LLVM API Documentation

HexagonNewValueJump.cpp
Go to the documentation of this file.
00001 //===----- HexagonNewValueJump.cpp - Hexagon Backend New Value Jump -------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This implements NewValueJump pass in Hexagon.
00011 // Ideally, we should merge this as a Peephole pass prior to register
00012 // allocation, but because we have a spill in between the feeder and new value
00013 // jump instructions, we are forced to write after register allocation.
00014 // Having said that, we should re-attempt to pull this earlier at some point
00015 // in future.
00016 
00017 // The basic approach looks for sequence of predicated jump, compare instruciton
00018 // that genereates the predicate and, the feeder to the predicate. Once it finds
00019 // all, it collapses compare and jump instruction into a new valu jump
00020 // intstructions.
00021 //
00022 //
00023 //===----------------------------------------------------------------------===//
00024 #include "llvm/PassSupport.h"
00025 #include "Hexagon.h"
00026 #include "HexagonInstrInfo.h"
00027 #include "HexagonMachineFunctionInfo.h"
00028 #include "HexagonRegisterInfo.h"
00029 #include "HexagonSubtarget.h"
00030 #include "HexagonTargetMachine.h"
00031 #include "llvm/ADT/DenseMap.h"
00032 #include "llvm/ADT/Statistic.h"
00033 #include "llvm/CodeGen/LiveVariables.h"
00034 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
00035 #include "llvm/CodeGen/MachineFunctionPass.h"
00036 #include "llvm/CodeGen/MachineInstrBuilder.h"
00037 #include "llvm/CodeGen/MachineRegisterInfo.h"
00038 #include "llvm/CodeGen/Passes.h"
00039 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
00040 #include "llvm/Support/CommandLine.h"
00041 #include "llvm/Support/Compiler.h"
00042 #include "llvm/Support/Debug.h"
00043 #include "llvm/Target/TargetInstrInfo.h"
00044 #include "llvm/Target/TargetMachine.h"
00045 #include "llvm/Target/TargetRegisterInfo.h"
00046 #include <map>
00047 using namespace llvm;
00048 
00049 #define DEBUG_TYPE "hexagon-nvj"
00050 
00051 STATISTIC(NumNVJGenerated, "Number of New Value Jump Instructions created");
00052 
00053 static cl::opt<int>
00054 DbgNVJCount("nvj-count", cl::init(-1), cl::Hidden, cl::desc(
00055   "Maximum number of predicated jumps to be converted to New Value Jump"));
00056 
00057 static cl::opt<bool> DisableNewValueJumps("disable-nvjump", cl::Hidden,
00058     cl::ZeroOrMore, cl::init(false),
00059     cl::desc("Disable New Value Jumps"));
00060 
00061 namespace llvm {
00062   void initializeHexagonNewValueJumpPass(PassRegistry&);
00063 }
00064 
00065 
00066 namespace {
00067   struct HexagonNewValueJump : public MachineFunctionPass {
00068     const HexagonInstrInfo    *QII;
00069     const HexagonRegisterInfo *QRI;
00070 
00071   public:
00072     static char ID;
00073 
00074     HexagonNewValueJump() : MachineFunctionPass(ID) {
00075       initializeHexagonNewValueJumpPass(*PassRegistry::getPassRegistry());
00076     }
00077 
00078     void getAnalysisUsage(AnalysisUsage &AU) const override {
00079       AU.addRequired<MachineBranchProbabilityInfo>();
00080       MachineFunctionPass::getAnalysisUsage(AU);
00081     }
00082 
00083     const char *getPassName() const override {
00084       return "Hexagon NewValueJump";
00085     }
00086 
00087     bool runOnMachineFunction(MachineFunction &Fn) override;
00088 
00089   private:
00090     /// \brief A handle to the branch probability pass.
00091     const MachineBranchProbabilityInfo *MBPI;
00092 
00093   };
00094 
00095 } // end of anonymous namespace
00096 
00097 char HexagonNewValueJump::ID = 0;
00098 
00099 INITIALIZE_PASS_BEGIN(HexagonNewValueJump, "hexagon-nvj",
00100                       "Hexagon NewValueJump", false, false)
00101 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
00102 INITIALIZE_PASS_END(HexagonNewValueJump, "hexagon-nvj",
00103                     "Hexagon NewValueJump", false, false)
00104 
00105 
00106 // We have identified this II could be feeder to NVJ,
00107 // verify that it can be.
00108 static bool canBeFeederToNewValueJump(const HexagonInstrInfo *QII,
00109                                       const TargetRegisterInfo *TRI,
00110                                       MachineBasicBlock::iterator II,
00111                                       MachineBasicBlock::iterator end,
00112                                       MachineBasicBlock::iterator skip,
00113                                       MachineFunction &MF) {
00114 
00115   // Predicated instruction can not be feeder to NVJ.
00116   if (QII->isPredicated(II))
00117     return false;
00118 
00119   // Bail out if feederReg is a paired register (double regs in
00120   // our case). One would think that we can check to see if a given
00121   // register cmpReg1 or cmpReg2 is a sub register of feederReg
00122   // using -- if (QRI->isSubRegister(feederReg, cmpReg1) logic
00123   // before the callsite of this function
00124   // But we can not as it comes in the following fashion.
00125   //    %D0<def> = Hexagon_S2_lsr_r_p %D0<kill>, %R2<kill>
00126   //    %R0<def> = KILL %R0, %D0<imp-use,kill>
00127   //    %P0<def> = CMPEQri %R0<kill>, 0
00128   // Hence, we need to check if it's a KILL instruction.
00129   if (II->getOpcode() == TargetOpcode::KILL)
00130     return false;
00131 
00132 
00133   // Make sure there there is no 'def' or 'use' of any of the uses of
00134   // feeder insn between it's definition, this MI and jump, jmpInst
00135   // skipping compare, cmpInst.
00136   // Here's the example.
00137   //    r21=memub(r22+r24<<#0)
00138   //    p0 = cmp.eq(r21, #0)
00139   //    r4=memub(r3+r21<<#0)
00140   //    if (p0.new) jump:t .LBB29_45
00141   // Without this check, it will be converted into
00142   //    r4=memub(r3+r21<<#0)
00143   //    r21=memub(r22+r24<<#0)
00144   //    p0 = cmp.eq(r21, #0)
00145   //    if (p0.new) jump:t .LBB29_45
00146   // and result WAR hazards if converted to New Value Jump.
00147 
00148   for (unsigned i = 0; i < II->getNumOperands(); ++i) {
00149     if (II->getOperand(i).isReg() &&
00150         (II->getOperand(i).isUse() || II->getOperand(i).isDef())) {
00151       MachineBasicBlock::iterator localII = II;
00152       ++localII;
00153       unsigned Reg = II->getOperand(i).getReg();
00154       for (MachineBasicBlock::iterator localBegin = localII;
00155                         localBegin != end; ++localBegin) {
00156         if (localBegin == skip ) continue;
00157         // Check for Subregisters too.
00158         if (localBegin->modifiesRegister(Reg, TRI) ||
00159             localBegin->readsRegister(Reg, TRI))
00160           return false;
00161       }
00162     }
00163   }
00164   return true;
00165 }
00166 
00167 // These are the common checks that need to performed
00168 // to determine if
00169 // 1. compare instruction can be moved before jump.
00170 // 2. feeder to the compare instruction can be moved before jump.
00171 static bool commonChecksToProhibitNewValueJump(bool afterRA,
00172                           MachineBasicBlock::iterator MII) {
00173 
00174   // If store in path, bail out.
00175   if (MII->getDesc().mayStore())
00176     return false;
00177 
00178   // if call in path, bail out.
00179   if (MII->getOpcode() == Hexagon::CALLv3)
00180     return false;
00181 
00182   // if NVJ is running prior to RA, do the following checks.
00183   if (!afterRA) {
00184     // The following Target Opcode instructions are spurious
00185     // to new value jump. If they are in the path, bail out.
00186     // KILL sets kill flag on the opcode. It also sets up a
00187     // single register, out of pair.
00188     //    %D0<def> = Hexagon_S2_lsr_r_p %D0<kill>, %R2<kill>
00189     //    %R0<def> = KILL %R0, %D0<imp-use,kill>
00190     //    %P0<def> = CMPEQri %R0<kill>, 0
00191     // PHI can be anything after RA.
00192     // COPY can remateriaze things in between feeder, compare and nvj.
00193     if (MII->getOpcode() == TargetOpcode::KILL ||
00194         MII->getOpcode() == TargetOpcode::PHI  ||
00195         MII->getOpcode() == TargetOpcode::COPY)
00196       return false;
00197 
00198     // The following pseudo Hexagon instructions sets "use" and "def"
00199     // of registers by individual passes in the backend. At this time,
00200     // we don't know the scope of usage and definitions of these
00201     // instructions.
00202     if (MII->getOpcode() == Hexagon::TFR_condset_rr ||
00203         MII->getOpcode() == Hexagon::TFR_condset_ii ||
00204         MII->getOpcode() == Hexagon::TFR_condset_ri ||
00205         MII->getOpcode() == Hexagon::TFR_condset_ir ||
00206         MII->getOpcode() == Hexagon::LDriw_pred     ||
00207         MII->getOpcode() == Hexagon::STriw_pred)
00208       return false;
00209   }
00210 
00211   return true;
00212 }
00213 
00214 static bool canCompareBeNewValueJump(const HexagonInstrInfo *QII,
00215                                      const TargetRegisterInfo *TRI,
00216                                      MachineBasicBlock::iterator II,
00217                                      unsigned pReg,
00218                                      bool secondReg,
00219                                      bool optLocation,
00220                                      MachineBasicBlock::iterator end,
00221                                      MachineFunction &MF) {
00222 
00223   MachineInstr *MI = II;
00224 
00225   // If the second operand of the compare is an imm, make sure it's in the
00226   // range specified by the arch.
00227   if (!secondReg) {
00228     int64_t v = MI->getOperand(2).getImm();
00229 
00230     if (!(isUInt<5>(v) ||
00231          ((MI->getOpcode() == Hexagon::CMPEQri ||
00232            MI->getOpcode() == Hexagon::CMPGTri) &&
00233           (v == -1))))
00234       return false;
00235   }
00236 
00237   unsigned cmpReg1, cmpOp2 = 0; // cmpOp2 assignment silences compiler warning.
00238   cmpReg1 = MI->getOperand(1).getReg();
00239 
00240   if (secondReg) {
00241     cmpOp2 = MI->getOperand(2).getReg();
00242 
00243     // Make sure that that second register is not from COPY
00244     // At machine code level, we don't need this, but if we decide
00245     // to move new value jump prior to RA, we would be needing this.
00246     MachineRegisterInfo &MRI = MF.getRegInfo();
00247     if (secondReg && !TargetRegisterInfo::isPhysicalRegister(cmpOp2)) {
00248       MachineInstr *def = MRI.getVRegDef(cmpOp2);
00249       if (def->getOpcode() == TargetOpcode::COPY)
00250         return false;
00251     }
00252   }
00253 
00254   // Walk the instructions after the compare (predicate def) to the jump,
00255   // and satisfy the following conditions.
00256   ++II ;
00257   for (MachineBasicBlock::iterator localII = II; localII != end;
00258        ++localII) {
00259 
00260     // Check 1.
00261     // If "common" checks fail, bail out.
00262     if (!commonChecksToProhibitNewValueJump(optLocation, localII))
00263       return false;
00264 
00265     // Check 2.
00266     // If there is a def or use of predicate (result of compare), bail out.
00267     if (localII->modifiesRegister(pReg, TRI) ||
00268         localII->readsRegister(pReg, TRI))
00269       return false;
00270 
00271     // Check 3.
00272     // If there is a def of any of the use of the compare (operands of compare),
00273     // bail out.
00274     // Eg.
00275     //    p0 = cmp.eq(r2, r0)
00276     //    r2 = r4
00277     //    if (p0.new) jump:t .LBB28_3
00278     if (localII->modifiesRegister(cmpReg1, TRI) ||
00279         (secondReg && localII->modifiesRegister(cmpOp2, TRI)))
00280       return false;
00281   }
00282   return true;
00283 }
00284 
00285 // Given a compare operator, return a matching New Value Jump
00286 // compare operator. Make sure that MI here is included in
00287 // HexagonInstrInfo.cpp::isNewValueJumpCandidate
00288 static unsigned getNewValueJumpOpcode(MachineInstr *MI, int reg,
00289                                       bool secondRegNewified,
00290                                       MachineBasicBlock *jmpTarget,
00291                                       const MachineBranchProbabilityInfo
00292                                       *MBPI) {
00293   bool taken = false;
00294   MachineBasicBlock *Src = MI->getParent();
00295   const BranchProbability Prediction =
00296     MBPI->getEdgeProbability(Src, jmpTarget);
00297 
00298   if (Prediction >= BranchProbability(1,2))
00299     taken = true;
00300 
00301   switch (MI->getOpcode()) {
00302     case Hexagon::CMPEQrr:
00303       return taken ? Hexagon::CMPEQrr_t_Jumpnv_t_V4
00304                    : Hexagon::CMPEQrr_t_Jumpnv_nt_V4;
00305 
00306     case Hexagon::CMPEQri: {
00307       if (reg >= 0)
00308         return taken ? Hexagon::CMPEQri_t_Jumpnv_t_V4
00309                      : Hexagon::CMPEQri_t_Jumpnv_nt_V4;
00310       else
00311         return taken ? Hexagon::CMPEQn1_t_Jumpnv_t_V4
00312                      : Hexagon::CMPEQn1_t_Jumpnv_nt_V4;
00313     }
00314 
00315     case Hexagon::CMPGTrr: {
00316       if (secondRegNewified)
00317         return taken ? Hexagon::CMPLTrr_t_Jumpnv_t_V4
00318                      : Hexagon::CMPLTrr_t_Jumpnv_nt_V4;
00319       else
00320         return taken ? Hexagon::CMPGTrr_t_Jumpnv_t_V4
00321                      : Hexagon::CMPGTrr_t_Jumpnv_nt_V4;
00322     }
00323 
00324     case Hexagon::CMPGTri: {
00325       if (reg >= 0)
00326         return taken ? Hexagon::CMPGTri_t_Jumpnv_t_V4
00327                      : Hexagon::CMPGTri_t_Jumpnv_nt_V4;
00328       else
00329         return taken ? Hexagon::CMPGTn1_t_Jumpnv_t_V4
00330                      : Hexagon::CMPGTn1_t_Jumpnv_nt_V4;
00331     }
00332 
00333     case Hexagon::CMPGTUrr: {
00334       if (secondRegNewified)
00335         return taken ? Hexagon::CMPLTUrr_t_Jumpnv_t_V4
00336                      : Hexagon::CMPLTUrr_t_Jumpnv_nt_V4;
00337       else
00338         return taken ? Hexagon::CMPGTUrr_t_Jumpnv_t_V4
00339                      : Hexagon::CMPGTUrr_t_Jumpnv_nt_V4;
00340     }
00341 
00342     case Hexagon::CMPGTUri:
00343       return taken ? Hexagon::CMPGTUri_t_Jumpnv_t_V4
00344                    : Hexagon::CMPGTUri_t_Jumpnv_nt_V4;
00345 
00346     default:
00347        llvm_unreachable("Could not find matching New Value Jump instruction.");
00348   }
00349   // return *some value* to avoid compiler warning
00350   return 0;
00351 }
00352 
00353 bool HexagonNewValueJump::runOnMachineFunction(MachineFunction &MF) {
00354 
00355   DEBUG(dbgs() << "********** Hexagon New Value Jump **********\n"
00356                << "********** Function: "
00357                << MF.getName() << "\n");
00358 
00359 #if 0
00360   // for now disable this, if we move NewValueJump before register
00361   // allocation we need this information.
00362   LiveVariables &LVs = getAnalysis<LiveVariables>();
00363 #endif
00364 
00365   QII = static_cast<const HexagonInstrInfo *>(MF.getSubtarget().getInstrInfo());
00366   QRI = static_cast<const HexagonRegisterInfo *>(
00367       MF.getSubtarget().getRegisterInfo());
00368   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
00369 
00370   if (!QRI->Subtarget.hasV4TOps() ||
00371       DisableNewValueJumps) {
00372     return false;
00373   }
00374 
00375   int nvjCount = DbgNVJCount;
00376   int nvjGenerated = 0;
00377 
00378   // Loop through all the bb's of the function
00379   for (MachineFunction::iterator MBBb = MF.begin(), MBBe = MF.end();
00380         MBBb != MBBe; ++MBBb) {
00381     MachineBasicBlock* MBB = MBBb;
00382 
00383     DEBUG(dbgs() << "** dumping bb ** "
00384                  << MBB->getNumber() << "\n");
00385     DEBUG(MBB->dump());
00386     DEBUG(dbgs() << "\n" << "********** dumping instr bottom up **********\n");
00387     bool foundJump    = false;
00388     bool foundCompare = false;
00389     bool invertPredicate = false;
00390     unsigned predReg = 0; // predicate reg of the jump.
00391     unsigned cmpReg1 = 0;
00392     int cmpOp2 = 0;
00393     bool MO1IsKill = false;
00394     bool MO2IsKill = false;
00395     MachineBasicBlock::iterator jmpPos;
00396     MachineBasicBlock::iterator cmpPos;
00397     MachineInstr *cmpInstr = nullptr, *jmpInstr = nullptr;
00398     MachineBasicBlock *jmpTarget = nullptr;
00399     bool afterRA = false;
00400     bool isSecondOpReg = false;
00401     bool isSecondOpNewified = false;
00402     // Traverse the basic block - bottom up
00403     for (MachineBasicBlock::iterator MII = MBB->end(), E = MBB->begin();
00404              MII != E;) {
00405       MachineInstr *MI = --MII;
00406       if (MI->isDebugValue()) {
00407         continue;
00408       }
00409 
00410       if ((nvjCount == 0) || (nvjCount > -1 && nvjCount <= nvjGenerated))
00411         break;
00412 
00413       DEBUG(dbgs() << "Instr: "; MI->dump(); dbgs() << "\n");
00414 
00415       if (!foundJump &&
00416          (MI->getOpcode() == Hexagon::JMP_t ||
00417           MI->getOpcode() == Hexagon::JMP_f ||
00418           MI->getOpcode() == Hexagon::JMP_tnew_t ||
00419           MI->getOpcode() == Hexagon::JMP_tnew_nt ||
00420           MI->getOpcode() == Hexagon::JMP_fnew_t ||
00421           MI->getOpcode() == Hexagon::JMP_fnew_nt)) {
00422         // This is where you would insert your compare and
00423         // instr that feeds compare
00424         jmpPos = MII;
00425         jmpInstr = MI;
00426         predReg = MI->getOperand(0).getReg();
00427         afterRA = TargetRegisterInfo::isPhysicalRegister(predReg);
00428 
00429         // If ifconverter had not messed up with the kill flags of the
00430         // operands, the following check on the kill flag would suffice.
00431         // if(!jmpInstr->getOperand(0).isKill()) break;
00432 
00433         // This predicate register is live out out of BB
00434         // this would only work if we can actually use Live
00435         // variable analysis on phy regs - but LLVM does not
00436         // provide LV analysis on phys regs.
00437         //if(LVs.isLiveOut(predReg, *MBB)) break;
00438 
00439         // Get all the successors of this block - which will always
00440         // be 2. Check if the predicate register is live in in those
00441         // successor. If yes, we can not delete the predicate -
00442         // I am doing this only because LLVM does not provide LiveOut
00443         // at the BB level.
00444         bool predLive = false;
00445         for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
00446                             SIE = MBB->succ_end(); SI != SIE; ++SI) {
00447           MachineBasicBlock* succMBB = *SI;
00448          if (succMBB->isLiveIn(predReg)) {
00449             predLive = true;
00450           }
00451         }
00452         if (predLive)
00453           break;
00454 
00455         jmpTarget = MI->getOperand(1).getMBB();
00456         foundJump = true;
00457         if (MI->getOpcode() == Hexagon::JMP_f ||
00458             MI->getOpcode() == Hexagon::JMP_fnew_t ||
00459             MI->getOpcode() == Hexagon::JMP_fnew_nt) {
00460           invertPredicate = true;
00461         }
00462         continue;
00463       }
00464 
00465       // No new value jump if there is a barrier. A barrier has to be in its
00466       // own packet. A barrier has zero operands. We conservatively bail out
00467       // here if we see any instruction with zero operands.
00468       if (foundJump && MI->getNumOperands() == 0)
00469         break;
00470 
00471       if (foundJump &&
00472          !foundCompare &&
00473           MI->getOperand(0).isReg() &&
00474           MI->getOperand(0).getReg() == predReg) {
00475 
00476         // Not all compares can be new value compare. Arch Spec: 7.6.1.1
00477         if (QII->isNewValueJumpCandidate(MI)) {
00478 
00479           assert((MI->getDesc().isCompare()) &&
00480               "Only compare instruction can be collapsed into New Value Jump");
00481           isSecondOpReg = MI->getOperand(2).isReg();
00482 
00483           if (!canCompareBeNewValueJump(QII, QRI, MII, predReg, isSecondOpReg,
00484                                         afterRA, jmpPos, MF))
00485             break;
00486 
00487           cmpInstr = MI;
00488           cmpPos = MII;
00489           foundCompare = true;
00490 
00491           // We need cmpReg1 and cmpOp2(imm or reg) while building
00492           // new value jump instruction.
00493           cmpReg1 = MI->getOperand(1).getReg();
00494           if (MI->getOperand(1).isKill())
00495             MO1IsKill = true;
00496 
00497           if (isSecondOpReg) {
00498             cmpOp2 = MI->getOperand(2).getReg();
00499             if (MI->getOperand(2).isKill())
00500               MO2IsKill = true;
00501           } else
00502             cmpOp2 = MI->getOperand(2).getImm();
00503           continue;
00504         }
00505       }
00506 
00507       if (foundCompare && foundJump) {
00508 
00509         // If "common" checks fail, bail out on this BB.
00510         if (!commonChecksToProhibitNewValueJump(afterRA, MII))
00511           break;
00512 
00513         bool foundFeeder = false;
00514         MachineBasicBlock::iterator feederPos = MII;
00515         if (MI->getOperand(0).isReg() &&
00516             MI->getOperand(0).isDef() &&
00517            (MI->getOperand(0).getReg() == cmpReg1 ||
00518             (isSecondOpReg &&
00519              MI->getOperand(0).getReg() == (unsigned) cmpOp2))) {
00520 
00521           unsigned feederReg = MI->getOperand(0).getReg();
00522 
00523           // First try to see if we can get the feeder from the first operand
00524           // of the compare. If we can not, and if secondOpReg is true
00525           // (second operand of the compare is also register), try that one.
00526           // TODO: Try to come up with some heuristic to figure out which
00527           // feeder would benefit.
00528 
00529           if (feederReg == cmpReg1) {
00530             if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF)) {
00531               if (!isSecondOpReg)
00532                 break;
00533               else
00534                 continue;
00535             } else
00536               foundFeeder = true;
00537           }
00538 
00539           if (!foundFeeder &&
00540                isSecondOpReg &&
00541                feederReg == (unsigned) cmpOp2)
00542             if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF))
00543               break;
00544 
00545           if (isSecondOpReg) {
00546             // In case of CMPLT, or CMPLTU, or EQ with the second register
00547             // to newify, swap the operands.
00548             if (cmpInstr->getOpcode() == Hexagon::CMPEQrr &&
00549                                      feederReg == (unsigned) cmpOp2) {
00550               unsigned tmp = cmpReg1;
00551               bool tmpIsKill = MO1IsKill;
00552               cmpReg1 = cmpOp2;
00553               MO1IsKill = MO2IsKill;
00554               cmpOp2 = tmp;
00555               MO2IsKill = tmpIsKill;
00556             }
00557 
00558             // Now we have swapped the operands, all we need to check is,
00559             // if the second operand (after swap) is the feeder.
00560             // And if it is, make a note.
00561             if (feederReg == (unsigned)cmpOp2)
00562               isSecondOpNewified = true;
00563           }
00564 
00565           // Now that we are moving feeder close the jump,
00566           // make sure we are respecting the kill values of
00567           // the operands of the feeder.
00568 
00569           bool updatedIsKill = false;
00570           for (unsigned i = 0; i < MI->getNumOperands(); i++) {
00571             MachineOperand &MO = MI->getOperand(i);
00572             if (MO.isReg() && MO.isUse()) {
00573               unsigned feederReg = MO.getReg();
00574               for (MachineBasicBlock::iterator localII = feederPos,
00575                    end = jmpPos; localII != end; localII++) {
00576                 MachineInstr *localMI = localII;
00577                 for (unsigned j = 0; j < localMI->getNumOperands(); j++) {
00578                   MachineOperand &localMO = localMI->getOperand(j);
00579                   if (localMO.isReg() && localMO.isUse() &&
00580                       localMO.isKill() && feederReg == localMO.getReg()) {
00581                     // We found that there is kill of a use register
00582                     // Set up a kill flag on the register
00583                     localMO.setIsKill(false);
00584                     MO.setIsKill();
00585                     updatedIsKill = true;
00586                     break;
00587                   }
00588                 }
00589                 if (updatedIsKill) break;
00590               }
00591             }
00592             if (updatedIsKill) break;
00593           }
00594 
00595           MBB->splice(jmpPos, MI->getParent(), MI);
00596           MBB->splice(jmpPos, MI->getParent(), cmpInstr);
00597           DebugLoc dl = MI->getDebugLoc();
00598           MachineInstr *NewMI;
00599 
00600            assert((QII->isNewValueJumpCandidate(cmpInstr)) &&
00601                       "This compare is not a New Value Jump candidate.");
00602           unsigned opc = getNewValueJumpOpcode(cmpInstr, cmpOp2,
00603                                                isSecondOpNewified,
00604                                                jmpTarget, MBPI);
00605           if (invertPredicate)
00606             opc = QII->getInvertedPredicatedOpcode(opc);
00607 
00608           if (isSecondOpReg)
00609             NewMI = BuildMI(*MBB, jmpPos, dl,
00610                                   QII->get(opc))
00611                                     .addReg(cmpReg1, getKillRegState(MO1IsKill))
00612                                     .addReg(cmpOp2, getKillRegState(MO2IsKill))
00613                                     .addMBB(jmpTarget);
00614 
00615           else if ((cmpInstr->getOpcode() == Hexagon::CMPEQri ||
00616                     cmpInstr->getOpcode() == Hexagon::CMPGTri) &&
00617                     cmpOp2 == -1 )
00618             // Corresponding new-value compare jump instructions don't have the
00619             // operand for -1 immediate value.
00620             NewMI = BuildMI(*MBB, jmpPos, dl,
00621                                   QII->get(opc))
00622                                     .addReg(cmpReg1, getKillRegState(MO1IsKill))
00623                                     .addMBB(jmpTarget);
00624 
00625           else
00626             NewMI = BuildMI(*MBB, jmpPos, dl,
00627                                   QII->get(opc))
00628                                     .addReg(cmpReg1, getKillRegState(MO1IsKill))
00629                                     .addImm(cmpOp2)
00630                                     .addMBB(jmpTarget);
00631 
00632           assert(NewMI && "New Value Jump Instruction Not created!");
00633           (void)NewMI;
00634           if (cmpInstr->getOperand(0).isReg() &&
00635               cmpInstr->getOperand(0).isKill())
00636             cmpInstr->getOperand(0).setIsKill(false);
00637           if (cmpInstr->getOperand(1).isReg() &&
00638               cmpInstr->getOperand(1).isKill())
00639             cmpInstr->getOperand(1).setIsKill(false);
00640           cmpInstr->eraseFromParent();
00641           jmpInstr->eraseFromParent();
00642           ++nvjGenerated;
00643           ++NumNVJGenerated;
00644           break;
00645         }
00646       }
00647     }
00648   }
00649 
00650   return true;
00651 
00652 }
00653 
00654 FunctionPass *llvm::createHexagonNewValueJump() {
00655   return new HexagonNewValueJump();
00656 }