#include "access/genam.h"#include "access/itup.h"#include "access/sdir.h"#include "access/xlog.h"#include "access/xlogutils.h"#include "catalog/pg_index.h"

Go to the source code of this file.
| #define BT_READ BUFFER_LOCK_SHARE |
Definition at line 438 of file nbtree.h.
Referenced by _bt_check_unique(), _bt_first(), _bt_get_endpoint(), _bt_getroot(), _bt_getrootheight(), _bt_gettrueroot(), _bt_killitems(), _bt_next(), _bt_pagedel(), _bt_parent_deletion_safe(), _bt_search(), _bt_steppage(), _bt_walk_left(), btvacuumpage(), and pgstat_btree_page().
| #define BT_WRITE BUFFER_LOCK_EXCLUSIVE |
Definition at line 439 of file nbtree.h.
Referenced by _bt_doinsert(), _bt_findinsertloc(), _bt_getbuf(), _bt_getroot(), _bt_insert_parent(), _bt_insertonpg(), _bt_newroot(), _bt_pagedel(), and _bt_split().
| #define BTCommuteStrategyNumber | ( | strat | ) | (BTMaxStrategyNumber + 1 - (strat)) |
Definition at line 416 of file nbtree.h.
Referenced by _bt_compare_scankey_args(), and _bt_fix_scankey_strategy().
| #define BTEntrySame | ( | i1, | ||
| i2 | ||||
| ) | BTTidSame((i1)->t_tid, (i2)->t_tid) |
Definition at line 155 of file nbtree.h.
Referenced by _bt_getstackbuf().
| #define BTMaxItemSize | ( | page | ) |
MAXALIGN_DOWN((PageGetPageSize(page) - \ MAXALIGN(SizeOfPageHeaderData + 3*sizeof(ItemIdData)) - \ MAXALIGN(sizeof(BTPageOpaqueData))) / 3)
Definition at line 117 of file nbtree.h.
Referenced by _bt_buildadd(), and _bt_findinsertloc().
| #define BTORDER_PROC 1 |
Definition at line 430 of file nbtree.h.
Referenced by _bt_first(), _bt_mkscankey(), _bt_mkscankey_nodata(), _bt_sort_array_elements(), assignProcTypes(), ExecIndexBuildScanKeys(), ExecInitExpr(), get_sort_function_for_ordering_op(), load_rangetype_info(), lookup_type_cache(), and MJExamineQuals().
| #define BTP_DELETED (1 << 2) |
Definition at line 71 of file nbtree.h.
Referenced by pgstat_btree_page().
| #define BTP_HALF_DEAD (1 << 4) |
Definition at line 73 of file nbtree.h.
Referenced by pgstat_btree_page().
| #define BTP_LEAF (1 << 0) |
Definition at line 69 of file nbtree.h.
Referenced by _bt_blnewpage(), _bt_getroot(), and btree_xlog_split().
| #define BTP_META (1 << 3) |
Definition at line 72 of file nbtree.h.
Referenced by _bt_getroot(), _bt_getrootheight(), and _bt_gettrueroot().
| #define BTP_ROOT (1 << 1) |
Definition at line 70 of file nbtree.h.
Referenced by _bt_split().
| #define BTP_SPLIT_END (1 << 5) |
Definition at line 74 of file nbtree.h.
Referenced by _bt_split(), and btvacuumpage().
| #define BTPageGetMeta | ( | p | ) | ((BTMetaPageData *) PageGetContents(p)) |
Definition at line 104 of file nbtree.h.
Referenced by _bt_getroot(), _bt_getrootheight(), _bt_gettrueroot(), _bt_initmetapage(), _bt_insertonpg(), _bt_newroot(), _bt_pagedel(), _bt_restore_meta(), bt_metap(), and pgstatindex().
| #define BTREE_DEFAULT_FILLFACTOR 90 |
Definition at line 130 of file nbtree.h.
Referenced by _bt_findsplitloc(), and _bt_pagestate().
| #define BTREE_MAGIC 0x053162 |
Definition at line 108 of file nbtree.h.
Referenced by _bt_getroot(), _bt_getrootheight(), and _bt_gettrueroot().
| #define BTREE_METAPAGE 0 |
Definition at line 107 of file nbtree.h.
Referenced by _bt_getroot(), _bt_getrootheight(), _bt_gettrueroot(), _bt_insertonpg(), _bt_leafbuild(), _bt_newroot(), _bt_pagedel(), _bt_restore_meta(), _bt_uppershutdown(), btbuildempty(), btvacuumscan(), and pgstat_relation().
| #define BTREE_VERSION 2 |
Definition at line 109 of file nbtree.h.
Referenced by _bt_getroot(), _bt_getrootheight(), and _bt_gettrueroot().
| #define BTScanPosIsValid | ( | scanpos | ) | BufferIsValid((scanpos).buf) |
Definition at line 531 of file nbtree.h.
Referenced by btendscan(), btgettuple(), btmarkpos(), btrescan(), and btrestrpos().
| #define BTSORTSUPPORT_PROC 2 |
Definition at line 431 of file nbtree.h.
Referenced by assignProcTypes(), get_sort_function_for_ordering_op(), and MJExamineQuals().
| #define BTTidSame | ( | i1, | ||
| i2 | ||||
| ) |
| #define MAX_BT_CYCLE_ID 0xFF7F |
Definition at line 84 of file nbtree.h.
Referenced by _bt_start_vacuum().
| #define P_FIRSTDATAKEY | ( | opaque | ) | (P_RIGHTMOST(opaque) ? P_HIKEY : P_FIRSTKEY) |
Definition at line 202 of file nbtree.h.
Referenced by _bt_binsrch(), _bt_check_unique(), _bt_checkkeys(), _bt_compare(), _bt_endpoint(), _bt_findinsertloc(), _bt_findsplitloc(), _bt_get_endpoint(), _bt_getstackbuf(), _bt_insertonpg(), _bt_killitems(), _bt_pagedel(), _bt_parent_deletion_safe(), _bt_pgaddtup(), _bt_readpage(), _bt_split(), _bt_steppage(), _bt_vacuum_one_page(), btree_xlog_delete_page(), btree_xlog_split(), btvacuumpage(), and pgstat_btree_page().
| #define P_FIRSTKEY ((OffsetNumber) 2) |
Definition at line 201 of file nbtree.h.
Referenced by _bt_buildadd(), _bt_newroot(), _bt_slideleft(), and btree_xlog_newroot().
| #define P_HAS_GARBAGE | ( | opaque | ) | ((opaque)->btpo_flags & BTP_HAS_GARBAGE) |
Definition at line 180 of file nbtree.h.
Referenced by _bt_findinsertloc().
| #define P_HIKEY ((OffsetNumber) 1) |
Definition at line 200 of file nbtree.h.
Referenced by _bt_buildadd(), _bt_check_unique(), _bt_findinsertloc(), _bt_findsplitloc(), _bt_insert_parent(), _bt_insertonpg(), _bt_moveright(), _bt_newroot(), _bt_pagedel(), _bt_parent_deletion_safe(), _bt_slideleft(), _bt_split(), _bt_uppershutdown(), btree_xlog_delete_page(), btree_xlog_newroot(), and btree_xlog_split().
| #define P_IGNORE | ( | opaque | ) | ((opaque)->btpo_flags & (BTP_DELETED|BTP_HALF_DEAD)) |
Definition at line 179 of file nbtree.h.
Referenced by _bt_check_unique(), _bt_findinsertloc(), _bt_get_endpoint(), _bt_getroot(), _bt_getstackbuf(), _bt_gettrueroot(), _bt_moveright(), _bt_steppage(), btvacuumpage(), GetBTPageStatistics(), and pgstatindex().
| #define P_ISDELETED | ( | opaque | ) | ((opaque)->btpo_flags & BTP_DELETED) |
Definition at line 177 of file nbtree.h.
Referenced by _bt_page_recyclable(), _bt_pagedel(), _bt_walk_left(), bt_page_items(), btvacuumpage(), GetBTPageStatistics(), and pgstatindex().
| #define P_ISHALFDEAD | ( | opaque | ) | ((opaque)->btpo_flags & BTP_HALF_DEAD) |
Definition at line 178 of file nbtree.h.
Referenced by _bt_pagedel(), and btvacuumpage().
| #define P_ISLEAF | ( | opaque | ) | ((opaque)->btpo_flags & BTP_LEAF) |
Definition at line 175 of file nbtree.h.
Referenced by _bt_binsrch(), _bt_compare(), _bt_endpoint(), _bt_findinsertloc(), _bt_findsplitloc(), _bt_insertonpg(), _bt_isequal(), _bt_pgaddtup(), _bt_search(), _bt_sortaddtup(), btvacuumpage(), GetBTPageStatistics(), pgstat_btree_page(), and pgstatindex().
| #define P_ISROOT | ( | opaque | ) | ((opaque)->btpo_flags & BTP_ROOT) |
Definition at line 176 of file nbtree.h.
Referenced by _bt_insertonpg(), _bt_pagedel(), _bt_parent_deletion_safe(), _bt_split(), GetBTPageStatistics(), and pgstatindex().
| #define P_LEFTMOST | ( | opaque | ) | ((opaque)->btpo_prev == P_NONE) |
Definition at line 173 of file nbtree.h.
Referenced by _bt_getroot(), _bt_insertonpg(), _bt_walk_left(), and btree_xlog_cleanup().
| #define P_NONE 0 |
Definition at line 167 of file nbtree.h.
Referenced by _bt_get_endpoint(), _bt_getroot(), _bt_getrootheight(), _bt_gettrueroot(), _bt_pagedel(), _bt_steppage(), btbuildempty(), btree_xlog_delete_page(), btree_xlog_split(), btvacuumpage(), and pgstatindex().
| #define P_RIGHTMOST | ( | opaque | ) | ((opaque)->btpo_next == P_NONE) |
Definition at line 174 of file nbtree.h.
Referenced by _bt_check_unique(), _bt_endpoint(), _bt_findinsertloc(), _bt_findsplitloc(), _bt_get_endpoint(), _bt_getroot(), _bt_getstackbuf(), _bt_gettrueroot(), _bt_insertonpg(), _bt_moveright(), _bt_pagedel(), _bt_parent_deletion_safe(), _bt_split(), _bt_walk_left(), btree_xlog_cleanup(), btree_xlog_split(), and btvacuumpage().
| #define SizeOfBtreeDelete (offsetof(xl_btree_delete, nitems) + sizeof(int)) |
Definition at line 326 of file nbtree.h.
Referenced by btree_xlog_delete().
| #define SizeOfBtreeDeletePage (offsetof(xl_btree_delete_page, btpo_xact) + sizeof(TransactionId)) |
Definition at line 389 of file nbtree.h.
Referenced by btree_xlog_delete_page().
| #define SizeOfBtreeInsert (offsetof(xl_btreetid, tid) + SizeOfIptrData) |
Definition at line 262 of file nbtree.h.
Referenced by btree_xlog_insert().
| #define SizeOfBtreeNewroot (offsetof(xl_btree_newroot, level) + sizeof(uint32)) |
Definition at line 406 of file nbtree.h.
Referenced by btree_xlog_newroot().
| #define SizeOfBtreeReusePage (sizeof(xl_btree_reuse_page)) |
| #define SizeOfBtreeSplit (offsetof(xl_btree_split, firstright) + sizeof(OffsetNumber)) |
Definition at line 308 of file nbtree.h.
Referenced by btree_xlog_split().
| #define SizeOfBtreeVacuum (offsetof(xl_btree_vacuum, lastBlockVacuumed) + sizeof(BlockNumber)) |
Definition at line 370 of file nbtree.h.
Referenced by btree_xlog_vacuum().
| #define SK_BT_DESC (INDOPTION_DESC << SK_BT_INDOPTION_SHIFT) |
Definition at line 593 of file nbtree.h.
Referenced by _bt_check_rowcompare(), _bt_compare(), _bt_compare_scankey_args(), _bt_first(), _bt_fix_scankey_strategy(), _bt_load(), inlineApplySortFunction(), and reversedirection_index_btree().
| #define SK_BT_INDOPTION_SHIFT 24 |
Definition at line 592 of file nbtree.h.
Referenced by _bt_mkscankey().
| #define SK_BT_NULLS_FIRST (INDOPTION_NULLS_FIRST << SK_BT_INDOPTION_SHIFT) |
Definition at line 594 of file nbtree.h.
Referenced by _bt_check_rowcompare(), _bt_checkkeys(), _bt_compare(), _bt_compare_scankey_args(), _bt_first(), _bt_fix_scankey_strategy(), _bt_load(), and inlineApplySortFunction().
| #define SK_BT_REQBKWD 0x00020000 |
Definition at line 591 of file nbtree.h.
Referenced by _bt_check_rowcompare(), and _bt_checkkeys().
| #define SK_BT_REQFWD 0x00010000 |
Definition at line 590 of file nbtree.h.
Referenced by _bt_check_rowcompare(), _bt_checkkeys(), and _bt_mark_scankey_required().
| #define XLOG_BTREE_DELETE 0x70 |
Definition at line 217 of file nbtree.h.
Referenced by _bt_delitems_delete(), btree_desc(), and btree_redo().
| #define XLOG_BTREE_DELETE_PAGE 0x80 |
Definition at line 218 of file nbtree.h.
Referenced by btree_desc(), and btree_redo().
| #define XLOG_BTREE_DELETE_PAGE_HALF 0xB0 |
Definition at line 221 of file nbtree.h.
Referenced by btree_desc(), btree_redo(), and btree_xlog_delete_page().
| #define XLOG_BTREE_DELETE_PAGE_META 0x90 |
Definition at line 219 of file nbtree.h.
Referenced by btree_desc(), btree_redo(), and btree_xlog_delete_page().
| #define XLOG_BTREE_INSERT_LEAF 0x00 |
Definition at line 210 of file nbtree.h.
Referenced by _bt_insertonpg(), btree_desc(), and btree_redo().
| #define XLOG_BTREE_INSERT_META 0x20 |
Definition at line 212 of file nbtree.h.
Referenced by btree_desc(), and btree_redo().
| #define XLOG_BTREE_INSERT_UPPER 0x10 |
Definition at line 211 of file nbtree.h.
Referenced by btree_desc(), and btree_redo().
| #define XLOG_BTREE_NEWROOT 0xA0 |
Definition at line 220 of file nbtree.h.
Referenced by _bt_getroot(), _bt_newroot(), btree_desc(), and btree_redo().
| #define XLOG_BTREE_REUSE_PAGE 0xD0 |
Definition at line 225 of file nbtree.h.
Referenced by _bt_log_reuse_page(), btree_desc(), and btree_redo().
| #define XLOG_BTREE_SPLIT_L 0x30 |
Definition at line 213 of file nbtree.h.
Referenced by _bt_split(), btree_desc(), and btree_redo().
| #define XLOG_BTREE_SPLIT_L_ROOT 0x50 |
Definition at line 215 of file nbtree.h.
Referenced by _bt_split(), btree_desc(), and btree_redo().
| #define XLOG_BTREE_SPLIT_R 0x40 |
Definition at line 214 of file nbtree.h.
Referenced by btree_desc(), and btree_redo().
| #define XLOG_BTREE_SPLIT_R_ROOT 0x60 |
Definition at line 216 of file nbtree.h.
Referenced by btree_desc(), and btree_redo().
| #define XLOG_BTREE_VACUUM 0xC0 |
Definition at line 223 of file nbtree.h.
Referenced by _bt_delitems_vacuum(), btree_desc(), and btree_redo().
| typedef struct BTArrayKeyInfo BTArrayKeyInfo |
| typedef struct BTMetaPageData BTMetaPageData |
| typedef BTPageOpaqueData* BTPageOpaque |
| typedef struct BTPageOpaqueData BTPageOpaqueData |
| typedef BTScanOpaqueData* BTScanOpaque |
| typedef struct BTScanOpaqueData BTScanOpaqueData |
| typedef BTScanPosData* BTScanPos |
| typedef struct BTScanPosData BTScanPosData |
| typedef struct BTScanPosItem BTScanPosItem |
| typedef BTStackData* BTStack |
| typedef struct BTStackData BTStackData |
| typedef struct xl_btree_delete xl_btree_delete |
| typedef struct xl_btree_delete_page xl_btree_delete_page |
| typedef struct xl_btree_insert xl_btree_insert |
| typedef struct xl_btree_metadata xl_btree_metadata |
| typedef struct xl_btree_newroot xl_btree_newroot |
| typedef struct xl_btree_reuse_page xl_btree_reuse_page |
| typedef struct xl_btree_split xl_btree_split |
| typedef struct xl_btree_vacuum xl_btree_vacuum |
| typedef struct xl_btreetid xl_btreetid |
| bool _bt_advance_array_keys | ( | IndexScanDesc | scan, | |
| ScanDirection | dir | |||
| ) |
Definition at line 549 of file nbtutils.c.
References BTScanOpaqueData::arrayKeyData, BTScanOpaqueData::arrayKeys, BTArrayKeyInfo::cur_elem, BTArrayKeyInfo::elem_values, i, BTArrayKeyInfo::num_elems, BTScanOpaqueData::numArrayKeys, IndexScanDescData::opaque, BTArrayKeyInfo::scan_key, ScanDirectionIsBackward, and ScanKeyData::sk_argument.
Referenced by btgetbitmap(), and btgettuple().
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
bool found = false;
int i;
/*
* We must advance the last array key most quickly, since it will
* correspond to the lowest-order index column among the available
* qualifications. This is necessary to ensure correct ordering of output
* when there are multiple array keys.
*/
for (i = so->numArrayKeys - 1; i >= 0; i--)
{
BTArrayKeyInfo *curArrayKey = &so->arrayKeys[i];
ScanKey skey = &so->arrayKeyData[curArrayKey->scan_key];
int cur_elem = curArrayKey->cur_elem;
int num_elems = curArrayKey->num_elems;
if (ScanDirectionIsBackward(dir))
{
if (--cur_elem < 0)
{
cur_elem = num_elems - 1;
found = false; /* need to advance next array key */
}
else
found = true;
}
else
{
if (++cur_elem >= num_elems)
{
cur_elem = 0;
found = false; /* need to advance next array key */
}
else
found = true;
}
curArrayKey->cur_elem = cur_elem;
skey->sk_argument = curArrayKey->elem_values[cur_elem];
if (found)
break;
}
return found;
}
| OffsetNumber _bt_binsrch | ( | Relation | rel, | |
| Buffer | buf, | |||
| int | keysz, | |||
| ScanKey | scankey, | |||
| bool | nextkey | |||
| ) |
Definition at line 234 of file nbtsearch.c.
References _bt_compare(), Assert, BufferGetPage, OffsetNumberPrev, P_FIRSTDATAKEY, P_ISLEAF, PageGetMaxOffsetNumber, and PageGetSpecialPointer.
Referenced by _bt_doinsert(), _bt_findinsertloc(), _bt_first(), and _bt_search().
{
Page page;
BTPageOpaque opaque;
OffsetNumber low,
high;
int32 result,
cmpval;
page = BufferGetPage(buf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
low = P_FIRSTDATAKEY(opaque);
high = PageGetMaxOffsetNumber(page);
/*
* If there are no keys on the page, return the first available slot. Note
* this covers two cases: the page is really empty (no keys), or it
* contains only a high key. The latter case is possible after vacuuming.
* This can never happen on an internal page, however, since they are
* never empty (an internal page must have children).
*/
if (high < low)
return low;
/*
* Binary search to find the first key on the page >= scan key, or first
* key > scankey when nextkey is true.
*
* For nextkey=false (cmpval=1), the loop invariant is: all slots before
* 'low' are < scan key, all slots at or after 'high' are >= scan key.
*
* For nextkey=true (cmpval=0), the loop invariant is: all slots before
* 'low' are <= scan key, all slots at or after 'high' are > scan key.
*
* We can fall out when high == low.
*/
high++; /* establish the loop invariant for high */
cmpval = nextkey ? 0 : 1; /* select comparison value */
while (high > low)
{
OffsetNumber mid = low + ((high - low) / 2);
/* We have low <= mid < high, so mid points at a real slot */
result = _bt_compare(rel, keysz, scankey, page, mid);
if (result >= cmpval)
low = mid + 1;
else
high = mid;
}
/*
* At this point we have high == low, but be careful: they could point
* past the last slot on the page.
*
* On a leaf page, we always return the first key >= scan key (resp. >
* scan key), which could be the last slot + 1.
*/
if (P_ISLEAF(opaque))
return low;
/*
* On a non-leaf page, return the last key < scan key (resp. <= scan key).
* There must be one if _bt_compare() is playing by the rules.
*/
Assert(low > P_FIRSTDATAKEY(opaque));
return OffsetNumberPrev(low);
}
| IndexTuple _bt_checkkeys | ( | IndexScanDesc | scan, | |
| Page | page, | |||
| OffsetNumber | offnum, | |||
| ScanDirection | dir, | |||
| bool * | continuescan | |||
| ) |
Definition at line 1372 of file nbtutils.c.
References _bt_check_rowcompare(), Assert, DatumGetBool, FunctionCall2Coll(), IndexScanDescData::ignore_killed_tuples, index_getattr, IndexScanDescData::indexRelation, ItemIdIsDead, BTScanOpaqueData::keyData, NULL, BTScanOpaqueData::numberOfKeys, IndexScanDescData::opaque, P_FIRSTDATAKEY, PageGetItem, PageGetItemId, PageGetMaxOffsetNumber, PageGetSpecialPointer, RelationGetDescr, ScanDirectionIsBackward, ScanDirectionIsForward, ScanKeyData::sk_argument, ScanKeyData::sk_attno, SK_BT_NULLS_FIRST, SK_BT_REQBKWD, SK_BT_REQFWD, ScanKeyData::sk_collation, ScanKeyData::sk_flags, ScanKeyData::sk_func, SK_ISNULL, SK_ROW_HEADER, SK_SEARCHNOTNULL, and SK_SEARCHNULL.
Referenced by _bt_readpage().
{
ItemId iid = PageGetItemId(page, offnum);
bool tuple_alive;
IndexTuple tuple;
TupleDesc tupdesc;
BTScanOpaque so;
int keysz;
int ikey;
ScanKey key;
*continuescan = true; /* default assumption */
/*
* If the scan specifies not to return killed tuples, then we treat a
* killed tuple as not passing the qual. Most of the time, it's a win to
* not bother examining the tuple's index keys, but just return
* immediately with continuescan = true to proceed to the next tuple.
* However, if this is the last tuple on the page, we should check the
* index keys to prevent uselessly advancing to the next page.
*/
if (scan->ignore_killed_tuples && ItemIdIsDead(iid))
{
/* return immediately if there are more tuples on the page */
if (ScanDirectionIsForward(dir))
{
if (offnum < PageGetMaxOffsetNumber(page))
return NULL;
}
else
{
BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page);
if (offnum > P_FIRSTDATAKEY(opaque))
return NULL;
}
/*
* OK, we want to check the keys so we can set continuescan correctly,
* but we'll return NULL even if the tuple passes the key tests.
*/
tuple_alive = false;
}
else
tuple_alive = true;
tuple = (IndexTuple) PageGetItem(page, iid);
tupdesc = RelationGetDescr(scan->indexRelation);
so = (BTScanOpaque) scan->opaque;
keysz = so->numberOfKeys;
for (key = so->keyData, ikey = 0; ikey < keysz; key++, ikey++)
{
Datum datum;
bool isNull;
Datum test;
/* row-comparison keys need special processing */
if (key->sk_flags & SK_ROW_HEADER)
{
if (_bt_check_rowcompare(key, tuple, tupdesc, dir, continuescan))
continue;
return NULL;
}
datum = index_getattr(tuple,
key->sk_attno,
tupdesc,
&isNull);
if (key->sk_flags & SK_ISNULL)
{
/* Handle IS NULL/NOT NULL tests */
if (key->sk_flags & SK_SEARCHNULL)
{
if (isNull)
continue; /* tuple satisfies this qual */
}
else
{
Assert(key->sk_flags & SK_SEARCHNOTNULL);
if (!isNull)
continue; /* tuple satisfies this qual */
}
/*
* Tuple fails this qual. If it's a required qual for the current
* scan direction, then we can conclude no further tuples will
* pass, either.
*/
if ((key->sk_flags & SK_BT_REQFWD) &&
ScanDirectionIsForward(dir))
*continuescan = false;
else if ((key->sk_flags & SK_BT_REQBKWD) &&
ScanDirectionIsBackward(dir))
*continuescan = false;
/*
* In any case, this indextuple doesn't match the qual.
*/
return NULL;
}
if (isNull)
{
if (key->sk_flags & SK_BT_NULLS_FIRST)
{
/*
* Since NULLs are sorted before non-NULLs, we know we have
* reached the lower limit of the range of values for this
* index attr. On a backward scan, we can stop if this qual
* is one of the "must match" subset. We can stop regardless
* of whether the qual is > or <, so long as it's required,
* because it's not possible for any future tuples to pass. On
* a forward scan, however, we must keep going, because we may
* have initially positioned to the start of the index.
*/
if ((key->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) &&
ScanDirectionIsBackward(dir))
*continuescan = false;
}
else
{
/*
* Since NULLs are sorted after non-NULLs, we know we have
* reached the upper limit of the range of values for this
* index attr. On a forward scan, we can stop if this qual is
* one of the "must match" subset. We can stop regardless of
* whether the qual is > or <, so long as it's required,
* because it's not possible for any future tuples to pass. On
* a backward scan, however, we must keep going, because we
* may have initially positioned to the end of the index.
*/
if ((key->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) &&
ScanDirectionIsForward(dir))
*continuescan = false;
}
/*
* In any case, this indextuple doesn't match the qual.
*/
return NULL;
}
test = FunctionCall2Coll(&key->sk_func, key->sk_collation,
datum, key->sk_argument);
if (!DatumGetBool(test))
{
/*
* Tuple fails this qual. If it's a required qual for the current
* scan direction, then we can conclude no further tuples will
* pass, either.
*
* Note: because we stop the scan as soon as any required equality
* qual fails, it is critical that equality quals be used for the
* initial positioning in _bt_first() when they are available. See
* comments in _bt_first().
*/
if ((key->sk_flags & SK_BT_REQFWD) &&
ScanDirectionIsForward(dir))
*continuescan = false;
else if ((key->sk_flags & SK_BT_REQBKWD) &&
ScanDirectionIsBackward(dir))
*continuescan = false;
/*
* In any case, this indextuple doesn't match the qual.
*/
return NULL;
}
}
/* Check for failure due to it being a killed tuple. */
if (!tuple_alive)
return NULL;
/* If we get here, the tuple passes all index quals. */
return tuple;
}
Definition at line 492 of file nbtpage.c.
References BufferGetBlockNumber(), BufferGetPage, ereport, errcode(), errhint(), errmsg(), ERROR, MAXALIGN, PageGetSpecialSize, PageIsNew, and RelationGetRelationName.
Referenced by _bt_getbuf(), _bt_relandgetbuf(), and btvacuumpage().
{
Page page = BufferGetPage(buf);
/*
* ReadBuffer verifies that every newly-read page passes
* PageHeaderIsValid, which means it either contains a reasonably sane
* page header or is all-zero. We have to defend against the all-zero
* case, however.
*/
if (PageIsNew(page))
ereport(ERROR,
(errcode(ERRCODE_INDEX_CORRUPTED),
errmsg("index \"%s\" contains unexpected zero page at block %u",
RelationGetRelationName(rel),
BufferGetBlockNumber(buf)),
errhint("Please REINDEX it.")));
/*
* Additionally check that the special area looks sane.
*/
if (PageGetSpecialSize(page) != MAXALIGN(sizeof(BTPageOpaqueData)))
ereport(ERROR,
(errcode(ERRCODE_INDEX_CORRUPTED),
errmsg("index \"%s\" contains corrupted page at block %u",
RelationGetRelationName(rel),
BufferGetBlockNumber(buf)),
errhint("Please REINDEX it.")));
}
| int32 _bt_compare | ( | Relation | rel, | |
| int | keysz, | |||
| ScanKey | scankey, | |||
| Page | page, | |||
| OffsetNumber | offnum | |||
| ) |
Definition at line 339 of file nbtsearch.c.
References DatumGetInt32, FunctionCall2Coll(), i, index_getattr, P_FIRSTDATAKEY, P_ISLEAF, PageGetItem, PageGetItemId, PageGetSpecialPointer, RelationGetDescr, ScanKeyData::sk_argument, ScanKeyData::sk_attno, SK_BT_DESC, SK_BT_NULLS_FIRST, ScanKeyData::sk_collation, ScanKeyData::sk_flags, ScanKeyData::sk_func, and SK_ISNULL.
Referenced by _bt_binsrch(), _bt_findinsertloc(), and _bt_moveright().
{
TupleDesc itupdesc = RelationGetDescr(rel);
BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page);
IndexTuple itup;
int i;
/*
* Force result ">" if target item is first data item on an internal page
* --- see NOTE above.
*/
if (!P_ISLEAF(opaque) && offnum == P_FIRSTDATAKEY(opaque))
return 1;
itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum));
/*
* The scan key is set up with the attribute number associated with each
* term in the key. It is important that, if the index is multi-key, the
* scan contain the first k key attributes, and that they be in order. If
* you think about how multi-key ordering works, you'll understand why
* this is.
*
* We don't test for violation of this condition here, however. The
* initial setup for the index scan had better have gotten it right (see
* _bt_first).
*/
for (i = 1; i <= keysz; i++)
{
Datum datum;
bool isNull;
int32 result;
datum = index_getattr(itup, scankey->sk_attno, itupdesc, &isNull);
/* see comments about NULLs handling in btbuild */
if (scankey->sk_flags & SK_ISNULL) /* key is NULL */
{
if (isNull)
result = 0; /* NULL "=" NULL */
else if (scankey->sk_flags & SK_BT_NULLS_FIRST)
result = -1; /* NULL "<" NOT_NULL */
else
result = 1; /* NULL ">" NOT_NULL */
}
else if (isNull) /* key is NOT_NULL and item is NULL */
{
if (scankey->sk_flags & SK_BT_NULLS_FIRST)
result = 1; /* NOT_NULL ">" NULL */
else
result = -1; /* NOT_NULL "<" NULL */
}
else
{
/*
* The sk_func needs to be passed the index value as left arg and
* the sk_argument as right arg (they might be of different
* types). Since it is convenient for callers to think of
* _bt_compare as comparing the scankey to the index item, we have
* to flip the sign of the comparison result. (Unless it's a DESC
* column, in which case we *don't* flip the sign.)
*/
result = DatumGetInt32(FunctionCall2Coll(&scankey->sk_func,
scankey->sk_collation,
datum,
scankey->sk_argument));
if (!(scankey->sk_flags & SK_BT_DESC))
result = -result;
}
/* if the keys are unequal, return the difference */
if (result != 0)
return result;
scankey++;
}
/* if we get here, the keys are equal */
return 0;
}
| void _bt_delitems_delete | ( | Relation | rel, | |
| Buffer | buf, | |||
| OffsetNumber * | itemnos, | |||
| int | nitems, | |||
| Relation | heapRel | |||
| ) |
Definition at line 882 of file nbtpage.c.
References Assert, xl_btree_delete::block, BTPageOpaqueData::btpo_flags, XLogRecData::buffer, XLogRecData::buffer_std, BufferGetBlockNumber(), BufferGetPage, XLogRecData::data, END_CRIT_SECTION, xl_btree_delete::hnode, XLogRecData::len, MarkBufferDirty(), XLogRecData::next, xl_btree_delete::nitems, xl_btree_delete::node, PageGetSpecialPointer, PageIndexMultiDelete(), PageSetLSN, RelationData::rd_node, RelationNeedsWAL, START_CRIT_SECTION, XLOG_BTREE_DELETE, and XLogInsert().
Referenced by _bt_vacuum_one_page().
{
Page page = BufferGetPage(buf);
BTPageOpaque opaque;
/* Shouldn't be called unless there's something to do */
Assert(nitems > 0);
/* No ereport(ERROR) until changes are logged */
START_CRIT_SECTION();
/* Fix the page */
PageIndexMultiDelete(page, itemnos, nitems);
/*
* Unlike _bt_delitems_vacuum, we *must not* clear the vacuum cycle ID,
* because this is not called by VACUUM.
*/
/*
* Mark the page as not containing any LP_DEAD items. This is not
* certainly true (there might be some that have recently been marked, but
* weren't included in our target-item list), but it will almost always be
* true and it doesn't seem worth an additional page scan to check it.
* Remember that BTP_HAS_GARBAGE is only a hint anyway.
*/
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
opaque->btpo_flags &= ~BTP_HAS_GARBAGE;
MarkBufferDirty(buf);
/* XLOG stuff */
if (RelationNeedsWAL(rel))
{
XLogRecPtr recptr;
XLogRecData rdata[3];
xl_btree_delete xlrec_delete;
xlrec_delete.node = rel->rd_node;
xlrec_delete.hnode = heapRel->rd_node;
xlrec_delete.block = BufferGetBlockNumber(buf);
xlrec_delete.nitems = nitems;
rdata[0].data = (char *) &xlrec_delete;
rdata[0].len = SizeOfBtreeDelete;
rdata[0].buffer = InvalidBuffer;
rdata[0].next = &(rdata[1]);
/*
* We need the target-offsets array whether or not we store the whole
* buffer, to allow us to find the latestRemovedXid on a standby
* server.
*/
rdata[1].data = (char *) itemnos;
rdata[1].len = nitems * sizeof(OffsetNumber);
rdata[1].buffer = InvalidBuffer;
rdata[1].next = &(rdata[2]);
rdata[2].data = NULL;
rdata[2].len = 0;
rdata[2].buffer = buf;
rdata[2].buffer_std = true;
rdata[2].next = NULL;
recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_DELETE, rdata);
PageSetLSN(page, recptr);
}
END_CRIT_SECTION();
}
| void _bt_delitems_vacuum | ( | Relation | rel, | |
| Buffer | buf, | |||
| OffsetNumber * | itemnos, | |||
| int | nitems, | |||
| BlockNumber | lastBlockVacuumed | |||
| ) |
Definition at line 794 of file nbtpage.c.
References xl_btree_vacuum::block, BTPageOpaqueData::btpo_cycleid, BTPageOpaqueData::btpo_flags, XLogRecData::buffer, XLogRecData::buffer_std, BufferGetBlockNumber(), BufferGetPage, XLogRecData::data, END_CRIT_SECTION, xl_btree_vacuum::lastBlockVacuumed, XLogRecData::len, MarkBufferDirty(), XLogRecData::next, xl_btree_vacuum::node, PageGetSpecialPointer, PageIndexMultiDelete(), PageSetLSN, RelationData::rd_node, RelationNeedsWAL, START_CRIT_SECTION, XLOG_BTREE_VACUUM, and XLogInsert().
Referenced by btvacuumpage(), and btvacuumscan().
{
Page page = BufferGetPage(buf);
BTPageOpaque opaque;
/* No ereport(ERROR) until changes are logged */
START_CRIT_SECTION();
/* Fix the page */
if (nitems > 0)
PageIndexMultiDelete(page, itemnos, nitems);
/*
* We can clear the vacuum cycle ID since this page has certainly been
* processed by the current vacuum scan.
*/
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
opaque->btpo_cycleid = 0;
/*
* Mark the page as not containing any LP_DEAD items. This is not
* certainly true (there might be some that have recently been marked, but
* weren't included in our target-item list), but it will almost always be
* true and it doesn't seem worth an additional page scan to check it.
* Remember that BTP_HAS_GARBAGE is only a hint anyway.
*/
opaque->btpo_flags &= ~BTP_HAS_GARBAGE;
MarkBufferDirty(buf);
/* XLOG stuff */
if (RelationNeedsWAL(rel))
{
XLogRecPtr recptr;
XLogRecData rdata[2];
xl_btree_vacuum xlrec_vacuum;
xlrec_vacuum.node = rel->rd_node;
xlrec_vacuum.block = BufferGetBlockNumber(buf);
xlrec_vacuum.lastBlockVacuumed = lastBlockVacuumed;
rdata[0].data = (char *) &xlrec_vacuum;
rdata[0].len = SizeOfBtreeVacuum;
rdata[0].buffer = InvalidBuffer;
rdata[0].next = &(rdata[1]);
/*
* The target-offsets array is not in the buffer, but pretend that it
* is. When XLogInsert stores the whole buffer, the offsets array
* need not be stored too.
*/
if (nitems > 0)
{
rdata[1].data = (char *) itemnos;
rdata[1].len = nitems * sizeof(OffsetNumber);
}
else
{
rdata[1].data = NULL;
rdata[1].len = 0;
}
rdata[1].buffer = buf;
rdata[1].buffer_std = true;
rdata[1].next = NULL;
recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_VACUUM, rdata);
PageSetLSN(page, recptr);
}
END_CRIT_SECTION();
}
| bool _bt_doinsert | ( | Relation | rel, | |
| IndexTuple | itup, | |||
| IndexUniqueCheck | checkUnique, | |||
| Relation | heapRel | |||
| ) |
Definition at line 103 of file nbtinsert.c.
References _bt_binsrch(), _bt_check_unique(), _bt_findinsertloc(), _bt_freeskey(), _bt_freestack(), _bt_insertonpg(), _bt_mkscankey(), _bt_moveright(), _bt_relbuf(), _bt_search(), BT_WRITE, buf, BUFFER_LOCK_UNLOCK, CheckForSerializableConflictIn(), LockBuffer(), NULL, RelationData::rd_rel, TransactionIdIsValid, UNIQUE_CHECK_EXISTING, UNIQUE_CHECK_NO, and XactLockTableWait().
Referenced by btinsert().
{
bool is_unique = false;
int natts = rel->rd_rel->relnatts;
ScanKey itup_scankey;
BTStack stack;
Buffer buf;
OffsetNumber offset;
/* we need an insertion scan key to do our search, so build one */
itup_scankey = _bt_mkscankey(rel, itup);
top:
/* find the first page containing this key */
stack = _bt_search(rel, natts, itup_scankey, false, &buf, BT_WRITE);
offset = InvalidOffsetNumber;
/* trade in our read lock for a write lock */
LockBuffer(buf, BUFFER_LOCK_UNLOCK);
LockBuffer(buf, BT_WRITE);
/*
* If the page was split between the time that we surrendered our read
* lock and acquired our write lock, then this page may no longer be the
* right place for the key we want to insert. In this case, we need to
* move right in the tree. See Lehman and Yao for an excruciatingly
* precise description.
*/
buf = _bt_moveright(rel, buf, natts, itup_scankey, false, BT_WRITE);
/*
* If we're not allowing duplicates, make sure the key isn't already in
* the index.
*
* NOTE: obviously, _bt_check_unique can only detect keys that are already
* in the index; so it cannot defend against concurrent insertions of the
* same key. We protect against that by means of holding a write lock on
* the target page. Any other would-be inserter of the same key must
* acquire a write lock on the same target page, so only one would-be
* inserter can be making the check at one time. Furthermore, once we are
* past the check we hold write locks continuously until we have performed
* our insertion, so no later inserter can fail to see our insertion.
* (This requires some care in _bt_insertonpg.)
*
* If we must wait for another xact, we release the lock while waiting,
* and then must start over completely.
*
* For a partial uniqueness check, we don't wait for the other xact. Just
* let the tuple in and return false for possibly non-unique, or true for
* definitely unique.
*/
if (checkUnique != UNIQUE_CHECK_NO)
{
TransactionId xwait;
offset = _bt_binsrch(rel, buf, natts, itup_scankey, false);
xwait = _bt_check_unique(rel, itup, heapRel, buf, offset, itup_scankey,
checkUnique, &is_unique);
if (TransactionIdIsValid(xwait))
{
/* Have to wait for the other guy ... */
_bt_relbuf(rel, buf);
XactLockTableWait(xwait);
/* start over... */
_bt_freestack(stack);
goto top;
}
}
if (checkUnique != UNIQUE_CHECK_EXISTING)
{
/*
* The only conflict predicate locking cares about for indexes is when
* an index tuple insert conflicts with an existing lock. Since the
* actual location of the insert is hard to predict because of the
* random search used to prevent O(N^2) performance when there are
* many duplicate entries, we can just use the "first valid" page.
*/
CheckForSerializableConflictIn(rel, NULL, buf);
/* do the insertion */
_bt_findinsertloc(rel, &buf, &offset, natts, itup_scankey, itup, heapRel);
_bt_insertonpg(rel, buf, stack, itup, offset, false);
}
else
{
/* just release the buffer */
_bt_relbuf(rel, buf);
}
/* be tidy */
_bt_freestack(stack);
_bt_freeskey(itup_scankey);
return is_unique;
}
| void _bt_end_vacuum | ( | Relation | rel | ) |
Definition at line 1939 of file nbtutils.c.
References BtreeVacuumLock, LockRelId::dbId, i, LockInfoData::lockRelId, LW_EXCLUSIVE, LWLockAcquire(), LWLockRelease(), BTVacInfo::num_vacuums, RelationData::rd_lockInfo, LockRelId::relId, BTOneVacInfo::relid, and BTVacInfo::vacuums.
Referenced by _bt_end_vacuum_callback(), and btbulkdelete().
{
int i;
LWLockAcquire(BtreeVacuumLock, LW_EXCLUSIVE);
/* Find the array entry */
for (i = 0; i < btvacinfo->num_vacuums; i++)
{
BTOneVacInfo *vac = &btvacinfo->vacuums[i];
if (vac->relid.relId == rel->rd_lockInfo.lockRelId.relId &&
vac->relid.dbId == rel->rd_lockInfo.lockRelId.dbId)
{
/* Remove it by shifting down the last entry */
*vac = btvacinfo->vacuums[btvacinfo->num_vacuums - 1];
btvacinfo->num_vacuums--;
break;
}
}
LWLockRelease(BtreeVacuumLock);
}
| void _bt_end_vacuum_callback | ( | int | code, | |
| Datum | arg | |||
| ) |
Definition at line 1967 of file nbtutils.c.
References _bt_end_vacuum(), and DatumGetPointer.
Referenced by btbulkdelete().
{
_bt_end_vacuum((Relation) DatumGetPointer(arg));
}
| bool _bt_first | ( | IndexScanDesc | scan, | |
| ScanDirection | dir | |||
| ) |
Definition at line 447 of file nbtsearch.c.
References _bt_binsrch(), _bt_endpoint(), _bt_freestack(), _bt_preprocess_keys(), _bt_readpage(), _bt_search(), _bt_steppage(), Assert, BT_READ, BTEqualStrategyNumber, BTGreaterEqualStrategyNumber, BTGreaterStrategyNumber, BTLessEqualStrategyNumber, BTLessStrategyNumber, BTORDER_PROC, BTScanPosData::buf, buf, BUFFER_LOCK_UNLOCK, BufferGetBlockNumber(), BufferIsValid, cur, BTScanOpaqueData::currPos, BTScanOpaqueData::currTuples, DatumGetPointer, elog, ERROR, get_opfamily_proc(), i, index_getprocinfo(), INDEX_MAX_KEYS, IndexScanDescData::indexRelation, InvalidOid, InvalidStrategy, BTScanPosData::itemIndex, BTScanPosData::items, BTScanOpaqueData::keyData, LockBuffer(), BTScanOpaqueData::markItemIndex, BTScanPosData::moreLeft, BTScanPosData::moreRight, NULL, BTScanOpaqueData::numberOfKeys, BTScanOpaqueData::numKilled, OffsetNumberPrev, IndexScanDescData::opaque, pgstat_count_index_scan, PredicateLockPage(), PredicateLockRelation(), BTScanOpaqueData::qual_ok, RelationData::rd_opcintype, RelationData::rd_opfamily, RegProcedureIsValid, RelationGetRelationName, ScanDirectionIsBackward, ScanDirectionIsForward, ScanKeyEntryInitialize(), ScanKeyEntryInitializeWithInfo(), ScanKeyData::sk_argument, ScanKeyData::sk_attno, SK_BT_DESC, SK_BT_NULLS_FIRST, ScanKeyData::sk_collation, ScanKeyData::sk_flags, SK_ISNULL, SK_ROW_END, SK_ROW_HEADER, SK_ROW_MEMBER, SK_SEARCHNOTNULL, ScanKeyData::sk_strategy, ScanKeyData::sk_subtype, HeapTupleData::t_self, IndexScanDescData::xs_ctup, IndexScanDescData::xs_itup, IndexScanDescData::xs_snapshot, and IndexScanDescData::xs_want_itup.
Referenced by btgetbitmap(), and btgettuple().
{
Relation rel = scan->indexRelation;
BTScanOpaque so = (BTScanOpaque) scan->opaque;
Buffer buf;
BTStack stack;
OffsetNumber offnum;
StrategyNumber strat;
bool nextkey;
bool goback;
ScanKey startKeys[INDEX_MAX_KEYS];
ScanKeyData scankeys[INDEX_MAX_KEYS];
ScanKeyData notnullkeys[INDEX_MAX_KEYS];
int keysCount = 0;
int i;
StrategyNumber strat_total;
BTScanPosItem *currItem;
pgstat_count_index_scan(rel);
/*
* Examine the scan keys and eliminate any redundant keys; also mark the
* keys that must be matched to continue the scan.
*/
_bt_preprocess_keys(scan);
/*
* Quit now if _bt_preprocess_keys() discovered that the scan keys can
* never be satisfied (eg, x == 1 AND x > 2).
*/
if (!so->qual_ok)
return false;
/*----------
* Examine the scan keys to discover where we need to start the scan.
*
* We want to identify the keys that can be used as starting boundaries;
* these are =, >, or >= keys for a forward scan or =, <, <= keys for
* a backwards scan. We can use keys for multiple attributes so long as
* the prior attributes had only =, >= (resp. =, <=) keys. Once we accept
* a > or < boundary or find an attribute with no boundary (which can be
* thought of as the same as "> -infinity"), we can't use keys for any
* attributes to its right, because it would break our simplistic notion
* of what initial positioning strategy to use.
*
* When the scan keys include cross-type operators, _bt_preprocess_keys
* may not be able to eliminate redundant keys; in such cases we will
* arbitrarily pick a usable one for each attribute. This is correct
* but possibly not optimal behavior. (For example, with keys like
* "x >= 4 AND x >= 5" we would elect to scan starting at x=4 when
* x=5 would be more efficient.) Since the situation only arises given
* a poorly-worded query plus an incomplete opfamily, live with it.
*
* When both equality and inequality keys appear for a single attribute
* (again, only possible when cross-type operators appear), we *must*
* select one of the equality keys for the starting point, because
* _bt_checkkeys() will stop the scan as soon as an equality qual fails.
* For example, if we have keys like "x >= 4 AND x = 10" and we elect to
* start at x=4, we will fail and stop before reaching x=10. If multiple
* equality quals survive preprocessing, however, it doesn't matter which
* one we use --- by definition, they are either redundant or
* contradictory.
*
* Any regular (not SK_SEARCHNULL) key implies a NOT NULL qualifier.
* If the index stores nulls at the end of the index we'll be starting
* from, and we have no boundary key for the column (which means the key
* we deduced NOT NULL from is an inequality key that constrains the other
* end of the index), then we cons up an explicit SK_SEARCHNOTNULL key to
* use as a boundary key. If we didn't do this, we might find ourselves
* traversing a lot of null entries at the start of the scan.
*
* In this loop, row-comparison keys are treated the same as keys on their
* first (leftmost) columns. We'll add on lower-order columns of the row
* comparison below, if possible.
*
* The selected scan keys (at most one per index column) are remembered by
* storing their addresses into the local startKeys[] array.
*----------
*/
strat_total = BTEqualStrategyNumber;
if (so->numberOfKeys > 0)
{
AttrNumber curattr;
ScanKey chosen;
ScanKey impliesNN;
ScanKey cur;
/*
* chosen is the so-far-chosen key for the current attribute, if any.
* We don't cast the decision in stone until we reach keys for the
* next attribute.
*/
curattr = 1;
chosen = NULL;
/* Also remember any scankey that implies a NOT NULL constraint */
impliesNN = NULL;
/*
* Loop iterates from 0 to numberOfKeys inclusive; we use the last
* pass to handle after-last-key processing. Actual exit from the
* loop is at one of the "break" statements below.
*/
for (cur = so->keyData, i = 0;; cur++, i++)
{
if (i >= so->numberOfKeys || cur->sk_attno != curattr)
{
/*
* Done looking at keys for curattr. If we didn't find a
* usable boundary key, see if we can deduce a NOT NULL key.
*/
if (chosen == NULL && impliesNN != NULL &&
((impliesNN->sk_flags & SK_BT_NULLS_FIRST) ?
ScanDirectionIsForward(dir) :
ScanDirectionIsBackward(dir)))
{
/* Yes, so build the key in notnullkeys[keysCount] */
chosen = ¬nullkeys[keysCount];
ScanKeyEntryInitialize(chosen,
(SK_SEARCHNOTNULL | SK_ISNULL |
(impliesNN->sk_flags &
(SK_BT_DESC | SK_BT_NULLS_FIRST))),
curattr,
((impliesNN->sk_flags & SK_BT_NULLS_FIRST) ?
BTGreaterStrategyNumber :
BTLessStrategyNumber),
InvalidOid,
InvalidOid,
InvalidOid,
(Datum) 0);
}
/*
* If we still didn't find a usable boundary key, quit; else
* save the boundary key pointer in startKeys.
*/
if (chosen == NULL)
break;
startKeys[keysCount++] = chosen;
/*
* Adjust strat_total, and quit if we have stored a > or <
* key.
*/
strat = chosen->sk_strategy;
if (strat != BTEqualStrategyNumber)
{
strat_total = strat;
if (strat == BTGreaterStrategyNumber ||
strat == BTLessStrategyNumber)
break;
}
/*
* Done if that was the last attribute, or if next key is not
* in sequence (implying no boundary key is available for the
* next attribute).
*/
if (i >= so->numberOfKeys ||
cur->sk_attno != curattr + 1)
break;
/*
* Reset for next attr.
*/
curattr = cur->sk_attno;
chosen = NULL;
impliesNN = NULL;
}
/*
* Can we use this key as a starting boundary for this attr?
*
* If not, does it imply a NOT NULL constraint? (Because
* SK_SEARCHNULL keys are always assigned BTEqualStrategyNumber,
* *any* inequality key works for that; we need not test.)
*/
switch (cur->sk_strategy)
{
case BTLessStrategyNumber:
case BTLessEqualStrategyNumber:
if (chosen == NULL)
{
if (ScanDirectionIsBackward(dir))
chosen = cur;
else
impliesNN = cur;
}
break;
case BTEqualStrategyNumber:
/* override any non-equality choice */
chosen = cur;
break;
case BTGreaterEqualStrategyNumber:
case BTGreaterStrategyNumber:
if (chosen == NULL)
{
if (ScanDirectionIsForward(dir))
chosen = cur;
else
impliesNN = cur;
}
break;
}
}
}
/*
* If we found no usable boundary keys, we have to start from one end of
* the tree. Walk down that edge to the first or last key, and scan from
* there.
*/
if (keysCount == 0)
return _bt_endpoint(scan, dir);
/*
* We want to start the scan somewhere within the index. Set up an
* insertion scankey we can use to search for the boundary point we
* identified above. The insertion scankey is built in the local
* scankeys[] array, using the keys identified by startKeys[].
*/
Assert(keysCount <= INDEX_MAX_KEYS);
for (i = 0; i < keysCount; i++)
{
ScanKey cur = startKeys[i];
Assert(cur->sk_attno == i + 1);
if (cur->sk_flags & SK_ROW_HEADER)
{
/*
* Row comparison header: look to the first row member instead.
*
* The member scankeys are already in insertion format (ie, they
* have sk_func = 3-way-comparison function), but we have to watch
* out for nulls, which _bt_preprocess_keys didn't check. A null
* in the first row member makes the condition unmatchable, just
* like qual_ok = false.
*/
ScanKey subkey = (ScanKey) DatumGetPointer(cur->sk_argument);
Assert(subkey->sk_flags & SK_ROW_MEMBER);
if (subkey->sk_flags & SK_ISNULL)
return false;
memcpy(scankeys + i, subkey, sizeof(ScanKeyData));
/*
* If the row comparison is the last positioning key we accepted,
* try to add additional keys from the lower-order row members.
* (If we accepted independent conditions on additional index
* columns, we use those instead --- doesn't seem worth trying to
* determine which is more restrictive.) Note that this is OK
* even if the row comparison is of ">" or "<" type, because the
* condition applied to all but the last row member is effectively
* ">=" or "<=", and so the extra keys don't break the positioning
* scheme. But, by the same token, if we aren't able to use all
* the row members, then the part of the row comparison that we
* did use has to be treated as just a ">=" or "<=" condition, and
* so we'd better adjust strat_total accordingly.
*/
if (i == keysCount - 1)
{
bool used_all_subkeys = false;
Assert(!(subkey->sk_flags & SK_ROW_END));
for (;;)
{
subkey++;
Assert(subkey->sk_flags & SK_ROW_MEMBER);
if (subkey->sk_attno != keysCount + 1)
break; /* out-of-sequence, can't use it */
if (subkey->sk_strategy != cur->sk_strategy)
break; /* wrong direction, can't use it */
if (subkey->sk_flags & SK_ISNULL)
break; /* can't use null keys */
Assert(keysCount < INDEX_MAX_KEYS);
memcpy(scankeys + keysCount, subkey, sizeof(ScanKeyData));
keysCount++;
if (subkey->sk_flags & SK_ROW_END)
{
used_all_subkeys = true;
break;
}
}
if (!used_all_subkeys)
{
switch (strat_total)
{
case BTLessStrategyNumber:
strat_total = BTLessEqualStrategyNumber;
break;
case BTGreaterStrategyNumber:
strat_total = BTGreaterEqualStrategyNumber;
break;
}
}
break; /* done with outer loop */
}
}
else
{
/*
* Ordinary comparison key. Transform the search-style scan key
* to an insertion scan key by replacing the sk_func with the
* appropriate btree comparison function.
*
* If scankey operator is not a cross-type comparison, we can use
* the cached comparison function; otherwise gotta look it up in
* the catalogs. (That can't lead to infinite recursion, since no
* indexscan initiated by syscache lookup will use cross-data-type
* operators.)
*
* We support the convention that sk_subtype == InvalidOid means
* the opclass input type; this is a hack to simplify life for
* ScanKeyInit().
*/
if (cur->sk_subtype == rel->rd_opcintype[i] ||
cur->sk_subtype == InvalidOid)
{
FmgrInfo *procinfo;
procinfo = index_getprocinfo(rel, cur->sk_attno, BTORDER_PROC);
ScanKeyEntryInitializeWithInfo(scankeys + i,
cur->sk_flags,
cur->sk_attno,
InvalidStrategy,
cur->sk_subtype,
cur->sk_collation,
procinfo,
cur->sk_argument);
}
else
{
RegProcedure cmp_proc;
cmp_proc = get_opfamily_proc(rel->rd_opfamily[i],
rel->rd_opcintype[i],
cur->sk_subtype,
BTORDER_PROC);
if (!RegProcedureIsValid(cmp_proc))
elog(ERROR, "missing support function %d(%u,%u) for attribute %d of index \"%s\"",
BTORDER_PROC, rel->rd_opcintype[i], cur->sk_subtype,
cur->sk_attno, RelationGetRelationName(rel));
ScanKeyEntryInitialize(scankeys + i,
cur->sk_flags,
cur->sk_attno,
InvalidStrategy,
cur->sk_subtype,
cur->sk_collation,
cmp_proc,
cur->sk_argument);
}
}
}
/*----------
* Examine the selected initial-positioning strategy to determine exactly
* where we need to start the scan, and set flag variables to control the
* code below.
*
* If nextkey = false, _bt_search and _bt_binsrch will locate the first
* item >= scan key. If nextkey = true, they will locate the first
* item > scan key.
*
* If goback = true, we will then step back one item, while if
* goback = false, we will start the scan on the located item.
*----------
*/
switch (strat_total)
{
case BTLessStrategyNumber:
/*
* Find first item >= scankey, then back up one to arrive at last
* item < scankey. (Note: this positioning strategy is only used
* for a backward scan, so that is always the correct starting
* position.)
*/
nextkey = false;
goback = true;
break;
case BTLessEqualStrategyNumber:
/*
* Find first item > scankey, then back up one to arrive at last
* item <= scankey. (Note: this positioning strategy is only used
* for a backward scan, so that is always the correct starting
* position.)
*/
nextkey = true;
goback = true;
break;
case BTEqualStrategyNumber:
/*
* If a backward scan was specified, need to start with last equal
* item not first one.
*/
if (ScanDirectionIsBackward(dir))
{
/*
* This is the same as the <= strategy. We will check at the
* end whether the found item is actually =.
*/
nextkey = true;
goback = true;
}
else
{
/*
* This is the same as the >= strategy. We will check at the
* end whether the found item is actually =.
*/
nextkey = false;
goback = false;
}
break;
case BTGreaterEqualStrategyNumber:
/*
* Find first item >= scankey. (This is only used for forward
* scans.)
*/
nextkey = false;
goback = false;
break;
case BTGreaterStrategyNumber:
/*
* Find first item > scankey. (This is only used for forward
* scans.)
*/
nextkey = true;
goback = false;
break;
default:
/* can't get here, but keep compiler quiet */
elog(ERROR, "unrecognized strat_total: %d", (int) strat_total);
return false;
}
/*
* Use the manufactured insertion scan key to descend the tree and
* position ourselves on the target leaf page.
*/
stack = _bt_search(rel, keysCount, scankeys, nextkey, &buf, BT_READ);
/* don't need to keep the stack around... */
_bt_freestack(stack);
/* remember which buffer we have pinned, if any */
so->currPos.buf = buf;
if (!BufferIsValid(buf))
{
/*
* We only get here if the index is completely empty. Lock relation
* because nothing finer to lock exists.
*/
PredicateLockRelation(rel, scan->xs_snapshot);
return false;
}
else
PredicateLockPage(rel, BufferGetBlockNumber(buf),
scan->xs_snapshot);
/* initialize moreLeft/moreRight appropriately for scan direction */
if (ScanDirectionIsForward(dir))
{
so->currPos.moreLeft = false;
so->currPos.moreRight = true;
}
else
{
so->currPos.moreLeft = true;
so->currPos.moreRight = false;
}
so->numKilled = 0; /* just paranoia */
so->markItemIndex = -1; /* ditto */
/* position to the precise item on the page */
offnum = _bt_binsrch(rel, buf, keysCount, scankeys, nextkey);
/*
* If nextkey = false, we are positioned at the first item >= scan key, or
* possibly at the end of a page on which all the existing items are less
* than the scan key and we know that everything on later pages is greater
* than or equal to scan key.
*
* If nextkey = true, we are positioned at the first item > scan key, or
* possibly at the end of a page on which all the existing items are less
* than or equal to the scan key and we know that everything on later
* pages is greater than scan key.
*
* The actually desired starting point is either this item or the prior
* one, or in the end-of-page case it's the first item on the next page or
* the last item on this page. Adjust the starting offset if needed. (If
* this results in an offset before the first item or after the last one,
* _bt_readpage will report no items found, and then we'll step to the
* next page as needed.)
*/
if (goback)
offnum = OffsetNumberPrev(offnum);
/*
* Now load data from the first page of the scan.
*/
if (!_bt_readpage(scan, dir, offnum))
{
/*
* There's no actually-matching data on this page. Try to advance to
* the next page. Return false if there's no matching data at all.
*/
if (!_bt_steppage(scan, dir))
return false;
}
/* Drop the lock, but not pin, on the current page */
LockBuffer(so->currPos.buf, BUFFER_LOCK_UNLOCK);
/* OK, itemIndex says what to return */
currItem = &so->currPos.items[so->currPos.itemIndex];
scan->xs_ctup.t_self = currItem->heapTid;
if (scan->xs_want_itup)
scan->xs_itup = (IndexTuple) (so->currTuples + currItem->tupleOffset);
return true;
}
| void _bt_freeskey | ( | ScanKey | skey | ) |
Definition at line 155 of file nbtutils.c.
References pfree().
Referenced by _bt_doinsert(), and _bt_load().
{
pfree(skey);
}
| void _bt_freestack | ( | BTStack | stack | ) |
Definition at line 164 of file nbtutils.c.
References BTStackData::bts_parent, NULL, and pfree().
Referenced by _bt_doinsert(), and _bt_first().
{
BTStack ostack;
while (stack != NULL)
{
ostack = stack;
stack = stack->bts_parent;
pfree(ostack);
}
}
Definition at line 1433 of file nbtsearch.c.
References _bt_getroot(), _bt_gettrueroot(), _bt_relandgetbuf(), BT_READ, BTPageOpaqueData::btpo, BTPageOpaqueData::btpo_next, buf, BufferGetPage, BufferIsValid, elog, ERROR, ItemPointerGetBlockNumber, BTPageOpaqueData::level, P_FIRSTDATAKEY, P_IGNORE, P_NONE, P_RIGHTMOST, PageGetItem, PageGetItemId, PageGetMaxOffsetNumber, PageGetSpecialPointer, RelationGetRelationName, and IndexTupleData::t_tid.
Referenced by _bt_endpoint(), _bt_insert_parent(), and _bt_pagedel().
{
Buffer buf;
Page page;
BTPageOpaque opaque;
OffsetNumber offnum;
BlockNumber blkno;
IndexTuple itup;
/*
* If we are looking for a leaf page, okay to descend from fast root;
* otherwise better descend from true root. (There is no point in being
* smarter about intermediate levels.)
*/
if (level == 0)
buf = _bt_getroot(rel, BT_READ);
else
buf = _bt_gettrueroot(rel);
if (!BufferIsValid(buf))
return InvalidBuffer;
page = BufferGetPage(buf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
for (;;)
{
/*
* If we landed on a deleted page, step right to find a live page
* (there must be one). Also, if we want the rightmost page, step
* right if needed to get to it (this could happen if the page split
* since we obtained a pointer to it).
*/
while (P_IGNORE(opaque) ||
(rightmost && !P_RIGHTMOST(opaque)))
{
blkno = opaque->btpo_next;
if (blkno == P_NONE)
elog(ERROR, "fell off the end of index \"%s\"",
RelationGetRelationName(rel));
buf = _bt_relandgetbuf(rel, buf, blkno, BT_READ);
page = BufferGetPage(buf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
}
/* Done? */
if (opaque->btpo.level == level)
break;
if (opaque->btpo.level < level)
elog(ERROR, "btree level %u not found in index \"%s\"",
level, RelationGetRelationName(rel));
/* Descend to leftmost or rightmost child page */
if (rightmost)
offnum = PageGetMaxOffsetNumber(page);
else
offnum = P_FIRSTDATAKEY(opaque);
itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum));
blkno = ItemPointerGetBlockNumber(&(itup->t_tid));
buf = _bt_relandgetbuf(rel, buf, blkno, BT_READ);
page = BufferGetPage(buf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
}
return buf;
}
| Buffer _bt_getbuf | ( | Relation | rel, | |
| BlockNumber | blkno, | |||
| int | access | |||
| ) |
Definition at line 575 of file nbtpage.c.
References _bt_checkpage(), _bt_log_reuse_page(), _bt_page_recyclable(), _bt_pageinit(), _bt_relbuf(), Assert, BT_WRITE, BTPageOpaqueData::btpo, buf, BufferGetPage, BufferGetPageSize, ConditionalLockBuffer(), DEBUG2, elog, ExclusiveLock, GetFreeIndexPage(), InvalidBlockNumber, LockBuffer(), LockRelationForExtension(), P_NEW, PageGetSpecialPointer, PageIsNew, ReadBuffer(), RELATION_IS_LOCAL, ReleaseBuffer(), UnlockRelationForExtension(), BTPageOpaqueData::xact, and XLogStandbyInfoActive.
Referenced by _bt_getroot(), _bt_getrootheight(), _bt_getstackbuf(), _bt_gettrueroot(), _bt_insertonpg(), _bt_newroot(), _bt_pagedel(), _bt_split(), _bt_steppage(), and _bt_walk_left().
{
Buffer buf;
if (blkno != P_NEW)
{
/* Read an existing block of the relation */
buf = ReadBuffer(rel, blkno);
LockBuffer(buf, access);
_bt_checkpage(rel, buf);
}
else
{
bool needLock;
Page page;
Assert(access == BT_WRITE);
/*
* First see if the FSM knows of any free pages.
*
* We can't trust the FSM's report unreservedly; we have to check that
* the page is still free. (For example, an already-free page could
* have been re-used between the time the last VACUUM scanned it and
* the time the VACUUM made its FSM updates.)
*
* In fact, it's worse than that: we can't even assume that it's safe
* to take a lock on the reported page. If somebody else has a lock
* on it, or even worse our own caller does, we could deadlock. (The
* own-caller scenario is actually not improbable. Consider an index
* on a serial or timestamp column. Nearly all splits will be at the
* rightmost page, so it's entirely likely that _bt_split will call us
* while holding a lock on the page most recently acquired from FSM. A
* VACUUM running concurrently with the previous split could well have
* placed that page back in FSM.)
*
* To get around that, we ask for only a conditional lock on the
* reported page. If we fail, then someone else is using the page,
* and we may reasonably assume it's not free. (If we happen to be
* wrong, the worst consequence is the page will be lost to use till
* the next VACUUM, which is no big problem.)
*/
for (;;)
{
blkno = GetFreeIndexPage(rel);
if (blkno == InvalidBlockNumber)
break;
buf = ReadBuffer(rel, blkno);
if (ConditionalLockBuffer(buf))
{
page = BufferGetPage(buf);
if (_bt_page_recyclable(page))
{
/*
* If we are generating WAL for Hot Standby then create a
* WAL record that will allow us to conflict with queries
* running on standby.
*/
if (XLogStandbyInfoActive())
{
BTPageOpaque opaque = (BTPageOpaque) PageGetSpecialPointer(page);
_bt_log_reuse_page(rel, blkno, opaque->btpo.xact);
}
/* Okay to use page. Re-initialize and return it */
_bt_pageinit(page, BufferGetPageSize(buf));
return buf;
}
elog(DEBUG2, "FSM returned nonrecyclable page");
_bt_relbuf(rel, buf);
}
else
{
elog(DEBUG2, "FSM returned nonlockable page");
/* couldn't get lock, so just drop pin */
ReleaseBuffer(buf);
}
}
/*
* Extend the relation by one page.
*
* We have to use a lock to ensure no one else is extending the rel at
* the same time, else we will both try to initialize the same new
* page. We can skip locking for new or temp relations, however,
* since no one else could be accessing them.
*/
needLock = !RELATION_IS_LOCAL(rel);
if (needLock)
LockRelationForExtension(rel, ExclusiveLock);
buf = ReadBuffer(rel, P_NEW);
/* Acquire buffer lock on new page */
LockBuffer(buf, BT_WRITE);
/*
* Release the file-extension lock; it's now OK for someone else to
* extend the relation some more. Note that we cannot release this
* lock before we have buffer lock on the new page, or we risk a race
* condition against btvacuumscan --- see comments therein.
*/
if (needLock)
UnlockRelationForExtension(rel, ExclusiveLock);
/* Initialize the new page before returning it */
page = BufferGetPage(buf);
Assert(PageIsNew(page));
_bt_pageinit(page, BufferGetPageSize(buf));
}
/* ref count and lock type are correct */
return buf;
}
Definition at line 94 of file nbtpage.c.
References _bt_getbuf(), _bt_getroot(), _bt_relandgetbuf(), _bt_relbuf(), Assert, BT_READ, BT_WRITE, BTMetaPageData::btm_fastlevel, BTMetaPageData::btm_fastroot, BTMetaPageData::btm_level, BTMetaPageData::btm_magic, BTMetaPageData::btm_root, BTMetaPageData::btm_version, BTP_LEAF, BTP_META, BTPageGetMeta, BTPageOpaqueData::btpo, BTPageOpaqueData::btpo_cycleid, BTPageOpaqueData::btpo_flags, BTPageOpaqueData::btpo_next, BTPageOpaqueData::btpo_prev, BTREE_MAGIC, BTREE_METAPAGE, BTREE_VERSION, XLogRecData::buffer, BUFFER_LOCK_UNLOCK, BufferGetBlockNumber(), BufferGetPage, CacheInvalidateRelcache(), XLogRecData::data, elog, END_CRIT_SECTION, ereport, errcode(), errmsg(), ERROR, XLogRecData::len, xl_btree_newroot::level, BTPageOpaqueData::level, LockBuffer(), MarkBufferDirty(), MemoryContextAlloc(), XLogRecData::next, xl_btree_newroot::node, NULL, P_IGNORE, P_LEFTMOST, P_NEW, P_NONE, P_RIGHTMOST, PageGetSpecialPointer, PageSetLSN, pfree(), RelationData::rd_amcache, RelationData::rd_indexcxt, RelationData::rd_node, RelationGetRelationName, RelationNeedsWAL, xl_btree_newroot::rootblk, START_CRIT_SECTION, XLOG_BTREE_NEWROOT, and XLogInsert().
Referenced by _bt_get_endpoint(), _bt_getroot(), and _bt_search().
{
Buffer metabuf;
Page metapg;
BTPageOpaque metaopaque;
Buffer rootbuf;
Page rootpage;
BTPageOpaque rootopaque;
BlockNumber rootblkno;
uint32 rootlevel;
BTMetaPageData *metad;
/*
* Try to use previously-cached metapage data to find the root. This
* normally saves one buffer access per index search, which is a very
* helpful savings in bufmgr traffic and hence contention.
*/
if (rel->rd_amcache != NULL)
{
metad = (BTMetaPageData *) rel->rd_amcache;
/* We shouldn't have cached it if any of these fail */
Assert(metad->btm_magic == BTREE_MAGIC);
Assert(metad->btm_version == BTREE_VERSION);
Assert(metad->btm_root != P_NONE);
rootblkno = metad->btm_fastroot;
Assert(rootblkno != P_NONE);
rootlevel = metad->btm_fastlevel;
rootbuf = _bt_getbuf(rel, rootblkno, BT_READ);
rootpage = BufferGetPage(rootbuf);
rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage);
/*
* Since the cache might be stale, we check the page more carefully
* here than normal. We *must* check that it's not deleted. If it's
* not alone on its level, then we reject too --- this may be overly
* paranoid but better safe than sorry. Note we don't check P_ISROOT,
* because that's not set in a "fast root".
*/
if (!P_IGNORE(rootopaque) &&
rootopaque->btpo.level == rootlevel &&
P_LEFTMOST(rootopaque) &&
P_RIGHTMOST(rootopaque))
{
/* OK, accept cached page as the root */
return rootbuf;
}
_bt_relbuf(rel, rootbuf);
/* Cache is stale, throw it away */
if (rel->rd_amcache)
pfree(rel->rd_amcache);
rel->rd_amcache = NULL;
}
metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_READ);
metapg = BufferGetPage(metabuf);
metaopaque = (BTPageOpaque) PageGetSpecialPointer(metapg);
metad = BTPageGetMeta(metapg);
/* sanity-check the metapage */
if (!(metaopaque->btpo_flags & BTP_META) ||
metad->btm_magic != BTREE_MAGIC)
ereport(ERROR,
(errcode(ERRCODE_INDEX_CORRUPTED),
errmsg("index \"%s\" is not a btree",
RelationGetRelationName(rel))));
if (metad->btm_version != BTREE_VERSION)
ereport(ERROR,
(errcode(ERRCODE_INDEX_CORRUPTED),
errmsg("version mismatch in index \"%s\": file version %d, code version %d",
RelationGetRelationName(rel),
metad->btm_version, BTREE_VERSION)));
/* if no root page initialized yet, do it */
if (metad->btm_root == P_NONE)
{
/* If access = BT_READ, caller doesn't want us to create root yet */
if (access == BT_READ)
{
_bt_relbuf(rel, metabuf);
return InvalidBuffer;
}
/* trade in our read lock for a write lock */
LockBuffer(metabuf, BUFFER_LOCK_UNLOCK);
LockBuffer(metabuf, BT_WRITE);
/*
* Race condition: if someone else initialized the metadata between
* the time we released the read lock and acquired the write lock, we
* must avoid doing it again.
*/
if (metad->btm_root != P_NONE)
{
/*
* Metadata initialized by someone else. In order to guarantee no
* deadlocks, we have to release the metadata page and start all
* over again. (Is that really true? But it's hardly worth trying
* to optimize this case.)
*/
_bt_relbuf(rel, metabuf);
return _bt_getroot(rel, access);
}
/*
* Get, initialize, write, and leave a lock of the appropriate type on
* the new root page. Since this is the first page in the tree, it's
* a leaf as well as the root.
*/
rootbuf = _bt_getbuf(rel, P_NEW, BT_WRITE);
rootblkno = BufferGetBlockNumber(rootbuf);
rootpage = BufferGetPage(rootbuf);
rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage);
rootopaque->btpo_prev = rootopaque->btpo_next = P_NONE;
rootopaque->btpo_flags = (BTP_LEAF | BTP_ROOT);
rootopaque->btpo.level = 0;
rootopaque->btpo_cycleid = 0;
/* NO ELOG(ERROR) till meta is updated */
START_CRIT_SECTION();
metad->btm_root = rootblkno;
metad->btm_level = 0;
metad->btm_fastroot = rootblkno;
metad->btm_fastlevel = 0;
MarkBufferDirty(rootbuf);
MarkBufferDirty(metabuf);
/* XLOG stuff */
if (RelationNeedsWAL(rel))
{
xl_btree_newroot xlrec;
XLogRecPtr recptr;
XLogRecData rdata;
xlrec.node = rel->rd_node;
xlrec.rootblk = rootblkno;
xlrec.level = 0;
rdata.data = (char *) &xlrec;
rdata.len = SizeOfBtreeNewroot;
rdata.buffer = InvalidBuffer;
rdata.next = NULL;
recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_NEWROOT, &rdata);
PageSetLSN(rootpage, recptr);
PageSetLSN(metapg, recptr);
}
END_CRIT_SECTION();
/*
* Send out relcache inval for metapage change (probably unnecessary
* here, but let's be safe).
*/
CacheInvalidateRelcache(rel);
/*
* swap root write lock for read lock. There is no danger of anyone
* else accessing the new root page while it's unlocked, since no one
* else knows where it is yet.
*/
LockBuffer(rootbuf, BUFFER_LOCK_UNLOCK);
LockBuffer(rootbuf, BT_READ);
/* okay, metadata is correct, release lock on it */
_bt_relbuf(rel, metabuf);
}
else
{
rootblkno = metad->btm_fastroot;
Assert(rootblkno != P_NONE);
rootlevel = metad->btm_fastlevel;
/*
* Cache the metapage data for next time
*/
rel->rd_amcache = MemoryContextAlloc(rel->rd_indexcxt,
sizeof(BTMetaPageData));
memcpy(rel->rd_amcache, metad, sizeof(BTMetaPageData));
/*
* We are done with the metapage; arrange to release it via first
* _bt_relandgetbuf call
*/
rootbuf = metabuf;
for (;;)
{
rootbuf = _bt_relandgetbuf(rel, rootbuf, rootblkno, BT_READ);
rootpage = BufferGetPage(rootbuf);
rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage);
if (!P_IGNORE(rootopaque))
break;
/* it's dead, Jim. step right one page */
if (P_RIGHTMOST(rootopaque))
elog(ERROR, "no live root page found in index \"%s\"",
RelationGetRelationName(rel));
rootblkno = rootopaque->btpo_next;
}
/* Note: can't check btpo.level on deleted pages */
if (rootopaque->btpo.level != rootlevel)
elog(ERROR, "root page %u of index \"%s\" has level %u, expected %u",
rootblkno, RelationGetRelationName(rel),
rootopaque->btpo.level, rootlevel);
}
/*
* By here, we have a pin and read lock on the root page, and no lock set
* on the metadata page. Return the root page's buffer.
*/
return rootbuf;
}
| int _bt_getrootheight | ( | Relation | rel | ) |
Definition at line 424 of file nbtpage.c.
References _bt_getbuf(), _bt_relbuf(), Assert, BT_READ, BTMetaPageData::btm_fastlevel, BTMetaPageData::btm_fastroot, BTMetaPageData::btm_magic, BTMetaPageData::btm_root, BTMetaPageData::btm_version, BTP_META, BTPageGetMeta, BTPageOpaqueData::btpo_flags, BTREE_MAGIC, BTREE_METAPAGE, BTREE_VERSION, BufferGetPage, ereport, errcode(), errmsg(), ERROR, MemoryContextAlloc(), NULL, P_NONE, PageGetSpecialPointer, RelationData::rd_amcache, RelationData::rd_indexcxt, and RelationGetRelationName.
Referenced by get_relation_info().
{
BTMetaPageData *metad;
/*
* We can get what we need from the cached metapage data. If it's not
* cached yet, load it. Sanity checks here must match _bt_getroot().
*/
if (rel->rd_amcache == NULL)
{
Buffer metabuf;
Page metapg;
BTPageOpaque metaopaque;
metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_READ);
metapg = BufferGetPage(metabuf);
metaopaque = (BTPageOpaque) PageGetSpecialPointer(metapg);
metad = BTPageGetMeta(metapg);
/* sanity-check the metapage */
if (!(metaopaque->btpo_flags & BTP_META) ||
metad->btm_magic != BTREE_MAGIC)
ereport(ERROR,
(errcode(ERRCODE_INDEX_CORRUPTED),
errmsg("index \"%s\" is not a btree",
RelationGetRelationName(rel))));
if (metad->btm_version != BTREE_VERSION)
ereport(ERROR,
(errcode(ERRCODE_INDEX_CORRUPTED),
errmsg("version mismatch in index \"%s\": file version %d, code version %d",
RelationGetRelationName(rel),
metad->btm_version, BTREE_VERSION)));
/*
* If there's no root page yet, _bt_getroot() doesn't expect a cache
* to be made, so just stop here and report the index height is zero.
* (XXX perhaps _bt_getroot() should be changed to allow this case.)
*/
if (metad->btm_root == P_NONE)
{
_bt_relbuf(rel, metabuf);
return 0;
}
/*
* Cache the metapage data for next time
*/
rel->rd_amcache = MemoryContextAlloc(rel->rd_indexcxt,
sizeof(BTMetaPageData));
memcpy(rel->rd_amcache, metad, sizeof(BTMetaPageData));
_bt_relbuf(rel, metabuf);
}
metad = (BTMetaPageData *) rel->rd_amcache;
/* We shouldn't have cached it if any of these fail */
Assert(metad->btm_magic == BTREE_MAGIC);
Assert(metad->btm_version == BTREE_VERSION);
Assert(metad->btm_fastroot != P_NONE);
return metad->btm_fastlevel;
}
Definition at line 1724 of file nbtinsert.c.
References _bt_getbuf(), _bt_relbuf(), BTEntrySame, BTPageOpaqueData::btpo_next, BTStackData::bts_blkno, BTStackData::bts_btentry, BTStackData::bts_offset, buf, BufferGetPage, OffsetNumberNext, OffsetNumberPrev, P_FIRSTDATAKEY, P_IGNORE, P_RIGHTMOST, PageGetItem, PageGetItemId, PageGetMaxOffsetNumber, and PageGetSpecialPointer.
Referenced by _bt_insert_parent(), _bt_pagedel(), and _bt_parent_deletion_safe().
{
BlockNumber blkno;
OffsetNumber start;
blkno = stack->bts_blkno;
start = stack->bts_offset;
for (;;)
{
Buffer buf;
Page page;
BTPageOpaque opaque;
buf = _bt_getbuf(rel, blkno, access);
page = BufferGetPage(buf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
if (!P_IGNORE(opaque))
{
OffsetNumber offnum,
minoff,
maxoff;
ItemId itemid;
IndexTuple item;
minoff = P_FIRSTDATAKEY(opaque);
maxoff = PageGetMaxOffsetNumber(page);
/*
* start = InvalidOffsetNumber means "search the whole page". We
* need this test anyway due to possibility that page has a high
* key now when it didn't before.
*/
if (start < minoff)
start = minoff;
/*
* Need this check too, to guard against possibility that page
* split since we visited it originally.
*/
if (start > maxoff)
start = OffsetNumberNext(maxoff);
/*
* These loops will check every item on the page --- but in an
* order that's attuned to the probability of where it actually
* is. Scan to the right first, then to the left.
*/
for (offnum = start;
offnum <= maxoff;
offnum = OffsetNumberNext(offnum))
{
itemid = PageGetItemId(page, offnum);
item = (IndexTuple) PageGetItem(page, itemid);
if (BTEntrySame(item, &stack->bts_btentry))
{
/* Return accurate pointer to where link is now */
stack->bts_blkno = blkno;
stack->bts_offset = offnum;
return buf;
}
}
for (offnum = OffsetNumberPrev(start);
offnum >= minoff;
offnum = OffsetNumberPrev(offnum))
{
itemid = PageGetItemId(page, offnum);
item = (IndexTuple) PageGetItem(page, itemid);
if (BTEntrySame(item, &stack->bts_btentry))
{
/* Return accurate pointer to where link is now */
stack->bts_blkno = blkno;
stack->bts_offset = offnum;
return buf;
}
}
}
/*
* The item we're looking for moved right at least one page.
*/
if (P_RIGHTMOST(opaque))
{
_bt_relbuf(rel, buf);
return InvalidBuffer;
}
blkno = opaque->btpo_next;
start = InvalidOffsetNumber;
_bt_relbuf(rel, buf);
}
}
Definition at line 330 of file nbtpage.c.
References _bt_getbuf(), _bt_relandgetbuf(), _bt_relbuf(), BT_READ, BTMetaPageData::btm_level, BTMetaPageData::btm_magic, BTMetaPageData::btm_root, BTMetaPageData::btm_version, BTP_META, BTPageGetMeta, BTPageOpaqueData::btpo, BTPageOpaqueData::btpo_flags, BTPageOpaqueData::btpo_next, BTREE_MAGIC, BTREE_METAPAGE, BTREE_VERSION, BufferGetPage, elog, ereport, errcode(), errmsg(), ERROR, BTPageOpaqueData::level, P_IGNORE, P_NONE, P_RIGHTMOST, PageGetSpecialPointer, pfree(), RelationData::rd_amcache, and RelationGetRelationName.
Referenced by _bt_get_endpoint().
{
Buffer metabuf;
Page metapg;
BTPageOpaque metaopaque;
Buffer rootbuf;
Page rootpage;
BTPageOpaque rootopaque;
BlockNumber rootblkno;
uint32 rootlevel;
BTMetaPageData *metad;
/*
* We don't try to use cached metapage data here, since (a) this path is
* not performance-critical, and (b) if we are here it suggests our cache
* is out-of-date anyway. In light of point (b), it's probably safest to
* actively flush any cached metapage info.
*/
if (rel->rd_amcache)
pfree(rel->rd_amcache);
rel->rd_amcache = NULL;
metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_READ);
metapg = BufferGetPage(metabuf);
metaopaque = (BTPageOpaque) PageGetSpecialPointer(metapg);
metad = BTPageGetMeta(metapg);
if (!(metaopaque->btpo_flags & BTP_META) ||
metad->btm_magic != BTREE_MAGIC)
ereport(ERROR,
(errcode(ERRCODE_INDEX_CORRUPTED),
errmsg("index \"%s\" is not a btree",
RelationGetRelationName(rel))));
if (metad->btm_version != BTREE_VERSION)
ereport(ERROR,
(errcode(ERRCODE_INDEX_CORRUPTED),
errmsg("version mismatch in index \"%s\": file version %d, code version %d",
RelationGetRelationName(rel),
metad->btm_version, BTREE_VERSION)));
/* if no root page initialized yet, fail */
if (metad->btm_root == P_NONE)
{
_bt_relbuf(rel, metabuf);
return InvalidBuffer;
}
rootblkno = metad->btm_root;
rootlevel = metad->btm_level;
/*
* We are done with the metapage; arrange to release it via first
* _bt_relandgetbuf call
*/
rootbuf = metabuf;
for (;;)
{
rootbuf = _bt_relandgetbuf(rel, rootbuf, rootblkno, BT_READ);
rootpage = BufferGetPage(rootbuf);
rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage);
if (!P_IGNORE(rootopaque))
break;
/* it's dead, Jim. step right one page */
if (P_RIGHTMOST(rootopaque))
elog(ERROR, "no live root page found in index \"%s\"",
RelationGetRelationName(rel));
rootblkno = rootopaque->btpo_next;
}
/* Note: can't check btpo.level on deleted pages */
if (rootopaque->btpo.level != rootlevel)
elog(ERROR, "root page %u of index \"%s\" has level %u, expected %u",
rootblkno, RelationGetRelationName(rel),
rootopaque->btpo.level, rootlevel);
return rootbuf;
}
| void _bt_initmetapage | ( | Page | page, | |
| BlockNumber | rootbknum, | |||
| uint32 | level | |||
| ) |
Definition at line 39 of file nbtpage.c.
References _bt_pageinit(), BTMetaPageData::btm_fastlevel, BTMetaPageData::btm_fastroot, BTMetaPageData::btm_level, BTMetaPageData::btm_magic, BTMetaPageData::btm_root, BTMetaPageData::btm_version, BTPageGetMeta, BTPageOpaqueData::btpo_flags, and PageGetSpecialPointer.
Referenced by _bt_uppershutdown(), and btbuildempty().
{
BTMetaPageData *metad;
BTPageOpaque metaopaque;
_bt_pageinit(page, BLCKSZ);
metad = BTPageGetMeta(page);
metad->btm_magic = BTREE_MAGIC;
metad->btm_version = BTREE_VERSION;
metad->btm_root = rootbknum;
metad->btm_level = level;
metad->btm_fastroot = rootbknum;
metad->btm_fastlevel = level;
metaopaque = (BTPageOpaque) PageGetSpecialPointer(page);
metaopaque->btpo_flags = BTP_META;
/*
* Set pd_lower just past the end of the metadata. This is not essential
* but it makes the page look compressible to xlog.c.
*/
((PageHeader) page)->pd_lower =
((char *) metad + sizeof(BTMetaPageData)) - (char *) page;
}
| void _bt_insert_parent | ( | Relation | rel, | |
| Buffer | buf, | |||
| Buffer | rbuf, | |||
| BTStack | stack, | |||
| bool | is_root, | |||
| bool | is_only | |||
| ) |
Definition at line 1610 of file nbtinsert.c.
References _bt_get_endpoint(), _bt_getstackbuf(), _bt_insertonpg(), _bt_newroot(), _bt_relbuf(), Assert, BT_WRITE, BTPageOpaqueData::btpo, BTStackData::bts_blkno, BTStackData::bts_btentry, BTStackData::bts_offset, BTStackData::bts_parent, BufferGetBlockNumber(), BufferGetPage, CopyIndexTuple(), DEBUG2, elog, ERROR, InRecovery, InvalidBuffer, ItemPointerSet, BTPageOpaqueData::level, NULL, P_HIKEY, PageGetItem, PageGetItemId, PageGetSpecialPointer, pfree(), RelationGetRelationName, and IndexTupleData::t_tid.
Referenced by _bt_insertonpg(), and btree_xlog_cleanup().
{
/*
* Here we have to do something Lehman and Yao don't talk about: deal with
* a root split and construction of a new root. If our stack is empty
* then we have just split a node on what had been the root level when we
* descended the tree. If it was still the root then we perform a
* new-root construction. If it *wasn't* the root anymore, search to find
* the next higher level that someone constructed meanwhile, and find the
* right place to insert as for the normal case.
*
* If we have to search for the parent level, we do so by re-descending
* from the root. This is not super-efficient, but it's rare enough not
* to matter. (This path is also taken when called from WAL recovery ---
* we have no stack in that case.)
*/
if (is_root)
{
Buffer rootbuf;
Assert(stack == NULL);
Assert(is_only);
/* create a new root node and update the metapage */
rootbuf = _bt_newroot(rel, buf, rbuf);
/* release the split buffers */
_bt_relbuf(rel, rootbuf);
_bt_relbuf(rel, rbuf);
_bt_relbuf(rel, buf);
}
else
{
BlockNumber bknum = BufferGetBlockNumber(buf);
BlockNumber rbknum = BufferGetBlockNumber(rbuf);
Page page = BufferGetPage(buf);
IndexTuple new_item;
BTStackData fakestack;
IndexTuple ritem;
Buffer pbuf;
if (stack == NULL)
{
BTPageOpaque lpageop;
if (!InRecovery)
elog(DEBUG2, "concurrent ROOT page split");
lpageop = (BTPageOpaque) PageGetSpecialPointer(page);
/* Find the leftmost page at the next level up */
pbuf = _bt_get_endpoint(rel, lpageop->btpo.level + 1, false);
/* Set up a phony stack entry pointing there */
stack = &fakestack;
stack->bts_blkno = BufferGetBlockNumber(pbuf);
stack->bts_offset = InvalidOffsetNumber;
/* bts_btentry will be initialized below */
stack->bts_parent = NULL;
_bt_relbuf(rel, pbuf);
}
/* get high key from left page == lowest key on new right page */
ritem = (IndexTuple) PageGetItem(page,
PageGetItemId(page, P_HIKEY));
/* form an index tuple that points at the new right page */
new_item = CopyIndexTuple(ritem);
ItemPointerSet(&(new_item->t_tid), rbknum, P_HIKEY);
/*
* Find the parent buffer and get the parent page.
*
* Oops - if we were moved right then we need to change stack item! We
* want to find parent pointing to where we are, right ? - vadim
* 05/27/97
*/
ItemPointerSet(&(stack->bts_btentry.t_tid), bknum, P_HIKEY);
pbuf = _bt_getstackbuf(rel, stack, BT_WRITE);
/* Now we can unlock the children */
_bt_relbuf(rel, rbuf);
_bt_relbuf(rel, buf);
/* Check for error only after writing children */
if (pbuf == InvalidBuffer)
elog(ERROR, "failed to re-find parent key in index \"%s\" for split pages %u/%u",
RelationGetRelationName(rel), bknum, rbknum);
/* Recursively update the parent */
_bt_insertonpg(rel, pbuf, stack->bts_parent,
new_item, stack->bts_offset + 1,
is_only);
/* be tidy */
pfree(new_item);
}
}
| void _bt_killitems | ( | IndexScanDesc | scan, | |
| bool | haveLock | |||
| ) |
Definition at line 1737 of file nbtutils.c.
References Assert, BT_READ, BTScanPosData::buf, BUFFER_LOCK_UNLOCK, BufferGetPage, BufferIsValid, BTScanOpaqueData::currPos, BTScanPosData::firstItem, BTScanPosItem::heapTid, i, BTScanPosItem::indexOffset, ItemIdMarkDead, ItemPointerEquals(), BTScanPosData::items, BTScanOpaqueData::killedItems, LockBuffer(), MarkBufferDirtyHint(), BTScanOpaqueData::numKilled, OffsetNumberNext, IndexScanDescData::opaque, P_FIRSTDATAKEY, PageGetItem, PageGetItemId, PageGetMaxOffsetNumber, PageGetSpecialPointer, and IndexTupleData::t_tid.
Referenced by _bt_steppage(), btendscan(), btrescan(), and btrestrpos().
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
Page page;
BTPageOpaque opaque;
OffsetNumber minoff;
OffsetNumber maxoff;
int i;
bool killedsomething = false;
Assert(BufferIsValid(so->currPos.buf));
if (!haveLock)
LockBuffer(so->currPos.buf, BT_READ);
page = BufferGetPage(so->currPos.buf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
minoff = P_FIRSTDATAKEY(opaque);
maxoff = PageGetMaxOffsetNumber(page);
for (i = 0; i < so->numKilled; i++)
{
int itemIndex = so->killedItems[i];
BTScanPosItem *kitem = &so->currPos.items[itemIndex];
OffsetNumber offnum = kitem->indexOffset;
Assert(itemIndex >= so->currPos.firstItem &&
itemIndex <= so->currPos.lastItem);
if (offnum < minoff)
continue; /* pure paranoia */
while (offnum <= maxoff)
{
ItemId iid = PageGetItemId(page, offnum);
IndexTuple ituple = (IndexTuple) PageGetItem(page, iid);
if (ItemPointerEquals(&ituple->t_tid, &kitem->heapTid))
{
/* found the item */
ItemIdMarkDead(iid);
killedsomething = true;
break; /* out of inner search loop */
}
offnum = OffsetNumberNext(offnum);
}
}
/*
* Since this can be redone later if needed, mark as dirty hint.
*
* Whenever we mark anything LP_DEAD, we also set the page's
* BTP_HAS_GARBAGE flag, which is likewise just a hint.
*/
if (killedsomething)
{
opaque->btpo_flags |= BTP_HAS_GARBAGE;
MarkBufferDirtyHint(so->currPos.buf);
}
if (!haveLock)
LockBuffer(so->currPos.buf, BUFFER_LOCK_UNLOCK);
/*
* Always reset the scan state, so we don't look for same items on other
* pages.
*/
so->numKilled = 0;
}
Definition at line 198 of file nbtsort.c.
References _bt_load(), BTREE_METAPAGE, BTWriteState::btws_pages_alloced, BTWriteState::btws_pages_written, BTWriteState::btws_use_wal, BTWriteState::btws_zeropage, BTSpool::heap, BTWriteState::heap, BTSpool::index, BTWriteState::index, log_btree_build_stats, RelationNeedsWAL, ResetUsage(), ShowUsage(), BTSpool::sortstate, tuplesort_performsort(), and XLogIsNeeded.
Referenced by btbuild().
{
BTWriteState wstate;
#ifdef BTREE_BUILD_STATS
if (log_btree_build_stats)
{
ShowUsage("BTREE BUILD (Spool) STATISTICS");
ResetUsage();
}
#endif /* BTREE_BUILD_STATS */
tuplesort_performsort(btspool->sortstate);
if (btspool2)
tuplesort_performsort(btspool2->sortstate);
wstate.heap = btspool->heap;
wstate.index = btspool->index;
/*
* We need to log index creation in WAL iff WAL archiving/streaming is
* enabled UNLESS the index isn't WAL-logged anyway.
*/
wstate.btws_use_wal = XLogIsNeeded() && RelationNeedsWAL(wstate.index);
/* reserve the metapage */
wstate.btws_pages_alloced = BTREE_METAPAGE + 1;
wstate.btws_pages_written = 0;
wstate.btws_zeropage = NULL; /* until needed */
_bt_load(&wstate, btspool, btspool2);
}
| void _bt_mark_array_keys | ( | IndexScanDesc | scan | ) |
Definition at line 604 of file nbtutils.c.
References BTScanOpaqueData::arrayKeys, BTArrayKeyInfo::cur_elem, i, BTArrayKeyInfo::mark_elem, BTScanOpaqueData::numArrayKeys, and IndexScanDescData::opaque.
Referenced by btmarkpos().
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
int i;
for (i = 0; i < so->numArrayKeys; i++)
{
BTArrayKeyInfo *curArrayKey = &so->arrayKeys[i];
curArrayKey->mark_elem = curArrayKey->cur_elem;
}
}
| ScanKey _bt_mkscankey | ( | Relation | rel, | |
| IndexTuple | itup | |||
| ) |
Definition at line 62 of file nbtutils.c.
References arg, BTORDER_PROC, i, index_getattr, index_getprocinfo(), InvalidOid, InvalidStrategy, palloc(), RelationData::rd_indcollation, RelationData::rd_indoption, RelationGetDescr, RelationGetNumberOfAttributes, ScanKeyEntryInitializeWithInfo(), SK_BT_INDOPTION_SHIFT, and SK_ISNULL.
Referenced by _bt_doinsert(), and _bt_pagedel().
{
ScanKey skey;
TupleDesc itupdesc;
int natts;
int16 *indoption;
int i;
itupdesc = RelationGetDescr(rel);
natts = RelationGetNumberOfAttributes(rel);
indoption = rel->rd_indoption;
skey = (ScanKey) palloc(natts * sizeof(ScanKeyData));
for (i = 0; i < natts; i++)
{
FmgrInfo *procinfo;
Datum arg;
bool null;
int flags;
/*
* We can use the cached (default) support procs since no cross-type
* comparison can be needed.
*/
procinfo = index_getprocinfo(rel, i + 1, BTORDER_PROC);
arg = index_getattr(itup, i + 1, itupdesc, &null);
flags = (null ? SK_ISNULL : 0) | (indoption[i] << SK_BT_INDOPTION_SHIFT);
ScanKeyEntryInitializeWithInfo(&skey[i],
flags,
(AttrNumber) (i + 1),
InvalidStrategy,
InvalidOid,
rel->rd_indcollation[i],
procinfo,
arg);
}
return skey;
}
Definition at line 115 of file nbtutils.c.
References BTORDER_PROC, i, index_getprocinfo(), InvalidOid, InvalidStrategy, palloc(), RelationData::rd_indcollation, RelationData::rd_indoption, RelationGetNumberOfAttributes, ScanKeyEntryInitializeWithInfo(), and SK_ISNULL.
Referenced by _bt_load(), tuplesort_begin_cluster(), and tuplesort_begin_index_btree().
{
ScanKey skey;
int natts;
int16 *indoption;
int i;
natts = RelationGetNumberOfAttributes(rel);
indoption = rel->rd_indoption;
skey = (ScanKey) palloc(natts * sizeof(ScanKeyData));
for (i = 0; i < natts; i++)
{
FmgrInfo *procinfo;
int flags;
/*
* We can use the cached (default) support procs since no cross-type
* comparison can be needed.
*/
procinfo = index_getprocinfo(rel, i + 1, BTORDER_PROC);
flags = SK_ISNULL | (indoption[i] << SK_BT_INDOPTION_SHIFT);
ScanKeyEntryInitializeWithInfo(&skey[i],
flags,
(AttrNumber) (i + 1),
InvalidStrategy,
InvalidOid,
rel->rd_indcollation[i],
procinfo,
(Datum) 0);
}
return skey;
}
| Buffer _bt_moveright | ( | Relation | rel, | |
| Buffer | buf, | |||
| int | keysz, | |||
| ScanKey | scankey, | |||
| bool | nextkey, | |||
| int | access | |||
| ) |
Definition at line 156 of file nbtsearch.c.
References _bt_compare(), _bt_relandgetbuf(), BTPageOpaqueData::btpo_next, BufferGetPage, elog, ERROR, P_HIKEY, P_IGNORE, P_RIGHTMOST, PageGetSpecialPointer, and RelationGetRelationName.
Referenced by _bt_doinsert(), and _bt_search().
{
Page page;
BTPageOpaque opaque;
int32 cmpval;
page = BufferGetPage(buf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
/*
* When nextkey = false (normal case): if the scan key that brought us to
* this page is > the high key stored on the page, then the page has split
* and we need to move right. (If the scan key is equal to the high key,
* we might or might not need to move right; have to scan the page first
* anyway.)
*
* When nextkey = true: move right if the scan key is >= page's high key.
*
* The page could even have split more than once, so scan as far as
* needed.
*
* We also have to move right if we followed a link that brought us to a
* dead page.
*/
cmpval = nextkey ? 0 : 1;
while (!P_RIGHTMOST(opaque) &&
(P_IGNORE(opaque) ||
_bt_compare(rel, keysz, scankey, page, P_HIKEY) >= cmpval))
{
/* step right one page */
BlockNumber rblkno = opaque->btpo_next;
buf = _bt_relandgetbuf(rel, buf, rblkno, access);
page = BufferGetPage(buf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
}
if (P_IGNORE(opaque))
elog(ERROR, "fell off the end of index \"%s\"",
RelationGetRelationName(rel));
return buf;
}
| bool _bt_next | ( | IndexScanDesc | scan, | |
| ScanDirection | dir | |||
| ) |
Definition at line 995 of file nbtsearch.c.
References _bt_steppage(), Assert, BT_READ, BTScanPosData::buf, BUFFER_LOCK_UNLOCK, BufferIsValid, BTScanOpaqueData::currPos, BTScanOpaqueData::currTuples, BTScanPosData::firstItem, BTScanPosData::itemIndex, BTScanPosData::items, BTScanPosData::lastItem, LockBuffer(), IndexScanDescData::opaque, ScanDirectionIsForward, HeapTupleData::t_self, IndexScanDescData::xs_ctup, IndexScanDescData::xs_itup, and IndexScanDescData::xs_want_itup.
Referenced by btgetbitmap(), and btgettuple().
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
BTScanPosItem *currItem;
/*
* Advance to next tuple on current page; or if there's no more, try to
* step to the next page with data.
*/
if (ScanDirectionIsForward(dir))
{
if (++so->currPos.itemIndex > so->currPos.lastItem)
{
/* We must acquire lock before applying _bt_steppage */
Assert(BufferIsValid(so->currPos.buf));
LockBuffer(so->currPos.buf, BT_READ);
if (!_bt_steppage(scan, dir))
return false;
/* Drop the lock, but not pin, on the new page */
LockBuffer(so->currPos.buf, BUFFER_LOCK_UNLOCK);
}
}
else
{
if (--so->currPos.itemIndex < so->currPos.firstItem)
{
/* We must acquire lock before applying _bt_steppage */
Assert(BufferIsValid(so->currPos.buf));
LockBuffer(so->currPos.buf, BT_READ);
if (!_bt_steppage(scan, dir))
return false;
/* Drop the lock, but not pin, on the new page */
LockBuffer(so->currPos.buf, BUFFER_LOCK_UNLOCK);
}
}
/* OK, itemIndex says what to return */
currItem = &so->currPos.items[so->currPos.itemIndex];
scan->xs_ctup.t_self = currItem->heapTid;
if (scan->xs_want_itup)
scan->xs_itup = (IndexTuple) (so->currTuples + currItem->tupleOffset);
return true;
}
Definition at line 749 of file nbtpage.c.
References BTPageOpaqueData::btpo, P_ISDELETED, PageGetSpecialPointer, PageIsNew, RecentGlobalXmin, TransactionIdPrecedes(), and BTPageOpaqueData::xact.
Referenced by _bt_getbuf(), and btvacuumpage().
{
BTPageOpaque opaque;
/*
* It's possible to find an all-zeroes page in an index --- for example, a
* backend might successfully extend the relation one page and then crash
* before it is able to make a WAL entry for adding the page. If we find a
* zeroed page then reclaim it.
*/
if (PageIsNew(page))
return true;
/*
* Otherwise, recycle if deleted and too old to have any processes
* interested in it.
*/
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
if (P_ISDELETED(opaque) &&
TransactionIdPrecedes(opaque->btpo.xact, RecentGlobalXmin))
return true;
return false;
}
Definition at line 1067 of file nbtpage.c.
References _bt_get_endpoint(), _bt_getbuf(), _bt_getstackbuf(), _bt_mkscankey(), _bt_pagedel(), _bt_parent_deletion_safe(), _bt_relbuf(), _bt_search(), Assert, BT_READ, BT_WRITE, BTMetaPageData::btm_fastlevel, BTMetaPageData::btm_fastroot, BTMetaPageData::btm_level, BTMetaPageData::btm_root, BTPageGetMeta, BTPageOpaqueData::btpo, BTPageOpaqueData::btpo_flags, BTPageOpaqueData::btpo_next, BTPageOpaqueData::btpo_prev, xl_btree_delete_page::btpo_xact, BTREE_METAPAGE, BTStackData::bts_blkno, BTStackData::bts_btentry, BTStackData::bts_offset, BTStackData::bts_parent, XLogRecData::buffer, XLogRecData::buffer_std, BufferGetBlockNumber(), BufferGetPage, BufferIsValid, CacheInvalidateRelcache(), CopyIndexTuple(), XLogRecData::data, xl_btree_delete_page::deadblk, elog, END_CRIT_SECTION, ERROR, xl_btree_metadata::fastlevel, xl_btree_metadata::fastroot, InRecovery, InvalidBuffer, ItemPointerGetBlockNumber, ItemPointerSet, xl_btree_delete_page::leftblk, XLogRecData::len, xl_btree_metadata::level, BTPageOpaqueData::level, LOG, MarkBufferDirty(), XLogRecData::next, xl_btreetid::node, NULL, OffsetNumberNext, P_FIRSTDATAKEY, P_HIKEY, P_ISDELETED, P_ISHALFDEAD, P_ISROOT, P_NONE, P_RIGHTMOST, PageGetItem, PageGetItemId, PageGetMaxOffsetNumber, PageGetSpecialPointer, PageIndexTupleDelete(), PageSetLSN, palloc(), PredicateLockPageCombine(), RelationData::rd_node, RelationData::rd_rel, ReadNewTransactionId(), RelationGetRelationName, RelationNeedsWAL, xl_btree_delete_page::rightblk, xl_btree_metadata::root, START_CRIT_SECTION, IndexTupleData::t_tid, xl_btree_delete_page::target, xl_btreetid::tid, BTPageOpaqueData::xact, and XLogInsert().
Referenced by _bt_pagedel(), btree_xlog_cleanup(), and btvacuumpage().
{
int result;
BlockNumber target,
leftsib,
rightsib,
parent;
OffsetNumber poffset,
maxoff;
uint32 targetlevel,
ilevel;
ItemId itemid;
IndexTuple targetkey,
itup;
ScanKey itup_scankey;
Buffer lbuf,
rbuf,
pbuf;
bool parent_half_dead;
bool parent_one_child;
bool rightsib_empty;
Buffer metabuf = InvalidBuffer;
Page metapg = NULL;
BTMetaPageData *metad = NULL;
Page page;
BTPageOpaque opaque;
/*
* We can never delete rightmost pages nor root pages. While at it, check
* that page is not already deleted and is empty.
*/
page = BufferGetPage(buf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
if (P_RIGHTMOST(opaque) || P_ISROOT(opaque) || P_ISDELETED(opaque) ||
P_FIRSTDATAKEY(opaque) <= PageGetMaxOffsetNumber(page))
{
/* Should never fail to delete a half-dead page */
Assert(!P_ISHALFDEAD(opaque));
_bt_relbuf(rel, buf);
return 0;
}
/*
* Save info about page, including a copy of its high key (it must have
* one, being non-rightmost).
*/
target = BufferGetBlockNumber(buf);
targetlevel = opaque->btpo.level;
leftsib = opaque->btpo_prev;
itemid = PageGetItemId(page, P_HIKEY);
targetkey = CopyIndexTuple((IndexTuple) PageGetItem(page, itemid));
/*
* To avoid deadlocks, we'd better drop the target page lock before going
* further.
*/
_bt_relbuf(rel, buf);
/*
* We need an approximate pointer to the page's parent page. We use the
* standard search mechanism to search for the page's high key; this will
* give us a link to either the current parent or someplace to its left
* (if there are multiple equal high keys). In recursion cases, the
* caller already generated a search stack and we can just re-use that
* work.
*/
if (stack == NULL)
{
if (!InRecovery)
{
/* we need an insertion scan key to do our search, so build one */
itup_scankey = _bt_mkscankey(rel, targetkey);
/* find the leftmost leaf page containing this key */
stack = _bt_search(rel, rel->rd_rel->relnatts, itup_scankey, false,
&lbuf, BT_READ);
/* don't need a pin on that either */
_bt_relbuf(rel, lbuf);
/*
* If we are trying to delete an interior page, _bt_search did
* more than we needed. Locate the stack item pointing to our
* parent level.
*/
ilevel = 0;
for (;;)
{
if (stack == NULL)
elog(ERROR, "not enough stack items");
if (ilevel == targetlevel)
break;
stack = stack->bts_parent;
ilevel++;
}
}
else
{
/*
* During WAL recovery, we can't use _bt_search (for one reason,
* it might invoke user-defined comparison functions that expect
* facilities not available in recovery mode). Instead, just set
* up a dummy stack pointing to the left end of the parent tree
* level, from which _bt_getstackbuf will walk right to the parent
* page. Painful, but we don't care too much about performance in
* this scenario.
*/
pbuf = _bt_get_endpoint(rel, targetlevel + 1, false);
stack = (BTStack) palloc(sizeof(BTStackData));
stack->bts_blkno = BufferGetBlockNumber(pbuf);
stack->bts_offset = InvalidOffsetNumber;
/* bts_btentry will be initialized below */
stack->bts_parent = NULL;
_bt_relbuf(rel, pbuf);
}
}
/*
* We cannot delete a page that is the rightmost child of its immediate
* parent, unless it is the only child --- in which case the parent has to
* be deleted too, and the same condition applies recursively to it. We
* have to check this condition all the way up before trying to delete. We
* don't need to re-test when deleting a non-leaf page, though.
*/
if (targetlevel == 0 &&
!_bt_parent_deletion_safe(rel, target, stack))
return 0;
/*
* We have to lock the pages we need to modify in the standard order:
* moving right, then up. Else we will deadlock against other writers.
*
* So, we need to find and write-lock the current left sibling of the
* target page. The sibling that was current a moment ago could have
* split, so we may have to move right. This search could fail if either
* the sibling or the target page was deleted by someone else meanwhile;
* if so, give up. (Right now, that should never happen, since page
* deletion is only done in VACUUM and there shouldn't be multiple VACUUMs
* concurrently on the same table.)
*/
if (leftsib != P_NONE)
{
lbuf = _bt_getbuf(rel, leftsib, BT_WRITE);
page = BufferGetPage(lbuf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
while (P_ISDELETED(opaque) || opaque->btpo_next != target)
{
/* step right one page */
leftsib = opaque->btpo_next;
_bt_relbuf(rel, lbuf);
if (leftsib == P_NONE)
{
elog(LOG, "no left sibling (concurrent deletion?) in \"%s\"",
RelationGetRelationName(rel));
return 0;
}
lbuf = _bt_getbuf(rel, leftsib, BT_WRITE);
page = BufferGetPage(lbuf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
}
}
else
lbuf = InvalidBuffer;
/*
* Next write-lock the target page itself. It should be okay to take just
* a write lock not a superexclusive lock, since no scans would stop on an
* empty page.
*/
buf = _bt_getbuf(rel, target, BT_WRITE);
page = BufferGetPage(buf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
/*
* Check page is still empty etc, else abandon deletion. The empty check
* is necessary since someone else might have inserted into it while we
* didn't have it locked; the others are just for paranoia's sake.
*/
if (P_RIGHTMOST(opaque) || P_ISROOT(opaque) || P_ISDELETED(opaque) ||
P_FIRSTDATAKEY(opaque) <= PageGetMaxOffsetNumber(page))
{
_bt_relbuf(rel, buf);
if (BufferIsValid(lbuf))
_bt_relbuf(rel, lbuf);
return 0;
}
if (opaque->btpo_prev != leftsib)
elog(ERROR, "left link changed unexpectedly in block %u of index \"%s\"",
target, RelationGetRelationName(rel));
/*
* And next write-lock the (current) right sibling.
*/
rightsib = opaque->btpo_next;
rbuf = _bt_getbuf(rel, rightsib, BT_WRITE);
page = BufferGetPage(rbuf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
if (opaque->btpo_prev != target)
elog(ERROR, "right sibling's left-link doesn't match: "
"block %u links to %u instead of expected %u in index \"%s\"",
rightsib, opaque->btpo_prev, target,
RelationGetRelationName(rel));
/*
* Any insert which would have gone on the target block will now go to the
* right sibling block.
*/
PredicateLockPageCombine(rel, target, rightsib);
/*
* Next find and write-lock the current parent of the target page. This is
* essentially the same as the corresponding step of splitting.
*/
ItemPointerSet(&(stack->bts_btentry.t_tid), target, P_HIKEY);
pbuf = _bt_getstackbuf(rel, stack, BT_WRITE);
if (pbuf == InvalidBuffer)
elog(ERROR, "failed to re-find parent key in index \"%s\" for deletion target page %u",
RelationGetRelationName(rel), target);
parent = stack->bts_blkno;
poffset = stack->bts_offset;
/*
* If the target is the rightmost child of its parent, then we can't
* delete, unless it's also the only child --- in which case the parent
* changes to half-dead status. The "can't delete" case should have been
* detected by _bt_parent_deletion_safe, so complain if we see it now.
*/
page = BufferGetPage(pbuf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
maxoff = PageGetMaxOffsetNumber(page);
parent_half_dead = false;
parent_one_child = false;
if (poffset >= maxoff)
{
if (poffset == P_FIRSTDATAKEY(opaque))
parent_half_dead = true;
else
elog(ERROR, "failed to delete rightmost child %u of block %u in index \"%s\"",
target, parent, RelationGetRelationName(rel));
}
else
{
/* Will there be exactly one child left in this parent? */
if (OffsetNumberNext(P_FIRSTDATAKEY(opaque)) == maxoff)
parent_one_child = true;
}
/*
* If we are deleting the next-to-last page on the target's level, then
* the rightsib is a candidate to become the new fast root. (In theory, it
* might be possible to push the fast root even further down, but the odds
* of doing so are slim, and the locking considerations daunting.)
*
* We don't support handling this in the case where the parent is becoming
* half-dead, even though it theoretically could occur.
*
* We can safely acquire a lock on the metapage here --- see comments for
* _bt_newroot().
*/
if (leftsib == P_NONE && !parent_half_dead)
{
page = BufferGetPage(rbuf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
Assert(opaque->btpo.level == targetlevel);
if (P_RIGHTMOST(opaque))
{
/* rightsib will be the only one left on the level */
metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_WRITE);
metapg = BufferGetPage(metabuf);
metad = BTPageGetMeta(metapg);
/*
* The expected case here is btm_fastlevel == targetlevel+1; if
* the fastlevel is <= targetlevel, something is wrong, and we
* choose to overwrite it to fix it.
*/
if (metad->btm_fastlevel > targetlevel + 1)
{
/* no update wanted */
_bt_relbuf(rel, metabuf);
metabuf = InvalidBuffer;
}
}
}
/*
* Check that the parent-page index items we're about to delete/overwrite
* contain what we expect. This can fail if the index has become corrupt
* for some reason. We want to throw any error before entering the
* critical section --- otherwise it'd be a PANIC.
*
* The test on the target item is just an Assert because _bt_getstackbuf
* should have guaranteed it has the expected contents. The test on the
* next-child downlink is known to sometimes fail in the field, though.
*/
page = BufferGetPage(pbuf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
#ifdef USE_ASSERT_CHECKING
itemid = PageGetItemId(page, poffset);
itup = (IndexTuple) PageGetItem(page, itemid);
Assert(ItemPointerGetBlockNumber(&(itup->t_tid)) == target);
#endif
if (!parent_half_dead)
{
OffsetNumber nextoffset;
nextoffset = OffsetNumberNext(poffset);
itemid = PageGetItemId(page, nextoffset);
itup = (IndexTuple) PageGetItem(page, itemid);
if (ItemPointerGetBlockNumber(&(itup->t_tid)) != rightsib)
elog(ERROR, "right sibling %u of block %u is not next child %u of block %u in index \"%s\"",
rightsib, target, ItemPointerGetBlockNumber(&(itup->t_tid)),
parent, RelationGetRelationName(rel));
}
/*
* Here we begin doing the deletion.
*/
/* No ereport(ERROR) until changes are logged */
START_CRIT_SECTION();
/*
* Update parent. The normal case is a tad tricky because we want to
* delete the target's downlink and the *following* key. Easiest way is
* to copy the right sibling's downlink over the target downlink, and then
* delete the following item.
*/
if (parent_half_dead)
{
PageIndexTupleDelete(page, poffset);
opaque->btpo_flags |= BTP_HALF_DEAD;
}
else
{
OffsetNumber nextoffset;
itemid = PageGetItemId(page, poffset);
itup = (IndexTuple) PageGetItem(page, itemid);
ItemPointerSet(&(itup->t_tid), rightsib, P_HIKEY);
nextoffset = OffsetNumberNext(poffset);
PageIndexTupleDelete(page, nextoffset);
}
/*
* Update siblings' side-links. Note the target page's side-links will
* continue to point to the siblings. Asserts here are just rechecking
* things we already verified above.
*/
if (BufferIsValid(lbuf))
{
page = BufferGetPage(lbuf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
Assert(opaque->btpo_next == target);
opaque->btpo_next = rightsib;
}
page = BufferGetPage(rbuf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
Assert(opaque->btpo_prev == target);
opaque->btpo_prev = leftsib;
rightsib_empty = (P_FIRSTDATAKEY(opaque) > PageGetMaxOffsetNumber(page));
/*
* Mark the page itself deleted. It can be recycled when all current
* transactions are gone. Storing GetTopTransactionId() would work, but
* we're in VACUUM and would not otherwise have an XID. Having already
* updated links to the target, ReadNewTransactionId() suffices as an
* upper bound. Any scan having retained a now-stale link is advertising
* in its PGXACT an xmin less than or equal to the value we read here. It
* will continue to do so, holding back RecentGlobalXmin, for the duration
* of that scan.
*/
page = BufferGetPage(buf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
opaque->btpo_flags &= ~BTP_HALF_DEAD;
opaque->btpo_flags |= BTP_DELETED;
opaque->btpo.xact = ReadNewTransactionId();
/* And update the metapage, if needed */
if (BufferIsValid(metabuf))
{
metad->btm_fastroot = rightsib;
metad->btm_fastlevel = targetlevel;
MarkBufferDirty(metabuf);
}
/* Must mark buffers dirty before XLogInsert */
MarkBufferDirty(pbuf);
MarkBufferDirty(rbuf);
MarkBufferDirty(buf);
if (BufferIsValid(lbuf))
MarkBufferDirty(lbuf);
/* XLOG stuff */
if (RelationNeedsWAL(rel))
{
xl_btree_delete_page xlrec;
xl_btree_metadata xlmeta;
uint8 xlinfo;
XLogRecPtr recptr;
XLogRecData rdata[5];
XLogRecData *nextrdata;
xlrec.target.node = rel->rd_node;
ItemPointerSet(&(xlrec.target.tid), parent, poffset);
xlrec.deadblk = target;
xlrec.leftblk = leftsib;
xlrec.rightblk = rightsib;
xlrec.btpo_xact = opaque->btpo.xact;
rdata[0].data = (char *) &xlrec;
rdata[0].len = SizeOfBtreeDeletePage;
rdata[0].buffer = InvalidBuffer;
rdata[0].next = nextrdata = &(rdata[1]);
if (BufferIsValid(metabuf))
{
xlmeta.root = metad->btm_root;
xlmeta.level = metad->btm_level;
xlmeta.fastroot = metad->btm_fastroot;
xlmeta.fastlevel = metad->btm_fastlevel;
nextrdata->data = (char *) &xlmeta;
nextrdata->len = sizeof(xl_btree_metadata);
nextrdata->buffer = InvalidBuffer;
nextrdata->next = nextrdata + 1;
nextrdata++;
xlinfo = XLOG_BTREE_DELETE_PAGE_META;
}
else if (parent_half_dead)
xlinfo = XLOG_BTREE_DELETE_PAGE_HALF;
else
xlinfo = XLOG_BTREE_DELETE_PAGE;
nextrdata->data = NULL;
nextrdata->len = 0;
nextrdata->next = nextrdata + 1;
nextrdata->buffer = pbuf;
nextrdata->buffer_std = true;
nextrdata++;
nextrdata->data = NULL;
nextrdata->len = 0;
nextrdata->buffer = rbuf;
nextrdata->buffer_std = true;
nextrdata->next = NULL;
if (BufferIsValid(lbuf))
{
nextrdata->next = nextrdata + 1;
nextrdata++;
nextrdata->data = NULL;
nextrdata->len = 0;
nextrdata->buffer = lbuf;
nextrdata->buffer_std = true;
nextrdata->next = NULL;
}
recptr = XLogInsert(RM_BTREE_ID, xlinfo, rdata);
if (BufferIsValid(metabuf))
{
PageSetLSN(metapg, recptr);
}
page = BufferGetPage(pbuf);
PageSetLSN(page, recptr);
page = BufferGetPage(rbuf);
PageSetLSN(page, recptr);
page = BufferGetPage(buf);
PageSetLSN(page, recptr);
if (BufferIsValid(lbuf))
{
page = BufferGetPage(lbuf);
PageSetLSN(page, recptr);
}
}
END_CRIT_SECTION();
/* release metapage; send out relcache inval if metapage changed */
if (BufferIsValid(metabuf))
{
CacheInvalidateRelcache(rel);
_bt_relbuf(rel, metabuf);
}
/* can always release leftsib immediately */
if (BufferIsValid(lbuf))
_bt_relbuf(rel, lbuf);
/*
* If parent became half dead, recurse to delete it. Otherwise, if right
* sibling is empty and is now the last child of the parent, recurse to
* try to delete it. (These cases cannot apply at the same time, though
* the second case might itself recurse to the first.)
*
* When recursing to parent, we hold the lock on the target page until
* done. This delays any insertions into the keyspace that was just
* effectively reassigned to the parent's right sibling. If we allowed
* that, and there were enough such insertions before we finish deleting
* the parent, page splits within that keyspace could lead to inserting
* out-of-order keys into the grandparent level. It is thought that that
* wouldn't have any serious consequences, but it still seems like a
* pretty bad idea.
*/
if (parent_half_dead)
{
/* recursive call will release pbuf */
_bt_relbuf(rel, rbuf);
result = _bt_pagedel(rel, pbuf, stack->bts_parent) + 1;
_bt_relbuf(rel, buf);
}
else if (parent_one_child && rightsib_empty)
{
_bt_relbuf(rel, pbuf);
_bt_relbuf(rel, buf);
/* recursive call will release rbuf */
result = _bt_pagedel(rel, rbuf, stack) + 1;
}
else
{
_bt_relbuf(rel, pbuf);
_bt_relbuf(rel, buf);
_bt_relbuf(rel, rbuf);
result = 1;
}
return result;
}
Definition at line 737 of file nbtpage.c.
References PageInit().
Referenced by _bt_blnewpage(), _bt_getbuf(), _bt_initmetapage(), _bt_restore_meta(), _bt_split(), btree_xlog_delete_page(), btree_xlog_newroot(), and btree_xlog_split().
{
PageInit(page, size, sizeof(BTPageOpaqueData));
}
| void _bt_preprocess_array_keys | ( | IndexScanDesc | scan | ) |
Definition at line 192 of file nbtutils.c.
References _bt_find_extreme_element(), _bt_sort_array_elements(), ALLOCSET_SMALL_INITSIZE, ALLOCSET_SMALL_MAXSIZE, ALLOCSET_SMALL_MINSIZE, AllocSetContextCreate(), ARR_ELEMTYPE, BTScanOpaqueData::arrayContext, BTScanOpaqueData::arrayKeyData, BTScanOpaqueData::arrayKeys, Assert, BTEqualStrategyNumber, BTGreaterEqualStrategyNumber, BTGreaterStrategyNumber, BTLessEqualStrategyNumber, BTLessStrategyNumber, cur, CurrentMemoryContext, DatumGetArrayTypeP, deconstruct_array(), BTArrayKeyInfo::elem_values, elog, ERROR, get_typlenbyvalalign(), i, IndexScanDescData::indexRelation, INDOPTION_DESC, IndexScanDescData::keyData, MemoryContextReset(), MemoryContextSwitchTo(), NULL, BTArrayKeyInfo::num_elems, BTScanOpaqueData::numArrayKeys, IndexScanDescData::numberOfKeys, IndexScanDescData::opaque, palloc(), palloc0(), RelationData::rd_indoption, BTArrayKeyInfo::scan_key, SK_ISNULL, SK_ROW_HEADER, SK_SEARCHARRAY, SK_SEARCHNOTNULL, and SK_SEARCHNULL.
Referenced by btrescan().
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
int numberOfKeys = scan->numberOfKeys;
int16 *indoption = scan->indexRelation->rd_indoption;
int numArrayKeys;
ScanKey cur;
int i;
MemoryContext oldContext;
/* Quick check to see if there are any array keys */
numArrayKeys = 0;
for (i = 0; i < numberOfKeys; i++)
{
cur = &scan->keyData[i];
if (cur->sk_flags & SK_SEARCHARRAY)
{
numArrayKeys++;
Assert(!(cur->sk_flags & (SK_ROW_HEADER | SK_SEARCHNULL | SK_SEARCHNOTNULL)));
/* If any arrays are null as a whole, we can quit right now. */
if (cur->sk_flags & SK_ISNULL)
{
so->numArrayKeys = -1;
so->arrayKeyData = NULL;
return;
}
}
}
/* Quit if nothing to do. */
if (numArrayKeys == 0)
{
so->numArrayKeys = 0;
so->arrayKeyData = NULL;
return;
}
/*
* Make a scan-lifespan context to hold array-associated data, or reset it
* if we already have one from a previous rescan cycle.
*/
if (so->arrayContext == NULL)
so->arrayContext = AllocSetContextCreate(CurrentMemoryContext,
"BTree Array Context",
ALLOCSET_SMALL_MINSIZE,
ALLOCSET_SMALL_INITSIZE,
ALLOCSET_SMALL_MAXSIZE);
else
MemoryContextReset(so->arrayContext);
oldContext = MemoryContextSwitchTo(so->arrayContext);
/* Create modifiable copy of scan->keyData in the workspace context */
so->arrayKeyData = (ScanKey) palloc(scan->numberOfKeys * sizeof(ScanKeyData));
memcpy(so->arrayKeyData,
scan->keyData,
scan->numberOfKeys * sizeof(ScanKeyData));
/* Allocate space for per-array data in the workspace context */
so->arrayKeys = (BTArrayKeyInfo *) palloc0(numArrayKeys * sizeof(BTArrayKeyInfo));
/* Now process each array key */
numArrayKeys = 0;
for (i = 0; i < numberOfKeys; i++)
{
ArrayType *arrayval;
int16 elmlen;
bool elmbyval;
char elmalign;
int num_elems;
Datum *elem_values;
bool *elem_nulls;
int num_nonnulls;
int j;
cur = &so->arrayKeyData[i];
if (!(cur->sk_flags & SK_SEARCHARRAY))
continue;
/*
* First, deconstruct the array into elements. Anything allocated
* here (including a possibly detoasted array value) is in the
* workspace context.
*/
arrayval = DatumGetArrayTypeP(cur->sk_argument);
/* We could cache this data, but not clear it's worth it */
get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
&elmlen, &elmbyval, &elmalign);
deconstruct_array(arrayval,
ARR_ELEMTYPE(arrayval),
elmlen, elmbyval, elmalign,
&elem_values, &elem_nulls, &num_elems);
/*
* Compress out any null elements. We can ignore them since we assume
* all btree operators are strict.
*/
num_nonnulls = 0;
for (j = 0; j < num_elems; j++)
{
if (!elem_nulls[j])
elem_values[num_nonnulls++] = elem_values[j];
}
/* We could pfree(elem_nulls) now, but not worth the cycles */
/* If there's no non-nulls, the scan qual is unsatisfiable */
if (num_nonnulls == 0)
{
numArrayKeys = -1;
break;
}
/*
* If the comparison operator is not equality, then the array qual
* degenerates to a simple comparison against the smallest or largest
* non-null array element, as appropriate.
*/
switch (cur->sk_strategy)
{
case BTLessStrategyNumber:
case BTLessEqualStrategyNumber:
cur->sk_argument =
_bt_find_extreme_element(scan, cur,
BTGreaterStrategyNumber,
elem_values, num_nonnulls);
continue;
case BTEqualStrategyNumber:
/* proceed with rest of loop */
break;
case BTGreaterEqualStrategyNumber:
case BTGreaterStrategyNumber:
cur->sk_argument =
_bt_find_extreme_element(scan, cur,
BTLessStrategyNumber,
elem_values, num_nonnulls);
continue;
default:
elog(ERROR, "unrecognized StrategyNumber: %d",
(int) cur->sk_strategy);
break;
}
/*
* Sort the non-null elements and eliminate any duplicates. We must
* sort in the same ordering used by the index column, so that the
* successive primitive indexscans produce data in index order.
*/
num_elems = _bt_sort_array_elements(scan, cur,
(indoption[cur->sk_attno - 1] & INDOPTION_DESC) != 0,
elem_values, num_nonnulls);
/*
* And set up the BTArrayKeyInfo data.
*/
so->arrayKeys[numArrayKeys].scan_key = i;
so->arrayKeys[numArrayKeys].num_elems = num_elems;
so->arrayKeys[numArrayKeys].elem_values = elem_values;
numArrayKeys++;
}
so->numArrayKeys = numArrayKeys;
MemoryContextSwitchTo(oldContext);
}
| void _bt_preprocess_keys | ( | IndexScanDesc | scan | ) |
Definition at line 743 of file nbtutils.c.
References _bt_compare_scankey_args(), _bt_fix_scankey_strategy(), _bt_mark_scankey_required(), BTScanOpaqueData::arrayKeyData, Assert, BTEqualStrategyNumber, BTGreaterEqualStrategyNumber, BTGreaterStrategyNumber, BTLessEqualStrategyNumber, BTLessStrategyNumber, BTMaxStrategyNumber, cur, elog, ERROR, i, IndexScanDescData::indexRelation, BTScanOpaqueData::keyData, IndexScanDescData::keyData, NULL, BTScanOpaqueData::numberOfKeys, IndexScanDescData::numberOfKeys, IndexScanDescData::opaque, BTScanOpaqueData::qual_ok, RelationData::rd_indoption, ScanKeyData::sk_flags, SK_ROW_HEADER, and SK_SEARCHNULL.
Referenced by _bt_first(), and _bt_restore_array_keys().
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
int numberOfKeys = scan->numberOfKeys;
int16 *indoption = scan->indexRelation->rd_indoption;
int new_numberOfKeys;
int numberOfEqualCols;
ScanKey inkeys;
ScanKey outkeys;
ScanKey cur;
ScanKey xform[BTMaxStrategyNumber];
bool test_result;
int i,
j;
AttrNumber attno;
/* initialize result variables */
so->qual_ok = true;
so->numberOfKeys = 0;
if (numberOfKeys < 1)
return; /* done if qual-less scan */
/*
* Read so->arrayKeyData if array keys are present, else scan->keyData
*/
if (so->arrayKeyData != NULL)
inkeys = so->arrayKeyData;
else
inkeys = scan->keyData;
outkeys = so->keyData;
cur = &inkeys[0];
/* we check that input keys are correctly ordered */
if (cur->sk_attno < 1)
elog(ERROR, "btree index keys must be ordered by attribute");
/* We can short-circuit most of the work if there's just one key */
if (numberOfKeys == 1)
{
/* Apply indoption to scankey (might change sk_strategy!) */
if (!_bt_fix_scankey_strategy(cur, indoption))
so->qual_ok = false;
memcpy(outkeys, cur, sizeof(ScanKeyData));
so->numberOfKeys = 1;
/* We can mark the qual as required if it's for first index col */
if (cur->sk_attno == 1)
_bt_mark_scankey_required(outkeys);
return;
}
/*
* Otherwise, do the full set of pushups.
*/
new_numberOfKeys = 0;
numberOfEqualCols = 0;
/*
* Initialize for processing of keys for attr 1.
*
* xform[i] points to the currently best scan key of strategy type i+1; it
* is NULL if we haven't yet found such a key for this attr.
*/
attno = 1;
memset(xform, 0, sizeof(xform));
/*
* Loop iterates from 0 to numberOfKeys inclusive; we use the last pass to
* handle after-last-key processing. Actual exit from the loop is at the
* "break" statement below.
*/
for (i = 0;; cur++, i++)
{
if (i < numberOfKeys)
{
/* Apply indoption to scankey (might change sk_strategy!) */
if (!_bt_fix_scankey_strategy(cur, indoption))
{
/* NULL can't be matched, so give up */
so->qual_ok = false;
return;
}
}
/*
* If we are at the end of the keys for a particular attr, finish up
* processing and emit the cleaned-up keys.
*/
if (i == numberOfKeys || cur->sk_attno != attno)
{
int priorNumberOfEqualCols = numberOfEqualCols;
/* check input keys are correctly ordered */
if (i < numberOfKeys && cur->sk_attno < attno)
elog(ERROR, "btree index keys must be ordered by attribute");
/*
* If = has been specified, all other keys can be eliminated as
* redundant. If we have a case like key = 1 AND key > 2, we can
* set qual_ok to false and abandon further processing.
*
* We also have to deal with the case of "key IS NULL", which is
* unsatisfiable in combination with any other index condition. By
* the time we get here, that's been classified as an equality
* check, and we've rejected any combination of it with a regular
* equality condition; but not with other types of conditions.
*/
if (xform[BTEqualStrategyNumber - 1])
{
ScanKey eq = xform[BTEqualStrategyNumber - 1];
for (j = BTMaxStrategyNumber; --j >= 0;)
{
ScanKey chk = xform[j];
if (!chk || j == (BTEqualStrategyNumber - 1))
continue;
if (eq->sk_flags & SK_SEARCHNULL)
{
/* IS NULL is contradictory to anything else */
so->qual_ok = false;
return;
}
if (_bt_compare_scankey_args(scan, chk, eq, chk,
&test_result))
{
if (!test_result)
{
/* keys proven mutually contradictory */
so->qual_ok = false;
return;
}
/* else discard the redundant non-equality key */
xform[j] = NULL;
}
/* else, cannot determine redundancy, keep both keys */
}
/* track number of attrs for which we have "=" keys */
numberOfEqualCols++;
}
/* try to keep only one of <, <= */
if (xform[BTLessStrategyNumber - 1]
&& xform[BTLessEqualStrategyNumber - 1])
{
ScanKey lt = xform[BTLessStrategyNumber - 1];
ScanKey le = xform[BTLessEqualStrategyNumber - 1];
if (_bt_compare_scankey_args(scan, le, lt, le,
&test_result))
{
if (test_result)
xform[BTLessEqualStrategyNumber - 1] = NULL;
else
xform[BTLessStrategyNumber - 1] = NULL;
}
}
/* try to keep only one of >, >= */
if (xform[BTGreaterStrategyNumber - 1]
&& xform[BTGreaterEqualStrategyNumber - 1])
{
ScanKey gt = xform[BTGreaterStrategyNumber - 1];
ScanKey ge = xform[BTGreaterEqualStrategyNumber - 1];
if (_bt_compare_scankey_args(scan, ge, gt, ge,
&test_result))
{
if (test_result)
xform[BTGreaterEqualStrategyNumber - 1] = NULL;
else
xform[BTGreaterStrategyNumber - 1] = NULL;
}
}
/*
* Emit the cleaned-up keys into the outkeys[] array, and then
* mark them if they are required. They are required (possibly
* only in one direction) if all attrs before this one had "=".
*/
for (j = BTMaxStrategyNumber; --j >= 0;)
{
if (xform[j])
{
ScanKey outkey = &outkeys[new_numberOfKeys++];
memcpy(outkey, xform[j], sizeof(ScanKeyData));
if (priorNumberOfEqualCols == attno - 1)
_bt_mark_scankey_required(outkey);
}
}
/*
* Exit loop here if done.
*/
if (i == numberOfKeys)
break;
/* Re-initialize for new attno */
attno = cur->sk_attno;
memset(xform, 0, sizeof(xform));
}
/* check strategy this key's operator corresponds to */
j = cur->sk_strategy - 1;
/* if row comparison, push it directly to the output array */
if (cur->sk_flags & SK_ROW_HEADER)
{
ScanKey outkey = &outkeys[new_numberOfKeys++];
memcpy(outkey, cur, sizeof(ScanKeyData));
if (numberOfEqualCols == attno - 1)
_bt_mark_scankey_required(outkey);
/*
* We don't support RowCompare using equality; such a qual would
* mess up the numberOfEqualCols tracking.
*/
Assert(j != (BTEqualStrategyNumber - 1));
continue;
}
/* have we seen one of these before? */
if (xform[j] == NULL)
{
/* nope, so remember this scankey */
xform[j] = cur;
}
else
{
/* yup, keep only the more restrictive key */
if (_bt_compare_scankey_args(scan, cur, cur, xform[j],
&test_result))
{
if (test_result)
xform[j] = cur;
else if (j == (BTEqualStrategyNumber - 1))
{
/* key == a && key == b, but a != b */
so->qual_ok = false;
return;
}
/* else old key is more restrictive, keep it */
}
else
{
/*
* We can't determine which key is more restrictive. Keep the
* previous one in xform[j] and push this one directly to the
* output array.
*/
ScanKey outkey = &outkeys[new_numberOfKeys++];
memcpy(outkey, cur, sizeof(ScanKeyData));
if (numberOfEqualCols == attno - 1)
_bt_mark_scankey_required(outkey);
}
}
}
so->numberOfKeys = new_numberOfKeys;
}
| Buffer _bt_relandgetbuf | ( | Relation | rel, | |
| Buffer | obuf, | |||
| BlockNumber | blkno, | |||
| int | access | |||
| ) |
Definition at line 706 of file nbtpage.c.
References _bt_checkpage(), Assert, buf, BUFFER_LOCK_UNLOCK, BufferIsValid, LockBuffer(), P_NEW, and ReleaseAndReadBuffer().
Referenced by _bt_check_unique(), _bt_findinsertloc(), _bt_get_endpoint(), _bt_getroot(), _bt_gettrueroot(), _bt_moveright(), _bt_search(), and _bt_walk_left().
{
Buffer buf;
Assert(blkno != P_NEW);
if (BufferIsValid(obuf))
LockBuffer(obuf, BUFFER_LOCK_UNLOCK);
buf = ReleaseAndReadBuffer(obuf, rel, blkno);
LockBuffer(buf, access);
_bt_checkpage(rel, buf);
return buf;
}
Definition at line 725 of file nbtpage.c.
References UnlockReleaseBuffer().
Referenced by _bt_check_unique(), _bt_doinsert(), _bt_findinsertloc(), _bt_getbuf(), _bt_getroot(), _bt_getrootheight(), _bt_getstackbuf(), _bt_gettrueroot(), _bt_insert_parent(), _bt_insertonpg(), _bt_newroot(), _bt_pagedel(), _bt_parent_deletion_safe(), _bt_split(), _bt_steppage(), _bt_walk_left(), btvacuumpage(), btvacuumscan(), and pgstat_btree_page().
{
UnlockReleaseBuffer(buf);
}
| void _bt_restore_array_keys | ( | IndexScanDesc | scan | ) |
Definition at line 623 of file nbtutils.c.
References _bt_preprocess_keys(), BTScanOpaqueData::arrayKeyData, BTScanOpaqueData::arrayKeys, Assert, BTArrayKeyInfo::cur_elem, BTArrayKeyInfo::elem_values, i, BTArrayKeyInfo::mark_elem, BTScanOpaqueData::numArrayKeys, IndexScanDescData::opaque, BTScanOpaqueData::qual_ok, BTArrayKeyInfo::scan_key, and ScanKeyData::sk_argument.
Referenced by btrestrpos().
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
bool changed = false;
int i;
/* Restore each array key to its position when the mark was set */
for (i = 0; i < so->numArrayKeys; i++)
{
BTArrayKeyInfo *curArrayKey = &so->arrayKeys[i];
ScanKey skey = &so->arrayKeyData[curArrayKey->scan_key];
int mark_elem = curArrayKey->mark_elem;
if (curArrayKey->cur_elem != mark_elem)
{
curArrayKey->cur_elem = mark_elem;
skey->sk_argument = curArrayKey->elem_values[mark_elem];
changed = true;
}
}
/*
* If we changed any keys, we must redo _bt_preprocess_keys. That might
* sound like overkill, but in cases with multiple keys per index column
* it seems necessary to do the full set of pushups.
*/
if (changed)
{
_bt_preprocess_keys(scan);
/* The mark should have been set on a consistent set of keys... */
Assert(so->qual_ok);
}
}
| BTStack _bt_search | ( | Relation | rel, | |
| int | keysz, | |||
| ScanKey | scankey, | |||
| bool | nextkey, | |||
| Buffer * | bufP, | |||
| int | access | |||
| ) |
Definition at line 57 of file nbtsearch.c.
References _bt_binsrch(), _bt_getroot(), _bt_moveright(), _bt_relandgetbuf(), BT_READ, BTStackData::bts_blkno, BTStackData::bts_btentry, BTStackData::bts_offset, BTStackData::bts_parent, BufferGetBlockNumber(), BufferGetPage, BufferIsValid, ItemPointerGetBlockNumber, P_ISLEAF, PageGetItem, PageGetItemId, PageGetSpecialPointer, palloc(), and IndexTupleData::t_tid.
Referenced by _bt_doinsert(), _bt_first(), and _bt_pagedel().
{
BTStack stack_in = NULL;
/* Get the root page to start with */
*bufP = _bt_getroot(rel, access);
/* If index is empty and access = BT_READ, no root page is created. */
if (!BufferIsValid(*bufP))
return (BTStack) NULL;
/* Loop iterates once per level descended in the tree */
for (;;)
{
Page page;
BTPageOpaque opaque;
OffsetNumber offnum;
ItemId itemid;
IndexTuple itup;
BlockNumber blkno;
BlockNumber par_blkno;
BTStack new_stack;
/*
* Race -- the page we just grabbed may have split since we read its
* pointer in the parent (or metapage). If it has, we may need to
* move right to its new sibling. Do that.
*/
*bufP = _bt_moveright(rel, *bufP, keysz, scankey, nextkey, BT_READ);
/* if this is a leaf page, we're done */
page = BufferGetPage(*bufP);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
if (P_ISLEAF(opaque))
break;
/*
* Find the appropriate item on the internal page, and get the child
* page that it points to.
*/
offnum = _bt_binsrch(rel, *bufP, keysz, scankey, nextkey);
itemid = PageGetItemId(page, offnum);
itup = (IndexTuple) PageGetItem(page, itemid);
blkno = ItemPointerGetBlockNumber(&(itup->t_tid));
par_blkno = BufferGetBlockNumber(*bufP);
/*
* We need to save the location of the index entry we chose in the
* parent page on a stack. In case we split the tree, we'll use the
* stack to work back up to the parent page. We also save the actual
* downlink (TID) to uniquely identify the index entry, in case it
* moves right while we're working lower in the tree. See the paper
* by Lehman and Yao for how this is detected and handled. (We use the
* child link to disambiguate duplicate keys in the index -- Lehman
* and Yao disallow duplicate keys.)
*/
new_stack = (BTStack) palloc(sizeof(BTStackData));
new_stack->bts_blkno = par_blkno;
new_stack->bts_offset = offnum;
memcpy(&new_stack->bts_btentry, itup, sizeof(IndexTupleData));
new_stack->bts_parent = stack_in;
/* drop the read lock on the parent page, acquire one on the child */
*bufP = _bt_relandgetbuf(rel, *bufP, blkno, BT_READ);
/* okay, all set to move down a level */
stack_in = new_stack;
}
return stack_in;
}
| void _bt_spool | ( | IndexTuple | itup, | |
| BTSpool * | btspool | |||
| ) |
Definition at line 188 of file nbtsort.c.
References BTSpool::sortstate, and tuplesort_putindextuple().
Referenced by btbuildCallback().
{
tuplesort_putindextuple(btspool->sortstate, itup);
}
| void _bt_spooldestroy | ( | BTSpool * | btspool | ) |
Definition at line 178 of file nbtsort.c.
References pfree(), BTSpool::sortstate, and tuplesort_end().
Referenced by btbuild().
{
tuplesort_end(btspool->sortstate);
pfree(btspool);
}
Definition at line 150 of file nbtsort.c.
References BTSpool::heap, BTSpool::index, BTSpool::isunique, maintenance_work_mem, palloc0(), BTSpool::sortstate, tuplesort_begin_index_btree(), and work_mem.
Referenced by btbuild().
{
BTSpool *btspool = (BTSpool *) palloc0(sizeof(BTSpool));
int btKbytes;
btspool->heap = heap;
btspool->index = index;
btspool->isunique = isunique;
/*
* We size the sort area as maintenance_work_mem rather than work_mem to
* speed index creation. This should be OK since a single backend can't
* run multiple index creations in parallel. Note that creation of a
* unique index actually requires two BTSpool objects. We expect that the
* second one (for dead tuples) won't get very full, so we give it only
* work_mem.
*/
btKbytes = isdead ? work_mem : maintenance_work_mem;
btspool->sortstate = tuplesort_begin_index_btree(heap, index, isunique,
btKbytes, false);
return btspool;
}
| void _bt_start_array_keys | ( | IndexScanDesc | scan, | |
| ScanDirection | dir | |||
| ) |
Definition at line 523 of file nbtutils.c.
References BTScanOpaqueData::arrayKeyData, BTScanOpaqueData::arrayKeys, Assert, BTArrayKeyInfo::cur_elem, BTArrayKeyInfo::elem_values, i, BTArrayKeyInfo::num_elems, BTScanOpaqueData::numArrayKeys, IndexScanDescData::opaque, BTArrayKeyInfo::scan_key, ScanDirectionIsBackward, and ScanKeyData::sk_argument.
Referenced by btgetbitmap(), and btgettuple().
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
int i;
for (i = 0; i < so->numArrayKeys; i++)
{
BTArrayKeyInfo *curArrayKey = &so->arrayKeys[i];
ScanKey skey = &so->arrayKeyData[curArrayKey->scan_key];
Assert(curArrayKey->num_elems > 0);
if (ScanDirectionIsBackward(dir))
curArrayKey->cur_elem = curArrayKey->num_elems - 1;
else
curArrayKey->cur_elem = 0;
skey->sk_argument = curArrayKey->elem_values[curArrayKey->cur_elem];
}
}
Definition at line 1882 of file nbtutils.c.
References BtreeVacuumLock, BTVacInfo::cycle_ctr, BTOneVacInfo::cycleid, LockRelId::dbId, elog, ERROR, i, LockInfoData::lockRelId, LW_EXCLUSIVE, LWLockAcquire(), LWLockRelease(), MAX_BT_CYCLE_ID, BTVacInfo::max_vacuums, BTVacInfo::num_vacuums, RelationData::rd_lockInfo, RelationGetRelationName, LockRelId::relId, BTOneVacInfo::relid, and BTVacInfo::vacuums.
Referenced by btbulkdelete().
{
BTCycleId result;
int i;
BTOneVacInfo *vac;
LWLockAcquire(BtreeVacuumLock, LW_EXCLUSIVE);
/*
* Assign the next cycle ID, being careful to avoid zero as well as the
* reserved high values.
*/
result = ++(btvacinfo->cycle_ctr);
if (result == 0 || result > MAX_BT_CYCLE_ID)
result = btvacinfo->cycle_ctr = 1;
/* Let's just make sure there's no entry already for this index */
for (i = 0; i < btvacinfo->num_vacuums; i++)
{
vac = &btvacinfo->vacuums[i];
if (vac->relid.relId == rel->rd_lockInfo.lockRelId.relId &&
vac->relid.dbId == rel->rd_lockInfo.lockRelId.dbId)
{
/*
* Unlike most places in the backend, we have to explicitly
* release our LWLock before throwing an error. This is because
* we expect _bt_end_vacuum() to be called before transaction
* abort cleanup can run to release LWLocks.
*/
LWLockRelease(BtreeVacuumLock);
elog(ERROR, "multiple active vacuums for index \"%s\"",
RelationGetRelationName(rel));
}
}
/* OK, add an entry */
if (btvacinfo->num_vacuums >= btvacinfo->max_vacuums)
{
LWLockRelease(BtreeVacuumLock);
elog(ERROR, "out of btvacinfo slots");
}
vac = &btvacinfo->vacuums[btvacinfo->num_vacuums];
vac->relid = rel->rd_lockInfo.lockRelId;
vac->cycleid = result;
btvacinfo->num_vacuums++;
LWLockRelease(BtreeVacuumLock);
return result;
}
Definition at line 1848 of file nbtutils.c.
References BtreeVacuumLock, BTOneVacInfo::cycleid, LockRelId::dbId, i, LockInfoData::lockRelId, LW_SHARED, LWLockAcquire(), LWLockRelease(), BTVacInfo::num_vacuums, RelationData::rd_lockInfo, LockRelId::relId, BTOneVacInfo::relid, and BTVacInfo::vacuums.
Referenced by _bt_split().
{
BTCycleId result = 0;
int i;
/* Share lock is enough since this is a read-only operation */
LWLockAcquire(BtreeVacuumLock, LW_SHARED);
for (i = 0; i < btvacinfo->num_vacuums; i++)
{
BTOneVacInfo *vac = &btvacinfo->vacuums[i];
if (vac->relid.relId == rel->rd_lockInfo.lockRelId.relId &&
vac->relid.dbId == rel->rd_lockInfo.lockRelId.dbId)
{
result = vac->cycleid;
break;
}
}
LWLockRelease(BtreeVacuumLock);
return result;
}
| Datum btbeginscan | ( | PG_FUNCTION_ARGS | ) |
Definition at line 406 of file nbtree.c.
References BTScanOpaqueData::arrayContext, BTScanOpaqueData::arrayKeyData, BTScanOpaqueData::arrayKeys, Assert, BTScanPosData::buf, BTScanOpaqueData::currPos, BTScanOpaqueData::currTuples, BTScanOpaqueData::keyData, BTScanOpaqueData::killedItems, BTScanOpaqueData::markPos, BTScanOpaqueData::markTuples, BTScanPosData::nextTupleOffset, BTScanOpaqueData::numArrayKeys, IndexScanDescData::numberOfKeys, BTScanOpaqueData::numKilled, IndexScanDescData::opaque, palloc(), PG_GETARG_INT32, PG_GETARG_POINTER, PG_RETURN_POINTER, RelationGetDescr, RelationGetIndexScan(), and IndexScanDescData::xs_itupdesc.
{
Relation rel = (Relation) PG_GETARG_POINTER(0);
int nkeys = PG_GETARG_INT32(1);
int norderbys = PG_GETARG_INT32(2);
IndexScanDesc scan;
BTScanOpaque so;
/* no order by operators allowed */
Assert(norderbys == 0);
/* get the scan */
scan = RelationGetIndexScan(rel, nkeys, norderbys);
/* allocate private workspace */
so = (BTScanOpaque) palloc(sizeof(BTScanOpaqueData));
so->currPos.buf = so->markPos.buf = InvalidBuffer;
if (scan->numberOfKeys > 0)
so->keyData = (ScanKey) palloc(scan->numberOfKeys * sizeof(ScanKeyData));
else
so->keyData = NULL;
so->arrayKeyData = NULL; /* assume no array keys for now */
so->numArrayKeys = 0;
so->arrayKeys = NULL;
so->arrayContext = NULL;
so->killedItems = NULL; /* until needed */
so->numKilled = 0;
/*
* We don't know yet whether the scan will be index-only, so we do not
* allocate the tuple workspace arrays until btrescan. However, we set up
* scan->xs_itupdesc whether we'll need it or not, since that's so cheap.
*/
so->currTuples = so->markTuples = NULL;
so->currPos.nextTupleOffset = 0;
so->markPos.nextTupleOffset = 0;
scan->xs_itupdesc = RelationGetDescr(rel);
scan->opaque = so;
PG_RETURN_POINTER(scan);
}
| Datum btbuild | ( | PG_FUNCTION_ARGS | ) |
Definition at line 83 of file nbtree.c.
References _bt_leafbuild(), _bt_spooldestroy(), _bt_spoolinit(), btbuildCallback(), elog, ERROR, BTBuildState::haveDead, IndexBuildResult::heap_tuples, BTBuildState::heapRel, IndexInfo::ii_Unique, IndexBuildResult::index_tuples, IndexBuildHeapScan(), BTBuildState::indtuples, BTBuildState::isUnique, log_btree_build_stats, palloc(), PG_GETARG_POINTER, PG_RETURN_POINTER, RelationGetNumberOfBlocks, RelationGetRelationName, ResetUsage(), ShowUsage(), BTBuildState::spool, and BTBuildState::spool2.
{
Relation heap = (Relation) PG_GETARG_POINTER(0);
Relation index = (Relation) PG_GETARG_POINTER(1);
IndexInfo *indexInfo = (IndexInfo *) PG_GETARG_POINTER(2);
IndexBuildResult *result;
double reltuples;
BTBuildState buildstate;
buildstate.isUnique = indexInfo->ii_Unique;
buildstate.haveDead = false;
buildstate.heapRel = heap;
buildstate.spool = NULL;
buildstate.spool2 = NULL;
buildstate.indtuples = 0;
#ifdef BTREE_BUILD_STATS
if (log_btree_build_stats)
ResetUsage();
#endif /* BTREE_BUILD_STATS */
/*
* We expect to be called exactly once for any index relation. If that's
* not the case, big trouble's what we have.
*/
if (RelationGetNumberOfBlocks(index) != 0)
elog(ERROR, "index \"%s\" already contains data",
RelationGetRelationName(index));
buildstate.spool = _bt_spoolinit(heap, index, indexInfo->ii_Unique, false);
/*
* If building a unique index, put dead tuples in a second spool to keep
* them out of the uniqueness check.
*/
if (indexInfo->ii_Unique)
buildstate.spool2 = _bt_spoolinit(heap, index, false, true);
/* do the heap scan */
reltuples = IndexBuildHeapScan(heap, index, indexInfo, true,
btbuildCallback, (void *) &buildstate);
/* okay, all heap tuples are indexed */
if (buildstate.spool2 && !buildstate.haveDead)
{
/* spool2 turns out to be unnecessary */
_bt_spooldestroy(buildstate.spool2);
buildstate.spool2 = NULL;
}
/*
* Finish the build by (1) completing the sort of the spool file, (2)
* inserting the sorted tuples into btree pages and (3) building the upper
* levels.
*/
_bt_leafbuild(buildstate.spool, buildstate.spool2);
_bt_spooldestroy(buildstate.spool);
if (buildstate.spool2)
_bt_spooldestroy(buildstate.spool2);
#ifdef BTREE_BUILD_STATS
if (log_btree_build_stats)
{
ShowUsage("BTREE BUILD STATS");
ResetUsage();
}
#endif /* BTREE_BUILD_STATS */
/*
* If we are reindexing a pre-existing index, it is critical to send out a
* relcache invalidation SI message to ensure all backends re-read the
* index metapage. We expect that the caller will ensure that happens
* (typically as a side effect of updating index stats, but it must happen
* even if the stats don't change!)
*/
/*
* Return statistics
*/
result = (IndexBuildResult *) palloc(sizeof(IndexBuildResult));
result->heap_tuples = reltuples;
result->index_tuples = buildstate.indtuples;
PG_RETURN_POINTER(result);
}
| Datum btbuildempty | ( | PG_FUNCTION_ARGS | ) |
Definition at line 210 of file nbtree.c.
References _bt_initmetapage(), BTREE_METAPAGE, INIT_FORKNUM, log_newpage(), RelFileNodeBackend::node, P_NONE, PageSetChecksumInplace(), palloc(), PG_GETARG_POINTER, PG_RETURN_VOID, RelationData::rd_smgr, SMgrRelationData::smgr_rnode, smgrimmedsync(), smgrwrite(), and XLogIsNeeded.
{
Relation index = (Relation) PG_GETARG_POINTER(0);
Page metapage;
/* Construct metapage. */
metapage = (Page) palloc(BLCKSZ);
_bt_initmetapage(metapage, P_NONE, 0);
/* Write the page. If archiving/streaming, XLOG it. */
PageSetChecksumInplace(metapage, BTREE_METAPAGE);
smgrwrite(index->rd_smgr, INIT_FORKNUM, BTREE_METAPAGE,
(char *) metapage, true);
if (XLogIsNeeded())
log_newpage(&index->rd_smgr->smgr_rnode.node, INIT_FORKNUM,
BTREE_METAPAGE, metapage);
/*
* An immediate sync is require even if we xlog'd the page, because the
* write did not go through shared_buffers and therefore a concurrent
* checkpoint may have move the redo pointer past our xlog record.
*/
smgrimmedsync(index->rd_smgr, INIT_FORKNUM);
PG_RETURN_VOID();
}
| Datum btbulkdelete | ( | PG_FUNCTION_ARGS | ) |
Definition at line 653 of file nbtree.c.
References _bt_end_vacuum(), _bt_end_vacuum_callback(), _bt_start_vacuum(), btvacuumscan(), callback(), IndexVacuumInfo::index, NULL, palloc0(), PG_END_ENSURE_ERROR_CLEANUP, PG_ENSURE_ERROR_CLEANUP, PG_GETARG_POINTER, PG_RETURN_POINTER, and PointerGetDatum.
{
IndexVacuumInfo *info = (IndexVacuumInfo *) PG_GETARG_POINTER(0);
IndexBulkDeleteResult *volatile stats = (IndexBulkDeleteResult *) PG_GETARG_POINTER(1);
IndexBulkDeleteCallback callback = (IndexBulkDeleteCallback) PG_GETARG_POINTER(2);
void *callback_state = (void *) PG_GETARG_POINTER(3);
Relation rel = info->index;
BTCycleId cycleid;
/* allocate stats if first time through, else re-use existing struct */
if (stats == NULL)
stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
/* Establish the vacuum cycle ID to use for this scan */
/* The ENSURE stuff ensures we clean up shared memory on failure */
PG_ENSURE_ERROR_CLEANUP(_bt_end_vacuum_callback, PointerGetDatum(rel));
{
cycleid = _bt_start_vacuum(rel);
btvacuumscan(info, stats, callback, callback_state, cycleid);
}
PG_END_ENSURE_ERROR_CLEANUP(_bt_end_vacuum_callback, PointerGetDatum(rel));
_bt_end_vacuum(rel);
PG_RETURN_POINTER(stats);
}
| Datum btcanreturn | ( | PG_FUNCTION_ARGS | ) |
| Datum btendscan | ( | PG_FUNCTION_ARGS | ) |
Definition at line 523 of file nbtree.c.
References _bt_killitems(), BTScanOpaqueData::arrayContext, BTScanPosIsValid, BTScanPosData::buf, BTScanOpaqueData::currPos, BTScanOpaqueData::currTuples, BTScanOpaqueData::keyData, BTScanOpaqueData::killedItems, BTScanOpaqueData::markItemIndex, BTScanOpaqueData::markPos, MemoryContextDelete(), NULL, BTScanOpaqueData::numKilled, IndexScanDescData::opaque, pfree(), PG_GETARG_POINTER, PG_RETURN_VOID, and ReleaseBuffer().
{
IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
BTScanOpaque so = (BTScanOpaque) scan->opaque;
/* we aren't holding any read locks, but gotta drop the pins */
if (BTScanPosIsValid(so->currPos))
{
/* Before leaving current page, deal with any killed items */
if (so->numKilled > 0)
_bt_killitems(scan, false);
ReleaseBuffer(so->currPos.buf);
so->currPos.buf = InvalidBuffer;
}
if (BTScanPosIsValid(so->markPos))
{
ReleaseBuffer(so->markPos.buf);
so->markPos.buf = InvalidBuffer;
}
so->markItemIndex = -1;
/* Release storage */
if (so->keyData != NULL)
pfree(so->keyData);
/* so->arrayKeyData and so->arrayKeys are in arrayContext */
if (so->arrayContext != NULL)
MemoryContextDelete(so->arrayContext);
if (so->killedItems != NULL)
pfree(so->killedItems);
if (so->currTuples != NULL)
pfree(so->currTuples);
/* so->markTuples should not be pfree'd, see btrescan */
pfree(so);
PG_RETURN_VOID();
}
| Datum btgetbitmap | ( | PG_FUNCTION_ARGS | ) |
Definition at line 346 of file nbtree.c.
References _bt_advance_array_keys(), _bt_first(), _bt_next(), _bt_start_array_keys(), BTScanOpaqueData::currPos, ForwardScanDirection, BTScanPosItem::heapTid, BTScanPosData::itemIndex, BTScanPosData::items, BTScanPosData::lastItem, BTScanOpaqueData::numArrayKeys, IndexScanDescData::opaque, PG_GETARG_POINTER, PG_RETURN_INT64, HeapTupleData::t_self, tbm_add_tuples(), and IndexScanDescData::xs_ctup.
{
IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
TIDBitmap *tbm = (TIDBitmap *) PG_GETARG_POINTER(1);
BTScanOpaque so = (BTScanOpaque) scan->opaque;
int64 ntids = 0;
ItemPointer heapTid;
/*
* If we have any array keys, initialize them.
*/
if (so->numArrayKeys)
{
/* punt if we have any unsatisfiable array keys */
if (so->numArrayKeys < 0)
PG_RETURN_INT64(ntids);
_bt_start_array_keys(scan, ForwardScanDirection);
}
/* This loop handles advancing to the next array elements, if any */
do
{
/* Fetch the first page & tuple */
if (_bt_first(scan, ForwardScanDirection))
{
/* Save tuple ID, and continue scanning */
heapTid = &scan->xs_ctup.t_self;
tbm_add_tuples(tbm, heapTid, 1, false);
ntids++;
for (;;)
{
/*
* Advance to next tuple within page. This is the same as the
* easy case in _bt_next().
*/
if (++so->currPos.itemIndex > so->currPos.lastItem)
{
/* let _bt_next do the heavy lifting */
if (!_bt_next(scan, ForwardScanDirection))
break;
}
/* Save tuple ID, and continue scanning */
heapTid = &so->currPos.items[so->currPos.itemIndex].heapTid;
tbm_add_tuples(tbm, heapTid, 1, false);
ntids++;
}
}
/* Now see if we have more array keys to deal with */
} while (so->numArrayKeys && _bt_advance_array_keys(scan, ForwardScanDirection));
PG_RETURN_INT64(ntids);
}
| Datum btgettuple | ( | PG_FUNCTION_ARGS | ) |
Definition at line 270 of file nbtree.c.
References _bt_advance_array_keys(), _bt_first(), _bt_next(), _bt_start_array_keys(), BTScanPosIsValid, BTScanOpaqueData::currPos, BTScanPosData::itemIndex, IndexScanDescData::kill_prior_tuple, BTScanOpaqueData::killedItems, MaxIndexTuplesPerPage, NULL, BTScanOpaqueData::numArrayKeys, BTScanOpaqueData::numKilled, IndexScanDescData::opaque, palloc(), PG_GETARG_INT32, PG_GETARG_POINTER, PG_RETURN_BOOL, and IndexScanDescData::xs_recheck.
{
IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
ScanDirection dir = (ScanDirection) PG_GETARG_INT32(1);
BTScanOpaque so = (BTScanOpaque) scan->opaque;
bool res;
/* btree indexes are never lossy */
scan->xs_recheck = false;
/*
* If we have any array keys, initialize them during first call for a
* scan. We can't do this in btrescan because we don't know the scan
* direction at that time.
*/
if (so->numArrayKeys && !BTScanPosIsValid(so->currPos))
{
/* punt if we have any unsatisfiable array keys */
if (so->numArrayKeys < 0)
PG_RETURN_BOOL(false);
_bt_start_array_keys(scan, dir);
}
/* This loop handles advancing to the next array elements, if any */
do
{
/*
* If we've already initialized this scan, we can just advance it in
* the appropriate direction. If we haven't done so yet, we call
* _bt_first() to get the first item in the scan.
*/
if (!BTScanPosIsValid(so->currPos))
res = _bt_first(scan, dir);
else
{
/*
* Check to see if we should kill the previously-fetched tuple.
*/
if (scan->kill_prior_tuple)
{
/*
* Yes, remember it for later. (We'll deal with all such
* tuples at once right before leaving the index page.) The
* test for numKilled overrun is not just paranoia: if the
* caller reverses direction in the indexscan then the same
* item might get entered multiple times. It's not worth
* trying to optimize that, so we don't detect it, but instead
* just forget any excess entries.
*/
if (so->killedItems == NULL)
so->killedItems = (int *)
palloc(MaxIndexTuplesPerPage * sizeof(int));
if (so->numKilled < MaxIndexTuplesPerPage)
so->killedItems[so->numKilled++] = so->currPos.itemIndex;
}
/*
* Now continue the scan.
*/
res = _bt_next(scan, dir);
}
/* If we have a tuple, return it ... */
if (res)
break;
/* ... otherwise see if we have more array keys to deal with */
} while (so->numArrayKeys && _bt_advance_array_keys(scan, dir));
PG_RETURN_BOOL(res);
}
| Datum btinsert | ( | PG_FUNCTION_ARGS | ) |
Definition at line 244 of file nbtree.c.
References _bt_doinsert(), index_form_tuple(), pfree(), PG_GETARG_INT32, PG_GETARG_POINTER, PG_RETURN_BOOL, RelationGetDescr, IndexTupleData::t_tid, and values.
{
Relation rel = (Relation) PG_GETARG_POINTER(0);
Datum *values = (Datum *) PG_GETARG_POINTER(1);
bool *isnull = (bool *) PG_GETARG_POINTER(2);
ItemPointer ht_ctid = (ItemPointer) PG_GETARG_POINTER(3);
Relation heapRel = (Relation) PG_GETARG_POINTER(4);
IndexUniqueCheck checkUnique = (IndexUniqueCheck) PG_GETARG_INT32(5);
bool result;
IndexTuple itup;
/* generate an index tuple */
itup = index_form_tuple(RelationGetDescr(rel), values, isnull);
itup->t_tid = *ht_ctid;
result = _bt_doinsert(rel, itup, checkUnique, heapRel);
pfree(itup);
PG_RETURN_BOOL(result);
}
| Datum btmarkpos | ( | PG_FUNCTION_ARGS | ) |
Definition at line 565 of file nbtree.c.
References _bt_mark_array_keys(), BTScanPosIsValid, BTScanPosData::buf, BTScanOpaqueData::currPos, BTScanPosData::itemIndex, BTScanOpaqueData::markItemIndex, BTScanOpaqueData::markPos, BTScanOpaqueData::numArrayKeys, IndexScanDescData::opaque, PG_GETARG_POINTER, PG_RETURN_VOID, and ReleaseBuffer().
{
IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
BTScanOpaque so = (BTScanOpaque) scan->opaque;
/* we aren't holding any read locks, but gotta drop the pin */
if (BTScanPosIsValid(so->markPos))
{
ReleaseBuffer(so->markPos.buf);
so->markPos.buf = InvalidBuffer;
}
/*
* Just record the current itemIndex. If we later step to next page
* before releasing the marked position, _bt_steppage makes a full copy of
* the currPos struct in markPos. If (as often happens) the mark is moved
* before we leave the page, we don't have to do that work.
*/
if (BTScanPosIsValid(so->currPos))
so->markItemIndex = so->currPos.itemIndex;
else
so->markItemIndex = -1;
/* Also record the current positions of any array keys */
if (so->numArrayKeys)
_bt_mark_array_keys(scan);
PG_RETURN_VOID();
}
| Datum btoptions | ( | PG_FUNCTION_ARGS | ) |
Definition at line 2017 of file nbtutils.c.
References default_reloptions(), PG_GETARG_BOOL, PG_GETARG_DATUM, PG_RETURN_BYTEA_P, PG_RETURN_NULL, and RELOPT_KIND_BTREE.
{
Datum reloptions = PG_GETARG_DATUM(0);
bool validate = PG_GETARG_BOOL(1);
bytea *result;
result = default_reloptions(reloptions, validate, RELOPT_KIND_BTREE);
if (result)
PG_RETURN_BYTEA_P(result);
PG_RETURN_NULL();
}
| void btree_desc | ( | StringInfo | buf, | |
| uint8 | xl_info, | |||
| char * | rec | |||
| ) |
Definition at line 29 of file nbtdesc.c.
References appendStringInfo(), xl_btree_delete::block, xl_btree_vacuum::block, RelFileNode::dbNode, xl_btree_delete_page::deadblk, xl_btree_split::firstright, xl_btree_delete::hnode, xl_btree_vacuum::lastBlockVacuumed, xl_btree_reuse_page::latestRemovedXid, xl_btree_delete_page::leftblk, xl_btree_split::leftsib, xl_btree_newroot::level, xl_btree_split::level, xl_btree_reuse_page::node, xl_btree_newroot::node, xl_btree_delete::node, xl_btree_vacuum::node, xl_btree_split::node, out_target(), RelFileNode::relNode, xl_btree_delete_page::rightblk, xl_btree_split::rightsib, xl_btree_split::rnext, xl_btree_newroot::rootblk, RelFileNode::spcNode, xl_btree_delete_page::target, xl_btree_insert::target, XLOG_BTREE_DELETE, XLOG_BTREE_DELETE_PAGE, XLOG_BTREE_DELETE_PAGE_HALF, XLOG_BTREE_DELETE_PAGE_META, XLOG_BTREE_INSERT_LEAF, XLOG_BTREE_INSERT_META, XLOG_BTREE_INSERT_UPPER, XLOG_BTREE_NEWROOT, XLOG_BTREE_REUSE_PAGE, XLOG_BTREE_SPLIT_L, XLOG_BTREE_SPLIT_L_ROOT, XLOG_BTREE_SPLIT_R, XLOG_BTREE_SPLIT_R_ROOT, and XLOG_BTREE_VACUUM.
{
uint8 info = xl_info & ~XLR_INFO_MASK;
switch (info)
{
case XLOG_BTREE_INSERT_LEAF:
{
xl_btree_insert *xlrec = (xl_btree_insert *) rec;
appendStringInfo(buf, "insert: ");
out_target(buf, &(xlrec->target));
break;
}
case XLOG_BTREE_INSERT_UPPER:
{
xl_btree_insert *xlrec = (xl_btree_insert *) rec;
appendStringInfo(buf, "insert_upper: ");
out_target(buf, &(xlrec->target));
break;
}
case XLOG_BTREE_INSERT_META:
{
xl_btree_insert *xlrec = (xl_btree_insert *) rec;
appendStringInfo(buf, "insert_meta: ");
out_target(buf, &(xlrec->target));
break;
}
case XLOG_BTREE_SPLIT_L:
{
xl_btree_split *xlrec = (xl_btree_split *) rec;
appendStringInfo(buf, "split_l: rel %u/%u/%u ",
xlrec->node.spcNode, xlrec->node.dbNode,
xlrec->node.relNode);
appendStringInfo(buf, "left %u, right %u, next %u, level %u, firstright %d",
xlrec->leftsib, xlrec->rightsib, xlrec->rnext,
xlrec->level, xlrec->firstright);
break;
}
case XLOG_BTREE_SPLIT_R:
{
xl_btree_split *xlrec = (xl_btree_split *) rec;
appendStringInfo(buf, "split_r: rel %u/%u/%u ",
xlrec->node.spcNode, xlrec->node.dbNode,
xlrec->node.relNode);
appendStringInfo(buf, "left %u, right %u, next %u, level %u, firstright %d",
xlrec->leftsib, xlrec->rightsib, xlrec->rnext,
xlrec->level, xlrec->firstright);
break;
}
case XLOG_BTREE_SPLIT_L_ROOT:
{
xl_btree_split *xlrec = (xl_btree_split *) rec;
appendStringInfo(buf, "split_l_root: rel %u/%u/%u ",
xlrec->node.spcNode, xlrec->node.dbNode,
xlrec->node.relNode);
appendStringInfo(buf, "left %u, right %u, next %u, level %u, firstright %d",
xlrec->leftsib, xlrec->rightsib, xlrec->rnext,
xlrec->level, xlrec->firstright);
break;
}
case XLOG_BTREE_SPLIT_R_ROOT:
{
xl_btree_split *xlrec = (xl_btree_split *) rec;
appendStringInfo(buf, "split_r_root: rel %u/%u/%u ",
xlrec->node.spcNode, xlrec->node.dbNode,
xlrec->node.relNode);
appendStringInfo(buf, "left %u, right %u, next %u, level %u, firstright %d",
xlrec->leftsib, xlrec->rightsib, xlrec->rnext,
xlrec->level, xlrec->firstright);
break;
}
case XLOG_BTREE_VACUUM:
{
xl_btree_vacuum *xlrec = (xl_btree_vacuum *) rec;
appendStringInfo(buf, "vacuum: rel %u/%u/%u; blk %u, lastBlockVacuumed %u",
xlrec->node.spcNode, xlrec->node.dbNode,
xlrec->node.relNode, xlrec->block,
xlrec->lastBlockVacuumed);
break;
}
case XLOG_BTREE_DELETE:
{
xl_btree_delete *xlrec = (xl_btree_delete *) rec;
appendStringInfo(buf, "delete: index %u/%u/%u; iblk %u, heap %u/%u/%u;",
xlrec->node.spcNode, xlrec->node.dbNode, xlrec->node.relNode,
xlrec->block,
xlrec->hnode.spcNode, xlrec->hnode.dbNode, xlrec->hnode.relNode);
break;
}
case XLOG_BTREE_DELETE_PAGE:
case XLOG_BTREE_DELETE_PAGE_META:
case XLOG_BTREE_DELETE_PAGE_HALF:
{
xl_btree_delete_page *xlrec = (xl_btree_delete_page *) rec;
appendStringInfo(buf, "delete_page: ");
out_target(buf, &(xlrec->target));
appendStringInfo(buf, "; dead %u; left %u; right %u",
xlrec->deadblk, xlrec->leftblk, xlrec->rightblk);
break;
}
case XLOG_BTREE_NEWROOT:
{
xl_btree_newroot *xlrec = (xl_btree_newroot *) rec;
appendStringInfo(buf, "newroot: rel %u/%u/%u; root %u lev %u",
xlrec->node.spcNode, xlrec->node.dbNode,
xlrec->node.relNode,
xlrec->rootblk, xlrec->level);
break;
}
case XLOG_BTREE_REUSE_PAGE:
{
xl_btree_reuse_page *xlrec = (xl_btree_reuse_page *) rec;
appendStringInfo(buf, "reuse_page: rel %u/%u/%u; latestRemovedXid %u",
xlrec->node.spcNode, xlrec->node.dbNode,
xlrec->node.relNode, xlrec->latestRemovedXid);
break;
}
default:
appendStringInfo(buf, "UNKNOWN");
break;
}
}
| void btree_redo | ( | XLogRecPtr | lsn, | |
| XLogRecord * | record | |||
| ) |
Definition at line 1023 of file nbtxlog.c.
References btree_xlog_delete(), btree_xlog_delete_page(), btree_xlog_insert(), btree_xlog_newroot(), btree_xlog_reuse_page(), btree_xlog_split(), btree_xlog_vacuum(), elog, PANIC, XLogRecord::xl_info, XLOG_BTREE_DELETE, XLOG_BTREE_DELETE_PAGE, XLOG_BTREE_DELETE_PAGE_HALF, XLOG_BTREE_DELETE_PAGE_META, XLOG_BTREE_INSERT_LEAF, XLOG_BTREE_INSERT_META, XLOG_BTREE_INSERT_UPPER, XLOG_BTREE_NEWROOT, XLOG_BTREE_REUSE_PAGE, XLOG_BTREE_SPLIT_L, XLOG_BTREE_SPLIT_L_ROOT, XLOG_BTREE_SPLIT_R, XLOG_BTREE_SPLIT_R_ROOT, and XLOG_BTREE_VACUUM.
{
uint8 info = record->xl_info & ~XLR_INFO_MASK;
switch (info)
{
case XLOG_BTREE_INSERT_LEAF:
btree_xlog_insert(true, false, lsn, record);
break;
case XLOG_BTREE_INSERT_UPPER:
btree_xlog_insert(false, false, lsn, record);
break;
case XLOG_BTREE_INSERT_META:
btree_xlog_insert(false, true, lsn, record);
break;
case XLOG_BTREE_SPLIT_L:
btree_xlog_split(true, false, lsn, record);
break;
case XLOG_BTREE_SPLIT_R:
btree_xlog_split(false, false, lsn, record);
break;
case XLOG_BTREE_SPLIT_L_ROOT:
btree_xlog_split(true, true, lsn, record);
break;
case XLOG_BTREE_SPLIT_R_ROOT:
btree_xlog_split(false, true, lsn, record);
break;
case XLOG_BTREE_VACUUM:
btree_xlog_vacuum(lsn, record);
break;
case XLOG_BTREE_DELETE:
btree_xlog_delete(lsn, record);
break;
case XLOG_BTREE_DELETE_PAGE:
case XLOG_BTREE_DELETE_PAGE_META:
case XLOG_BTREE_DELETE_PAGE_HALF:
btree_xlog_delete_page(info, lsn, record);
break;
case XLOG_BTREE_NEWROOT:
btree_xlog_newroot(lsn, record);
break;
case XLOG_BTREE_REUSE_PAGE:
btree_xlog_reuse_page(lsn, record);
break;
default:
elog(PANIC, "btree_redo: unknown op code %u", info);
}
}
| bool btree_safe_restartpoint | ( | void | ) |
Definition at line 1141 of file nbtxlog.c.
{
if (incomplete_actions)
return false;
return true;
}
| void btree_xlog_cleanup | ( | void | ) |
Definition at line 1079 of file nbtxlog.c.
References _bt_insert_parent(), _bt_pagedel(), buf, BufferGetPage, BufferIsValid, CreateFakeRelcacheEntry(), bt_incomplete_action::delblk, elog, FreeFakeRelcacheEntry(), bt_incomplete_action::is_root, bt_incomplete_action::is_split, bt_incomplete_action::leftblk, lfirst, bt_incomplete_action::node, NULL, P_LEFTMOST, P_RIGHTMOST, PageGetSpecialPointer, PANIC, bt_incomplete_action::rightblk, and XLogReadBuffer().
{
ListCell *l;
foreach(l, incomplete_actions)
{
bt_incomplete_action *action = (bt_incomplete_action *) lfirst(l);
if (action->is_split)
{
/* finish an incomplete split */
Buffer lbuf,
rbuf;
Page lpage,
rpage;
BTPageOpaque lpageop,
rpageop;
bool is_only;
Relation reln;
lbuf = XLogReadBuffer(action->node, action->leftblk, false);
/* failure is impossible because we wrote this page earlier */
if (!BufferIsValid(lbuf))
elog(PANIC, "btree_xlog_cleanup: left block unfound");
lpage = (Page) BufferGetPage(lbuf);
lpageop = (BTPageOpaque) PageGetSpecialPointer(lpage);
rbuf = XLogReadBuffer(action->node, action->rightblk, false);
/* failure is impossible because we wrote this page earlier */
if (!BufferIsValid(rbuf))
elog(PANIC, "btree_xlog_cleanup: right block unfound");
rpage = (Page) BufferGetPage(rbuf);
rpageop = (BTPageOpaque) PageGetSpecialPointer(rpage);
/* if the pages are all of their level, it's a only-page split */
is_only = P_LEFTMOST(lpageop) && P_RIGHTMOST(rpageop);
reln = CreateFakeRelcacheEntry(action->node);
_bt_insert_parent(reln, lbuf, rbuf, NULL,
action->is_root, is_only);
FreeFakeRelcacheEntry(reln);
}
else
{
/* finish an incomplete deletion (of a half-dead page) */
Buffer buf;
buf = XLogReadBuffer(action->node, action->delblk, false);
if (BufferIsValid(buf))
{
Relation reln;
reln = CreateFakeRelcacheEntry(action->node);
if (_bt_pagedel(reln, buf, NULL) == 0)
elog(PANIC, "btree_xlog_cleanup: _bt_pagedel failed");
FreeFakeRelcacheEntry(reln);
}
}
}
incomplete_actions = NIL;
}
| void btree_xlog_startup | ( | void | ) |
Definition at line 1073 of file nbtxlog.c.
{
incomplete_actions = NIL;
}
| void BTreeShmemInit | ( | void | ) |
Definition at line 1989 of file nbtutils.c.
References Assert, BTreeShmemSize(), BTVacInfo::cycle_ctr, IsUnderPostmaster, BTVacInfo::max_vacuums, MaxBackends, NULL, BTVacInfo::num_vacuums, and ShmemInitStruct().
Referenced by CreateSharedMemoryAndSemaphores().
{
bool found;
btvacinfo = (BTVacInfo *) ShmemInitStruct("BTree Vacuum State",
BTreeShmemSize(),
&found);
if (!IsUnderPostmaster)
{
/* Initialize shared memory area */
Assert(!found);
/*
* It doesn't really matter what the cycle counter starts at, but
* having it always start the same doesn't seem good. Seed with
* low-order bits of time() instead.
*/
btvacinfo->cycle_ctr = (BTCycleId) time(NULL);
btvacinfo->num_vacuums = 0;
btvacinfo->max_vacuums = MaxBackends;
}
else
Assert(found);
}
| Size BTreeShmemSize | ( | void | ) |
Definition at line 1976 of file nbtutils.c.
References add_size(), MaxBackends, mul_size(), and offsetof.
Referenced by BTreeShmemInit(), and CreateSharedMemoryAndSemaphores().
{
Size size;
size = offsetof(BTVacInfo, vacuums[0]);
size = add_size(size, mul_size(MaxBackends, sizeof(BTOneVacInfo)));
return size;
}
| Datum btrescan | ( | PG_FUNCTION_ARGS | ) |
Definition at line 456 of file nbtree.c.
References _bt_killitems(), _bt_preprocess_array_keys(), BTScanPosIsValid, BTScanPosData::buf, BTScanOpaqueData::currPos, BTScanOpaqueData::currTuples, IndexScanDescData::keyData, BTScanOpaqueData::markItemIndex, BTScanOpaqueData::markPos, BTScanOpaqueData::markTuples, memmove, NULL, BTScanOpaqueData::numberOfKeys, IndexScanDescData::numberOfKeys, BTScanOpaqueData::numKilled, IndexScanDescData::opaque, palloc(), PG_GETARG_POINTER, PG_RETURN_VOID, ReleaseBuffer(), and IndexScanDescData::xs_want_itup.
{
IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
ScanKey scankey = (ScanKey) PG_GETARG_POINTER(1);
/* remaining arguments are ignored */
BTScanOpaque so = (BTScanOpaque) scan->opaque;
/* we aren't holding any read locks, but gotta drop the pins */
if (BTScanPosIsValid(so->currPos))
{
/* Before leaving current page, deal with any killed items */
if (so->numKilled > 0)
_bt_killitems(scan, false);
ReleaseBuffer(so->currPos.buf);
so->currPos.buf = InvalidBuffer;
}
if (BTScanPosIsValid(so->markPos))
{
ReleaseBuffer(so->markPos.buf);
so->markPos.buf = InvalidBuffer;
}
so->markItemIndex = -1;
/*
* Allocate tuple workspace arrays, if needed for an index-only scan and
* not already done in a previous rescan call. To save on palloc
* overhead, both workspaces are allocated as one palloc block; only this
* function and btendscan know that.
*
* NOTE: this data structure also makes it safe to return data from a
* "name" column, even though btree name_ops uses an underlying storage
* datatype of cstring. The risk there is that "name" is supposed to be
* padded to NAMEDATALEN, but the actual index tuple is probably shorter.
* However, since we only return data out of tuples sitting in the
* currTuples array, a fetch of NAMEDATALEN bytes can at worst pull some
* data out of the markTuples array --- running off the end of memory for
* a SIGSEGV is not possible. Yeah, this is ugly as sin, but it beats
* adding special-case treatment for name_ops elsewhere.
*/
if (scan->xs_want_itup && so->currTuples == NULL)
{
so->currTuples = (char *) palloc(BLCKSZ * 2);
so->markTuples = so->currTuples + BLCKSZ;
}
/*
* Reset the scan keys. Note that keys ordering stuff moved to _bt_first.
* - vadim 05/05/97
*/
if (scankey && scan->numberOfKeys > 0)
memmove(scan->keyData,
scankey,
scan->numberOfKeys * sizeof(ScanKeyData));
so->numberOfKeys = 0; /* until _bt_preprocess_keys sets it */
/* If any keys are SK_SEARCHARRAY type, set up array-key info */
_bt_preprocess_array_keys(scan);
PG_RETURN_VOID();
}
| Datum btrestrpos | ( | PG_FUNCTION_ARGS | ) |
Definition at line 599 of file nbtree.c.
References _bt_killitems(), _bt_restore_array_keys(), BTScanPosIsValid, BTScanPosData::buf, BTScanOpaqueData::currPos, BTScanOpaqueData::currTuples, IncrBufferRefCount(), BTScanPosData::itemIndex, BTScanPosData::lastItem, BTScanOpaqueData::markItemIndex, BTScanOpaqueData::markPos, BTScanOpaqueData::markTuples, BTScanPosData::nextTupleOffset, BTScanOpaqueData::numArrayKeys, BTScanOpaqueData::numKilled, offsetof, IndexScanDescData::opaque, PG_GETARG_POINTER, PG_RETURN_VOID, and ReleaseBuffer().
{
IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
BTScanOpaque so = (BTScanOpaque) scan->opaque;
/* Restore the marked positions of any array keys */
if (so->numArrayKeys)
_bt_restore_array_keys(scan);
if (so->markItemIndex >= 0)
{
/*
* The mark position is on the same page we are currently on. Just
* restore the itemIndex.
*/
so->currPos.itemIndex = so->markItemIndex;
}
else
{
/* we aren't holding any read locks, but gotta drop the pin */
if (BTScanPosIsValid(so->currPos))
{
/* Before leaving current page, deal with any killed items */
if (so->numKilled > 0 &&
so->currPos.buf != so->markPos.buf)
_bt_killitems(scan, false);
ReleaseBuffer(so->currPos.buf);
so->currPos.buf = InvalidBuffer;
}
if (BTScanPosIsValid(so->markPos))
{
/* bump pin on mark buffer for assignment to current buffer */
IncrBufferRefCount(so->markPos.buf);
memcpy(&so->currPos, &so->markPos,
offsetof(BTScanPosData, items[1]) +
so->markPos.lastItem * sizeof(BTScanPosItem));
if (so->currTuples)
memcpy(so->currTuples, so->markTuples,
so->markPos.nextTupleOffset);
}
}
PG_RETURN_VOID();
}
| Datum btvacuumcleanup | ( | PG_FUNCTION_ARGS | ) |
Definition at line 686 of file nbtree.c.
References IndexVacuumInfo::analyze_only, btvacuumscan(), IndexVacuumInfo::estimated_count, IndexVacuumInfo::index, IndexFreeSpaceMapVacuum(), NULL, IndexVacuumInfo::num_heap_tuples, IndexBulkDeleteResult::num_index_tuples, palloc0(), PG_GETARG_POINTER, and PG_RETURN_POINTER.
{
IndexVacuumInfo *info = (IndexVacuumInfo *) PG_GETARG_POINTER(0);
IndexBulkDeleteResult *stats = (IndexBulkDeleteResult *) PG_GETARG_POINTER(1);
/* No-op in ANALYZE ONLY mode */
if (info->analyze_only)
PG_RETURN_POINTER(stats);
/*
* If btbulkdelete was called, we need not do anything, just return the
* stats from the latest btbulkdelete call. If it wasn't called, we must
* still do a pass over the index, to recycle any newly-recyclable pages
* and to obtain index statistics.
*
* Since we aren't going to actually delete any leaf items, there's no
* need to go through all the vacuum-cycle-ID pushups.
*/
if (stats == NULL)
{
stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
btvacuumscan(info, stats, NULL, NULL, 0);
}
/* Finally, vacuum the FSM */
IndexFreeSpaceMapVacuum(info->index);
/*
* It's quite possible for us to be fooled by concurrent page splits into
* double-counting some index tuples, so disbelieve any total that exceeds
* the underlying heap's count ... if we know that accurately. Otherwise
* this might just make matters worse.
*/
if (!info->estimated_count)
{
if (stats->num_index_tuples > info->num_heap_tuples)
stats->num_index_tuples = info->num_heap_tuples;
}
PG_RETURN_POINTER(stats);
}
1.7.1