LLVM API Documentation
00001 //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // The inline spiller modifies the machine function directly instead of 00011 // inserting spills and restores in VirtRegMap. 00012 // 00013 //===----------------------------------------------------------------------===// 00014 00015 #include "Spiller.h" 00016 #include "llvm/ADT/SetVector.h" 00017 #include "llvm/ADT/Statistic.h" 00018 #include "llvm/ADT/TinyPtrVector.h" 00019 #include "llvm/Analysis/AliasAnalysis.h" 00020 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 00021 #include "llvm/CodeGen/LiveRangeEdit.h" 00022 #include "llvm/CodeGen/LiveStackAnalysis.h" 00023 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 00024 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 00025 #include "llvm/CodeGen/MachineDominators.h" 00026 #include "llvm/CodeGen/MachineFrameInfo.h" 00027 #include "llvm/CodeGen/MachineFunction.h" 00028 #include "llvm/CodeGen/MachineInstrBuilder.h" 00029 #include "llvm/CodeGen/MachineInstrBundle.h" 00030 #include "llvm/CodeGen/MachineLoopInfo.h" 00031 #include "llvm/CodeGen/MachineRegisterInfo.h" 00032 #include "llvm/CodeGen/VirtRegMap.h" 00033 #include "llvm/Support/CommandLine.h" 00034 #include "llvm/Support/Debug.h" 00035 #include "llvm/Support/raw_ostream.h" 00036 #include "llvm/Target/TargetInstrInfo.h" 00037 #include "llvm/Target/TargetMachine.h" 00038 00039 using namespace llvm; 00040 00041 #define DEBUG_TYPE "regalloc" 00042 00043 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 00044 STATISTIC(NumSnippets, "Number of spilled snippets"); 00045 STATISTIC(NumSpills, "Number of spills inserted"); 00046 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 00047 STATISTIC(NumReloads, "Number of reloads inserted"); 00048 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 00049 STATISTIC(NumFolded, "Number of folded stack accesses"); 00050 STATISTIC(NumFoldedLoads, "Number of folded loads"); 00051 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 00052 STATISTIC(NumOmitReloadSpill, "Number of omitted spills of reloads"); 00053 STATISTIC(NumHoists, "Number of hoisted spills"); 00054 00055 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, 00056 cl::desc("Disable inline spill hoisting")); 00057 00058 namespace { 00059 class InlineSpiller : public Spiller { 00060 MachineFunction &MF; 00061 LiveIntervals &LIS; 00062 LiveStacks &LSS; 00063 AliasAnalysis *AA; 00064 MachineDominatorTree &MDT; 00065 MachineLoopInfo &Loops; 00066 VirtRegMap &VRM; 00067 MachineFrameInfo &MFI; 00068 MachineRegisterInfo &MRI; 00069 const TargetInstrInfo &TII; 00070 const TargetRegisterInfo &TRI; 00071 const MachineBlockFrequencyInfo &MBFI; 00072 00073 // Variables that are valid during spill(), but used by multiple methods. 00074 LiveRangeEdit *Edit; 00075 LiveInterval *StackInt; 00076 int StackSlot; 00077 unsigned Original; 00078 00079 // All registers to spill to StackSlot, including the main register. 00080 SmallVector<unsigned, 8> RegsToSpill; 00081 00082 // All COPY instructions to/from snippets. 00083 // They are ignored since both operands refer to the same stack slot. 00084 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 00085 00086 // Values that failed to remat at some point. 00087 SmallPtrSet<VNInfo*, 8> UsedValues; 00088 00089 public: 00090 // Information about a value that was defined by a copy from a sibling 00091 // register. 00092 struct SibValueInfo { 00093 // True when all reaching defs were reloads: No spill is necessary. 00094 bool AllDefsAreReloads; 00095 00096 // True when value is defined by an original PHI not from splitting. 00097 bool DefByOrigPHI; 00098 00099 // True when the COPY defining this value killed its source. 00100 bool KillsSource; 00101 00102 // The preferred register to spill. 00103 unsigned SpillReg; 00104 00105 // The value of SpillReg that should be spilled. 00106 VNInfo *SpillVNI; 00107 00108 // The block where SpillVNI should be spilled. Currently, this must be the 00109 // block containing SpillVNI->def. 00110 MachineBasicBlock *SpillMBB; 00111 00112 // A defining instruction that is not a sibling copy or a reload, or NULL. 00113 // This can be used as a template for rematerialization. 00114 MachineInstr *DefMI; 00115 00116 // List of values that depend on this one. These values are actually the 00117 // same, but live range splitting has placed them in different registers, 00118 // or SSA update needed to insert PHI-defs to preserve SSA form. This is 00119 // copies of the current value and phi-kills. Usually only phi-kills cause 00120 // more than one dependent value. 00121 TinyPtrVector<VNInfo*> Deps; 00122 00123 SibValueInfo(unsigned Reg, VNInfo *VNI) 00124 : AllDefsAreReloads(true), DefByOrigPHI(false), KillsSource(false), 00125 SpillReg(Reg), SpillVNI(VNI), SpillMBB(nullptr), DefMI(nullptr) {} 00126 00127 // Returns true when a def has been found. 00128 bool hasDef() const { return DefByOrigPHI || DefMI; } 00129 }; 00130 00131 private: 00132 // Values in RegsToSpill defined by sibling copies. 00133 typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap; 00134 SibValueMap SibValues; 00135 00136 // Dead defs generated during spilling. 00137 SmallVector<MachineInstr*, 8> DeadDefs; 00138 00139 ~InlineSpiller() {} 00140 00141 public: 00142 InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm) 00143 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 00144 LSS(pass.getAnalysis<LiveStacks>()), 00145 AA(&pass.getAnalysis<AliasAnalysis>()), 00146 MDT(pass.getAnalysis<MachineDominatorTree>()), 00147 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 00148 MFI(*mf.getFrameInfo()), MRI(mf.getRegInfo()), 00149 TII(*mf.getSubtarget().getInstrInfo()), 00150 TRI(*mf.getSubtarget().getRegisterInfo()), 00151 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()) {} 00152 00153 void spill(LiveRangeEdit &) override; 00154 00155 private: 00156 bool isSnippet(const LiveInterval &SnipLI); 00157 void collectRegsToSpill(); 00158 00159 bool isRegToSpill(unsigned Reg) { 00160 return std::find(RegsToSpill.begin(), 00161 RegsToSpill.end(), Reg) != RegsToSpill.end(); 00162 } 00163 00164 bool isSibling(unsigned Reg); 00165 MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*); 00166 void propagateSiblingValue(SibValueMap::iterator, VNInfo *VNI = nullptr); 00167 void analyzeSiblingValues(); 00168 00169 bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI); 00170 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 00171 00172 void markValueUsed(LiveInterval*, VNInfo*); 00173 bool reMaterializeFor(LiveInterval&, MachineBasicBlock::iterator MI); 00174 void reMaterializeAll(); 00175 00176 bool coalesceStackAccess(MachineInstr *MI, unsigned Reg); 00177 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >, 00178 MachineInstr *LoadMI = nullptr); 00179 void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI); 00180 void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI); 00181 00182 void spillAroundUses(unsigned Reg); 00183 void spillAll(); 00184 }; 00185 } 00186 00187 namespace llvm { 00188 Spiller *createInlineSpiller(MachineFunctionPass &pass, 00189 MachineFunction &mf, 00190 VirtRegMap &vrm) { 00191 return new InlineSpiller(pass, mf, vrm); 00192 } 00193 } 00194 00195 //===----------------------------------------------------------------------===// 00196 // Snippets 00197 //===----------------------------------------------------------------------===// 00198 00199 // When spilling a virtual register, we also spill any snippets it is connected 00200 // to. The snippets are small live ranges that only have a single real use, 00201 // leftovers from live range splitting. Spilling them enables memory operand 00202 // folding or tightens the live range around the single use. 00203 // 00204 // This minimizes register pressure and maximizes the store-to-load distance for 00205 // spill slots which can be important in tight loops. 00206 00207 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 00208 /// otherwise return 0. 00209 static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) { 00210 if (!MI->isFullCopy()) 00211 return 0; 00212 if (MI->getOperand(0).getReg() == Reg) 00213 return MI->getOperand(1).getReg(); 00214 if (MI->getOperand(1).getReg() == Reg) 00215 return MI->getOperand(0).getReg(); 00216 return 0; 00217 } 00218 00219 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 00220 /// It is assumed that SnipLI is a virtual register with the same original as 00221 /// Edit->getReg(). 00222 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 00223 unsigned Reg = Edit->getReg(); 00224 00225 // A snippet is a tiny live range with only a single instruction using it 00226 // besides copies to/from Reg or spills/fills. We accept: 00227 // 00228 // %snip = COPY %Reg / FILL fi# 00229 // %snip = USE %snip 00230 // %Reg = COPY %snip / SPILL %snip, fi# 00231 // 00232 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) 00233 return false; 00234 00235 MachineInstr *UseMI = nullptr; 00236 00237 // Check that all uses satisfy our criteria. 00238 for (MachineRegisterInfo::reg_instr_nodbg_iterator 00239 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg), 00240 E = MRI.reg_instr_nodbg_end(); RI != E; ) { 00241 MachineInstr *MI = &*(RI++); 00242 00243 // Allow copies to/from Reg. 00244 if (isFullCopyOf(MI, Reg)) 00245 continue; 00246 00247 // Allow stack slot loads. 00248 int FI; 00249 if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 00250 continue; 00251 00252 // Allow stack slot stores. 00253 if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 00254 continue; 00255 00256 // Allow a single additional instruction. 00257 if (UseMI && MI != UseMI) 00258 return false; 00259 UseMI = MI; 00260 } 00261 return true; 00262 } 00263 00264 /// collectRegsToSpill - Collect live range snippets that only have a single 00265 /// real use. 00266 void InlineSpiller::collectRegsToSpill() { 00267 unsigned Reg = Edit->getReg(); 00268 00269 // Main register always spills. 00270 RegsToSpill.assign(1, Reg); 00271 SnippetCopies.clear(); 00272 00273 // Snippets all have the same original, so there can't be any for an original 00274 // register. 00275 if (Original == Reg) 00276 return; 00277 00278 for (MachineRegisterInfo::reg_instr_iterator 00279 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) { 00280 MachineInstr *MI = &*(RI++); 00281 unsigned SnipReg = isFullCopyOf(MI, Reg); 00282 if (!isSibling(SnipReg)) 00283 continue; 00284 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 00285 if (!isSnippet(SnipLI)) 00286 continue; 00287 SnippetCopies.insert(MI); 00288 if (isRegToSpill(SnipReg)) 00289 continue; 00290 RegsToSpill.push_back(SnipReg); 00291 DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 00292 ++NumSnippets; 00293 } 00294 } 00295 00296 00297 //===----------------------------------------------------------------------===// 00298 // Sibling Values 00299 //===----------------------------------------------------------------------===// 00300 00301 // After live range splitting, some values to be spilled may be defined by 00302 // copies from sibling registers. We trace the sibling copies back to the 00303 // original value if it still exists. We need it for rematerialization. 00304 // 00305 // Even when the value can't be rematerialized, we still want to determine if 00306 // the value has already been spilled, or we may want to hoist the spill from a 00307 // loop. 00308 00309 bool InlineSpiller::isSibling(unsigned Reg) { 00310 return TargetRegisterInfo::isVirtualRegister(Reg) && 00311 VRM.getOriginal(Reg) == Original; 00312 } 00313 00314 #ifndef NDEBUG 00315 static raw_ostream &operator<<(raw_ostream &OS, 00316 const InlineSpiller::SibValueInfo &SVI) { 00317 OS << "spill " << PrintReg(SVI.SpillReg) << ':' 00318 << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def; 00319 if (SVI.SpillMBB) 00320 OS << " in BB#" << SVI.SpillMBB->getNumber(); 00321 if (SVI.AllDefsAreReloads) 00322 OS << " all-reloads"; 00323 if (SVI.DefByOrigPHI) 00324 OS << " orig-phi"; 00325 if (SVI.KillsSource) 00326 OS << " kill"; 00327 OS << " deps["; 00328 for (unsigned i = 0, e = SVI.Deps.size(); i != e; ++i) 00329 OS << ' ' << SVI.Deps[i]->id << '@' << SVI.Deps[i]->def; 00330 OS << " ]"; 00331 if (SVI.DefMI) 00332 OS << " def: " << *SVI.DefMI; 00333 else 00334 OS << '\n'; 00335 return OS; 00336 } 00337 #endif 00338 00339 /// propagateSiblingValue - Propagate the value in SVI to dependents if it is 00340 /// known. Otherwise remember the dependency for later. 00341 /// 00342 /// @param SVIIter SibValues entry to propagate. 00343 /// @param VNI Dependent value, or NULL to propagate to all saved dependents. 00344 void InlineSpiller::propagateSiblingValue(SibValueMap::iterator SVIIter, 00345 VNInfo *VNI) { 00346 SibValueMap::value_type *SVI = &*SVIIter; 00347 00348 // When VNI is non-NULL, add it to SVI's deps, and only propagate to that. 00349 TinyPtrVector<VNInfo*> FirstDeps; 00350 if (VNI) { 00351 FirstDeps.push_back(VNI); 00352 SVI->second.Deps.push_back(VNI); 00353 } 00354 00355 // Has the value been completely determined yet? If not, defer propagation. 00356 if (!SVI->second.hasDef()) 00357 return; 00358 00359 // Work list of values to propagate. 00360 SmallSetVector<SibValueMap::value_type *, 8> WorkList; 00361 WorkList.insert(SVI); 00362 00363 do { 00364 SVI = WorkList.pop_back_val(); 00365 TinyPtrVector<VNInfo*> *Deps = VNI ? &FirstDeps : &SVI->second.Deps; 00366 VNI = nullptr; 00367 00368 SibValueInfo &SV = SVI->second; 00369 if (!SV.SpillMBB) 00370 SV.SpillMBB = LIS.getMBBFromIndex(SV.SpillVNI->def); 00371 00372 DEBUG(dbgs() << " prop to " << Deps->size() << ": " 00373 << SVI->first->id << '@' << SVI->first->def << ":\t" << SV); 00374 00375 assert(SV.hasDef() && "Propagating undefined value"); 00376 00377 // Should this value be propagated as a preferred spill candidate? We don't 00378 // propagate values of registers that are about to spill. 00379 bool PropSpill = !DisableHoisting && !isRegToSpill(SV.SpillReg); 00380 unsigned SpillDepth = ~0u; 00381 00382 for (TinyPtrVector<VNInfo*>::iterator DepI = Deps->begin(), 00383 DepE = Deps->end(); DepI != DepE; ++DepI) { 00384 SibValueMap::iterator DepSVI = SibValues.find(*DepI); 00385 assert(DepSVI != SibValues.end() && "Dependent value not in SibValues"); 00386 SibValueInfo &DepSV = DepSVI->second; 00387 if (!DepSV.SpillMBB) 00388 DepSV.SpillMBB = LIS.getMBBFromIndex(DepSV.SpillVNI->def); 00389 00390 bool Changed = false; 00391 00392 // Propagate defining instruction. 00393 if (!DepSV.hasDef()) { 00394 Changed = true; 00395 DepSV.DefMI = SV.DefMI; 00396 DepSV.DefByOrigPHI = SV.DefByOrigPHI; 00397 } 00398 00399 // Propagate AllDefsAreReloads. For PHI values, this computes an AND of 00400 // all predecessors. 00401 if (!SV.AllDefsAreReloads && DepSV.AllDefsAreReloads) { 00402 Changed = true; 00403 DepSV.AllDefsAreReloads = false; 00404 } 00405 00406 // Propagate best spill value. 00407 if (PropSpill && SV.SpillVNI != DepSV.SpillVNI) { 00408 if (SV.SpillMBB == DepSV.SpillMBB) { 00409 // DepSV is in the same block. Hoist when dominated. 00410 if (DepSV.KillsSource && SV.SpillVNI->def < DepSV.SpillVNI->def) { 00411 // This is an alternative def earlier in the same MBB. 00412 // Hoist the spill as far as possible in SpillMBB. This can ease 00413 // register pressure: 00414 // 00415 // x = def 00416 // y = use x 00417 // s = copy x 00418 // 00419 // Hoisting the spill of s to immediately after the def removes the 00420 // interference between x and y: 00421 // 00422 // x = def 00423 // spill x 00424 // y = use x<kill> 00425 // 00426 // This hoist only helps when the DepSV copy kills its source. 00427 Changed = true; 00428 DepSV.SpillReg = SV.SpillReg; 00429 DepSV.SpillVNI = SV.SpillVNI; 00430 DepSV.SpillMBB = SV.SpillMBB; 00431 } 00432 } else { 00433 // DepSV is in a different block. 00434 if (SpillDepth == ~0u) 00435 SpillDepth = Loops.getLoopDepth(SV.SpillMBB); 00436 00437 // Also hoist spills to blocks with smaller loop depth, but make sure 00438 // that the new value dominates. Non-phi dependents are always 00439 // dominated, phis need checking. 00440 00441 const BranchProbability MarginProb(4, 5); // 80% 00442 // Hoist a spill to outer loop if there are multiple dependents (it 00443 // can be beneficial if more than one dependents are hoisted) or 00444 // if DepSV (the hoisting source) is hotter than SV (the hoisting 00445 // destination) (we add a 80% margin to bias a little towards 00446 // loop depth). 00447 bool HoistCondition = 00448 (MBFI.getBlockFreq(DepSV.SpillMBB) >= 00449 (MBFI.getBlockFreq(SV.SpillMBB) * MarginProb)) || 00450 Deps->size() > 1; 00451 00452 if ((Loops.getLoopDepth(DepSV.SpillMBB) > SpillDepth) && 00453 HoistCondition && 00454 (!DepSVI->first->isPHIDef() || 00455 MDT.dominates(SV.SpillMBB, DepSV.SpillMBB))) { 00456 Changed = true; 00457 DepSV.SpillReg = SV.SpillReg; 00458 DepSV.SpillVNI = SV.SpillVNI; 00459 DepSV.SpillMBB = SV.SpillMBB; 00460 } 00461 } 00462 } 00463 00464 if (!Changed) 00465 continue; 00466 00467 // Something changed in DepSVI. Propagate to dependents. 00468 WorkList.insert(&*DepSVI); 00469 00470 DEBUG(dbgs() << " update " << DepSVI->first->id << '@' 00471 << DepSVI->first->def << " to:\t" << DepSV); 00472 } 00473 } while (!WorkList.empty()); 00474 } 00475 00476 /// traceSiblingValue - Trace a value that is about to be spilled back to the 00477 /// real defining instructions by looking through sibling copies. Always stay 00478 /// within the range of OrigVNI so the registers are known to carry the same 00479 /// value. 00480 /// 00481 /// Determine if the value is defined by all reloads, so spilling isn't 00482 /// necessary - the value is already in the stack slot. 00483 /// 00484 /// Return a defining instruction that may be a candidate for rematerialization. 00485 /// 00486 MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI, 00487 VNInfo *OrigVNI) { 00488 // Check if a cached value already exists. 00489 SibValueMap::iterator SVI; 00490 bool Inserted; 00491 std::tie(SVI, Inserted) = 00492 SibValues.insert(std::make_pair(UseVNI, SibValueInfo(UseReg, UseVNI))); 00493 if (!Inserted) { 00494 DEBUG(dbgs() << "Cached value " << PrintReg(UseReg) << ':' 00495 << UseVNI->id << '@' << UseVNI->def << ' ' << SVI->second); 00496 return SVI->second.DefMI; 00497 } 00498 00499 DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':' 00500 << UseVNI->id << '@' << UseVNI->def << '\n'); 00501 00502 // List of (Reg, VNI) that have been inserted into SibValues, but need to be 00503 // processed. 00504 SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList; 00505 WorkList.push_back(std::make_pair(UseReg, UseVNI)); 00506 00507 do { 00508 unsigned Reg; 00509 VNInfo *VNI; 00510 std::tie(Reg, VNI) = WorkList.pop_back_val(); 00511 DEBUG(dbgs() << " " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def 00512 << ":\t"); 00513 00514 // First check if this value has already been computed. 00515 SVI = SibValues.find(VNI); 00516 assert(SVI != SibValues.end() && "Missing SibValues entry"); 00517 00518 // Trace through PHI-defs created by live range splitting. 00519 if (VNI->isPHIDef()) { 00520 // Stop at original PHIs. We don't know the value at the predecessors. 00521 if (VNI->def == OrigVNI->def) { 00522 DEBUG(dbgs() << "orig phi value\n"); 00523 SVI->second.DefByOrigPHI = true; 00524 SVI->second.AllDefsAreReloads = false; 00525 propagateSiblingValue(SVI); 00526 continue; 00527 } 00528 00529 // This is a PHI inserted by live range splitting. We could trace the 00530 // live-out value from predecessor blocks, but that search can be very 00531 // expensive if there are many predecessors and many more PHIs as 00532 // generated by tail-dup when it sees an indirectbr. Instead, look at 00533 // all the non-PHI defs that have the same value as OrigVNI. They must 00534 // jointly dominate VNI->def. This is not optimal since VNI may actually 00535 // be jointly dominated by a smaller subset of defs, so there is a change 00536 // we will miss a AllDefsAreReloads optimization. 00537 00538 // Separate all values dominated by OrigVNI into PHIs and non-PHIs. 00539 SmallVector<VNInfo*, 8> PHIs, NonPHIs; 00540 LiveInterval &LI = LIS.getInterval(Reg); 00541 LiveInterval &OrigLI = LIS.getInterval(Original); 00542 00543 for (LiveInterval::vni_iterator VI = LI.vni_begin(), VE = LI.vni_end(); 00544 VI != VE; ++VI) { 00545 VNInfo *VNI2 = *VI; 00546 if (VNI2->isUnused()) 00547 continue; 00548 if (!OrigLI.containsOneValue() && 00549 OrigLI.getVNInfoAt(VNI2->def) != OrigVNI) 00550 continue; 00551 if (VNI2->isPHIDef() && VNI2->def != OrigVNI->def) 00552 PHIs.push_back(VNI2); 00553 else 00554 NonPHIs.push_back(VNI2); 00555 } 00556 DEBUG(dbgs() << "split phi value, checking " << PHIs.size() 00557 << " phi-defs, and " << NonPHIs.size() 00558 << " non-phi/orig defs\n"); 00559 00560 // Create entries for all the PHIs. Don't add them to the worklist, we 00561 // are processing all of them in one go here. 00562 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 00563 SibValues.insert(std::make_pair(PHIs[i], SibValueInfo(Reg, PHIs[i]))); 00564 00565 // Add every PHI as a dependent of all the non-PHIs. 00566 for (unsigned i = 0, e = NonPHIs.size(); i != e; ++i) { 00567 VNInfo *NonPHI = NonPHIs[i]; 00568 // Known value? Try an insertion. 00569 std::tie(SVI, Inserted) = 00570 SibValues.insert(std::make_pair(NonPHI, SibValueInfo(Reg, NonPHI))); 00571 // Add all the PHIs as dependents of NonPHI. 00572 for (unsigned pi = 0, pe = PHIs.size(); pi != pe; ++pi) 00573 SVI->second.Deps.push_back(PHIs[pi]); 00574 // This is the first time we see NonPHI, add it to the worklist. 00575 if (Inserted) 00576 WorkList.push_back(std::make_pair(Reg, NonPHI)); 00577 else 00578 // Propagate to all inserted PHIs, not just VNI. 00579 propagateSiblingValue(SVI); 00580 } 00581 00582 // Next work list item. 00583 continue; 00584 } 00585 00586 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 00587 assert(MI && "Missing def"); 00588 00589 // Trace through sibling copies. 00590 if (unsigned SrcReg = isFullCopyOf(MI, Reg)) { 00591 if (isSibling(SrcReg)) { 00592 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 00593 LiveQueryResult SrcQ = SrcLI.Query(VNI->def); 00594 assert(SrcQ.valueIn() && "Copy from non-existing value"); 00595 // Check if this COPY kills its source. 00596 SVI->second.KillsSource = SrcQ.isKill(); 00597 VNInfo *SrcVNI = SrcQ.valueIn(); 00598 DEBUG(dbgs() << "copy of " << PrintReg(SrcReg) << ':' 00599 << SrcVNI->id << '@' << SrcVNI->def 00600 << " kill=" << unsigned(SVI->second.KillsSource) << '\n'); 00601 // Known sibling source value? Try an insertion. 00602 std::tie(SVI, Inserted) = SibValues.insert( 00603 std::make_pair(SrcVNI, SibValueInfo(SrcReg, SrcVNI))); 00604 // This is the first time we see Src, add it to the worklist. 00605 if (Inserted) 00606 WorkList.push_back(std::make_pair(SrcReg, SrcVNI)); 00607 propagateSiblingValue(SVI, VNI); 00608 // Next work list item. 00609 continue; 00610 } 00611 } 00612 00613 // Track reachable reloads. 00614 SVI->second.DefMI = MI; 00615 SVI->second.SpillMBB = MI->getParent(); 00616 int FI; 00617 if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) { 00618 DEBUG(dbgs() << "reload\n"); 00619 propagateSiblingValue(SVI); 00620 // Next work list item. 00621 continue; 00622 } 00623 00624 // Potential remat candidate. 00625 DEBUG(dbgs() << "def " << *MI); 00626 SVI->second.AllDefsAreReloads = false; 00627 propagateSiblingValue(SVI); 00628 } while (!WorkList.empty()); 00629 00630 // Look up the value we were looking for. We already did this lookup at the 00631 // top of the function, but SibValues may have been invalidated. 00632 SVI = SibValues.find(UseVNI); 00633 assert(SVI != SibValues.end() && "Didn't compute requested info"); 00634 DEBUG(dbgs() << " traced to:\t" << SVI->second); 00635 return SVI->second.DefMI; 00636 } 00637 00638 /// analyzeSiblingValues - Trace values defined by sibling copies back to 00639 /// something that isn't a sibling copy. 00640 /// 00641 /// Keep track of values that may be rematerializable. 00642 void InlineSpiller::analyzeSiblingValues() { 00643 SibValues.clear(); 00644 00645 // No siblings at all? 00646 if (Edit->getReg() == Original) 00647 return; 00648 00649 LiveInterval &OrigLI = LIS.getInterval(Original); 00650 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 00651 unsigned Reg = RegsToSpill[i]; 00652 LiveInterval &LI = LIS.getInterval(Reg); 00653 for (LiveInterval::const_vni_iterator VI = LI.vni_begin(), 00654 VE = LI.vni_end(); VI != VE; ++VI) { 00655 VNInfo *VNI = *VI; 00656 if (VNI->isUnused()) 00657 continue; 00658 MachineInstr *DefMI = nullptr; 00659 if (!VNI->isPHIDef()) { 00660 DefMI = LIS.getInstructionFromIndex(VNI->def); 00661 assert(DefMI && "No defining instruction"); 00662 } 00663 // Check possible sibling copies. 00664 if (VNI->isPHIDef() || DefMI->isCopy()) { 00665 VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def); 00666 assert(OrigVNI && "Def outside original live range"); 00667 if (OrigVNI->def != VNI->def) 00668 DefMI = traceSiblingValue(Reg, VNI, OrigVNI); 00669 } 00670 if (DefMI && Edit->checkRematerializable(VNI, DefMI, AA)) { 00671 DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@' 00672 << VNI->def << " may remat from " << *DefMI); 00673 } 00674 } 00675 } 00676 } 00677 00678 /// hoistSpill - Given a sibling copy that defines a value to be spilled, insert 00679 /// a spill at a better location. 00680 bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) { 00681 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 00682 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 00683 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 00684 SibValueMap::iterator I = SibValues.find(VNI); 00685 if (I == SibValues.end()) 00686 return false; 00687 00688 const SibValueInfo &SVI = I->second; 00689 00690 // Let the normal folding code deal with the boring case. 00691 if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI) 00692 return false; 00693 00694 // SpillReg may have been deleted by remat and DCE. 00695 if (!LIS.hasInterval(SVI.SpillReg)) { 00696 DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n'); 00697 SibValues.erase(I); 00698 return false; 00699 } 00700 00701 LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg); 00702 if (!SibLI.containsValue(SVI.SpillVNI)) { 00703 DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n'); 00704 SibValues.erase(I); 00705 return false; 00706 } 00707 00708 // Conservatively extend the stack slot range to the range of the original 00709 // value. We may be able to do better with stack slot coloring by being more 00710 // careful here. 00711 assert(StackInt && "No stack slot assigned yet."); 00712 LiveInterval &OrigLI = LIS.getInterval(Original); 00713 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 00714 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 00715 DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 00716 << *StackInt << '\n'); 00717 00718 // Already spilled everywhere. 00719 if (SVI.AllDefsAreReloads) { 00720 DEBUG(dbgs() << "\tno spill needed: " << SVI); 00721 ++NumOmitReloadSpill; 00722 return true; 00723 } 00724 // We are going to spill SVI.SpillVNI immediately after its def, so clear out 00725 // any later spills of the same value. 00726 eliminateRedundantSpills(SibLI, SVI.SpillVNI); 00727 00728 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def); 00729 MachineBasicBlock::iterator MII; 00730 if (SVI.SpillVNI->isPHIDef()) 00731 MII = MBB->SkipPHIsAndLabels(MBB->begin()); 00732 else { 00733 MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def); 00734 assert(DefMI && "Defining instruction disappeared"); 00735 MII = DefMI; 00736 ++MII; 00737 } 00738 // Insert spill without kill flag immediately after def. 00739 TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot, 00740 MRI.getRegClass(SVI.SpillReg), &TRI); 00741 --MII; // Point to store instruction. 00742 LIS.InsertMachineInstrInMaps(MII); 00743 DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII); 00744 00745 ++NumSpills; 00746 ++NumHoists; 00747 return true; 00748 } 00749 00750 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 00751 /// redundant spills of this value in SLI.reg and sibling copies. 00752 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 00753 assert(VNI && "Missing value"); 00754 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 00755 WorkList.push_back(std::make_pair(&SLI, VNI)); 00756 assert(StackInt && "No stack slot assigned yet."); 00757 00758 do { 00759 LiveInterval *LI; 00760 std::tie(LI, VNI) = WorkList.pop_back_val(); 00761 unsigned Reg = LI->reg; 00762 DEBUG(dbgs() << "Checking redundant spills for " 00763 << VNI->id << '@' << VNI->def << " in " << *LI << '\n'); 00764 00765 // Regs to spill are taken care of. 00766 if (isRegToSpill(Reg)) 00767 continue; 00768 00769 // Add all of VNI's live range to StackInt. 00770 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 00771 DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 00772 00773 // Find all spills and copies of VNI. 00774 for (MachineRegisterInfo::use_instr_nodbg_iterator 00775 UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 00776 UI != E; ) { 00777 MachineInstr *MI = &*(UI++); 00778 if (!MI->isCopy() && !MI->mayStore()) 00779 continue; 00780 SlotIndex Idx = LIS.getInstructionIndex(MI); 00781 if (LI->getVNInfoAt(Idx) != VNI) 00782 continue; 00783 00784 // Follow sibling copies down the dominator tree. 00785 if (unsigned DstReg = isFullCopyOf(MI, Reg)) { 00786 if (isSibling(DstReg)) { 00787 LiveInterval &DstLI = LIS.getInterval(DstReg); 00788 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 00789 assert(DstVNI && "Missing defined value"); 00790 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 00791 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 00792 } 00793 continue; 00794 } 00795 00796 // Erase spills. 00797 int FI; 00798 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 00799 DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI); 00800 // eliminateDeadDefs won't normally remove stores, so switch opcode. 00801 MI->setDesc(TII.get(TargetOpcode::KILL)); 00802 DeadDefs.push_back(MI); 00803 ++NumSpillsRemoved; 00804 --NumSpills; 00805 } 00806 } 00807 } while (!WorkList.empty()); 00808 } 00809 00810 00811 //===----------------------------------------------------------------------===// 00812 // Rematerialization 00813 //===----------------------------------------------------------------------===// 00814 00815 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 00816 /// instruction cannot be eliminated. See through snippet copies 00817 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 00818 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 00819 WorkList.push_back(std::make_pair(LI, VNI)); 00820 do { 00821 std::tie(LI, VNI) = WorkList.pop_back_val(); 00822 if (!UsedValues.insert(VNI)) 00823 continue; 00824 00825 if (VNI->isPHIDef()) { 00826 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 00827 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 00828 PE = MBB->pred_end(); PI != PE; ++PI) { 00829 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI)); 00830 if (PVNI) 00831 WorkList.push_back(std::make_pair(LI, PVNI)); 00832 } 00833 continue; 00834 } 00835 00836 // Follow snippet copies. 00837 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 00838 if (!SnippetCopies.count(MI)) 00839 continue; 00840 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 00841 assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy"); 00842 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 00843 assert(SnipVNI && "Snippet undefined before copy"); 00844 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 00845 } while (!WorkList.empty()); 00846 } 00847 00848 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 00849 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, 00850 MachineBasicBlock::iterator MI) { 00851 00852 // Analyze instruction 00853 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 00854 MIBundleOperands::VirtRegInfo RI = 00855 MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops); 00856 00857 if (!RI.Reads) 00858 return false; 00859 00860 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 00861 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 00862 00863 if (!ParentVNI) { 00864 DEBUG(dbgs() << "\tadding <undef> flags: "); 00865 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 00866 MachineOperand &MO = MI->getOperand(i); 00867 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) 00868 MO.setIsUndef(); 00869 } 00870 DEBUG(dbgs() << UseIdx << '\t' << *MI); 00871 return true; 00872 } 00873 00874 if (SnippetCopies.count(MI)) 00875 return false; 00876 00877 // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy. 00878 LiveRangeEdit::Remat RM(ParentVNI); 00879 SibValueMap::const_iterator SibI = SibValues.find(ParentVNI); 00880 if (SibI != SibValues.end()) 00881 RM.OrigMI = SibI->second.DefMI; 00882 if (!Edit->canRematerializeAt(RM, UseIdx, false)) { 00883 markValueUsed(&VirtReg, ParentVNI); 00884 DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI); 00885 return false; 00886 } 00887 00888 // If the instruction also writes VirtReg.reg, it had better not require the 00889 // same register for uses and defs. 00890 if (RI.Tied) { 00891 markValueUsed(&VirtReg, ParentVNI); 00892 DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI); 00893 return false; 00894 } 00895 00896 // Before rematerializing into a register for a single instruction, try to 00897 // fold a load into the instruction. That avoids allocating a new register. 00898 if (RM.OrigMI->canFoldAsLoad() && 00899 foldMemoryOperand(Ops, RM.OrigMI)) { 00900 Edit->markRematerialized(RM.ParentVNI); 00901 ++NumFoldedLoads; 00902 return true; 00903 } 00904 00905 // Alocate a new register for the remat. 00906 unsigned NewVReg = Edit->createFrom(Original); 00907 00908 // Finally we can rematerialize OrigMI before MI. 00909 SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewVReg, RM, 00910 TRI); 00911 (void)DefIdx; 00912 DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 00913 << *LIS.getInstructionFromIndex(DefIdx)); 00914 00915 // Replace operands 00916 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 00917 MachineOperand &MO = MI->getOperand(Ops[i].second); 00918 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) { 00919 MO.setReg(NewVReg); 00920 MO.setIsKill(); 00921 } 00922 } 00923 DEBUG(dbgs() << "\t " << UseIdx << '\t' << *MI << '\n'); 00924 00925 ++NumRemats; 00926 return true; 00927 } 00928 00929 /// reMaterializeAll - Try to rematerialize as many uses as possible, 00930 /// and trim the live ranges after. 00931 void InlineSpiller::reMaterializeAll() { 00932 // analyzeSiblingValues has already tested all relevant defining instructions. 00933 if (!Edit->anyRematerializable(AA)) 00934 return; 00935 00936 UsedValues.clear(); 00937 00938 // Try to remat before all uses of snippets. 00939 bool anyRemat = false; 00940 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 00941 unsigned Reg = RegsToSpill[i]; 00942 LiveInterval &LI = LIS.getInterval(Reg); 00943 for (MachineRegisterInfo::reg_bundle_iterator 00944 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 00945 RegI != E; ) { 00946 MachineInstr *MI = &*(RegI++); 00947 00948 // Debug values are not allowed to affect codegen. 00949 if (MI->isDebugValue()) 00950 continue; 00951 00952 anyRemat |= reMaterializeFor(LI, MI); 00953 } 00954 } 00955 if (!anyRemat) 00956 return; 00957 00958 // Remove any values that were completely rematted. 00959 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 00960 unsigned Reg = RegsToSpill[i]; 00961 LiveInterval &LI = LIS.getInterval(Reg); 00962 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 00963 I != E; ++I) { 00964 VNInfo *VNI = *I; 00965 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 00966 continue; 00967 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 00968 MI->addRegisterDead(Reg, &TRI); 00969 if (!MI->allDefsAreDead()) 00970 continue; 00971 DEBUG(dbgs() << "All defs dead: " << *MI); 00972 DeadDefs.push_back(MI); 00973 } 00974 } 00975 00976 // Eliminate dead code after remat. Note that some snippet copies may be 00977 // deleted here. 00978 if (DeadDefs.empty()) 00979 return; 00980 DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 00981 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); 00982 00983 // Get rid of deleted and empty intervals. 00984 unsigned ResultPos = 0; 00985 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 00986 unsigned Reg = RegsToSpill[i]; 00987 if (!LIS.hasInterval(Reg)) 00988 continue; 00989 00990 LiveInterval &LI = LIS.getInterval(Reg); 00991 if (LI.empty()) { 00992 Edit->eraseVirtReg(Reg); 00993 continue; 00994 } 00995 00996 RegsToSpill[ResultPos++] = Reg; 00997 } 00998 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 00999 DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n"); 01000 } 01001 01002 01003 //===----------------------------------------------------------------------===// 01004 // Spilling 01005 //===----------------------------------------------------------------------===// 01006 01007 /// If MI is a load or store of StackSlot, it can be removed. 01008 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) { 01009 int FI = 0; 01010 unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI); 01011 bool IsLoad = InstrReg; 01012 if (!IsLoad) 01013 InstrReg = TII.isStoreToStackSlot(MI, FI); 01014 01015 // We have a stack access. Is it the right register and slot? 01016 if (InstrReg != Reg || FI != StackSlot) 01017 return false; 01018 01019 DEBUG(dbgs() << "Coalescing stack access: " << *MI); 01020 LIS.RemoveMachineInstrFromMaps(MI); 01021 MI->eraseFromParent(); 01022 01023 if (IsLoad) { 01024 ++NumReloadsRemoved; 01025 --NumReloads; 01026 } else { 01027 ++NumSpillsRemoved; 01028 --NumSpills; 01029 } 01030 01031 return true; 01032 } 01033 01034 #if !defined(NDEBUG) 01035 // Dump the range of instructions from B to E with their slot indexes. 01036 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 01037 MachineBasicBlock::iterator E, 01038 LiveIntervals const &LIS, 01039 const char *const header, 01040 unsigned VReg =0) { 01041 char NextLine = '\n'; 01042 char SlotIndent = '\t'; 01043 01044 if (std::next(B) == E) { 01045 NextLine = ' '; 01046 SlotIndent = ' '; 01047 } 01048 01049 dbgs() << '\t' << header << ": " << NextLine; 01050 01051 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 01052 SlotIndex Idx = LIS.getInstructionIndex(I).getRegSlot(); 01053 01054 // If a register was passed in and this instruction has it as a 01055 // destination that is marked as an early clobber, print the 01056 // early-clobber slot index. 01057 if (VReg) { 01058 MachineOperand *MO = I->findRegisterDefOperand(VReg); 01059 if (MO && MO->isEarlyClobber()) 01060 Idx = Idx.getRegSlot(true); 01061 } 01062 01063 dbgs() << SlotIndent << Idx << '\t' << *I; 01064 } 01065 } 01066 #endif 01067 01068 /// foldMemoryOperand - Try folding stack slot references in Ops into their 01069 /// instructions. 01070 /// 01071 /// @param Ops Operand indices from analyzeVirtReg(). 01072 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 01073 /// @return True on success. 01074 bool InlineSpiller:: 01075 foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops, 01076 MachineInstr *LoadMI) { 01077 if (Ops.empty()) 01078 return false; 01079 // Don't attempt folding in bundles. 01080 MachineInstr *MI = Ops.front().first; 01081 if (Ops.back().first != MI || MI->isBundled()) 01082 return false; 01083 01084 bool WasCopy = MI->isCopy(); 01085 unsigned ImpReg = 0; 01086 01087 bool SpillSubRegs = (MI->getOpcode() == TargetOpcode::PATCHPOINT || 01088 MI->getOpcode() == TargetOpcode::STACKMAP); 01089 01090 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 01091 // operands. 01092 SmallVector<unsigned, 8> FoldOps; 01093 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 01094 unsigned Idx = Ops[i].second; 01095 MachineOperand &MO = MI->getOperand(Idx); 01096 if (MO.isImplicit()) { 01097 ImpReg = MO.getReg(); 01098 continue; 01099 } 01100 // FIXME: Teach targets to deal with subregs. 01101 if (!SpillSubRegs && MO.getSubReg()) 01102 return false; 01103 // We cannot fold a load instruction into a def. 01104 if (LoadMI && MO.isDef()) 01105 return false; 01106 // Tied use operands should not be passed to foldMemoryOperand. 01107 if (!MI->isRegTiedToDefOperand(Idx)) 01108 FoldOps.push_back(Idx); 01109 } 01110 01111 MachineInstrSpan MIS(MI); 01112 01113 MachineInstr *FoldMI = 01114 LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI) 01115 : TII.foldMemoryOperand(MI, FoldOps, StackSlot); 01116 if (!FoldMI) 01117 return false; 01118 01119 // Remove LIS for any dead defs in the original MI not in FoldMI. 01120 for (MIBundleOperands MO(MI); MO.isValid(); ++MO) { 01121 if (!MO->isReg()) 01122 continue; 01123 unsigned Reg = MO->getReg(); 01124 if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) || 01125 MRI.isReserved(Reg)) { 01126 continue; 01127 } 01128 // Skip non-Defs, including undef uses and internal reads. 01129 if (MO->isUse()) 01130 continue; 01131 MIBundleOperands::PhysRegInfo RI = 01132 MIBundleOperands(FoldMI).analyzePhysReg(Reg, &TRI); 01133 if (RI.Defines) 01134 continue; 01135 // FoldMI does not define this physreg. Remove the LI segment. 01136 assert(MO->isDead() && "Cannot fold physreg def"); 01137 for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units) { 01138 if (LiveRange *LR = LIS.getCachedRegUnit(*Units)) { 01139 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 01140 if (VNInfo *VNI = LR->getVNInfoAt(Idx)) 01141 LR->removeValNo(VNI); 01142 } 01143 } 01144 } 01145 01146 LIS.ReplaceMachineInstrInMaps(MI, FoldMI); 01147 MI->eraseFromParent(); 01148 01149 // Insert any new instructions other than FoldMI into the LIS maps. 01150 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 01151 for (MachineBasicBlock::iterator MII = MIS.begin(), End = MIS.end(); 01152 MII != End; ++MII) 01153 if (&*MII != FoldMI) 01154 LIS.InsertMachineInstrInMaps(&*MII); 01155 01156 // TII.foldMemoryOperand may have left some implicit operands on the 01157 // instruction. Strip them. 01158 if (ImpReg) 01159 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 01160 MachineOperand &MO = FoldMI->getOperand(i - 1); 01161 if (!MO.isReg() || !MO.isImplicit()) 01162 break; 01163 if (MO.getReg() == ImpReg) 01164 FoldMI->RemoveOperand(i - 1); 01165 } 01166 01167 DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 01168 "folded")); 01169 01170 if (!WasCopy) 01171 ++NumFolded; 01172 else if (Ops.front().second == 0) 01173 ++NumSpills; 01174 else 01175 ++NumReloads; 01176 return true; 01177 } 01178 01179 void InlineSpiller::insertReload(unsigned NewVReg, 01180 SlotIndex Idx, 01181 MachineBasicBlock::iterator MI) { 01182 MachineBasicBlock &MBB = *MI->getParent(); 01183 01184 MachineInstrSpan MIS(MI); 01185 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 01186 MRI.getRegClass(NewVReg), &TRI); 01187 01188 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 01189 01190 DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 01191 NewVReg)); 01192 ++NumReloads; 01193 } 01194 01195 /// insertSpill - Insert a spill of NewVReg after MI. 01196 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill, 01197 MachineBasicBlock::iterator MI) { 01198 MachineBasicBlock &MBB = *MI->getParent(); 01199 01200 MachineInstrSpan MIS(MI); 01201 TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot, 01202 MRI.getRegClass(NewVReg), &TRI); 01203 01204 LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end()); 01205 01206 DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS, 01207 "spill")); 01208 ++NumSpills; 01209 } 01210 01211 /// spillAroundUses - insert spill code around each use of Reg. 01212 void InlineSpiller::spillAroundUses(unsigned Reg) { 01213 DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n'); 01214 LiveInterval &OldLI = LIS.getInterval(Reg); 01215 01216 // Iterate over instructions using Reg. 01217 for (MachineRegisterInfo::reg_bundle_iterator 01218 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 01219 RegI != E; ) { 01220 MachineInstr *MI = &*(RegI++); 01221 01222 // Debug values are not allowed to affect codegen. 01223 if (MI->isDebugValue()) { 01224 // Modify DBG_VALUE now that the value is in a spill slot. 01225 bool IsIndirect = MI->isIndirectDebugValue(); 01226 uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0; 01227 const MDNode *MDPtr = MI->getOperand(2).getMetadata(); 01228 DebugLoc DL = MI->getDebugLoc(); 01229 DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI); 01230 MachineBasicBlock *MBB = MI->getParent(); 01231 BuildMI(*MBB, MBB->erase(MI), DL, TII.get(TargetOpcode::DBG_VALUE)) 01232 .addFrameIndex(StackSlot).addImm(Offset).addMetadata(MDPtr); 01233 continue; 01234 } 01235 01236 // Ignore copies to/from snippets. We'll delete them. 01237 if (SnippetCopies.count(MI)) 01238 continue; 01239 01240 // Stack slot accesses may coalesce away. 01241 if (coalesceStackAccess(MI, Reg)) 01242 continue; 01243 01244 // Analyze instruction. 01245 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 01246 MIBundleOperands::VirtRegInfo RI = 01247 MIBundleOperands(MI).analyzeVirtReg(Reg, &Ops); 01248 01249 // Find the slot index where this instruction reads and writes OldLI. 01250 // This is usually the def slot, except for tied early clobbers. 01251 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 01252 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 01253 if (SlotIndex::isSameInstr(Idx, VNI->def)) 01254 Idx = VNI->def; 01255 01256 // Check for a sibling copy. 01257 unsigned SibReg = isFullCopyOf(MI, Reg); 01258 if (SibReg && isSibling(SibReg)) { 01259 // This may actually be a copy between snippets. 01260 if (isRegToSpill(SibReg)) { 01261 DEBUG(dbgs() << "Found new snippet copy: " << *MI); 01262 SnippetCopies.insert(MI); 01263 continue; 01264 } 01265 if (RI.Writes) { 01266 // Hoist the spill of a sib-reg copy. 01267 if (hoistSpill(OldLI, MI)) { 01268 // This COPY is now dead, the value is already in the stack slot. 01269 MI->getOperand(0).setIsDead(); 01270 DeadDefs.push_back(MI); 01271 continue; 01272 } 01273 } else { 01274 // This is a reload for a sib-reg copy. Drop spills downstream. 01275 LiveInterval &SibLI = LIS.getInterval(SibReg); 01276 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 01277 // The COPY will fold to a reload below. 01278 } 01279 } 01280 01281 // Attempt to fold memory ops. 01282 if (foldMemoryOperand(Ops)) 01283 continue; 01284 01285 // Create a new virtual register for spill/fill. 01286 // FIXME: Infer regclass from instruction alone. 01287 unsigned NewVReg = Edit->createFrom(Reg); 01288 01289 if (RI.Reads) 01290 insertReload(NewVReg, Idx, MI); 01291 01292 // Rewrite instruction operands. 01293 bool hasLiveDef = false; 01294 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 01295 MachineOperand &MO = Ops[i].first->getOperand(Ops[i].second); 01296 MO.setReg(NewVReg); 01297 if (MO.isUse()) { 01298 if (!Ops[i].first->isRegTiedToDefOperand(Ops[i].second)) 01299 MO.setIsKill(); 01300 } else { 01301 if (!MO.isDead()) 01302 hasLiveDef = true; 01303 } 01304 } 01305 DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n'); 01306 01307 // FIXME: Use a second vreg if instruction has no tied ops. 01308 if (RI.Writes) 01309 if (hasLiveDef) 01310 insertSpill(NewVReg, true, MI); 01311 } 01312 } 01313 01314 /// spillAll - Spill all registers remaining after rematerialization. 01315 void InlineSpiller::spillAll() { 01316 // Update LiveStacks now that we are committed to spilling. 01317 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 01318 StackSlot = VRM.assignVirt2StackSlot(Original); 01319 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 01320 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 01321 } else 01322 StackInt = &LSS.getInterval(StackSlot); 01323 01324 if (Original != Edit->getReg()) 01325 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 01326 01327 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 01328 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) 01329 StackInt->MergeSegmentsInAsValue(LIS.getInterval(RegsToSpill[i]), 01330 StackInt->getValNumInfo(0)); 01331 DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 01332 01333 // Spill around uses of all RegsToSpill. 01334 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) 01335 spillAroundUses(RegsToSpill[i]); 01336 01337 // Hoisted spills may cause dead code. 01338 if (!DeadDefs.empty()) { 01339 DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 01340 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); 01341 } 01342 01343 // Finally delete the SnippetCopies. 01344 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 01345 for (MachineRegisterInfo::reg_instr_iterator 01346 RI = MRI.reg_instr_begin(RegsToSpill[i]), E = MRI.reg_instr_end(); 01347 RI != E; ) { 01348 MachineInstr *MI = &*(RI++); 01349 assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy"); 01350 // FIXME: Do this with a LiveRangeEdit callback. 01351 LIS.RemoveMachineInstrFromMaps(MI); 01352 MI->eraseFromParent(); 01353 } 01354 } 01355 01356 // Delete all spilled registers. 01357 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) 01358 Edit->eraseVirtReg(RegsToSpill[i]); 01359 } 01360 01361 void InlineSpiller::spill(LiveRangeEdit &edit) { 01362 ++NumSpilledRanges; 01363 Edit = &edit; 01364 assert(!TargetRegisterInfo::isStackSlot(edit.getReg()) 01365 && "Trying to spill a stack slot."); 01366 // Share a stack slot among all descendants of Original. 01367 Original = VRM.getOriginal(edit.getReg()); 01368 StackSlot = VRM.getStackSlot(Original); 01369 StackInt = nullptr; 01370 01371 DEBUG(dbgs() << "Inline spilling " 01372 << MRI.getRegClass(edit.getReg())->getName() 01373 << ':' << edit.getParent() 01374 << "\nFrom original " << PrintReg(Original) << '\n'); 01375 assert(edit.getParent().isSpillable() && 01376 "Attempting to spill already spilled value."); 01377 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 01378 01379 collectRegsToSpill(); 01380 analyzeSiblingValues(); 01381 reMaterializeAll(); 01382 01383 // Remat may handle everything. 01384 if (!RegsToSpill.empty()) 01385 spillAll(); 01386 01387 Edit->calculateRegClassAndHint(MF, Loops, MBFI); 01388 }