LLVM API Documentation

HexagonMachineScheduler.cpp
Go to the documentation of this file.
00001 //===- HexagonMachineScheduler.cpp - MI Scheduler for Hexagon -------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // MachineScheduler schedules machine instructions after phi elimination. It
00011 // preserves LiveIntervals so it can be invoked before register allocation.
00012 //
00013 //===----------------------------------------------------------------------===//
00014 
00015 #include "HexagonMachineScheduler.h"
00016 #include "llvm/CodeGen/MachineLoopInfo.h"
00017 #include "llvm/IR/Function.h"
00018 
00019 using namespace llvm;
00020 
00021 #define DEBUG_TYPE "misched"
00022 
00023 /// Platform-specific modifications to DAG.
00024 void VLIWMachineScheduler::postprocessDAG() {
00025   SUnit* LastSequentialCall = nullptr;
00026   // Currently we only catch the situation when compare gets scheduled
00027   // before preceding call.
00028   for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
00029     // Remember the call.
00030     if (SUnits[su].getInstr()->isCall())
00031       LastSequentialCall = &(SUnits[su]);
00032     // Look for a compare that defines a predicate.
00033     else if (SUnits[su].getInstr()->isCompare() && LastSequentialCall)
00034       SUnits[su].addPred(SDep(LastSequentialCall, SDep::Barrier));
00035   }
00036 }
00037 
00038 /// Check if scheduling of this SU is possible
00039 /// in the current packet.
00040 /// It is _not_ precise (statefull), it is more like
00041 /// another heuristic. Many corner cases are figured
00042 /// empirically.
00043 bool VLIWResourceModel::isResourceAvailable(SUnit *SU) {
00044   if (!SU || !SU->getInstr())
00045     return false;
00046 
00047   // First see if the pipeline could receive this instruction
00048   // in the current cycle.
00049   switch (SU->getInstr()->getOpcode()) {
00050   default:
00051     if (!ResourcesModel->canReserveResources(SU->getInstr()))
00052       return false;
00053   case TargetOpcode::EXTRACT_SUBREG:
00054   case TargetOpcode::INSERT_SUBREG:
00055   case TargetOpcode::SUBREG_TO_REG:
00056   case TargetOpcode::REG_SEQUENCE:
00057   case TargetOpcode::IMPLICIT_DEF:
00058   case TargetOpcode::COPY:
00059   case TargetOpcode::INLINEASM:
00060     break;
00061   }
00062 
00063   // Now see if there are no other dependencies to instructions already
00064   // in the packet.
00065   for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
00066     if (Packet[i]->Succs.size() == 0)
00067       continue;
00068     for (SUnit::const_succ_iterator I = Packet[i]->Succs.begin(),
00069          E = Packet[i]->Succs.end(); I != E; ++I) {
00070       // Since we do not add pseudos to packets, might as well
00071       // ignore order dependencies.
00072       if (I->isCtrl())
00073         continue;
00074 
00075       if (I->getSUnit() == SU)
00076         return false;
00077     }
00078   }
00079   return true;
00080 }
00081 
00082 /// Keep track of available resources.
00083 bool VLIWResourceModel::reserveResources(SUnit *SU) {
00084   bool startNewCycle = false;
00085   // Artificially reset state.
00086   if (!SU) {
00087     ResourcesModel->clearResources();
00088     Packet.clear();
00089     TotalPackets++;
00090     return false;
00091   }
00092   // If this SU does not fit in the packet
00093   // start a new one.
00094   if (!isResourceAvailable(SU)) {
00095     ResourcesModel->clearResources();
00096     Packet.clear();
00097     TotalPackets++;
00098     startNewCycle = true;
00099   }
00100 
00101   switch (SU->getInstr()->getOpcode()) {
00102   default:
00103     ResourcesModel->reserveResources(SU->getInstr());
00104     break;
00105   case TargetOpcode::EXTRACT_SUBREG:
00106   case TargetOpcode::INSERT_SUBREG:
00107   case TargetOpcode::SUBREG_TO_REG:
00108   case TargetOpcode::REG_SEQUENCE:
00109   case TargetOpcode::IMPLICIT_DEF:
00110   case TargetOpcode::KILL:
00111   case TargetOpcode::CFI_INSTRUCTION:
00112   case TargetOpcode::EH_LABEL:
00113   case TargetOpcode::COPY:
00114   case TargetOpcode::INLINEASM:
00115     break;
00116   }
00117   Packet.push_back(SU);
00118 
00119 #ifndef NDEBUG
00120   DEBUG(dbgs() << "Packet[" << TotalPackets << "]:\n");
00121   for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
00122     DEBUG(dbgs() << "\t[" << i << "] SU(");
00123     DEBUG(dbgs() << Packet[i]->NodeNum << ")\t");
00124     DEBUG(Packet[i]->getInstr()->dump());
00125   }
00126 #endif
00127 
00128   // If packet is now full, reset the state so in the next cycle
00129   // we start fresh.
00130   if (Packet.size() >= SchedModel->getIssueWidth()) {
00131     ResourcesModel->clearResources();
00132     Packet.clear();
00133     TotalPackets++;
00134     startNewCycle = true;
00135   }
00136 
00137   return startNewCycle;
00138 }
00139 
00140 /// schedule - Called back from MachineScheduler::runOnMachineFunction
00141 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
00142 /// only includes instructions that have DAG nodes, not scheduling boundaries.
00143 void VLIWMachineScheduler::schedule() {
00144   DEBUG(dbgs()
00145         << "********** MI Converging Scheduling VLIW BB#" << BB->getNumber()
00146         << " " << BB->getName()
00147         << " in_func " << BB->getParent()->getFunction()->getName()
00148         << " at loop depth "  << MLI->getLoopDepth(BB)
00149         << " \n");
00150 
00151   buildDAGWithRegPressure();
00152 
00153   // Postprocess the DAG to add platform-specific artificial dependencies.
00154   postprocessDAG();
00155 
00156   SmallVector<SUnit*, 8> TopRoots, BotRoots;
00157   findRootsAndBiasEdges(TopRoots, BotRoots);
00158 
00159   // Initialize the strategy before modifying the DAG.
00160   SchedImpl->initialize(this);
00161 
00162   // To view Height/Depth correctly, they should be accessed at least once.
00163   //
00164   // FIXME: SUnit::dumpAll always recompute depth and height now. The max
00165   // depth/height could be computed directly from the roots and leaves.
00166   DEBUG(unsigned maxH = 0;
00167         for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
00168           if (SUnits[su].getHeight() > maxH)
00169             maxH = SUnits[su].getHeight();
00170         dbgs() << "Max Height " << maxH << "\n";);
00171   DEBUG(unsigned maxD = 0;
00172         for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
00173           if (SUnits[su].getDepth() > maxD)
00174             maxD = SUnits[su].getDepth();
00175         dbgs() << "Max Depth " << maxD << "\n";);
00176   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
00177           SUnits[su].dumpAll(this));
00178 
00179   initQueues(TopRoots, BotRoots);
00180 
00181   bool IsTopNode = false;
00182   while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
00183     if (!checkSchedLimit())
00184       break;
00185 
00186     scheduleMI(SU, IsTopNode);
00187 
00188     updateQueues(SU, IsTopNode);
00189 
00190     // Notify the scheduling strategy after updating the DAG.
00191     SchedImpl->schedNode(SU, IsTopNode);
00192   }
00193   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
00194 
00195   placeDebugValues();
00196 }
00197 
00198 void ConvergingVLIWScheduler::initialize(ScheduleDAGMI *dag) {
00199   DAG = static_cast<VLIWMachineScheduler*>(dag);
00200   SchedModel = DAG->getSchedModel();
00201 
00202   Top.init(DAG, SchedModel);
00203   Bot.init(DAG, SchedModel);
00204 
00205   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
00206   // are disabled, then these HazardRecs will be disabled.
00207   const InstrItineraryData *Itin = DAG->getSchedModel()->getInstrItineraries();
00208   const TargetMachine &TM = DAG->MF.getTarget();
00209   delete Top.HazardRec;
00210   delete Bot.HazardRec;
00211   Top.HazardRec =
00212       TM.getSubtargetImpl()->getInstrInfo()->CreateTargetMIHazardRecognizer(
00213           Itin, DAG);
00214   Bot.HazardRec =
00215       TM.getSubtargetImpl()->getInstrInfo()->CreateTargetMIHazardRecognizer(
00216           Itin, DAG);
00217 
00218   delete Top.ResourceModel;
00219   delete Bot.ResourceModel;
00220   Top.ResourceModel = new VLIWResourceModel(TM, DAG->getSchedModel());
00221   Bot.ResourceModel = new VLIWResourceModel(TM, DAG->getSchedModel());
00222 
00223   assert((!llvm::ForceTopDown || !llvm::ForceBottomUp) &&
00224          "-misched-topdown incompatible with -misched-bottomup");
00225 }
00226 
00227 void ConvergingVLIWScheduler::releaseTopNode(SUnit *SU) {
00228   if (SU->isScheduled)
00229     return;
00230 
00231   for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end();
00232        I != E; ++I) {
00233     unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
00234     unsigned MinLatency = I->getLatency();
00235 #ifndef NDEBUG
00236     Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
00237 #endif
00238     if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
00239       SU->TopReadyCycle = PredReadyCycle + MinLatency;
00240   }
00241   Top.releaseNode(SU, SU->TopReadyCycle);
00242 }
00243 
00244 void ConvergingVLIWScheduler::releaseBottomNode(SUnit *SU) {
00245   if (SU->isScheduled)
00246     return;
00247 
00248   assert(SU->getInstr() && "Scheduled SUnit must have instr");
00249 
00250   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
00251        I != E; ++I) {
00252     unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
00253     unsigned MinLatency = I->getLatency();
00254 #ifndef NDEBUG
00255     Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
00256 #endif
00257     if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
00258       SU->BotReadyCycle = SuccReadyCycle + MinLatency;
00259   }
00260   Bot.releaseNode(SU, SU->BotReadyCycle);
00261 }
00262 
00263 /// Does this SU have a hazard within the current instruction group.
00264 ///
00265 /// The scheduler supports two modes of hazard recognition. The first is the
00266 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
00267 /// supports highly complicated in-order reservation tables
00268 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
00269 ///
00270 /// The second is a streamlined mechanism that checks for hazards based on
00271 /// simple counters that the scheduler itself maintains. It explicitly checks
00272 /// for instruction dispatch limitations, including the number of micro-ops that
00273 /// can dispatch per cycle.
00274 ///
00275 /// TODO: Also check whether the SU must start a new group.
00276 bool ConvergingVLIWScheduler::VLIWSchedBoundary::checkHazard(SUnit *SU) {
00277   if (HazardRec->isEnabled())
00278     return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
00279 
00280   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
00281   if (IssueCount + uops > SchedModel->getIssueWidth())
00282     return true;
00283 
00284   return false;
00285 }
00286 
00287 void ConvergingVLIWScheduler::VLIWSchedBoundary::releaseNode(SUnit *SU,
00288                                                      unsigned ReadyCycle) {
00289   if (ReadyCycle < MinReadyCycle)
00290     MinReadyCycle = ReadyCycle;
00291 
00292   // Check for interlocks first. For the purpose of other heuristics, an
00293   // instruction that cannot issue appears as if it's not in the ReadyQueue.
00294   if (ReadyCycle > CurrCycle || checkHazard(SU))
00295 
00296     Pending.push(SU);
00297   else
00298     Available.push(SU);
00299 }
00300 
00301 /// Move the boundary of scheduled code by one cycle.
00302 void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpCycle() {
00303   unsigned Width = SchedModel->getIssueWidth();
00304   IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
00305 
00306   assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
00307   unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle);
00308 
00309   if (!HazardRec->isEnabled()) {
00310     // Bypass HazardRec virtual calls.
00311     CurrCycle = NextCycle;
00312   } else {
00313     // Bypass getHazardType calls in case of long latency.
00314     for (; CurrCycle != NextCycle; ++CurrCycle) {
00315       if (isTop())
00316         HazardRec->AdvanceCycle();
00317       else
00318         HazardRec->RecedeCycle();
00319     }
00320   }
00321   CheckPending = true;
00322 
00323   DEBUG(dbgs() << "*** " << Available.getName() << " cycle "
00324         << CurrCycle << '\n');
00325 }
00326 
00327 /// Move the boundary of scheduled code by one SUnit.
00328 void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpNode(SUnit *SU) {
00329   bool startNewCycle = false;
00330 
00331   // Update the reservation table.
00332   if (HazardRec->isEnabled()) {
00333     if (!isTop() && SU->isCall) {
00334       // Calls are scheduled with their preceding instructions. For bottom-up
00335       // scheduling, clear the pipeline state before emitting.
00336       HazardRec->Reset();
00337     }
00338     HazardRec->EmitInstruction(SU);
00339   }
00340 
00341   // Update DFA model.
00342   startNewCycle = ResourceModel->reserveResources(SU);
00343 
00344   // Check the instruction group dispatch limit.
00345   // TODO: Check if this SU must end a dispatch group.
00346   IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
00347   if (startNewCycle) {
00348     DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n');
00349     bumpCycle();
00350   }
00351   else
00352     DEBUG(dbgs() << "*** IssueCount " << IssueCount
00353           << " at cycle " << CurrCycle << '\n');
00354 }
00355 
00356 /// Release pending ready nodes in to the available queue. This makes them
00357 /// visible to heuristics.
00358 void ConvergingVLIWScheduler::VLIWSchedBoundary::releasePending() {
00359   // If the available queue is empty, it is safe to reset MinReadyCycle.
00360   if (Available.empty())
00361     MinReadyCycle = UINT_MAX;
00362 
00363   // Check to see if any of the pending instructions are ready to issue.  If
00364   // so, add them to the available queue.
00365   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
00366     SUnit *SU = *(Pending.begin()+i);
00367     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
00368 
00369     if (ReadyCycle < MinReadyCycle)
00370       MinReadyCycle = ReadyCycle;
00371 
00372     if (ReadyCycle > CurrCycle)
00373       continue;
00374 
00375     if (checkHazard(SU))
00376       continue;
00377 
00378     Available.push(SU);
00379     Pending.remove(Pending.begin()+i);
00380     --i; --e;
00381   }
00382   CheckPending = false;
00383 }
00384 
00385 /// Remove SU from the ready set for this boundary.
00386 void ConvergingVLIWScheduler::VLIWSchedBoundary::removeReady(SUnit *SU) {
00387   if (Available.isInQueue(SU))
00388     Available.remove(Available.find(SU));
00389   else {
00390     assert(Pending.isInQueue(SU) && "bad ready count");
00391     Pending.remove(Pending.find(SU));
00392   }
00393 }
00394 
00395 /// If this queue only has one ready candidate, return it. As a side effect,
00396 /// advance the cycle until at least one node is ready. If multiple instructions
00397 /// are ready, return NULL.
00398 SUnit *ConvergingVLIWScheduler::VLIWSchedBoundary::pickOnlyChoice() {
00399   if (CheckPending)
00400     releasePending();
00401 
00402   for (unsigned i = 0; Available.empty(); ++i) {
00403     assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
00404            "permanent hazard"); (void)i;
00405     ResourceModel->reserveResources(nullptr);
00406     bumpCycle();
00407     releasePending();
00408   }
00409   if (Available.size() == 1)
00410     return *Available.begin();
00411   return nullptr;
00412 }
00413 
00414 #ifndef NDEBUG
00415 void ConvergingVLIWScheduler::traceCandidate(const char *Label,
00416                                              const ReadyQueue &Q,
00417                                              SUnit *SU, PressureChange P) {
00418   dbgs() << Label << " " << Q.getName() << " ";
00419   if (P.isValid())
00420     dbgs() << DAG->TRI->getRegPressureSetName(P.getPSet()) << ":"
00421            << P.getUnitInc() << " ";
00422   else
00423     dbgs() << "     ";
00424   SU->dump(DAG);
00425 }
00426 #endif
00427 
00428 /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
00429 /// of SU, return it, otherwise return null.
00430 static SUnit *getSingleUnscheduledPred(SUnit *SU) {
00431   SUnit *OnlyAvailablePred = nullptr;
00432   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
00433        I != E; ++I) {
00434     SUnit &Pred = *I->getSUnit();
00435     if (!Pred.isScheduled) {
00436       // We found an available, but not scheduled, predecessor.  If it's the
00437       // only one we have found, keep track of it... otherwise give up.
00438       if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
00439         return nullptr;
00440       OnlyAvailablePred = &Pred;
00441     }
00442   }
00443   return OnlyAvailablePred;
00444 }
00445 
00446 /// getSingleUnscheduledSucc - If there is exactly one unscheduled successor
00447 /// of SU, return it, otherwise return null.
00448 static SUnit *getSingleUnscheduledSucc(SUnit *SU) {
00449   SUnit *OnlyAvailableSucc = nullptr;
00450   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
00451        I != E; ++I) {
00452     SUnit &Succ = *I->getSUnit();
00453     if (!Succ.isScheduled) {
00454       // We found an available, but not scheduled, successor.  If it's the
00455       // only one we have found, keep track of it... otherwise give up.
00456       if (OnlyAvailableSucc && OnlyAvailableSucc != &Succ)
00457         return nullptr;
00458       OnlyAvailableSucc = &Succ;
00459     }
00460   }
00461   return OnlyAvailableSucc;
00462 }
00463 
00464 // Constants used to denote relative importance of
00465 // heuristic components for cost computation.
00466 static const unsigned PriorityOne = 200;
00467 static const unsigned PriorityTwo = 50;
00468 static const unsigned ScaleTwo = 10;
00469 static const unsigned FactorOne = 2;
00470 
00471 /// Single point to compute overall scheduling cost.
00472 /// TODO: More heuristics will be used soon.
00473 int ConvergingVLIWScheduler::SchedulingCost(ReadyQueue &Q, SUnit *SU,
00474                                             SchedCandidate &Candidate,
00475                                             RegPressureDelta &Delta,
00476                                             bool verbose) {
00477   // Initial trivial priority.
00478   int ResCount = 1;
00479 
00480   // Do not waste time on a node that is already scheduled.
00481   if (!SU || SU->isScheduled)
00482     return ResCount;
00483 
00484   // Forced priority is high.
00485   if (SU->isScheduleHigh)
00486     ResCount += PriorityOne;
00487 
00488   // Critical path first.
00489   if (Q.getID() == TopQID) {
00490     ResCount += (SU->getHeight() * ScaleTwo);
00491 
00492     // If resources are available for it, multiply the
00493     // chance of scheduling.
00494     if (Top.ResourceModel->isResourceAvailable(SU))
00495       ResCount <<= FactorOne;
00496   } else {
00497     ResCount += (SU->getDepth() * ScaleTwo);
00498 
00499     // If resources are available for it, multiply the
00500     // chance of scheduling.
00501     if (Bot.ResourceModel->isResourceAvailable(SU))
00502       ResCount <<= FactorOne;
00503   }
00504 
00505   unsigned NumNodesBlocking = 0;
00506   if (Q.getID() == TopQID) {
00507     // How many SUs does it block from scheduling?
00508     // Look at all of the successors of this node.
00509     // Count the number of nodes that
00510     // this node is the sole unscheduled node for.
00511     for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
00512          I != E; ++I)
00513       if (getSingleUnscheduledPred(I->getSUnit()) == SU)
00514         ++NumNodesBlocking;
00515   } else {
00516     // How many unscheduled predecessors block this node?
00517     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
00518          I != E; ++I)
00519       if (getSingleUnscheduledSucc(I->getSUnit()) == SU)
00520         ++NumNodesBlocking;
00521   }
00522   ResCount += (NumNodesBlocking * ScaleTwo);
00523 
00524   // Factor in reg pressure as a heuristic.
00525   ResCount -= (Delta.Excess.getUnitInc()*PriorityTwo);
00526   ResCount -= (Delta.CriticalMax.getUnitInc()*PriorityTwo);
00527 
00528   DEBUG(if (verbose) dbgs() << " Total(" << ResCount << ")");
00529 
00530   return ResCount;
00531 }
00532 
00533 /// Pick the best candidate from the top queue.
00534 ///
00535 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
00536 /// DAG building. To adjust for the current scheduling location we need to
00537 /// maintain the number of vreg uses remaining to be top-scheduled.
00538 ConvergingVLIWScheduler::CandResult ConvergingVLIWScheduler::
00539 pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker,
00540                   SchedCandidate &Candidate) {
00541   DEBUG(Q.dump());
00542 
00543   // getMaxPressureDelta temporarily modifies the tracker.
00544   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
00545 
00546   // BestSU remains NULL if no top candidates beat the best existing candidate.
00547   CandResult FoundCandidate = NoCand;
00548   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
00549     RegPressureDelta RPDelta;
00550     TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
00551                                     DAG->getRegionCriticalPSets(),
00552                                     DAG->getRegPressure().MaxSetPressure);
00553 
00554     int CurrentCost = SchedulingCost(Q, *I, Candidate, RPDelta, false);
00555 
00556     // Initialize the candidate if needed.
00557     if (!Candidate.SU) {
00558       Candidate.SU = *I;
00559       Candidate.RPDelta = RPDelta;
00560       Candidate.SCost = CurrentCost;
00561       FoundCandidate = NodeOrder;
00562       continue;
00563     }
00564 
00565     // Best cost.
00566     if (CurrentCost > Candidate.SCost) {
00567       DEBUG(traceCandidate("CCAND", Q, *I));
00568       Candidate.SU = *I;
00569       Candidate.RPDelta = RPDelta;
00570       Candidate.SCost = CurrentCost;
00571       FoundCandidate = BestCost;
00572       continue;
00573     }
00574 
00575     // Fall through to original instruction order.
00576     // Only consider node order if Candidate was chosen from this Q.
00577     if (FoundCandidate == NoCand)
00578       continue;
00579   }
00580   return FoundCandidate;
00581 }
00582 
00583 /// Pick the best candidate node from either the top or bottom queue.
00584 SUnit *ConvergingVLIWScheduler::pickNodeBidrectional(bool &IsTopNode) {
00585   // Schedule as far as possible in the direction of no choice. This is most
00586   // efficient, but also provides the best heuristics for CriticalPSets.
00587   if (SUnit *SU = Bot.pickOnlyChoice()) {
00588     IsTopNode = false;
00589     return SU;
00590   }
00591   if (SUnit *SU = Top.pickOnlyChoice()) {
00592     IsTopNode = true;
00593     return SU;
00594   }
00595   SchedCandidate BotCand;
00596   // Prefer bottom scheduling when heuristics are silent.
00597   CandResult BotResult = pickNodeFromQueue(Bot.Available,
00598                                            DAG->getBotRPTracker(), BotCand);
00599   assert(BotResult != NoCand && "failed to find the first candidate");
00600 
00601   // If either Q has a single candidate that provides the least increase in
00602   // Excess pressure, we can immediately schedule from that Q.
00603   //
00604   // RegionCriticalPSets summarizes the pressure within the scheduled region and
00605   // affects picking from either Q. If scheduling in one direction must
00606   // increase pressure for one of the excess PSets, then schedule in that
00607   // direction first to provide more freedom in the other direction.
00608   if (BotResult == SingleExcess || BotResult == SingleCritical) {
00609     IsTopNode = false;
00610     return BotCand.SU;
00611   }
00612   // Check if the top Q has a better candidate.
00613   SchedCandidate TopCand;
00614   CandResult TopResult = pickNodeFromQueue(Top.Available,
00615                                            DAG->getTopRPTracker(), TopCand);
00616   assert(TopResult != NoCand && "failed to find the first candidate");
00617 
00618   if (TopResult == SingleExcess || TopResult == SingleCritical) {
00619     IsTopNode = true;
00620     return TopCand.SU;
00621   }
00622   // If either Q has a single candidate that minimizes pressure above the
00623   // original region's pressure pick it.
00624   if (BotResult == SingleMax) {
00625     IsTopNode = false;
00626     return BotCand.SU;
00627   }
00628   if (TopResult == SingleMax) {
00629     IsTopNode = true;
00630     return TopCand.SU;
00631   }
00632   if (TopCand.SCost > BotCand.SCost) {
00633     IsTopNode = true;
00634     return TopCand.SU;
00635   }
00636   // Otherwise prefer the bottom candidate in node order.
00637   IsTopNode = false;
00638   return BotCand.SU;
00639 }
00640 
00641 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
00642 SUnit *ConvergingVLIWScheduler::pickNode(bool &IsTopNode) {
00643   if (DAG->top() == DAG->bottom()) {
00644     assert(Top.Available.empty() && Top.Pending.empty() &&
00645            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
00646     return nullptr;
00647   }
00648   SUnit *SU;
00649   if (llvm::ForceTopDown) {
00650     SU = Top.pickOnlyChoice();
00651     if (!SU) {
00652       SchedCandidate TopCand;
00653       CandResult TopResult =
00654         pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand);
00655       assert(TopResult != NoCand && "failed to find the first candidate");
00656       (void)TopResult;
00657       SU = TopCand.SU;
00658     }
00659     IsTopNode = true;
00660   } else if (llvm::ForceBottomUp) {
00661     SU = Bot.pickOnlyChoice();
00662     if (!SU) {
00663       SchedCandidate BotCand;
00664       CandResult BotResult =
00665         pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand);
00666       assert(BotResult != NoCand && "failed to find the first candidate");
00667       (void)BotResult;
00668       SU = BotCand.SU;
00669     }
00670     IsTopNode = false;
00671   } else {
00672     SU = pickNodeBidrectional(IsTopNode);
00673   }
00674   if (SU->isTopReady())
00675     Top.removeReady(SU);
00676   if (SU->isBottomReady())
00677     Bot.removeReady(SU);
00678 
00679   DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
00680         << " Scheduling Instruction in cycle "
00681         << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n';
00682         SU->dump(DAG));
00683   return SU;
00684 }
00685 
00686 /// Update the scheduler's state after scheduling a node. This is the same node
00687 /// that was just returned by pickNode(). However, VLIWMachineScheduler needs
00688 /// to update it's state based on the current cycle before MachineSchedStrategy
00689 /// does.
00690 void ConvergingVLIWScheduler::schedNode(SUnit *SU, bool IsTopNode) {
00691   if (IsTopNode) {
00692     SU->TopReadyCycle = Top.CurrCycle;
00693     Top.bumpNode(SU);
00694   } else {
00695     SU->BotReadyCycle = Bot.CurrCycle;
00696     Bot.bumpNode(SU);
00697   }
00698 }