original anti-dependencies that we were 00488 // trying to break. To avoid this, keep track of the most recent 00489 // register that each register was replaced with, avoid 00490 // using it to repair an anti-dependence on the same register. 00491 // This lets us produce this: 00492 // A = ... 00493 // ... = A 00494 // B = ... 00495 // ... = B 00496 // C = ... 00497 // ... = C 00498 // B = ... 00499 // ... = B 00500 // This still has an anti-dependence on B, but at least it isn't on the 00501 // original critical path. 00502 // 00503 // TODO: If we tracked more than one register here, we could potentially 00504 // fix that remaining critical edge too. This is a little more involved, 00505 // because unlike the most recent register, less recent registers should 00506 // still be considered, though only if no other registers are available. 00507 std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0); 00508 00509 // Attempt to break anti-dependence edges on the critical path. Walk the 00510 // instructions from the bottom up, tracking information about liveness 00511 // as we go to help determine which registers are available. 00512 unsigned Broken = 0; 00513 unsigned Count = InsertPosIndex - 1; 00514 for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) { 00515 MachineInstr *MI = --I; 00516 // Kill instructions can define registers but are really nops, and there 00517 // might be a real definition earlier that needs to be paired with uses 00518 // dominated by this kill. 00519 00520 // FIXME: It may be possible to remove the isKill() restriction once PR18663 00521 // has been properly fixed. There can be value in processing kills as seen 00522 // in the AggressiveAntiDepBreaker class. 00523 if (MI->isDebugValue() || MI->isKill()) 00524 continue; 00525 00526 // Check if this instruction has a dependence on the critical path that 00527 // is an anti-dependence that we may be able to break. If it is, set 00528 // AntiDepReg to the non-zero register associated with the anti-dependence. 00529 // 00530 // We limit our attention to the critical path as a heuristic to avoid 00531 // breaking anti-dependence edges that aren't going to significantly 00532 // impact the overall schedule. There are a limited number of registers 00533 // and we want to save them for the important edges. 00534 // 00535 // TODO: Instructions with multiple defs could have multiple 00536 // anti-dependencies. The current code here only knows how to break one 00537 // edge per instruction. Note that we'd have to be able to break all of 00538 // the anti-dependencies in an instruction in order to be effective. 00539 unsigned AntiDepReg = 0; 00540 if (MI == CriticalPathMI) { 00541 if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) { 00542 const SUnit *NextSU = Edge->getSUnit(); 00543 00544 // Only consider anti-dependence edges. 00545 if (Edge->getKind() == SDep::Anti) { 00546 AntiDepReg = Edge->getReg(); 00547 assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); 00548 if (!MRI.isAllocatable(AntiDepReg)) 00549 // Don't break anti-dependencies on non-allocatable registers. 00550 AntiDepReg = 0; 00551 else if (KeepRegs.test(AntiDepReg)) 00552 // Don't break anti-dependencies if a use down below requires 00553 // this exact register. 00554 AntiDepReg = 0; 00555 else { 00556 // If the SUnit has other dependencies on the SUnit that it 00557 // anti-depends on, don't bother breaking the anti-dependency 00558 // since those edges would prevent such units from being 00559 // scheduled past each other regardless. 00560 // 00561 // Also, if there are dependencies on other SUnits with the 00562 // same register as the anti-dependency, don't attempt to 00563 // break it. 00564 for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(), 00565 PE = CriticalPathSU->Preds.end(); P != PE; ++P) 00566 if (P->getSUnit() == NextSU ? 00567 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : 00568 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { 00569 AntiDepReg = 0; 00570 break; 00571 } 00572 } 00573 } 00574 CriticalPathSU = NextSU; 00575 CriticalPathMI = CriticalPathSU->getInstr(); 00576 } else { 00577 // We've reached the end of the critical path. 00578 CriticalPathSU = nullptr; 00579 CriticalPathMI = nullptr; 00580 } 00581 } 00582 00583 PrescanInstruction(MI); 00584 00585 SmallVector<unsigned, 2> ForbidRegs; 00586 00587 // If MI's defs have a special allocation requirement, don't allow 00588 // any def registers to be changed. Also assume all registers 00589 // defined in a call must not be changed (ABI). 00590 if (MI->isCall() || MI->hasExtraDefRegAllocReq() || TII->isPredicated(MI)) 00591 // If this instruction's defs have special allocation requirement, don't 00592 // break this anti-dependency. 00593 AntiDepReg = 0; 00594 else if (AntiDepReg) { 00595 // If this instruction has a use of AntiDepReg, breaking it 00596 // is invalid. If the instruction defines other registers, 00597 // save a list of them so that we don't pick a new register 00598 // that overlaps any of them. 00599 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 00600 MachineOperand &MO = MI->getOperand(i); 00601 if (!MO.isReg()) continue; 00602 unsigned Reg = MO.getReg(); 00603 if (Reg == 0) continue; 00604 if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) { 00605 AntiDepReg = 0; 00606 break; 00607 } 00608 if (MO.isDef() && Reg != AntiDepReg) 00609 ForbidRegs.push_back(Reg); 00610 } 00611 } 00612 00613 // Determine AntiDepReg's register class, if it is live and is 00614 // consistently used within a single class. 00615 const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] 00616 : nullptr; 00617 assert((AntiDepReg == 0 || RC != nullptr) && 00618 "Register should be live if it's causing an anti-dependence!"); 00619 if (RC == reinterpret_cast<TargetRegisterClass *>(-1)) 00620 AntiDepReg = 0; 00621 00622 // Look for a suitable register to use to break the anti-dependence. 00623 // 00624 // TODO: Instead of picking the first free register, consider which might 00625 // be the best. 00626 if (AntiDepReg != 0) { 00627 std::pair<std::multimap<unsigned, MachineOperand *>::iterator, 00628 std::multimap<unsigned, MachineOperand *>::iterator> 00629 Range = RegRefs.equal_range(AntiDepReg); 00630 if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second, 00631 AntiDepReg, 00632 LastNewReg[AntiDepReg], 00633 RC, ForbidRegs)) { 00634 DEBUG(dbgs() << "Breaking anti-dependence edge on " 00635 << TRI->getName(AntiDepReg) 00636 << " with " << RegRefs.count(AntiDepReg) << " references" 00637 << " using " << TRI->getName(NewReg) << "!\n"); 00638 00639 // Update the references to the old register to refer to the new 00640 // register. 00641 for (std::multimap<unsigned, MachineOperand *>::iterator 00642 Q = Range.first, QE = Range.second; Q != QE; ++Q) { 00643 Q->second->setReg(NewReg); 00644 // If the SU for the instruction being updated has debug information 00645 // related to the anti-dependency register, make sure to update that 00646 // as well. 00647 const SUnit *SU = MISUnitMap[Q->second->getParent()]; 00648 if (!SU) continue; 00649 for (DbgValueVector::iterator DVI = DbgValues.begin(), 00650 DVE = DbgValues.end(); DVI != DVE; ++DVI) 00651 if (DVI->second == Q->second->getParent()) 00652 UpdateDbgValue(DVI->first, AntiDepReg, NewReg); 00653 } 00654 00655 // We just went back in time and modified history; the 00656 // liveness information for the anti-dependence reg is now 00657 // inconsistent. Set the state as if it were dead. 00658 Classes[NewReg] = Classes[AntiDepReg]; 00659 DefIndices[NewReg] = DefIndices[AntiDepReg]; 00660 KillIndices[NewReg] = KillIndices[AntiDepReg]; 00661 assert(((KillIndices[NewReg] == ~0u) != 00662 (DefIndices[NewReg] == ~0u)) && 00663 "Kill and Def maps aren't consistent for NewReg!"); 00664 00665 Classes[AntiDepReg] = nullptr; 00666 DefIndices[AntiDepReg] = KillIndices[AntiDepReg]; 00667 KillIndices[AntiDepReg] = ~0u; 00668 assert(((KillIndices[AntiDepReg] == ~0u) != 00669 (DefIndices[AntiDepReg] == ~0u)) && 00670 "Kill and Def maps aren't consistent for AntiDepReg!"); 00671 00672 RegRefs.erase(AntiDepReg); 00673 LastNewReg[AntiDepReg] = NewReg; 00674 ++Broken; 00675 } 00676 } 00677 00678 ScanInstruction(MI, Count); 00679 } 00680 00681 return Broken; 00682 }