LLVM API Documentation
00001 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements basic block placement transformations using the CFG 00011 // structure and branch probability estimates. 00012 // 00013 // The pass strives to preserve the structure of the CFG (that is, retain 00014 // a topological ordering of basic blocks) in the absence of a *strong* signal 00015 // to the contrary from probabilities. However, within the CFG structure, it 00016 // attempts to choose an ordering which favors placing more likely sequences of 00017 // blocks adjacent to each other. 00018 // 00019 // The algorithm works from the inner-most loop within a function outward, and 00020 // at each stage walks through the basic blocks, trying to coalesce them into 00021 // sequential chains where allowed by the CFG (or demanded by heavy 00022 // probabilities). Finally, it walks the blocks in topological order, and the 00023 // first time it reaches a chain of basic blocks, it schedules them in the 00024 // function in-order. 00025 // 00026 //===----------------------------------------------------------------------===// 00027 00028 #include "llvm/CodeGen/Passes.h" 00029 #include "llvm/ADT/DenseMap.h" 00030 #include "llvm/ADT/SmallPtrSet.h" 00031 #include "llvm/ADT/SmallVector.h" 00032 #include "llvm/ADT/Statistic.h" 00033 #include "llvm/CodeGen/MachineBasicBlock.h" 00034 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 00035 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 00036 #include "llvm/CodeGen/MachineFunction.h" 00037 #include "llvm/CodeGen/MachineFunctionPass.h" 00038 #include "llvm/CodeGen/MachineLoopInfo.h" 00039 #include "llvm/CodeGen/MachineModuleInfo.h" 00040 #include "llvm/Support/Allocator.h" 00041 #include "llvm/Support/CommandLine.h" 00042 #include "llvm/Support/Debug.h" 00043 #include "llvm/Target/TargetInstrInfo.h" 00044 #include "llvm/Target/TargetLowering.h" 00045 #include "llvm/Target/TargetSubtargetInfo.h" 00046 #include <algorithm> 00047 using namespace llvm; 00048 00049 #define DEBUG_TYPE "block-placement2" 00050 00051 STATISTIC(NumCondBranches, "Number of conditional branches"); 00052 STATISTIC(NumUncondBranches, "Number of uncondittional branches"); 00053 STATISTIC(CondBranchTakenFreq, 00054 "Potential frequency of taking conditional branches"); 00055 STATISTIC(UncondBranchTakenFreq, 00056 "Potential frequency of taking unconditional branches"); 00057 00058 static cl::opt<unsigned> AlignAllBlock("align-all-blocks", 00059 cl::desc("Force the alignment of all " 00060 "blocks in the function."), 00061 cl::init(0), cl::Hidden); 00062 00063 // FIXME: Find a good default for this flag and remove the flag. 00064 static cl::opt<unsigned> 00065 ExitBlockBias("block-placement-exit-block-bias", 00066 cl::desc("Block frequency percentage a loop exit block needs " 00067 "over the original exit to be considered the new exit."), 00068 cl::init(0), cl::Hidden); 00069 00070 namespace { 00071 class BlockChain; 00072 /// \brief Type for our function-wide basic block -> block chain mapping. 00073 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; 00074 } 00075 00076 namespace { 00077 /// \brief A chain of blocks which will be laid out contiguously. 00078 /// 00079 /// This is the datastructure representing a chain of consecutive blocks that 00080 /// are profitable to layout together in order to maximize fallthrough 00081 /// probabilities and code locality. We also can use a block chain to represent 00082 /// a sequence of basic blocks which have some external (correctness) 00083 /// requirement for sequential layout. 00084 /// 00085 /// Chains can be built around a single basic block and can be merged to grow 00086 /// them. They participate in a block-to-chain mapping, which is updated 00087 /// automatically as chains are merged together. 00088 class BlockChain { 00089 /// \brief The sequence of blocks belonging to this chain. 00090 /// 00091 /// This is the sequence of blocks for a particular chain. These will be laid 00092 /// out in-order within the function. 00093 SmallVector<MachineBasicBlock *, 4> Blocks; 00094 00095 /// \brief A handle to the function-wide basic block to block chain mapping. 00096 /// 00097 /// This is retained in each block chain to simplify the computation of child 00098 /// block chains for SCC-formation and iteration. We store the edges to child 00099 /// basic blocks, and map them back to their associated chains using this 00100 /// structure. 00101 BlockToChainMapType &BlockToChain; 00102 00103 public: 00104 /// \brief Construct a new BlockChain. 00105 /// 00106 /// This builds a new block chain representing a single basic block in the 00107 /// function. It also registers itself as the chain that block participates 00108 /// in with the BlockToChain mapping. 00109 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) 00110 : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) { 00111 assert(BB && "Cannot create a chain with a null basic block"); 00112 BlockToChain[BB] = this; 00113 } 00114 00115 /// \brief Iterator over blocks within the chain. 00116 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; 00117 00118 /// \brief Beginning of blocks within the chain. 00119 iterator begin() { return Blocks.begin(); } 00120 00121 /// \brief End of blocks within the chain. 00122 iterator end() { return Blocks.end(); } 00123 00124 /// \brief Merge a block chain into this one. 00125 /// 00126 /// This routine merges a block chain into this one. It takes care of forming 00127 /// a contiguous sequence of basic blocks, updating the edge list, and 00128 /// updating the block -> chain mapping. It does not free or tear down the 00129 /// old chain, but the old chain's block list is no longer valid. 00130 void merge(MachineBasicBlock *BB, BlockChain *Chain) { 00131 assert(BB); 00132 assert(!Blocks.empty()); 00133 00134 // Fast path in case we don't have a chain already. 00135 if (!Chain) { 00136 assert(!BlockToChain[BB]); 00137 Blocks.push_back(BB); 00138 BlockToChain[BB] = this; 00139 return; 00140 } 00141 00142 assert(BB == *Chain->begin()); 00143 assert(Chain->begin() != Chain->end()); 00144 00145 // Update the incoming blocks to point to this chain, and add them to the 00146 // chain structure. 00147 for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end(); 00148 BI != BE; ++BI) { 00149 Blocks.push_back(*BI); 00150 assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain"); 00151 BlockToChain[*BI] = this; 00152 } 00153 } 00154 00155 #ifndef NDEBUG 00156 /// \brief Dump the blocks in this chain. 00157 LLVM_DUMP_METHOD void dump() { 00158 for (iterator I = begin(), E = end(); I != E; ++I) 00159 (*I)->dump(); 00160 } 00161 #endif // NDEBUG 00162 00163 /// \brief Count of predecessors within the loop currently being processed. 00164 /// 00165 /// This count is updated at each loop we process to represent the number of 00166 /// in-loop predecessors of this chain. 00167 unsigned LoopPredecessors; 00168 }; 00169 } 00170 00171 namespace { 00172 class MachineBlockPlacement : public MachineFunctionPass { 00173 /// \brief A typedef for a block filter set. 00174 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; 00175 00176 /// \brief A handle to the branch probability pass. 00177 const MachineBranchProbabilityInfo *MBPI; 00178 00179 /// \brief A handle to the function-wide block frequency pass. 00180 const MachineBlockFrequencyInfo *MBFI; 00181 00182 /// \brief A handle to the loop info. 00183 const MachineLoopInfo *MLI; 00184 00185 /// \brief A handle to the target's instruction info. 00186 const TargetInstrInfo *TII; 00187 00188 /// \brief A handle to the target's lowering info. 00189 const TargetLoweringBase *TLI; 00190 00191 /// \brief Allocator and owner of BlockChain structures. 00192 /// 00193 /// We build BlockChains lazily while processing the loop structure of 00194 /// a function. To reduce malloc traffic, we allocate them using this 00195 /// slab-like allocator, and destroy them after the pass completes. An 00196 /// important guarantee is that this allocator produces stable pointers to 00197 /// the chains. 00198 SpecificBumpPtrAllocator<BlockChain> ChainAllocator; 00199 00200 /// \brief Function wide BasicBlock to BlockChain mapping. 00201 /// 00202 /// This mapping allows efficiently moving from any given basic block to the 00203 /// BlockChain it participates in, if any. We use it to, among other things, 00204 /// allow implicitly defining edges between chains as the existing edges 00205 /// between basic blocks. 00206 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; 00207 00208 void markChainSuccessors(BlockChain &Chain, 00209 MachineBasicBlock *LoopHeaderBB, 00210 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 00211 const BlockFilterSet *BlockFilter = nullptr); 00212 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, 00213 BlockChain &Chain, 00214 const BlockFilterSet *BlockFilter); 00215 MachineBasicBlock *selectBestCandidateBlock( 00216 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 00217 const BlockFilterSet *BlockFilter); 00218 MachineBasicBlock *getFirstUnplacedBlock( 00219 MachineFunction &F, 00220 const BlockChain &PlacedChain, 00221 MachineFunction::iterator &PrevUnplacedBlockIt, 00222 const BlockFilterSet *BlockFilter); 00223 void buildChain(MachineBasicBlock *BB, BlockChain &Chain, 00224 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 00225 const BlockFilterSet *BlockFilter = nullptr); 00226 MachineBasicBlock *findBestLoopTop(MachineLoop &L, 00227 const BlockFilterSet &LoopBlockSet); 00228 MachineBasicBlock *findBestLoopExit(MachineFunction &F, 00229 MachineLoop &L, 00230 const BlockFilterSet &LoopBlockSet); 00231 void buildLoopChains(MachineFunction &F, MachineLoop &L); 00232 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, 00233 const BlockFilterSet &LoopBlockSet); 00234 void buildCFGChains(MachineFunction &F); 00235 00236 public: 00237 static char ID; // Pass identification, replacement for typeid 00238 MachineBlockPlacement() : MachineFunctionPass(ID) { 00239 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); 00240 } 00241 00242 bool runOnMachineFunction(MachineFunction &F) override; 00243 00244 void getAnalysisUsage(AnalysisUsage &AU) const override { 00245 AU.addRequired<MachineBranchProbabilityInfo>(); 00246 AU.addRequired<MachineBlockFrequencyInfo>(); 00247 AU.addRequired<MachineLoopInfo>(); 00248 MachineFunctionPass::getAnalysisUsage(AU); 00249 } 00250 }; 00251 } 00252 00253 char MachineBlockPlacement::ID = 0; 00254 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; 00255 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2", 00256 "Branch Probability Basic Block Placement", false, false) 00257 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 00258 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 00259 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 00260 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2", 00261 "Branch Probability Basic Block Placement", false, false) 00262 00263 #ifndef NDEBUG 00264 /// \brief Helper to print the name of a MBB. 00265 /// 00266 /// Only used by debug logging. 00267 static std::string getBlockName(MachineBasicBlock *BB) { 00268 std::string Result; 00269 raw_string_ostream OS(Result); 00270 OS << "BB#" << BB->getNumber() 00271 << " (derived from LLVM BB '" << BB->getName() << "')"; 00272 OS.flush(); 00273 return Result; 00274 } 00275 00276 /// \brief Helper to print the number of a MBB. 00277 /// 00278 /// Only used by debug logging. 00279 static std::string getBlockNum(MachineBasicBlock *BB) { 00280 std::string Result; 00281 raw_string_ostream OS(Result); 00282 OS << "BB#" << BB->getNumber(); 00283 OS.flush(); 00284 return Result; 00285 } 00286 #endif 00287 00288 /// \brief Mark a chain's successors as having one fewer preds. 00289 /// 00290 /// When a chain is being merged into the "placed" chain, this routine will 00291 /// quickly walk the successors of each block in the chain and mark them as 00292 /// having one fewer active predecessor. It also adds any successors of this 00293 /// chain which reach the zero-predecessor state to the worklist passed in. 00294 void MachineBlockPlacement::markChainSuccessors( 00295 BlockChain &Chain, 00296 MachineBasicBlock *LoopHeaderBB, 00297 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 00298 const BlockFilterSet *BlockFilter) { 00299 // Walk all the blocks in this chain, marking their successors as having 00300 // a predecessor placed. 00301 for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end(); 00302 CBI != CBE; ++CBI) { 00303 // Add any successors for which this is the only un-placed in-loop 00304 // predecessor to the worklist as a viable candidate for CFG-neutral 00305 // placement. No subsequent placement of this block will violate the CFG 00306 // shape, so we get to use heuristics to choose a favorable placement. 00307 for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(), 00308 SE = (*CBI)->succ_end(); 00309 SI != SE; ++SI) { 00310 if (BlockFilter && !BlockFilter->count(*SI)) 00311 continue; 00312 BlockChain &SuccChain = *BlockToChain[*SI]; 00313 // Disregard edges within a fixed chain, or edges to the loop header. 00314 if (&Chain == &SuccChain || *SI == LoopHeaderBB) 00315 continue; 00316 00317 // This is a cross-chain edge that is within the loop, so decrement the 00318 // loop predecessor count of the destination chain. 00319 if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0) 00320 BlockWorkList.push_back(*SuccChain.begin()); 00321 } 00322 } 00323 } 00324 00325 /// \brief Select the best successor for a block. 00326 /// 00327 /// This looks across all successors of a particular block and attempts to 00328 /// select the "best" one to be the layout successor. It only considers direct 00329 /// successors which also pass the block filter. It will attempt to avoid 00330 /// breaking CFG structure, but cave and break such structures in the case of 00331 /// very hot successor edges. 00332 /// 00333 /// \returns The best successor block found, or null if none are viable. 00334 MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor( 00335 MachineBasicBlock *BB, BlockChain &Chain, 00336 const BlockFilterSet *BlockFilter) { 00337 const BranchProbability HotProb(4, 5); // 80% 00338 00339 MachineBasicBlock *BestSucc = nullptr; 00340 // FIXME: Due to the performance of the probability and weight routines in 00341 // the MBPI analysis, we manually compute probabilities using the edge 00342 // weights. This is suboptimal as it means that the somewhat subtle 00343 // definition of edge weight semantics is encoded here as well. We should 00344 // improve the MBPI interface to efficiently support query patterns such as 00345 // this. 00346 uint32_t BestWeight = 0; 00347 uint32_t WeightScale = 0; 00348 uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale); 00349 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); 00350 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 00351 SE = BB->succ_end(); 00352 SI != SE; ++SI) { 00353 if (BlockFilter && !BlockFilter->count(*SI)) 00354 continue; 00355 BlockChain &SuccChain = *BlockToChain[*SI]; 00356 if (&SuccChain == &Chain) { 00357 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Already merged!\n"); 00358 continue; 00359 } 00360 if (*SI != *SuccChain.begin()) { 00361 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Mid chain!\n"); 00362 continue; 00363 } 00364 00365 uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI); 00366 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 00367 00368 // Only consider successors which are either "hot", or wouldn't violate 00369 // any CFG constraints. 00370 if (SuccChain.LoopPredecessors != 0) { 00371 if (SuccProb < HotProb) { 00372 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb 00373 << " (prob) (CFG conflict)\n"); 00374 continue; 00375 } 00376 00377 // Make sure that a hot successor doesn't have a globally more important 00378 // predecessor. 00379 BlockFrequency CandidateEdgeFreq 00380 = MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl(); 00381 bool BadCFGConflict = false; 00382 for (MachineBasicBlock::pred_iterator PI = (*SI)->pred_begin(), 00383 PE = (*SI)->pred_end(); 00384 PI != PE; ++PI) { 00385 if (*PI == *SI || (BlockFilter && !BlockFilter->count(*PI)) || 00386 BlockToChain[*PI] == &Chain) 00387 continue; 00388 BlockFrequency PredEdgeFreq 00389 = MBFI->getBlockFreq(*PI) * MBPI->getEdgeProbability(*PI, *SI); 00390 if (PredEdgeFreq >= CandidateEdgeFreq) { 00391 BadCFGConflict = true; 00392 break; 00393 } 00394 } 00395 if (BadCFGConflict) { 00396 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb 00397 << " (prob) (non-cold CFG conflict)\n"); 00398 continue; 00399 } 00400 } 00401 00402 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb 00403 << " (prob)" 00404 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "") 00405 << "\n"); 00406 if (BestSucc && BestWeight >= SuccWeight) 00407 continue; 00408 BestSucc = *SI; 00409 BestWeight = SuccWeight; 00410 } 00411 return BestSucc; 00412 } 00413 00414 /// \brief Select the best block from a worklist. 00415 /// 00416 /// This looks through the provided worklist as a list of candidate basic 00417 /// blocks and select the most profitable one to place. The definition of 00418 /// profitable only really makes sense in the context of a loop. This returns 00419 /// the most frequently visited block in the worklist, which in the case of 00420 /// a loop, is the one most desirable to be physically close to the rest of the 00421 /// loop body in order to improve icache behavior. 00422 /// 00423 /// \returns The best block found, or null if none are viable. 00424 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( 00425 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList, 00426 const BlockFilterSet *BlockFilter) { 00427 // Once we need to walk the worklist looking for a candidate, cleanup the 00428 // worklist of already placed entries. 00429 // FIXME: If this shows up on profiles, it could be folded (at the cost of 00430 // some code complexity) into the loop below. 00431 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), 00432 [&](MachineBasicBlock *BB) { 00433 return BlockToChain.lookup(BB) == &Chain; 00434 }), 00435 WorkList.end()); 00436 00437 MachineBasicBlock *BestBlock = nullptr; 00438 BlockFrequency BestFreq; 00439 for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(), 00440 WBE = WorkList.end(); 00441 WBI != WBE; ++WBI) { 00442 BlockChain &SuccChain = *BlockToChain[*WBI]; 00443 if (&SuccChain == &Chain) { 00444 DEBUG(dbgs() << " " << getBlockName(*WBI) 00445 << " -> Already merged!\n"); 00446 continue; 00447 } 00448 assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block"); 00449 00450 BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI); 00451 DEBUG(dbgs() << " " << getBlockName(*WBI) << " -> "; 00452 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); 00453 if (BestBlock && BestFreq >= CandidateFreq) 00454 continue; 00455 BestBlock = *WBI; 00456 BestFreq = CandidateFreq; 00457 } 00458 return BestBlock; 00459 } 00460 00461 /// \brief Retrieve the first unplaced basic block. 00462 /// 00463 /// This routine is called when we are unable to use the CFG to walk through 00464 /// all of the basic blocks and form a chain due to unnatural loops in the CFG. 00465 /// We walk through the function's blocks in order, starting from the 00466 /// LastUnplacedBlockIt. We update this iterator on each call to avoid 00467 /// re-scanning the entire sequence on repeated calls to this routine. 00468 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( 00469 MachineFunction &F, const BlockChain &PlacedChain, 00470 MachineFunction::iterator &PrevUnplacedBlockIt, 00471 const BlockFilterSet *BlockFilter) { 00472 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E; 00473 ++I) { 00474 if (BlockFilter && !BlockFilter->count(I)) 00475 continue; 00476 if (BlockToChain[I] != &PlacedChain) { 00477 PrevUnplacedBlockIt = I; 00478 // Now select the head of the chain to which the unplaced block belongs 00479 // as the block to place. This will force the entire chain to be placed, 00480 // and satisfies the requirements of merging chains. 00481 return *BlockToChain[I]->begin(); 00482 } 00483 } 00484 return nullptr; 00485 } 00486 00487 void MachineBlockPlacement::buildChain( 00488 MachineBasicBlock *BB, 00489 BlockChain &Chain, 00490 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList, 00491 const BlockFilterSet *BlockFilter) { 00492 assert(BB); 00493 assert(BlockToChain[BB] == &Chain); 00494 MachineFunction &F = *BB->getParent(); 00495 MachineFunction::iterator PrevUnplacedBlockIt = F.begin(); 00496 00497 MachineBasicBlock *LoopHeaderBB = BB; 00498 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter); 00499 BB = *std::prev(Chain.end()); 00500 for (;;) { 00501 assert(BB); 00502 assert(BlockToChain[BB] == &Chain); 00503 assert(*std::prev(Chain.end()) == BB); 00504 00505 // Look for the best viable successor if there is one to place immediately 00506 // after this block. 00507 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); 00508 00509 // If an immediate successor isn't available, look for the best viable 00510 // block among those we've identified as not violating the loop's CFG at 00511 // this point. This won't be a fallthrough, but it will increase locality. 00512 if (!BestSucc) 00513 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter); 00514 00515 if (!BestSucc) { 00516 BestSucc = getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, 00517 BlockFilter); 00518 if (!BestSucc) 00519 break; 00520 00521 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " 00522 "layout successor until the CFG reduces\n"); 00523 } 00524 00525 // Place this block, updating the datastructures to reflect its placement. 00526 BlockChain &SuccChain = *BlockToChain[BestSucc]; 00527 // Zero out LoopPredecessors for the successor we're about to merge in case 00528 // we selected a successor that didn't fit naturally into the CFG. 00529 SuccChain.LoopPredecessors = 0; 00530 DEBUG(dbgs() << "Merging from " << getBlockNum(BB) 00531 << " to " << getBlockNum(BestSucc) << "\n"); 00532 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter); 00533 Chain.merge(BestSucc, &SuccChain); 00534 BB = *std::prev(Chain.end()); 00535 } 00536 00537 DEBUG(dbgs() << "Finished forming chain for header block " 00538 << getBlockNum(*Chain.begin()) << "\n"); 00539 } 00540 00541 /// \brief Find the best loop top block for layout. 00542 /// 00543 /// Look for a block which is strictly better than the loop header for laying 00544 /// out at the top of the loop. This looks for one and only one pattern: 00545 /// a latch block with no conditional exit. This block will cause a conditional 00546 /// jump around it or will be the bottom of the loop if we lay it out in place, 00547 /// but if it it doesn't end up at the bottom of the loop for any reason, 00548 /// rotation alone won't fix it. Because such a block will always result in an 00549 /// unconditional jump (for the backedge) rotating it in front of the loop 00550 /// header is always profitable. 00551 MachineBasicBlock * 00552 MachineBlockPlacement::findBestLoopTop(MachineLoop &L, 00553 const BlockFilterSet &LoopBlockSet) { 00554 // Check that the header hasn't been fused with a preheader block due to 00555 // crazy branches. If it has, we need to start with the header at the top to 00556 // prevent pulling the preheader into the loop body. 00557 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 00558 if (!LoopBlockSet.count(*HeaderChain.begin())) 00559 return L.getHeader(); 00560 00561 DEBUG(dbgs() << "Finding best loop top for: " 00562 << getBlockName(L.getHeader()) << "\n"); 00563 00564 BlockFrequency BestPredFreq; 00565 MachineBasicBlock *BestPred = nullptr; 00566 for (MachineBasicBlock::pred_iterator PI = L.getHeader()->pred_begin(), 00567 PE = L.getHeader()->pred_end(); 00568 PI != PE; ++PI) { 00569 MachineBasicBlock *Pred = *PI; 00570 if (!LoopBlockSet.count(Pred)) 00571 continue; 00572 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " 00573 << Pred->succ_size() << " successors, "; 00574 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); 00575 if (Pred->succ_size() > 1) 00576 continue; 00577 00578 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); 00579 if (!BestPred || PredFreq > BestPredFreq || 00580 (!(PredFreq < BestPredFreq) && 00581 Pred->isLayoutSuccessor(L.getHeader()))) { 00582 BestPred = Pred; 00583 BestPredFreq = PredFreq; 00584 } 00585 } 00586 00587 // If no direct predecessor is fine, just use the loop header. 00588 if (!BestPred) 00589 return L.getHeader(); 00590 00591 // Walk backwards through any straight line of predecessors. 00592 while (BestPred->pred_size() == 1 && 00593 (*BestPred->pred_begin())->succ_size() == 1 && 00594 *BestPred->pred_begin() != L.getHeader()) 00595 BestPred = *BestPred->pred_begin(); 00596 00597 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); 00598 return BestPred; 00599 } 00600 00601 00602 /// \brief Find the best loop exiting block for layout. 00603 /// 00604 /// This routine implements the logic to analyze the loop looking for the best 00605 /// block to layout at the top of the loop. Typically this is done to maximize 00606 /// fallthrough opportunities. 00607 MachineBasicBlock * 00608 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, 00609 MachineLoop &L, 00610 const BlockFilterSet &LoopBlockSet) { 00611 // We don't want to layout the loop linearly in all cases. If the loop header 00612 // is just a normal basic block in the loop, we want to look for what block 00613 // within the loop is the best one to layout at the top. However, if the loop 00614 // header has be pre-merged into a chain due to predecessors not having 00615 // analyzable branches, *and* the predecessor it is merged with is *not* part 00616 // of the loop, rotating the header into the middle of the loop will create 00617 // a non-contiguous range of blocks which is Very Bad. So start with the 00618 // header and only rotate if safe. 00619 BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; 00620 if (!LoopBlockSet.count(*HeaderChain.begin())) 00621 return nullptr; 00622 00623 BlockFrequency BestExitEdgeFreq; 00624 unsigned BestExitLoopDepth = 0; 00625 MachineBasicBlock *ExitingBB = nullptr; 00626 // If there are exits to outer loops, loop rotation can severely limit 00627 // fallthrough opportunites unless it selects such an exit. Keep a set of 00628 // blocks where rotating to exit with that block will reach an outer loop. 00629 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; 00630 00631 DEBUG(dbgs() << "Finding best loop exit for: " 00632 << getBlockName(L.getHeader()) << "\n"); 00633 for (MachineLoop::block_iterator I = L.block_begin(), 00634 E = L.block_end(); 00635 I != E; ++I) { 00636 BlockChain &Chain = *BlockToChain[*I]; 00637 // Ensure that this block is at the end of a chain; otherwise it could be 00638 // mid-way through an inner loop or a successor of an analyzable branch. 00639 if (*I != *std::prev(Chain.end())) 00640 continue; 00641 00642 // Now walk the successors. We need to establish whether this has a viable 00643 // exiting successor and whether it has a viable non-exiting successor. 00644 // We store the old exiting state and restore it if a viable looping 00645 // successor isn't found. 00646 MachineBasicBlock *OldExitingBB = ExitingBB; 00647 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; 00648 bool HasLoopingSucc = false; 00649 // FIXME: Due to the performance of the probability and weight routines in 00650 // the MBPI analysis, we use the internal weights and manually compute the 00651 // probabilities to avoid quadratic behavior. 00652 uint32_t WeightScale = 0; 00653 uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale); 00654 for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(), 00655 SE = (*I)->succ_end(); 00656 SI != SE; ++SI) { 00657 if ((*SI)->isLandingPad()) 00658 continue; 00659 if (*SI == *I) 00660 continue; 00661 BlockChain &SuccChain = *BlockToChain[*SI]; 00662 // Don't split chains, either this chain or the successor's chain. 00663 if (&Chain == &SuccChain) { 00664 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> " 00665 << getBlockName(*SI) << " (chain conflict)\n"); 00666 continue; 00667 } 00668 00669 uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI); 00670 if (LoopBlockSet.count(*SI)) { 00671 DEBUG(dbgs() << " looping: " << getBlockName(*I) << " -> " 00672 << getBlockName(*SI) << " (" << SuccWeight << ")\n"); 00673 HasLoopingSucc = true; 00674 continue; 00675 } 00676 00677 unsigned SuccLoopDepth = 0; 00678 if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI)) { 00679 SuccLoopDepth = ExitLoop->getLoopDepth(); 00680 if (ExitLoop->contains(&L)) 00681 BlocksExitingToOuterLoop.insert(*I); 00682 } 00683 00684 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight); 00685 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb; 00686 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> " 00687 << getBlockName(*SI) << " [L:" << SuccLoopDepth 00688 << "] ("; 00689 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); 00690 // Note that we bias this toward an existing layout successor to retain 00691 // incoming order in the absence of better information. The exit must have 00692 // a frequency higher than the current exit before we consider breaking 00693 // the layout. 00694 BranchProbability Bias(100 - ExitBlockBias, 100); 00695 if (!ExitingBB || BestExitLoopDepth < SuccLoopDepth || 00696 ExitEdgeFreq > BestExitEdgeFreq || 00697 ((*I)->isLayoutSuccessor(*SI) && 00698 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { 00699 BestExitEdgeFreq = ExitEdgeFreq; 00700 ExitingBB = *I; 00701 } 00702 } 00703 00704 // Restore the old exiting state, no viable looping successor was found. 00705 if (!HasLoopingSucc) { 00706 ExitingBB = OldExitingBB; 00707 BestExitEdgeFreq = OldBestExitEdgeFreq; 00708 continue; 00709 } 00710 } 00711 // Without a candidate exiting block or with only a single block in the 00712 // loop, just use the loop header to layout the loop. 00713 if (!ExitingBB || L.getNumBlocks() == 1) 00714 return nullptr; 00715 00716 // Also, if we have exit blocks which lead to outer loops but didn't select 00717 // one of them as the exiting block we are rotating toward, disable loop 00718 // rotation altogether. 00719 if (!BlocksExitingToOuterLoop.empty() && 00720 !BlocksExitingToOuterLoop.count(ExitingBB)) 00721 return nullptr; 00722 00723 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); 00724 return ExitingBB; 00725 } 00726 00727 /// \brief Attempt to rotate an exiting block to the bottom of the loop. 00728 /// 00729 /// Once we have built a chain, try to rotate it to line up the hot exit block 00730 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary 00731 /// branches. For example, if the loop has fallthrough into its header and out 00732 /// of its bottom already, don't rotate it. 00733 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, 00734 MachineBasicBlock *ExitingBB, 00735 const BlockFilterSet &LoopBlockSet) { 00736 if (!ExitingBB) 00737 return; 00738 00739 MachineBasicBlock *Top = *LoopChain.begin(); 00740 bool ViableTopFallthrough = false; 00741 for (MachineBasicBlock::pred_iterator PI = Top->pred_begin(), 00742 PE = Top->pred_end(); 00743 PI != PE; ++PI) { 00744 BlockChain *PredChain = BlockToChain[*PI]; 00745 if (!LoopBlockSet.count(*PI) && 00746 (!PredChain || *PI == *std::prev(PredChain->end()))) { 00747 ViableTopFallthrough = true; 00748 break; 00749 } 00750 } 00751 00752 // If the header has viable fallthrough, check whether the current loop 00753 // bottom is a viable exiting block. If so, bail out as rotating will 00754 // introduce an unnecessary branch. 00755 if (ViableTopFallthrough) { 00756 MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); 00757 for (MachineBasicBlock::succ_iterator SI = Bottom->succ_begin(), 00758 SE = Bottom->succ_end(); 00759 SI != SE; ++SI) { 00760 BlockChain *SuccChain = BlockToChain[*SI]; 00761 if (!LoopBlockSet.count(*SI) && 00762 (!SuccChain || *SI == *SuccChain->begin())) 00763 return; 00764 } 00765 } 00766 00767 BlockChain::iterator ExitIt = std::find(LoopChain.begin(), LoopChain.end(), 00768 ExitingBB); 00769 if (ExitIt == LoopChain.end()) 00770 return; 00771 00772 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); 00773 } 00774 00775 /// \brief Forms basic block chains from the natural loop structures. 00776 /// 00777 /// These chains are designed to preserve the existing *structure* of the code 00778 /// as much as possible. We can then stitch the chains together in a way which 00779 /// both preserves the topological structure and minimizes taken conditional 00780 /// branches. 00781 void MachineBlockPlacement::buildLoopChains(MachineFunction &F, 00782 MachineLoop &L) { 00783 // First recurse through any nested loops, building chains for those inner 00784 // loops. 00785 for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI) 00786 buildLoopChains(F, **LI); 00787 00788 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 00789 BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end()); 00790 00791 // First check to see if there is an obviously preferable top block for the 00792 // loop. This will default to the header, but may end up as one of the 00793 // predecessors to the header if there is one which will result in strictly 00794 // fewer branches in the loop body. 00795 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); 00796 00797 // If we selected just the header for the loop top, look for a potentially 00798 // profitable exit block in the event that rotating the loop can eliminate 00799 // branches by placing an exit edge at the bottom. 00800 MachineBasicBlock *ExitingBB = nullptr; 00801 if (LoopTop == L.getHeader()) 00802 ExitingBB = findBestLoopExit(F, L, LoopBlockSet); 00803 00804 BlockChain &LoopChain = *BlockToChain[LoopTop]; 00805 00806 // FIXME: This is a really lame way of walking the chains in the loop: we 00807 // walk the blocks, and use a set to prevent visiting a particular chain 00808 // twice. 00809 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 00810 assert(LoopChain.LoopPredecessors == 0); 00811 UpdatedPreds.insert(&LoopChain); 00812 for (MachineLoop::block_iterator BI = L.block_begin(), 00813 BE = L.block_end(); 00814 BI != BE; ++BI) { 00815 BlockChain &Chain = *BlockToChain[*BI]; 00816 if (!UpdatedPreds.insert(&Chain)) 00817 continue; 00818 00819 assert(Chain.LoopPredecessors == 0); 00820 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); 00821 BCI != BCE; ++BCI) { 00822 assert(BlockToChain[*BCI] == &Chain); 00823 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), 00824 PE = (*BCI)->pred_end(); 00825 PI != PE; ++PI) { 00826 if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI)) 00827 continue; 00828 ++Chain.LoopPredecessors; 00829 } 00830 } 00831 00832 if (Chain.LoopPredecessors == 0) 00833 BlockWorkList.push_back(*Chain.begin()); 00834 } 00835 00836 buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet); 00837 rotateLoop(LoopChain, ExitingBB, LoopBlockSet); 00838 00839 DEBUG({ 00840 // Crash at the end so we get all of the debugging output first. 00841 bool BadLoop = false; 00842 if (LoopChain.LoopPredecessors) { 00843 BadLoop = true; 00844 dbgs() << "Loop chain contains a block without its preds placed!\n" 00845 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 00846 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; 00847 } 00848 for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end(); 00849 BCI != BCE; ++BCI) { 00850 dbgs() << " ... " << getBlockName(*BCI) << "\n"; 00851 if (!LoopBlockSet.erase(*BCI)) { 00852 // We don't mark the loop as bad here because there are real situations 00853 // where this can occur. For example, with an unanalyzable fallthrough 00854 // from a loop block to a non-loop block or vice versa. 00855 dbgs() << "Loop chain contains a block not contained by the loop!\n" 00856 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 00857 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 00858 << " Bad block: " << getBlockName(*BCI) << "\n"; 00859 } 00860 } 00861 00862 if (!LoopBlockSet.empty()) { 00863 BadLoop = true; 00864 for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(), 00865 LBE = LoopBlockSet.end(); 00866 LBI != LBE; ++LBI) 00867 dbgs() << "Loop contains blocks never placed into a chain!\n" 00868 << " Loop header: " << getBlockName(*L.block_begin()) << "\n" 00869 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" 00870 << " Bad block: " << getBlockName(*LBI) << "\n"; 00871 } 00872 assert(!BadLoop && "Detected problems with the placement of this loop."); 00873 }); 00874 } 00875 00876 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) { 00877 // Ensure that every BB in the function has an associated chain to simplify 00878 // the assumptions of the remaining algorithm. 00879 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. 00880 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 00881 MachineBasicBlock *BB = FI; 00882 BlockChain *Chain 00883 = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); 00884 // Also, merge any blocks which we cannot reason about and must preserve 00885 // the exact fallthrough behavior for. 00886 for (;;) { 00887 Cond.clear(); 00888 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 00889 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) 00890 break; 00891 00892 MachineFunction::iterator NextFI(std::next(FI)); 00893 MachineBasicBlock *NextBB = NextFI; 00894 // Ensure that the layout successor is a viable block, as we know that 00895 // fallthrough is a possibility. 00896 assert(NextFI != FE && "Can't fallthrough past the last block."); 00897 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " 00898 << getBlockName(BB) << " -> " << getBlockName(NextBB) 00899 << "\n"); 00900 Chain->merge(NextBB, nullptr); 00901 FI = NextFI; 00902 BB = NextBB; 00903 } 00904 } 00905 00906 // Build any loop-based chains. 00907 for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE; 00908 ++LI) 00909 buildLoopChains(F, **LI); 00910 00911 SmallVector<MachineBasicBlock *, 16> BlockWorkList; 00912 00913 SmallPtrSet<BlockChain *, 4> UpdatedPreds; 00914 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { 00915 MachineBasicBlock *BB = &*FI; 00916 BlockChain &Chain = *BlockToChain[BB]; 00917 if (!UpdatedPreds.insert(&Chain)) 00918 continue; 00919 00920 assert(Chain.LoopPredecessors == 0); 00921 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end(); 00922 BCI != BCE; ++BCI) { 00923 assert(BlockToChain[*BCI] == &Chain); 00924 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(), 00925 PE = (*BCI)->pred_end(); 00926 PI != PE; ++PI) { 00927 if (BlockToChain[*PI] == &Chain) 00928 continue; 00929 ++Chain.LoopPredecessors; 00930 } 00931 } 00932 00933 if (Chain.LoopPredecessors == 0) 00934 BlockWorkList.push_back(*Chain.begin()); 00935 } 00936 00937 BlockChain &FunctionChain = *BlockToChain[&F.front()]; 00938 buildChain(&F.front(), FunctionChain, BlockWorkList); 00939 00940 #ifndef NDEBUG 00941 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; 00942 #endif 00943 DEBUG({ 00944 // Crash at the end so we get all of the debugging output first. 00945 bool BadFunc = false; 00946 FunctionBlockSetType FunctionBlockSet; 00947 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) 00948 FunctionBlockSet.insert(FI); 00949 00950 for (BlockChain::iterator BCI = FunctionChain.begin(), 00951 BCE = FunctionChain.end(); 00952 BCI != BCE; ++BCI) 00953 if (!FunctionBlockSet.erase(*BCI)) { 00954 BadFunc = true; 00955 dbgs() << "Function chain contains a block not in the function!\n" 00956 << " Bad block: " << getBlockName(*BCI) << "\n"; 00957 } 00958 00959 if (!FunctionBlockSet.empty()) { 00960 BadFunc = true; 00961 for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(), 00962 FBE = FunctionBlockSet.end(); 00963 FBI != FBE; ++FBI) 00964 dbgs() << "Function contains blocks never placed into a chain!\n" 00965 << " Bad block: " << getBlockName(*FBI) << "\n"; 00966 } 00967 assert(!BadFunc && "Detected problems with the block placement."); 00968 }); 00969 00970 // Splice the blocks into place. 00971 MachineFunction::iterator InsertPos = F.begin(); 00972 for (BlockChain::iterator BI = FunctionChain.begin(), 00973 BE = FunctionChain.end(); 00974 BI != BE; ++BI) { 00975 DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain " 00976 : " ... ") 00977 << getBlockName(*BI) << "\n"); 00978 if (InsertPos != MachineFunction::iterator(*BI)) 00979 F.splice(InsertPos, *BI); 00980 else 00981 ++InsertPos; 00982 00983 // Update the terminator of the previous block. 00984 if (BI == FunctionChain.begin()) 00985 continue; 00986 MachineBasicBlock *PrevBB = std::prev(MachineFunction::iterator(*BI)); 00987 00988 // FIXME: It would be awesome of updateTerminator would just return rather 00989 // than assert when the branch cannot be analyzed in order to remove this 00990 // boiler plate. 00991 Cond.clear(); 00992 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 00993 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 00994 // The "PrevBB" is not yet updated to reflect current code layout, so, 00995 // o. it may fall-through to a block without explict "goto" instruction 00996 // before layout, and no longer fall-through it after layout; or 00997 // o. just opposite. 00998 // 00999 // AnalyzeBranch() may return erroneous value for FBB when these two 01000 // situations take place. For the first scenario FBB is mistakenly set 01001 // NULL; for the 2nd scenario, the FBB, which is expected to be NULL, 01002 // is mistakenly pointing to "*BI". 01003 // 01004 bool needUpdateBr = true; 01005 if (!Cond.empty() && (!FBB || FBB == *BI)) { 01006 PrevBB->updateTerminator(); 01007 needUpdateBr = false; 01008 Cond.clear(); 01009 TBB = FBB = nullptr; 01010 if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) { 01011 // FIXME: This should never take place. 01012 TBB = FBB = nullptr; 01013 } 01014 } 01015 01016 // If PrevBB has a two-way branch, try to re-order the branches 01017 // such that we branch to the successor with higher weight first. 01018 if (TBB && !Cond.empty() && FBB && 01019 MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) && 01020 !TII->ReverseBranchCondition(Cond)) { 01021 DEBUG(dbgs() << "Reverse order of the two branches: " 01022 << getBlockName(PrevBB) << "\n"); 01023 DEBUG(dbgs() << " Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB) 01024 << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n"); 01025 DebugLoc dl; // FIXME: this is nowhere 01026 TII->RemoveBranch(*PrevBB); 01027 TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl); 01028 needUpdateBr = true; 01029 } 01030 if (needUpdateBr) 01031 PrevBB->updateTerminator(); 01032 } 01033 } 01034 01035 // Fixup the last block. 01036 Cond.clear(); 01037 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. 01038 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond)) 01039 F.back().updateTerminator(); 01040 01041 // Walk through the backedges of the function now that we have fully laid out 01042 // the basic blocks and align the destination of each backedge. We don't rely 01043 // exclusively on the loop info here so that we can align backedges in 01044 // unnatural CFGs and backedges that were introduced purely because of the 01045 // loop rotations done during this layout pass. 01046 if (F.getFunction()->getAttributes(). 01047 hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize)) 01048 return; 01049 unsigned Align = TLI->getPrefLoopAlignment(); 01050 if (!Align) 01051 return; // Don't care about loop alignment. 01052 if (FunctionChain.begin() == FunctionChain.end()) 01053 return; // Empty chain. 01054 01055 const BranchProbability ColdProb(1, 5); // 20% 01056 BlockFrequency EntryFreq = MBFI->getBlockFreq(F.begin()); 01057 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; 01058 for (BlockChain::iterator BI = std::next(FunctionChain.begin()), 01059 BE = FunctionChain.end(); 01060 BI != BE; ++BI) { 01061 // Don't align non-looping basic blocks. These are unlikely to execute 01062 // enough times to matter in practice. Note that we'll still handle 01063 // unnatural CFGs inside of a natural outer loop (the common case) and 01064 // rotated loops. 01065 MachineLoop *L = MLI->getLoopFor(*BI); 01066 if (!L) 01067 continue; 01068 01069 // If the block is cold relative to the function entry don't waste space 01070 // aligning it. 01071 BlockFrequency Freq = MBFI->getBlockFreq(*BI); 01072 if (Freq < WeightedEntryFreq) 01073 continue; 01074 01075 // If the block is cold relative to its loop header, don't align it 01076 // regardless of what edges into the block exist. 01077 MachineBasicBlock *LoopHeader = L->getHeader(); 01078 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); 01079 if (Freq < (LoopHeaderFreq * ColdProb)) 01080 continue; 01081 01082 // Check for the existence of a non-layout predecessor which would benefit 01083 // from aligning this block. 01084 MachineBasicBlock *LayoutPred = *std::prev(BI); 01085 01086 // Force alignment if all the predecessors are jumps. We already checked 01087 // that the block isn't cold above. 01088 if (!LayoutPred->isSuccessor(*BI)) { 01089 (*BI)->setAlignment(Align); 01090 continue; 01091 } 01092 01093 // Align this block if the layout predecessor's edge into this block is 01094 // cold relative to the block. When this is true, other predecessors make up 01095 // all of the hot entries into the block and thus alignment is likely to be 01096 // important. 01097 BranchProbability LayoutProb = MBPI->getEdgeProbability(LayoutPred, *BI); 01098 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; 01099 if (LayoutEdgeFreq <= (Freq * ColdProb)) 01100 (*BI)->setAlignment(Align); 01101 } 01102 } 01103 01104 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) { 01105 // Check for single-block functions and skip them. 01106 if (std::next(F.begin()) == F.end()) 01107 return false; 01108 01109 if (skipOptnoneFunction(*F.getFunction())) 01110 return false; 01111 01112 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 01113 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 01114 MLI = &getAnalysis<MachineLoopInfo>(); 01115 TII = F.getSubtarget().getInstrInfo(); 01116 TLI = F.getSubtarget().getTargetLowering(); 01117 assert(BlockToChain.empty()); 01118 01119 buildCFGChains(F); 01120 01121 BlockToChain.clear(); 01122 ChainAllocator.DestroyAll(); 01123 01124 if (AlignAllBlock) 01125 // Align all of the blocks in the function to a specific alignment. 01126 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); 01127 FI != FE; ++FI) 01128 FI->setAlignment(AlignAllBlock); 01129 01130 // We always return true as we have no way to track whether the final order 01131 // differs from the original order. 01132 return true; 01133 } 01134 01135 namespace { 01136 /// \brief A pass to compute block placement statistics. 01137 /// 01138 /// A separate pass to compute interesting statistics for evaluating block 01139 /// placement. This is separate from the actual placement pass so that they can 01140 /// be computed in the absence of any placement transformations or when using 01141 /// alternative placement strategies. 01142 class MachineBlockPlacementStats : public MachineFunctionPass { 01143 /// \brief A handle to the branch probability pass. 01144 const MachineBranchProbabilityInfo *MBPI; 01145 01146 /// \brief A handle to the function-wide block frequency pass. 01147 const MachineBlockFrequencyInfo *MBFI; 01148 01149 public: 01150 static char ID; // Pass identification, replacement for typeid 01151 MachineBlockPlacementStats() : MachineFunctionPass(ID) { 01152 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); 01153 } 01154 01155 bool runOnMachineFunction(MachineFunction &F) override; 01156 01157 void getAnalysisUsage(AnalysisUsage &AU) const override { 01158 AU.addRequired<MachineBranchProbabilityInfo>(); 01159 AU.addRequired<MachineBlockFrequencyInfo>(); 01160 AU.setPreservesAll(); 01161 MachineFunctionPass::getAnalysisUsage(AU); 01162 } 01163 }; 01164 } 01165 01166 char MachineBlockPlacementStats::ID = 0; 01167 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; 01168 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", 01169 "Basic Block Placement Stats", false, false) 01170 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 01171 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) 01172 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", 01173 "Basic Block Placement Stats", false, false) 01174 01175 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { 01176 // Check for single-block functions and skip them. 01177 if (std::next(F.begin()) == F.end()) 01178 return false; 01179 01180 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 01181 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 01182 01183 for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) { 01184 BlockFrequency BlockFreq = MBFI->getBlockFreq(I); 01185 Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches 01186 : NumUncondBranches; 01187 Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq 01188 : UncondBranchTakenFreq; 01189 for (MachineBasicBlock::succ_iterator SI = I->succ_begin(), 01190 SE = I->succ_end(); 01191 SI != SE; ++SI) { 01192 // Skip if this successor is a fallthrough. 01193 if (I->isLayoutSuccessor(*SI)) 01194 continue; 01195 01196 BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI); 01197 ++NumBranches; 01198 BranchTakenFreq += EdgeFreq.getFrequency(); 01199 } 01200 } 01201 01202 return false; 01203 } 01204