LLVM API Documentation
00001 //===- lib/CodeGen/MachineTraceMetrics.cpp ----------------------*- C++ -*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 00010 #include "llvm/CodeGen/MachineTraceMetrics.h" 00011 #include "llvm/ADT/PostOrderIterator.h" 00012 #include "llvm/ADT/SparseSet.h" 00013 #include "llvm/CodeGen/MachineBasicBlock.h" 00014 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 00015 #include "llvm/CodeGen/MachineLoopInfo.h" 00016 #include "llvm/CodeGen/MachineRegisterInfo.h" 00017 #include "llvm/CodeGen/Passes.h" 00018 #include "llvm/MC/MCSubtargetInfo.h" 00019 #include "llvm/Support/Debug.h" 00020 #include "llvm/Support/Format.h" 00021 #include "llvm/Support/raw_ostream.h" 00022 #include "llvm/Target/TargetInstrInfo.h" 00023 #include "llvm/Target/TargetRegisterInfo.h" 00024 #include "llvm/Target/TargetSubtargetInfo.h" 00025 00026 using namespace llvm; 00027 00028 #define DEBUG_TYPE "machine-trace-metrics" 00029 00030 char MachineTraceMetrics::ID = 0; 00031 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID; 00032 00033 INITIALIZE_PASS_BEGIN(MachineTraceMetrics, 00034 "machine-trace-metrics", "Machine Trace Metrics", false, true) 00035 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 00036 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 00037 INITIALIZE_PASS_END(MachineTraceMetrics, 00038 "machine-trace-metrics", "Machine Trace Metrics", false, true) 00039 00040 MachineTraceMetrics::MachineTraceMetrics() 00041 : MachineFunctionPass(ID), MF(nullptr), TII(nullptr), TRI(nullptr), 00042 MRI(nullptr), Loops(nullptr) { 00043 std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr); 00044 } 00045 00046 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const { 00047 AU.setPreservesAll(); 00048 AU.addRequired<MachineBranchProbabilityInfo>(); 00049 AU.addRequired<MachineLoopInfo>(); 00050 MachineFunctionPass::getAnalysisUsage(AU); 00051 } 00052 00053 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) { 00054 MF = &Func; 00055 TII = MF->getSubtarget().getInstrInfo(); 00056 TRI = MF->getSubtarget().getRegisterInfo(); 00057 MRI = &MF->getRegInfo(); 00058 Loops = &getAnalysis<MachineLoopInfo>(); 00059 const TargetSubtargetInfo &ST = 00060 MF->getTarget().getSubtarget<TargetSubtargetInfo>(); 00061 SchedModel.init(ST.getSchedModel(), &ST, TII); 00062 BlockInfo.resize(MF->getNumBlockIDs()); 00063 ProcResourceCycles.resize(MF->getNumBlockIDs() * 00064 SchedModel.getNumProcResourceKinds()); 00065 return false; 00066 } 00067 00068 void MachineTraceMetrics::releaseMemory() { 00069 MF = nullptr; 00070 BlockInfo.clear(); 00071 for (unsigned i = 0; i != TS_NumStrategies; ++i) { 00072 delete Ensembles[i]; 00073 Ensembles[i] = nullptr; 00074 } 00075 } 00076 00077 //===----------------------------------------------------------------------===// 00078 // Fixed block information 00079 //===----------------------------------------------------------------------===// 00080 // 00081 // The number of instructions in a basic block and the CPU resources used by 00082 // those instructions don't depend on any given trace strategy. 00083 00084 /// Compute the resource usage in basic block MBB. 00085 const MachineTraceMetrics::FixedBlockInfo* 00086 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) { 00087 assert(MBB && "No basic block"); 00088 FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()]; 00089 if (FBI->hasResources()) 00090 return FBI; 00091 00092 // Compute resource usage in the block. 00093 FBI->HasCalls = false; 00094 unsigned InstrCount = 0; 00095 00096 // Add up per-processor resource cycles as well. 00097 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 00098 SmallVector<unsigned, 32> PRCycles(PRKinds); 00099 00100 for (const auto &MI : *MBB) { 00101 if (MI.isTransient()) 00102 continue; 00103 ++InstrCount; 00104 if (MI.isCall()) 00105 FBI->HasCalls = true; 00106 00107 // Count processor resources used. 00108 if (!SchedModel.hasInstrSchedModel()) 00109 continue; 00110 const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI); 00111 if (!SC->isValid()) 00112 continue; 00113 00114 for (TargetSchedModel::ProcResIter 00115 PI = SchedModel.getWriteProcResBegin(SC), 00116 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { 00117 assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind"); 00118 PRCycles[PI->ProcResourceIdx] += PI->Cycles; 00119 } 00120 } 00121 FBI->InstrCount = InstrCount; 00122 00123 // Scale the resource cycles so they are comparable. 00124 unsigned PROffset = MBB->getNumber() * PRKinds; 00125 for (unsigned K = 0; K != PRKinds; ++K) 00126 ProcResourceCycles[PROffset + K] = 00127 PRCycles[K] * SchedModel.getResourceFactor(K); 00128 00129 return FBI; 00130 } 00131 00132 ArrayRef<unsigned> 00133 MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const { 00134 assert(BlockInfo[MBBNum].hasResources() && 00135 "getResources() must be called before getProcResourceCycles()"); 00136 unsigned PRKinds = SchedModel.getNumProcResourceKinds(); 00137 assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size()); 00138 return makeArrayRef(ProcResourceCycles.data() + MBBNum * PRKinds, PRKinds); 00139 } 00140 00141 00142 //===----------------------------------------------------------------------===// 00143 // Ensemble utility functions 00144 //===----------------------------------------------------------------------===// 00145 00146 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct) 00147 : MTM(*ct) { 00148 BlockInfo.resize(MTM.BlockInfo.size()); 00149 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 00150 ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds); 00151 ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds); 00152 } 00153 00154 // Virtual destructor serves as an anchor. 00155 MachineTraceMetrics::Ensemble::~Ensemble() {} 00156 00157 const MachineLoop* 00158 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const { 00159 return MTM.Loops->getLoopFor(MBB); 00160 } 00161 00162 // Update resource-related information in the TraceBlockInfo for MBB. 00163 // Only update resources related to the trace above MBB. 00164 void MachineTraceMetrics::Ensemble:: 00165 computeDepthResources(const MachineBasicBlock *MBB) { 00166 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 00167 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 00168 unsigned PROffset = MBB->getNumber() * PRKinds; 00169 00170 // Compute resources from trace above. The top block is simple. 00171 if (!TBI->Pred) { 00172 TBI->InstrDepth = 0; 00173 TBI->Head = MBB->getNumber(); 00174 std::fill(ProcResourceDepths.begin() + PROffset, 00175 ProcResourceDepths.begin() + PROffset + PRKinds, 0); 00176 return; 00177 } 00178 00179 // Compute from the block above. A post-order traversal ensures the 00180 // predecessor is always computed first. 00181 unsigned PredNum = TBI->Pred->getNumber(); 00182 TraceBlockInfo *PredTBI = &BlockInfo[PredNum]; 00183 assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet"); 00184 const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred); 00185 TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount; 00186 TBI->Head = PredTBI->Head; 00187 00188 // Compute per-resource depths. 00189 ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum); 00190 ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum); 00191 for (unsigned K = 0; K != PRKinds; ++K) 00192 ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K]; 00193 } 00194 00195 // Update resource-related information in the TraceBlockInfo for MBB. 00196 // Only update resources related to the trace below MBB. 00197 void MachineTraceMetrics::Ensemble:: 00198 computeHeightResources(const MachineBasicBlock *MBB) { 00199 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 00200 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 00201 unsigned PROffset = MBB->getNumber() * PRKinds; 00202 00203 // Compute resources for the current block. 00204 TBI->InstrHeight = MTM.getResources(MBB)->InstrCount; 00205 ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber()); 00206 00207 // The trace tail is done. 00208 if (!TBI->Succ) { 00209 TBI->Tail = MBB->getNumber(); 00210 std::copy(PRCycles.begin(), PRCycles.end(), 00211 ProcResourceHeights.begin() + PROffset); 00212 return; 00213 } 00214 00215 // Compute from the block below. A post-order traversal ensures the 00216 // predecessor is always computed first. 00217 unsigned SuccNum = TBI->Succ->getNumber(); 00218 TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum]; 00219 assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet"); 00220 TBI->InstrHeight += SuccTBI->InstrHeight; 00221 TBI->Tail = SuccTBI->Tail; 00222 00223 // Compute per-resource heights. 00224 ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum); 00225 for (unsigned K = 0; K != PRKinds; ++K) 00226 ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K]; 00227 } 00228 00229 // Check if depth resources for MBB are valid and return the TBI. 00230 // Return NULL if the resources have been invalidated. 00231 const MachineTraceMetrics::TraceBlockInfo* 00232 MachineTraceMetrics::Ensemble:: 00233 getDepthResources(const MachineBasicBlock *MBB) const { 00234 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 00235 return TBI->hasValidDepth() ? TBI : nullptr; 00236 } 00237 00238 // Check if height resources for MBB are valid and return the TBI. 00239 // Return NULL if the resources have been invalidated. 00240 const MachineTraceMetrics::TraceBlockInfo* 00241 MachineTraceMetrics::Ensemble:: 00242 getHeightResources(const MachineBasicBlock *MBB) const { 00243 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()]; 00244 return TBI->hasValidHeight() ? TBI : nullptr; 00245 } 00246 00247 /// Get an array of processor resource depths for MBB. Indexed by processor 00248 /// resource kind, this array contains the scaled processor resources consumed 00249 /// by all blocks preceding MBB in its trace. It does not include instructions 00250 /// in MBB. 00251 /// 00252 /// Compare TraceBlockInfo::InstrDepth. 00253 ArrayRef<unsigned> 00254 MachineTraceMetrics::Ensemble:: 00255 getProcResourceDepths(unsigned MBBNum) const { 00256 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 00257 assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size()); 00258 return makeArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds); 00259 } 00260 00261 /// Get an array of processor resource heights for MBB. Indexed by processor 00262 /// resource kind, this array contains the scaled processor resources consumed 00263 /// by this block and all blocks following it in its trace. 00264 /// 00265 /// Compare TraceBlockInfo::InstrHeight. 00266 ArrayRef<unsigned> 00267 MachineTraceMetrics::Ensemble:: 00268 getProcResourceHeights(unsigned MBBNum) const { 00269 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds(); 00270 assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size()); 00271 return makeArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds); 00272 } 00273 00274 //===----------------------------------------------------------------------===// 00275 // Trace Selection Strategies 00276 //===----------------------------------------------------------------------===// 00277 // 00278 // A trace selection strategy is implemented as a sub-class of Ensemble. The 00279 // trace through a block B is computed by two DFS traversals of the CFG 00280 // starting from B. One upwards, and one downwards. During the upwards DFS, 00281 // pickTracePred() is called on the post-ordered blocks. During the downwards 00282 // DFS, pickTraceSucc() is called in a post-order. 00283 // 00284 00285 // We never allow traces that leave loops, but we do allow traces to enter 00286 // nested loops. We also never allow traces to contain back-edges. 00287 // 00288 // This means that a loop header can never appear above the center block of a 00289 // trace, except as the trace head. Below the center block, loop exiting edges 00290 // are banned. 00291 // 00292 // Return true if an edge from the From loop to the To loop is leaving a loop. 00293 // Either of To and From can be null. 00294 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) { 00295 return From && !From->contains(To); 00296 } 00297 00298 // MinInstrCountEnsemble - Pick the trace that executes the least number of 00299 // instructions. 00300 namespace { 00301 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble { 00302 const char *getName() const override { return "MinInstr"; } 00303 const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override; 00304 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override; 00305 00306 public: 00307 MinInstrCountEnsemble(MachineTraceMetrics *mtm) 00308 : MachineTraceMetrics::Ensemble(mtm) {} 00309 }; 00310 } 00311 00312 // Select the preferred predecessor for MBB. 00313 const MachineBasicBlock* 00314 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) { 00315 if (MBB->pred_empty()) 00316 return nullptr; 00317 const MachineLoop *CurLoop = getLoopFor(MBB); 00318 // Don't leave loops, and never follow back-edges. 00319 if (CurLoop && MBB == CurLoop->getHeader()) 00320 return nullptr; 00321 unsigned CurCount = MTM.getResources(MBB)->InstrCount; 00322 const MachineBasicBlock *Best = nullptr; 00323 unsigned BestDepth = 0; 00324 for (MachineBasicBlock::const_pred_iterator 00325 I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) { 00326 const MachineBasicBlock *Pred = *I; 00327 const MachineTraceMetrics::TraceBlockInfo *PredTBI = 00328 getDepthResources(Pred); 00329 // Ignore cycles that aren't natural loops. 00330 if (!PredTBI) 00331 continue; 00332 // Pick the predecessor that would give this block the smallest InstrDepth. 00333 unsigned Depth = PredTBI->InstrDepth + CurCount; 00334 if (!Best || Depth < BestDepth) 00335 Best = Pred, BestDepth = Depth; 00336 } 00337 return Best; 00338 } 00339 00340 // Select the preferred successor for MBB. 00341 const MachineBasicBlock* 00342 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) { 00343 if (MBB->pred_empty()) 00344 return nullptr; 00345 const MachineLoop *CurLoop = getLoopFor(MBB); 00346 const MachineBasicBlock *Best = nullptr; 00347 unsigned BestHeight = 0; 00348 for (MachineBasicBlock::const_succ_iterator 00349 I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) { 00350 const MachineBasicBlock *Succ = *I; 00351 // Don't consider back-edges. 00352 if (CurLoop && Succ == CurLoop->getHeader()) 00353 continue; 00354 // Don't consider successors exiting CurLoop. 00355 if (isExitingLoop(CurLoop, getLoopFor(Succ))) 00356 continue; 00357 const MachineTraceMetrics::TraceBlockInfo *SuccTBI = 00358 getHeightResources(Succ); 00359 // Ignore cycles that aren't natural loops. 00360 if (!SuccTBI) 00361 continue; 00362 // Pick the successor that would give this block the smallest InstrHeight. 00363 unsigned Height = SuccTBI->InstrHeight; 00364 if (!Best || Height < BestHeight) 00365 Best = Succ, BestHeight = Height; 00366 } 00367 return Best; 00368 } 00369 00370 // Get an Ensemble sub-class for the requested trace strategy. 00371 MachineTraceMetrics::Ensemble * 00372 MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) { 00373 assert(strategy < TS_NumStrategies && "Invalid trace strategy enum"); 00374 Ensemble *&E = Ensembles[strategy]; 00375 if (E) 00376 return E; 00377 00378 // Allocate new Ensemble on demand. 00379 switch (strategy) { 00380 case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this)); 00381 default: llvm_unreachable("Invalid trace strategy enum"); 00382 } 00383 } 00384 00385 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) { 00386 DEBUG(dbgs() << "Invalidate traces through BB#" << MBB->getNumber() << '\n'); 00387 BlockInfo[MBB->getNumber()].invalidate(); 00388 for (unsigned i = 0; i != TS_NumStrategies; ++i) 00389 if (Ensembles[i]) 00390 Ensembles[i]->invalidate(MBB); 00391 } 00392 00393 void MachineTraceMetrics::verifyAnalysis() const { 00394 if (!MF) 00395 return; 00396 #ifndef NDEBUG 00397 assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size"); 00398 for (unsigned i = 0; i != TS_NumStrategies; ++i) 00399 if (Ensembles[i]) 00400 Ensembles[i]->verify(); 00401 #endif 00402 } 00403 00404 //===----------------------------------------------------------------------===// 00405 // Trace building 00406 //===----------------------------------------------------------------------===// 00407 // 00408 // Traces are built by two CFG traversals. To avoid recomputing too much, use a 00409 // set abstraction that confines the search to the current loop, and doesn't 00410 // revisit blocks. 00411 00412 namespace { 00413 struct LoopBounds { 00414 MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks; 00415 SmallPtrSet<const MachineBasicBlock*, 8> Visited; 00416 const MachineLoopInfo *Loops; 00417 bool Downward; 00418 LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks, 00419 const MachineLoopInfo *loops) 00420 : Blocks(blocks), Loops(loops), Downward(false) {} 00421 }; 00422 } 00423 00424 // Specialize po_iterator_storage in order to prune the post-order traversal so 00425 // it is limited to the current loop and doesn't traverse the loop back edges. 00426 namespace llvm { 00427 template<> 00428 class po_iterator_storage<LoopBounds, true> { 00429 LoopBounds &LB; 00430 public: 00431 po_iterator_storage(LoopBounds &lb) : LB(lb) {} 00432 void finishPostorder(const MachineBasicBlock*) {} 00433 00434 bool insertEdge(const MachineBasicBlock *From, const MachineBasicBlock *To) { 00435 // Skip already visited To blocks. 00436 MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()]; 00437 if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth()) 00438 return false; 00439 // From is null once when To is the trace center block. 00440 if (From) { 00441 if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(From)) { 00442 // Don't follow backedges, don't leave FromLoop when going upwards. 00443 if ((LB.Downward ? To : From) == FromLoop->getHeader()) 00444 return false; 00445 // Don't leave FromLoop. 00446 if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To))) 00447 return false; 00448 } 00449 } 00450 // To is a new block. Mark the block as visited in case the CFG has cycles 00451 // that MachineLoopInfo didn't recognize as a natural loop. 00452 return LB.Visited.insert(To); 00453 } 00454 }; 00455 } 00456 00457 /// Compute the trace through MBB. 00458 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) { 00459 DEBUG(dbgs() << "Computing " << getName() << " trace through BB#" 00460 << MBB->getNumber() << '\n'); 00461 // Set up loop bounds for the backwards post-order traversal. 00462 LoopBounds Bounds(BlockInfo, MTM.Loops); 00463 00464 // Run an upwards post-order search for the trace start. 00465 Bounds.Downward = false; 00466 Bounds.Visited.clear(); 00467 typedef ipo_ext_iterator<const MachineBasicBlock*, LoopBounds> UpwardPO; 00468 for (UpwardPO I = ipo_ext_begin(MBB, Bounds), E = ipo_ext_end(MBB, Bounds); 00469 I != E; ++I) { 00470 DEBUG(dbgs() << " pred for BB#" << I->getNumber() << ": "); 00471 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 00472 // All the predecessors have been visited, pick the preferred one. 00473 TBI.Pred = pickTracePred(*I); 00474 DEBUG({ 00475 if (TBI.Pred) 00476 dbgs() << "BB#" << TBI.Pred->getNumber() << '\n'; 00477 else 00478 dbgs() << "null\n"; 00479 }); 00480 // The trace leading to I is now known, compute the depth resources. 00481 computeDepthResources(*I); 00482 } 00483 00484 // Run a downwards post-order search for the trace end. 00485 Bounds.Downward = true; 00486 Bounds.Visited.clear(); 00487 typedef po_ext_iterator<const MachineBasicBlock*, LoopBounds> DownwardPO; 00488 for (DownwardPO I = po_ext_begin(MBB, Bounds), E = po_ext_end(MBB, Bounds); 00489 I != E; ++I) { 00490 DEBUG(dbgs() << " succ for BB#" << I->getNumber() << ": "); 00491 TraceBlockInfo &TBI = BlockInfo[I->getNumber()]; 00492 // All the successors have been visited, pick the preferred one. 00493 TBI.Succ = pickTraceSucc(*I); 00494 DEBUG({ 00495 if (TBI.Succ) 00496 dbgs() << "BB#" << TBI.Succ->getNumber() << '\n'; 00497 else 00498 dbgs() << "null\n"; 00499 }); 00500 // The trace leaving I is now known, compute the height resources. 00501 computeHeightResources(*I); 00502 } 00503 } 00504 00505 /// Invalidate traces through BadMBB. 00506 void 00507 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) { 00508 SmallVector<const MachineBasicBlock*, 16> WorkList; 00509 TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()]; 00510 00511 // Invalidate height resources of blocks above MBB. 00512 if (BadTBI.hasValidHeight()) { 00513 BadTBI.invalidateHeight(); 00514 WorkList.push_back(BadMBB); 00515 do { 00516 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 00517 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() 00518 << " height.\n"); 00519 // Find any MBB predecessors that have MBB as their preferred successor. 00520 // They are the only ones that need to be invalidated. 00521 for (MachineBasicBlock::const_pred_iterator 00522 I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) { 00523 TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()]; 00524 if (!TBI.hasValidHeight()) 00525 continue; 00526 if (TBI.Succ == MBB) { 00527 TBI.invalidateHeight(); 00528 WorkList.push_back(*I); 00529 continue; 00530 } 00531 // Verify that TBI.Succ is actually a *I successor. 00532 assert((!TBI.Succ || (*I)->isSuccessor(TBI.Succ)) && "CFG changed"); 00533 } 00534 } while (!WorkList.empty()); 00535 } 00536 00537 // Invalidate depth resources of blocks below MBB. 00538 if (BadTBI.hasValidDepth()) { 00539 BadTBI.invalidateDepth(); 00540 WorkList.push_back(BadMBB); 00541 do { 00542 const MachineBasicBlock *MBB = WorkList.pop_back_val(); 00543 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName() 00544 << " depth.\n"); 00545 // Find any MBB successors that have MBB as their preferred predecessor. 00546 // They are the only ones that need to be invalidated. 00547 for (MachineBasicBlock::const_succ_iterator 00548 I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) { 00549 TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()]; 00550 if (!TBI.hasValidDepth()) 00551 continue; 00552 if (TBI.Pred == MBB) { 00553 TBI.invalidateDepth(); 00554 WorkList.push_back(*I); 00555 continue; 00556 } 00557 // Verify that TBI.Pred is actually a *I predecessor. 00558 assert((!TBI.Pred || (*I)->isPredecessor(TBI.Pred)) && "CFG changed"); 00559 } 00560 } while (!WorkList.empty()); 00561 } 00562 00563 // Clear any per-instruction data. We only have to do this for BadMBB itself 00564 // because the instructions in that block may change. Other blocks may be 00565 // invalidated, but their instructions will stay the same, so there is no 00566 // need to erase the Cycle entries. They will be overwritten when we 00567 // recompute. 00568 for (const auto &I : *BadMBB) 00569 Cycles.erase(&I); 00570 } 00571 00572 void MachineTraceMetrics::Ensemble::verify() const { 00573 #ifndef NDEBUG 00574 assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() && 00575 "Outdated BlockInfo size"); 00576 for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) { 00577 const TraceBlockInfo &TBI = BlockInfo[Num]; 00578 if (TBI.hasValidDepth() && TBI.Pred) { 00579 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 00580 assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace"); 00581 assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() && 00582 "Trace is broken, depth should have been invalidated."); 00583 const MachineLoop *Loop = getLoopFor(MBB); 00584 assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge"); 00585 } 00586 if (TBI.hasValidHeight() && TBI.Succ) { 00587 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num); 00588 assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace"); 00589 assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() && 00590 "Trace is broken, height should have been invalidated."); 00591 const MachineLoop *Loop = getLoopFor(MBB); 00592 const MachineLoop *SuccLoop = getLoopFor(TBI.Succ); 00593 assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) && 00594 "Trace contains backedge"); 00595 } 00596 } 00597 #endif 00598 } 00599 00600 //===----------------------------------------------------------------------===// 00601 // Data Dependencies 00602 //===----------------------------------------------------------------------===// 00603 // 00604 // Compute the depth and height of each instruction based on data dependencies 00605 // and instruction latencies. These cycle numbers assume that the CPU can issue 00606 // an infinite number of instructions per cycle as long as their dependencies 00607 // are ready. 00608 00609 // A data dependency is represented as a defining MI and operand numbers on the 00610 // defining and using MI. 00611 namespace { 00612 struct DataDep { 00613 const MachineInstr *DefMI; 00614 unsigned DefOp; 00615 unsigned UseOp; 00616 00617 DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp) 00618 : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {} 00619 00620 /// Create a DataDep from an SSA form virtual register. 00621 DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp) 00622 : UseOp(UseOp) { 00623 assert(TargetRegisterInfo::isVirtualRegister(VirtReg)); 00624 MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg); 00625 assert(!DefI.atEnd() && "Register has no defs"); 00626 DefMI = DefI->getParent(); 00627 DefOp = DefI.getOperandNo(); 00628 assert((++DefI).atEnd() && "Register has multiple defs"); 00629 } 00630 }; 00631 } 00632 00633 // Get the input data dependencies that must be ready before UseMI can issue. 00634 // Return true if UseMI has any physreg operands. 00635 static bool getDataDeps(const MachineInstr *UseMI, 00636 SmallVectorImpl<DataDep> &Deps, 00637 const MachineRegisterInfo *MRI) { 00638 bool HasPhysRegs = false; 00639 for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) { 00640 if (!MO->isReg()) 00641 continue; 00642 unsigned Reg = MO->getReg(); 00643 if (!Reg) 00644 continue; 00645 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 00646 HasPhysRegs = true; 00647 continue; 00648 } 00649 // Collect virtual register reads. 00650 if (MO->readsReg()) 00651 Deps.push_back(DataDep(MRI, Reg, MO.getOperandNo())); 00652 } 00653 return HasPhysRegs; 00654 } 00655 00656 // Get the input data dependencies of a PHI instruction, using Pred as the 00657 // preferred predecessor. 00658 // This will add at most one dependency to Deps. 00659 static void getPHIDeps(const MachineInstr *UseMI, 00660 SmallVectorImpl<DataDep> &Deps, 00661 const MachineBasicBlock *Pred, 00662 const MachineRegisterInfo *MRI) { 00663 // No predecessor at the beginning of a trace. Ignore dependencies. 00664 if (!Pred) 00665 return; 00666 assert(UseMI->isPHI() && UseMI->getNumOperands() % 2 && "Bad PHI"); 00667 for (unsigned i = 1; i != UseMI->getNumOperands(); i += 2) { 00668 if (UseMI->getOperand(i + 1).getMBB() == Pred) { 00669 unsigned Reg = UseMI->getOperand(i).getReg(); 00670 Deps.push_back(DataDep(MRI, Reg, i)); 00671 return; 00672 } 00673 } 00674 } 00675 00676 // Keep track of physreg data dependencies by recording each live register unit. 00677 // Associate each regunit with an instruction operand. Depending on the 00678 // direction instructions are scanned, it could be the operand that defined the 00679 // regunit, or the highest operand to read the regunit. 00680 namespace { 00681 struct LiveRegUnit { 00682 unsigned RegUnit; 00683 unsigned Cycle; 00684 const MachineInstr *MI; 00685 unsigned Op; 00686 00687 unsigned getSparseSetIndex() const { return RegUnit; } 00688 00689 LiveRegUnit(unsigned RU) : RegUnit(RU), Cycle(0), MI(nullptr), Op(0) {} 00690 }; 00691 } 00692 00693 // Identify physreg dependencies for UseMI, and update the live regunit 00694 // tracking set when scanning instructions downwards. 00695 static void updatePhysDepsDownwards(const MachineInstr *UseMI, 00696 SmallVectorImpl<DataDep> &Deps, 00697 SparseSet<LiveRegUnit> &RegUnits, 00698 const TargetRegisterInfo *TRI) { 00699 SmallVector<unsigned, 8> Kills; 00700 SmallVector<unsigned, 8> LiveDefOps; 00701 00702 for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) { 00703 if (!MO->isReg()) 00704 continue; 00705 unsigned Reg = MO->getReg(); 00706 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 00707 continue; 00708 // Track live defs and kills for updating RegUnits. 00709 if (MO->isDef()) { 00710 if (MO->isDead()) 00711 Kills.push_back(Reg); 00712 else 00713 LiveDefOps.push_back(MO.getOperandNo()); 00714 } else if (MO->isKill()) 00715 Kills.push_back(Reg); 00716 // Identify dependencies. 00717 if (!MO->readsReg()) 00718 continue; 00719 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 00720 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 00721 if (I == RegUnits.end()) 00722 continue; 00723 Deps.push_back(DataDep(I->MI, I->Op, MO.getOperandNo())); 00724 break; 00725 } 00726 } 00727 00728 // Update RegUnits to reflect live registers after UseMI. 00729 // First kills. 00730 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 00731 for (MCRegUnitIterator Units(Kills[i], TRI); Units.isValid(); ++Units) 00732 RegUnits.erase(*Units); 00733 00734 // Second, live defs. 00735 for (unsigned i = 0, e = LiveDefOps.size(); i != e; ++i) { 00736 unsigned DefOp = LiveDefOps[i]; 00737 for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI); 00738 Units.isValid(); ++Units) { 00739 LiveRegUnit &LRU = RegUnits[*Units]; 00740 LRU.MI = UseMI; 00741 LRU.Op = DefOp; 00742 } 00743 } 00744 } 00745 00746 /// The length of the critical path through a trace is the maximum of two path 00747 /// lengths: 00748 /// 00749 /// 1. The maximum height+depth over all instructions in the trace center block. 00750 /// 00751 /// 2. The longest cross-block dependency chain. For small blocks, it is 00752 /// possible that the critical path through the trace doesn't include any 00753 /// instructions in the block. 00754 /// 00755 /// This function computes the second number from the live-in list of the 00756 /// center block. 00757 unsigned MachineTraceMetrics::Ensemble:: 00758 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) { 00759 assert(TBI.HasValidInstrDepths && "Missing depth info"); 00760 assert(TBI.HasValidInstrHeights && "Missing height info"); 00761 unsigned MaxLen = 0; 00762 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 00763 const LiveInReg &LIR = TBI.LiveIns[i]; 00764 if (!TargetRegisterInfo::isVirtualRegister(LIR.Reg)) 00765 continue; 00766 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 00767 // Ignore dependencies outside the current trace. 00768 const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()]; 00769 if (!DefTBI.isUsefulDominator(TBI)) 00770 continue; 00771 unsigned Len = LIR.Height + Cycles[DefMI].Depth; 00772 MaxLen = std::max(MaxLen, Len); 00773 } 00774 return MaxLen; 00775 } 00776 00777 /// Compute instruction depths for all instructions above or in MBB in its 00778 /// trace. This assumes that the trace through MBB has already been computed. 00779 void MachineTraceMetrics::Ensemble:: 00780 computeInstrDepths(const MachineBasicBlock *MBB) { 00781 // The top of the trace may already be computed, and HasValidInstrDepths 00782 // implies Head->HasValidInstrDepths, so we only need to start from the first 00783 // block in the trace that needs to be recomputed. 00784 SmallVector<const MachineBasicBlock*, 8> Stack; 00785 do { 00786 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 00787 assert(TBI.hasValidDepth() && "Incomplete trace"); 00788 if (TBI.HasValidInstrDepths) 00789 break; 00790 Stack.push_back(MBB); 00791 MBB = TBI.Pred; 00792 } while (MBB); 00793 00794 // FIXME: If MBB is non-null at this point, it is the last pre-computed block 00795 // in the trace. We should track any live-out physregs that were defined in 00796 // the trace. This is quite rare in SSA form, typically created by CSE 00797 // hoisting a compare. 00798 SparseSet<LiveRegUnit> RegUnits; 00799 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 00800 00801 // Go through trace blocks in top-down order, stopping after the center block. 00802 SmallVector<DataDep, 8> Deps; 00803 while (!Stack.empty()) { 00804 MBB = Stack.pop_back_val(); 00805 DEBUG(dbgs() << "\nDepths for BB#" << MBB->getNumber() << ":\n"); 00806 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 00807 TBI.HasValidInstrDepths = true; 00808 TBI.CriticalPath = 0; 00809 00810 // Print out resource depths here as well. 00811 DEBUG({ 00812 dbgs() << format("%7u Instructions\n", TBI.InstrDepth); 00813 ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber()); 00814 for (unsigned K = 0; K != PRDepths.size(); ++K) 00815 if (PRDepths[K]) { 00816 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 00817 dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K])) 00818 << MTM.SchedModel.getProcResource(K)->Name << " (" 00819 << PRDepths[K]/Factor << " ops x" << Factor << ")\n"; 00820 } 00821 }); 00822 00823 // Also compute the critical path length through MBB when possible. 00824 if (TBI.HasValidInstrHeights) 00825 TBI.CriticalPath = computeCrossBlockCriticalPath(TBI); 00826 00827 for (const auto &UseMI : *MBB) { 00828 // Collect all data dependencies. 00829 Deps.clear(); 00830 if (UseMI.isPHI()) 00831 getPHIDeps(&UseMI, Deps, TBI.Pred, MTM.MRI); 00832 else if (getDataDeps(&UseMI, Deps, MTM.MRI)) 00833 updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI); 00834 00835 // Filter and process dependencies, computing the earliest issue cycle. 00836 unsigned Cycle = 0; 00837 for (unsigned i = 0, e = Deps.size(); i != e; ++i) { 00838 const DataDep &Dep = Deps[i]; 00839 const TraceBlockInfo&DepTBI = 00840 BlockInfo[Dep.DefMI->getParent()->getNumber()]; 00841 // Ignore dependencies from outside the current trace. 00842 if (!DepTBI.isUsefulDominator(TBI)) 00843 continue; 00844 assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency"); 00845 unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth; 00846 // Add latency if DefMI is a real instruction. Transients get latency 0. 00847 if (!Dep.DefMI->isTransient()) 00848 DepCycle += MTM.SchedModel 00849 .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp); 00850 Cycle = std::max(Cycle, DepCycle); 00851 } 00852 // Remember the instruction depth. 00853 InstrCycles &MICycles = Cycles[&UseMI]; 00854 MICycles.Depth = Cycle; 00855 00856 if (!TBI.HasValidInstrHeights) { 00857 DEBUG(dbgs() << Cycle << '\t' << UseMI); 00858 continue; 00859 } 00860 // Update critical path length. 00861 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height); 00862 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI); 00863 } 00864 } 00865 } 00866 00867 // Identify physreg dependencies for MI when scanning instructions upwards. 00868 // Return the issue height of MI after considering any live regunits. 00869 // Height is the issue height computed from virtual register dependencies alone. 00870 static unsigned updatePhysDepsUpwards(const MachineInstr *MI, unsigned Height, 00871 SparseSet<LiveRegUnit> &RegUnits, 00872 const TargetSchedModel &SchedModel, 00873 const TargetInstrInfo *TII, 00874 const TargetRegisterInfo *TRI) { 00875 SmallVector<unsigned, 8> ReadOps; 00876 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) { 00877 if (!MO->isReg()) 00878 continue; 00879 unsigned Reg = MO->getReg(); 00880 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) 00881 continue; 00882 if (MO->readsReg()) 00883 ReadOps.push_back(MO.getOperandNo()); 00884 if (!MO->isDef()) 00885 continue; 00886 // This is a def of Reg. Remove corresponding entries from RegUnits, and 00887 // update MI Height to consider the physreg dependencies. 00888 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 00889 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units); 00890 if (I == RegUnits.end()) 00891 continue; 00892 unsigned DepHeight = I->Cycle; 00893 if (!MI->isTransient()) { 00894 // We may not know the UseMI of this dependency, if it came from the 00895 // live-in list. SchedModel can handle a NULL UseMI. 00896 DepHeight += SchedModel 00897 .computeOperandLatency(MI, MO.getOperandNo(), I->MI, I->Op); 00898 } 00899 Height = std::max(Height, DepHeight); 00900 // This regunit is dead above MI. 00901 RegUnits.erase(I); 00902 } 00903 } 00904 00905 // Now we know the height of MI. Update any regunits read. 00906 for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) { 00907 unsigned Reg = MI->getOperand(ReadOps[i]).getReg(); 00908 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 00909 LiveRegUnit &LRU = RegUnits[*Units]; 00910 // Set the height to the highest reader of the unit. 00911 if (LRU.Cycle <= Height && LRU.MI != MI) { 00912 LRU.Cycle = Height; 00913 LRU.MI = MI; 00914 LRU.Op = ReadOps[i]; 00915 } 00916 } 00917 } 00918 00919 return Height; 00920 } 00921 00922 00923 typedef DenseMap<const MachineInstr *, unsigned> MIHeightMap; 00924 00925 // Push the height of DefMI upwards if required to match UseMI. 00926 // Return true if this is the first time DefMI was seen. 00927 static bool pushDepHeight(const DataDep &Dep, 00928 const MachineInstr *UseMI, unsigned UseHeight, 00929 MIHeightMap &Heights, 00930 const TargetSchedModel &SchedModel, 00931 const TargetInstrInfo *TII) { 00932 // Adjust height by Dep.DefMI latency. 00933 if (!Dep.DefMI->isTransient()) 00934 UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, 00935 UseMI, Dep.UseOp); 00936 00937 // Update Heights[DefMI] to be the maximum height seen. 00938 MIHeightMap::iterator I; 00939 bool New; 00940 std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight)); 00941 if (New) 00942 return true; 00943 00944 // DefMI has been pushed before. Give it the max height. 00945 if (I->second < UseHeight) 00946 I->second = UseHeight; 00947 return false; 00948 } 00949 00950 /// Assuming that the virtual register defined by DefMI:DefOp was used by 00951 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop 00952 /// when reaching the block that contains DefMI. 00953 void MachineTraceMetrics::Ensemble:: 00954 addLiveIns(const MachineInstr *DefMI, unsigned DefOp, 00955 ArrayRef<const MachineBasicBlock*> Trace) { 00956 assert(!Trace.empty() && "Trace should contain at least one block"); 00957 unsigned Reg = DefMI->getOperand(DefOp).getReg(); 00958 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 00959 const MachineBasicBlock *DefMBB = DefMI->getParent(); 00960 00961 // Reg is live-in to all blocks in Trace that follow DefMBB. 00962 for (unsigned i = Trace.size(); i; --i) { 00963 const MachineBasicBlock *MBB = Trace[i-1]; 00964 if (MBB == DefMBB) 00965 return; 00966 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 00967 // Just add the register. The height will be updated later. 00968 TBI.LiveIns.push_back(Reg); 00969 } 00970 } 00971 00972 /// Compute instruction heights in the trace through MBB. This updates MBB and 00973 /// the blocks below it in the trace. It is assumed that the trace has already 00974 /// been computed. 00975 void MachineTraceMetrics::Ensemble:: 00976 computeInstrHeights(const MachineBasicBlock *MBB) { 00977 // The bottom of the trace may already be computed. 00978 // Find the blocks that need updating. 00979 SmallVector<const MachineBasicBlock*, 8> Stack; 00980 do { 00981 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 00982 assert(TBI.hasValidHeight() && "Incomplete trace"); 00983 if (TBI.HasValidInstrHeights) 00984 break; 00985 Stack.push_back(MBB); 00986 TBI.LiveIns.clear(); 00987 MBB = TBI.Succ; 00988 } while (MBB); 00989 00990 // As we move upwards in the trace, keep track of instructions that are 00991 // required by deeper trace instructions. Map MI -> height required so far. 00992 MIHeightMap Heights; 00993 00994 // For physregs, the def isn't known when we see the use. 00995 // Instead, keep track of the highest use of each regunit. 00996 SparseSet<LiveRegUnit> RegUnits; 00997 RegUnits.setUniverse(MTM.TRI->getNumRegUnits()); 00998 00999 // If the bottom of the trace was already precomputed, initialize heights 01000 // from its live-in list. 01001 // MBB is the highest precomputed block in the trace. 01002 if (MBB) { 01003 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 01004 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 01005 LiveInReg LI = TBI.LiveIns[i]; 01006 if (TargetRegisterInfo::isVirtualRegister(LI.Reg)) { 01007 // For virtual registers, the def latency is included. 01008 unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)]; 01009 if (Height < LI.Height) 01010 Height = LI.Height; 01011 } else { 01012 // For register units, the def latency is not included because we don't 01013 // know the def yet. 01014 RegUnits[LI.Reg].Cycle = LI.Height; 01015 } 01016 } 01017 } 01018 01019 // Go through the trace blocks in bottom-up order. 01020 SmallVector<DataDep, 8> Deps; 01021 for (;!Stack.empty(); Stack.pop_back()) { 01022 MBB = Stack.back(); 01023 DEBUG(dbgs() << "Heights for BB#" << MBB->getNumber() << ":\n"); 01024 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()]; 01025 TBI.HasValidInstrHeights = true; 01026 TBI.CriticalPath = 0; 01027 01028 DEBUG({ 01029 dbgs() << format("%7u Instructions\n", TBI.InstrHeight); 01030 ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber()); 01031 for (unsigned K = 0; K != PRHeights.size(); ++K) 01032 if (PRHeights[K]) { 01033 unsigned Factor = MTM.SchedModel.getResourceFactor(K); 01034 dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K])) 01035 << MTM.SchedModel.getProcResource(K)->Name << " (" 01036 << PRHeights[K]/Factor << " ops x" << Factor << ")\n"; 01037 } 01038 }); 01039 01040 // Get dependencies from PHIs in the trace successor. 01041 const MachineBasicBlock *Succ = TBI.Succ; 01042 // If MBB is the last block in the trace, and it has a back-edge to the 01043 // loop header, get loop-carried dependencies from PHIs in the header. For 01044 // that purpose, pretend that all the loop header PHIs have height 0. 01045 if (!Succ) 01046 if (const MachineLoop *Loop = getLoopFor(MBB)) 01047 if (MBB->isSuccessor(Loop->getHeader())) 01048 Succ = Loop->getHeader(); 01049 01050 if (Succ) { 01051 for (const auto &PHI : *Succ) { 01052 if (!PHI.isPHI()) 01053 break; 01054 Deps.clear(); 01055 getPHIDeps(&PHI, Deps, MBB, MTM.MRI); 01056 if (!Deps.empty()) { 01057 // Loop header PHI heights are all 0. 01058 unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0; 01059 DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI); 01060 if (pushDepHeight(Deps.front(), &PHI, Height, 01061 Heights, MTM.SchedModel, MTM.TII)) 01062 addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack); 01063 } 01064 } 01065 } 01066 01067 // Go through the block backwards. 01068 for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin(); 01069 BI != BB;) { 01070 const MachineInstr *MI = --BI; 01071 01072 // Find the MI height as determined by virtual register uses in the 01073 // trace below. 01074 unsigned Cycle = 0; 01075 MIHeightMap::iterator HeightI = Heights.find(MI); 01076 if (HeightI != Heights.end()) { 01077 Cycle = HeightI->second; 01078 // We won't be seeing any more MI uses. 01079 Heights.erase(HeightI); 01080 } 01081 01082 // Don't process PHI deps. They depend on the specific predecessor, and 01083 // we'll get them when visiting the predecessor. 01084 Deps.clear(); 01085 bool HasPhysRegs = !MI->isPHI() && getDataDeps(MI, Deps, MTM.MRI); 01086 01087 // There may also be regunit dependencies to include in the height. 01088 if (HasPhysRegs) 01089 Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, 01090 MTM.SchedModel, MTM.TII, MTM.TRI); 01091 01092 // Update the required height of any virtual registers read by MI. 01093 for (unsigned i = 0, e = Deps.size(); i != e; ++i) 01094 if (pushDepHeight(Deps[i], MI, Cycle, Heights, MTM.SchedModel, MTM.TII)) 01095 addLiveIns(Deps[i].DefMI, Deps[i].DefOp, Stack); 01096 01097 InstrCycles &MICycles = Cycles[MI]; 01098 MICycles.Height = Cycle; 01099 if (!TBI.HasValidInstrDepths) { 01100 DEBUG(dbgs() << Cycle << '\t' << *MI); 01101 continue; 01102 } 01103 // Update critical path length. 01104 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth); 01105 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *MI); 01106 } 01107 01108 // Update virtual live-in heights. They were added by addLiveIns() with a 0 01109 // height because the final height isn't known until now. 01110 DEBUG(dbgs() << "BB#" << MBB->getNumber() << " Live-ins:"); 01111 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) { 01112 LiveInReg &LIR = TBI.LiveIns[i]; 01113 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg); 01114 LIR.Height = Heights.lookup(DefMI); 01115 DEBUG(dbgs() << ' ' << PrintReg(LIR.Reg) << '@' << LIR.Height); 01116 } 01117 01118 // Transfer the live regunits to the live-in list. 01119 for (SparseSet<LiveRegUnit>::const_iterator 01120 RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) { 01121 TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle)); 01122 DEBUG(dbgs() << ' ' << PrintRegUnit(RI->RegUnit, MTM.TRI) 01123 << '@' << RI->Cycle); 01124 } 01125 DEBUG(dbgs() << '\n'); 01126 01127 if (!TBI.HasValidInstrDepths) 01128 continue; 01129 // Add live-ins to the critical path length. 01130 TBI.CriticalPath = std::max(TBI.CriticalPath, 01131 computeCrossBlockCriticalPath(TBI)); 01132 DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n'); 01133 } 01134 } 01135 01136 MachineTraceMetrics::Trace 01137 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) { 01138 // FIXME: Check cache tags, recompute as needed. 01139 computeTrace(MBB); 01140 computeInstrDepths(MBB); 01141 computeInstrHeights(MBB); 01142 return Trace(*this, BlockInfo[MBB->getNumber()]); 01143 } 01144 01145 unsigned 01146 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr *MI) const { 01147 assert(MI && "Not an instruction."); 01148 assert(getBlockNum() == unsigned(MI->getParent()->getNumber()) && 01149 "MI must be in the trace center block"); 01150 InstrCycles Cyc = getInstrCycles(MI); 01151 return getCriticalPath() - (Cyc.Depth + Cyc.Height); 01152 } 01153 01154 unsigned 01155 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr *PHI) const { 01156 const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum()); 01157 SmallVector<DataDep, 1> Deps; 01158 getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI); 01159 assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor"); 01160 DataDep &Dep = Deps.front(); 01161 unsigned DepCycle = getInstrCycles(Dep.DefMI).Depth; 01162 // Add latency if DefMI is a real instruction. Transients get latency 0. 01163 if (!Dep.DefMI->isTransient()) 01164 DepCycle += TE.MTM.SchedModel 01165 .computeOperandLatency(Dep.DefMI, Dep.DefOp, PHI, Dep.UseOp); 01166 return DepCycle; 01167 } 01168 01169 /// When bottom is set include instructions in current block in estimate. 01170 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const { 01171 // Find the limiting processor resource. 01172 // Numbers have been pre-scaled to be comparable. 01173 unsigned PRMax = 0; 01174 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 01175 if (Bottom) { 01176 ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum()); 01177 for (unsigned K = 0; K != PRDepths.size(); ++K) 01178 PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]); 01179 } else { 01180 for (unsigned K = 0; K != PRDepths.size(); ++K) 01181 PRMax = std::max(PRMax, PRDepths[K]); 01182 } 01183 // Convert to cycle count. 01184 PRMax = TE.MTM.getCycles(PRMax); 01185 01186 /// All instructions before current block 01187 unsigned Instrs = TBI.InstrDepth; 01188 // plus instructions in current block 01189 if (Bottom) 01190 Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount; 01191 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 01192 Instrs /= IW; 01193 // Assume issue width 1 without a schedule model. 01194 return std::max(Instrs, PRMax); 01195 } 01196 01197 unsigned MachineTraceMetrics::Trace::getResourceLength( 01198 ArrayRef<const MachineBasicBlock *> Extrablocks, 01199 ArrayRef<const MCSchedClassDesc *> ExtraInstrs, 01200 ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const { 01201 // Add up resources above and below the center block. 01202 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum()); 01203 ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum()); 01204 unsigned PRMax = 0; 01205 01206 // Capture computing cycles from extra instructions 01207 auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs, 01208 unsigned ResourceIdx) 01209 ->unsigned { 01210 unsigned Cycles = 0; 01211 for (unsigned I = 0; I != Instrs.size(); ++I) { 01212 const MCSchedClassDesc *SC = Instrs[I]; 01213 if (!SC->isValid()) 01214 continue; 01215 for (TargetSchedModel::ProcResIter 01216 PI = TE.MTM.SchedModel.getWriteProcResBegin(SC), 01217 PE = TE.MTM.SchedModel.getWriteProcResEnd(SC); 01218 PI != PE; ++PI) { 01219 if (PI->ProcResourceIdx != ResourceIdx) 01220 continue; 01221 Cycles += 01222 (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(ResourceIdx)); 01223 } 01224 } 01225 return Cycles; 01226 }; 01227 01228 for (unsigned K = 0; K != PRDepths.size(); ++K) { 01229 unsigned PRCycles = PRDepths[K] + PRHeights[K]; 01230 for (unsigned I = 0; I != Extrablocks.size(); ++I) 01231 PRCycles += TE.MTM.getProcResourceCycles(Extrablocks[I]->getNumber())[K]; 01232 PRCycles += extraCycles(ExtraInstrs, K); 01233 PRCycles -= extraCycles(RemoveInstrs, K); 01234 PRMax = std::max(PRMax, PRCycles); 01235 } 01236 // Convert to cycle count. 01237 PRMax = TE.MTM.getCycles(PRMax); 01238 01239 // Instrs: #instructions in current trace outside current block. 01240 unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight; 01241 // Add instruction count from the extra blocks. 01242 for (unsigned i = 0, e = Extrablocks.size(); i != e; ++i) 01243 Instrs += TE.MTM.getResources(Extrablocks[i])->InstrCount; 01244 Instrs += ExtraInstrs.size(); 01245 Instrs -= RemoveInstrs.size(); 01246 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth()) 01247 Instrs /= IW; 01248 // Assume issue width 1 without a schedule model. 01249 return std::max(Instrs, PRMax); 01250 } 01251 01252 bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr *DefMI, 01253 const MachineInstr *UseMI) const { 01254 if (DefMI->getParent() == UseMI->getParent()) 01255 return true; 01256 01257 const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI->getParent()->getNumber()]; 01258 const TraceBlockInfo &TBI = TE.BlockInfo[UseMI->getParent()->getNumber()]; 01259 01260 return DepTBI.isUsefulDominator(TBI); 01261 } 01262 01263 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const { 01264 OS << getName() << " ensemble:\n"; 01265 for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) { 01266 OS << " BB#" << i << '\t'; 01267 BlockInfo[i].print(OS); 01268 OS << '\n'; 01269 } 01270 } 01271 01272 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const { 01273 if (hasValidDepth()) { 01274 OS << "depth=" << InstrDepth; 01275 if (Pred) 01276 OS << " pred=BB#" << Pred->getNumber(); 01277 else 01278 OS << " pred=null"; 01279 OS << " head=BB#" << Head; 01280 if (HasValidInstrDepths) 01281 OS << " +instrs"; 01282 } else 01283 OS << "depth invalid"; 01284 OS << ", "; 01285 if (hasValidHeight()) { 01286 OS << "height=" << InstrHeight; 01287 if (Succ) 01288 OS << " succ=BB#" << Succ->getNumber(); 01289 else 01290 OS << " succ=null"; 01291 OS << " tail=BB#" << Tail; 01292 if (HasValidInstrHeights) 01293 OS << " +instrs"; 01294 } else 01295 OS << "height invalid"; 01296 if (HasValidInstrDepths && HasValidInstrHeights) 01297 OS << ", crit=" << CriticalPath; 01298 } 01299 01300 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const { 01301 unsigned MBBNum = &TBI - &TE.BlockInfo[0]; 01302 01303 OS << TE.getName() << " trace BB#" << TBI.Head << " --> BB#" << MBBNum 01304 << " --> BB#" << TBI.Tail << ':'; 01305 if (TBI.hasValidHeight() && TBI.hasValidDepth()) 01306 OS << ' ' << getInstrCount() << " instrs."; 01307 if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights) 01308 OS << ' ' << TBI.CriticalPath << " cycles."; 01309 01310 const MachineTraceMetrics::TraceBlockInfo *Block = &TBI; 01311 OS << "\nBB#" << MBBNum; 01312 while (Block->hasValidDepth() && Block->Pred) { 01313 unsigned Num = Block->Pred->getNumber(); 01314 OS << " <- BB#" << Num; 01315 Block = &TE.BlockInfo[Num]; 01316 } 01317 01318 Block = &TBI; 01319 OS << "\n "; 01320 while (Block->hasValidHeight() && Block->Succ) { 01321 unsigned Num = Block->Succ->getNumber(); 01322 OS << " -> BB#" << Num; 01323 Block = &TE.BlockInfo[Num]; 01324 } 01325 OS << '\n'; 01326 }