#include "postgres.h"
#include "access/heapam.h"
#include "access/heapam_xlog.h"
#include "access/hio.h"
#include "access/multixact.h"
#include "access/relscan.h"
#include "access/sysattr.h"
#include "access/transam.h"
#include "access/tuptoaster.h"
#include "access/valid.h"
#include "access/visibilitymap.h"
#include "access/xact.h"
#include "access/xlogutils.h"
#include "catalog/catalog.h"
#include "catalog/namespace.h"
#include "miscadmin.h"
#include "pgstat.h"
#include "storage/bufmgr.h"
#include "storage/freespace.h"
#include "storage/lmgr.h"
#include "storage/predicate.h"
#include "storage/procarray.h"
#include "storage/smgr.h"
#include "storage/standby.h"
#include "utils/datum.h"
#include "utils/inval.h"
#include "utils/lsyscache.h"
#include "utils/relcache.h"
#include "utils/snapmgr.h"
#include "utils/syscache.h"
#include "utils/tqual.h"
Go to the source code of this file.
#define ConditionalLockTupleTuplock | ( | rel, | ||
tup, | ||||
mode | ||||
) | ConditionalLockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock) |
Definition at line 162 of file heapam.c.
Referenced by heap_lock_tuple().
#define ISUPDATE_from_mxstatus | ( | status | ) | ((status) > MultiXactStatusForUpdate) |
Definition at line 183 of file heapam.c.
Referenced by compute_new_xmax_infomask().
#define LOCKMODE_from_mxstatus | ( | status | ) | (tupleLockExtraInfo[TUPLOCK_from_mxstatus((status))].hwlock) |
Definition at line 150 of file heapam.c.
Referenced by Do_MultiXactIdWait().
#define LockTupleTuplock | ( | rel, | ||
tup, | ||||
mode | ||||
) | LockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock) |
Definition at line 158 of file heapam.c.
Referenced by heap_delete(), heap_lock_tuple(), and heap_update().
#define TUPLOCK_from_mxstatus | ( | status | ) | (MultiXactStatusLock[(status)]) |
Definition at line 180 of file heapam.c.
Referenced by compute_new_xmax_infomask(), GetMultiXactIdHintBits(), and heap_lock_tuple().
#define UnlockTupleTuplock | ( | rel, | ||
tup, | ||||
mode | ||||
) | UnlockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock) |
Definition at line 160 of file heapam.c.
Referenced by heap_delete(), heap_lock_tuple(), and heap_update().
Definition at line 2485 of file heapam.c.
References HEAP_XMAX_IS_MULTI, XLHL_KEYS_UPDATED, XLHL_XMAX_EXCL_LOCK, XLHL_XMAX_IS_MULTI, XLHL_XMAX_KEYSHR_LOCK, and XLHL_XMAX_LOCK_ONLY.
Referenced by heap_delete(), heap_lock_tuple(), heap_lock_updated_tuple_rec(), and log_heap_update().
{ return ((infomask & HEAP_XMAX_IS_MULTI) != 0 ? XLHL_XMAX_IS_MULTI : 0) | ((infomask & HEAP_XMAX_LOCK_ONLY) != 0 ? XLHL_XMAX_LOCK_ONLY : 0) | ((infomask & HEAP_XMAX_EXCL_LOCK) != 0 ? XLHL_XMAX_EXCL_LOCK : 0) | /* note we ignore HEAP_XMAX_SHR_LOCK here */ ((infomask & HEAP_XMAX_KEYSHR_LOCK) != 0 ? XLHL_XMAX_KEYSHR_LOCK : 0) | ((infomask2 & HEAP_KEYS_UPDATED) != 0 ? XLHL_KEYS_UPDATED : 0); }
static void compute_new_xmax_infomask | ( | TransactionId | xmax, | |
uint16 | old_infomask, | |||
uint16 | old_infomask2, | |||
TransactionId | add_to_xmax, | |||
LockTupleMode | mode, | |||
bool | is_update, | |||
TransactionId * | result_xmax, | |||
uint16 * | result_infomask, | |||
uint16 * | result_infomask2 | |||
) | [static] |
Definition at line 4511 of file heapam.c.
References Assert, elog, ERROR, get_mxact_status_for_lock(), GetMultiXactIdHintBits(), HEAP_KEYS_UPDATED, HEAP_LOCK_MASK, HEAP_XMAX_COMMITTED, HEAP_XMAX_INVALID, HEAP_XMAX_IS_EXCL_LOCKED, HEAP_XMAX_IS_KEYSHR_LOCKED, HEAP_XMAX_IS_LOCKED_ONLY, HEAP_XMAX_IS_MULTI, HEAP_XMAX_IS_SHR_LOCKED, ISUPDATE_from_mxstatus, LockTupleExclusive, LockTupleKeyShare, LockTupleNoKeyExclusive, LockTupleShare, MultiXactIdCreate(), MultiXactIdExpand(), MultiXactIdGetUpdateXid(), MultiXactIdIsRunning(), TransactionIdDidAbort(), TransactionIdDidCommit(), TransactionIdIsInProgress(), TUPLOCK_from_mxstatus, and WARNING.
Referenced by heap_delete(), heap_lock_tuple(), heap_lock_updated_tuple_rec(), and heap_update().
{ TransactionId new_xmax; uint16 new_infomask, new_infomask2; l5: new_infomask = 0; new_infomask2 = 0; if (old_infomask & HEAP_XMAX_INVALID) { /* * No previous locker; we just insert our own TransactionId. */ if (is_update) { new_xmax = add_to_xmax; if (mode == LockTupleExclusive) new_infomask2 |= HEAP_KEYS_UPDATED; } else { new_infomask |= HEAP_XMAX_LOCK_ONLY; switch (mode) { case LockTupleKeyShare: new_xmax = add_to_xmax; new_infomask |= HEAP_XMAX_KEYSHR_LOCK; break; case LockTupleShare: new_xmax = add_to_xmax; new_infomask |= HEAP_XMAX_SHR_LOCK; break; case LockTupleNoKeyExclusive: new_xmax = add_to_xmax; new_infomask |= HEAP_XMAX_EXCL_LOCK; break; case LockTupleExclusive: new_xmax = add_to_xmax; new_infomask |= HEAP_XMAX_EXCL_LOCK; new_infomask2 |= HEAP_KEYS_UPDATED; break; default: new_xmax = InvalidTransactionId; /* silence compiler */ elog(ERROR, "invalid lock mode"); } } } else if (old_infomask & HEAP_XMAX_IS_MULTI) { MultiXactStatus new_status; /* * Currently we don't allow XMAX_COMMITTED to be set for multis, * so cross-check. */ Assert(!(old_infomask & HEAP_XMAX_COMMITTED)); /* * A multixact together with LOCK_ONLY set but neither lock bit set * (i.e. a pg_upgraded share locked tuple) cannot possibly be running * anymore. This check is critical for databases upgraded by * pg_upgrade; both MultiXactIdIsRunning and MultiXactIdExpand assume * that such multis are never passed. */ if (!(old_infomask & HEAP_LOCK_MASK) && HEAP_XMAX_IS_LOCKED_ONLY(old_infomask)) { old_infomask &= ~HEAP_XMAX_IS_MULTI; old_infomask |= HEAP_XMAX_INVALID; goto l5; } /* * If the XMAX is already a MultiXactId, then we need to expand it to * include add_to_xmax; but if all the members were lockers and are all * gone, we can do away with the IS_MULTI bit and just set add_to_xmax * as the only locker/updater. If all lockers are gone and we have an * updater that aborted, we can also do without a multi. * * The cost of doing GetMultiXactIdMembers would be paid by * MultiXactIdExpand if we weren't to do this, so this check is not * incurring extra work anyhow. */ if (!MultiXactIdIsRunning(xmax)) { if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask) || TransactionIdDidAbort(MultiXactIdGetUpdateXid(xmax, old_infomask))) { /* * Reset these bits and restart; otherwise fall through to * create a new multi below. */ old_infomask &= ~HEAP_XMAX_IS_MULTI; old_infomask |= HEAP_XMAX_INVALID; goto l5; } } new_status = get_mxact_status_for_lock(mode, is_update); new_xmax = MultiXactIdExpand((MultiXactId) xmax, add_to_xmax, new_status); GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2); } else if (old_infomask & HEAP_XMAX_COMMITTED) { /* * It's a committed update, so we need to preserve him as updater of * the tuple. */ MultiXactStatus status; MultiXactStatus new_status; if (old_infomask2 & HEAP_KEYS_UPDATED) status = MultiXactStatusUpdate; else status = MultiXactStatusNoKeyUpdate; new_status = get_mxact_status_for_lock(mode, is_update); /* * since it's not running, it's obviously impossible for the old * updater to be identical to the current one, so we need not check * for that case as we do in the block above. */ new_xmax = MultiXactIdCreate(xmax, status, add_to_xmax, new_status); GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2); } else if (TransactionIdIsInProgress(xmax)) { /* * If the XMAX is a valid, in-progress TransactionId, then we need to * create a new MultiXactId that includes both the old locker or * updater and our own TransactionId. */ MultiXactStatus status; MultiXactStatus new_status; if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask)) { if (HEAP_XMAX_IS_KEYSHR_LOCKED(old_infomask)) status = MultiXactStatusForKeyShare; else if (HEAP_XMAX_IS_SHR_LOCKED(old_infomask)) status = MultiXactStatusForShare; else if (HEAP_XMAX_IS_EXCL_LOCKED(old_infomask)) { if (old_infomask2 & HEAP_KEYS_UPDATED) status = MultiXactStatusForUpdate; else status = MultiXactStatusForNoKeyUpdate; } else { /* * LOCK_ONLY can be present alone only when a page has been * upgraded by pg_upgrade. But in that case, * TransactionIdIsInProgress() should have returned false. We * assume it's no longer locked in this case. */ elog(WARNING, "LOCK_ONLY found for Xid in progress %u", xmax); old_infomask |= HEAP_XMAX_INVALID; old_infomask &= ~HEAP_XMAX_LOCK_ONLY; goto l5; } } else { /* it's an update, but which kind? */ if (old_infomask2 & HEAP_KEYS_UPDATED) status = MultiXactStatusUpdate; else status = MultiXactStatusNoKeyUpdate; } new_status = get_mxact_status_for_lock(mode, is_update); /* * If the existing lock mode is identical to or weaker than the new * one, we can act as though there is no existing lock, so set * XMAX_INVALID and restart. */ if (xmax == add_to_xmax) { LockTupleMode old_mode = TUPLOCK_from_mxstatus(status); bool old_isupd = ISUPDATE_from_mxstatus(status); /* * We can do this if the new LockTupleMode is higher or equal than * the old one; and if there was previously an update, we need an * update, but if there wasn't, then we can accept there not being * one. */ if ((mode >= old_mode) && (is_update || !old_isupd)) { /* * Note that the infomask might contain some other dirty bits. * However, since the new infomask is reset to zero, we only * set what's minimally necessary, and that the case that * checks HEAP_XMAX_INVALID is the very first above, there is * no need for extra cleanup of the infomask here. */ old_infomask |= HEAP_XMAX_INVALID; goto l5; } } new_xmax = MultiXactIdCreate(xmax, status, add_to_xmax, new_status); GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2); } else if (!HEAP_XMAX_IS_LOCKED_ONLY(old_infomask) && TransactionIdDidCommit(xmax)) { /* * It's a committed update, so we gotta preserve him as updater of the * tuple. */ MultiXactStatus status; MultiXactStatus new_status; if (old_infomask2 & HEAP_KEYS_UPDATED) status = MultiXactStatusUpdate; else status = MultiXactStatusNoKeyUpdate; new_status = get_mxact_status_for_lock(mode, is_update); /* * since it's not running, it's obviously impossible for the old * updater to be identical to the current one, so we need not check * for that case as we do in the block above. */ new_xmax = MultiXactIdCreate(xmax, status, add_to_xmax, new_status); GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2); } else { /* * Can get here iff the locking/updating transaction was running when * the infomask was extracted from the tuple, but finished before * TransactionIdIsInProgress got to run. Deal with it as if there was * no locker at all in the first place. */ old_infomask |= HEAP_XMAX_INVALID; goto l5; } *result_infomask = new_infomask; *result_infomask2 = new_infomask2; *result_xmax = new_xmax; }
static bool ConditionalMultiXactIdWait | ( | MultiXactId | multi, | |
MultiXactStatus | status, | |||
int * | remaining, | |||
uint16 | infomask | |||
) | [static] |
Definition at line 5425 of file heapam.c.
References Do_MultiXactIdWait().
Referenced by heap_lock_tuple().
{ return Do_MultiXactIdWait(multi, status, remaining, infomask, true); }
static bool Do_MultiXactIdWait | ( | MultiXactId | multi, | |
MultiXactStatus | status, | |||
int * | remaining, | |||
uint16 | infomask, | |||
bool | nowait | |||
) | [static] |
Definition at line 5335 of file heapam.c.
References ConditionalXactLockTableWait(), DoLockModesConflict(), GetMultiXactIdMembers(), HEAP_XMAX_IS_LOCKED_ONLY, i, LOCKMODE_from_mxstatus, pfree(), MultiXactMember::status, TransactionIdIsCurrentTransactionId(), TransactionIdIsInProgress(), XactLockTableWait(), and MultiXactMember::xid.
Referenced by ConditionalMultiXactIdWait(), and MultiXactIdWait().
{ bool allow_old; bool result = true; MultiXactMember *members; int nmembers; int remain = 0; allow_old = !(infomask & HEAP_LOCK_MASK) && HEAP_XMAX_IS_LOCKED_ONLY(infomask); nmembers = GetMultiXactIdMembers(multi, &members, allow_old); if (nmembers >= 0) { int i; for (i = 0; i < nmembers; i++) { TransactionId memxid = members[i].xid; MultiXactStatus memstatus = members[i].status; if (TransactionIdIsCurrentTransactionId(memxid)) { remain++; continue; } if (!DoLockModesConflict(LOCKMODE_from_mxstatus(memstatus), LOCKMODE_from_mxstatus(status))) { if (remaining && TransactionIdIsInProgress(memxid)) remain++; continue; } /* * This member conflicts with our multi, so we have to sleep (or * return failure, if asked to avoid waiting.) */ if (nowait) { result = ConditionalXactLockTableWait(memxid); if (!result) break; } else XactLockTableWait(memxid); } pfree(members); } if (remaining) *remaining = remain; return result; }
static void fix_infomask_from_infobits | ( | uint8 | infobits, | |
uint16 * | infomask, | |||
uint16 * | infomask2 | |||
) | [static] |
Definition at line 6304 of file heapam.c.
References HEAP_XMAX_IS_MULTI, HEAP_XMAX_KEYSHR_LOCK, HEAP_XMAX_LOCK_ONLY, XLHL_KEYS_UPDATED, XLHL_XMAX_EXCL_LOCK, XLHL_XMAX_IS_MULTI, XLHL_XMAX_KEYSHR_LOCK, and XLHL_XMAX_LOCK_ONLY.
Referenced by heap_xlog_delete(), heap_xlog_lock(), heap_xlog_lock_updated(), and heap_xlog_update().
{ *infomask &= ~(HEAP_XMAX_IS_MULTI | HEAP_XMAX_LOCK_ONLY | HEAP_XMAX_KEYSHR_LOCK | HEAP_XMAX_EXCL_LOCK); *infomask2 &= ~HEAP_KEYS_UPDATED; if (infobits & XLHL_XMAX_IS_MULTI) *infomask |= HEAP_XMAX_IS_MULTI; if (infobits & XLHL_XMAX_LOCK_ONLY) *infomask |= HEAP_XMAX_LOCK_ONLY; if (infobits & XLHL_XMAX_EXCL_LOCK) *infomask |= HEAP_XMAX_EXCL_LOCK; /* note HEAP_XMAX_SHR_LOCK isn't considered here */ if (infobits & XLHL_XMAX_KEYSHR_LOCK) *infomask |= HEAP_XMAX_KEYSHR_LOCK; if (infobits & XLHL_KEYS_UPDATED) *infomask2 |= HEAP_KEYS_UPDATED; }
void FreeBulkInsertState | ( | BulkInsertState | bistate | ) |
Definition at line 1969 of file heapam.c.
References BulkInsertStateData::current_buf, FreeAccessStrategy(), InvalidBuffer, pfree(), ReleaseBuffer(), and BulkInsertStateData::strategy.
Referenced by ATRewriteTable(), CopyFrom(), intorel_shutdown(), and transientrel_shutdown().
{ if (bistate->current_buf != InvalidBuffer) ReleaseBuffer(bistate->current_buf); FreeAccessStrategy(bistate->strategy); pfree(bistate); }
static MultiXactStatus get_mxact_status_for_lock | ( | LockTupleMode | mode, | |
bool | is_update | |||
) | [static] |
Definition at line 3844 of file heapam.c.
References elog, ERROR, and tupleLockExtraInfo.
Referenced by compute_new_xmax_infomask(), and heap_lock_tuple().
{ MultiXactStatus retval; if (is_update) retval = tupleLockExtraInfo[mode].updstatus; else retval = tupleLockExtraInfo[mode].lockstatus; if (retval == -1) elog(ERROR, "invalid lock tuple mode %d/%s", mode, is_update ? "true" : "false"); return retval; }
BulkInsertState GetBulkInsertState | ( | void | ) |
Definition at line 1955 of file heapam.c.
References BAS_BULKWRITE, BulkInsertStateData::current_buf, GetAccessStrategy(), palloc(), and BulkInsertStateData::strategy.
Referenced by ATRewriteTable(), CopyFrom(), intorel_startup(), and transientrel_startup().
{ BulkInsertState bistate; bistate = (BulkInsertState) palloc(sizeof(BulkInsertStateData)); bistate->strategy = GetAccessStrategy(BAS_BULKWRITE); bistate->current_buf = InvalidBuffer; return bistate; }
static void GetMultiXactIdHintBits | ( | MultiXactId | multi, | |
uint16 * | new_infomask, | |||
uint16 * | new_infomask2 | |||
) | [static] |
Definition at line 5172 of file heapam.c.
References GetMultiXactIdMembers(), i, LockTupleExclusive, LockTupleKeyShare, LockTupleNoKeyExclusive, LockTupleShare, MultiXactStatusForKeyShare, MultiXactStatusForNoKeyUpdate, MultiXactStatusForShare, MultiXactStatusForUpdate, MultiXactStatusNoKeyUpdate, MultiXactStatusUpdate, pfree(), status(), and TUPLOCK_from_mxstatus.
Referenced by compute_new_xmax_infomask(), and heap_update().
{ int nmembers; MultiXactMember *members; int i; uint16 bits = HEAP_XMAX_IS_MULTI; uint16 bits2 = 0; bool has_update = false; LockTupleMode strongest = LockTupleKeyShare; /* * We only use this in multis we just created, so they cannot be values * pre-pg_upgrade. */ nmembers = GetMultiXactIdMembers(multi, &members, false); for (i = 0; i < nmembers; i++) { LockTupleMode mode; /* * Remember the strongest lock mode held by any member of the * multixact. */ mode = TUPLOCK_from_mxstatus(members[i].status); if (mode > strongest) strongest = mode; /* See what other bits we need */ switch (members[i].status) { case MultiXactStatusForKeyShare: case MultiXactStatusForShare: case MultiXactStatusForNoKeyUpdate: break; case MultiXactStatusForUpdate: bits2 |= HEAP_KEYS_UPDATED; break; case MultiXactStatusNoKeyUpdate: has_update = true; break; case MultiXactStatusUpdate: bits2 |= HEAP_KEYS_UPDATED; has_update = true; break; } } if (strongest == LockTupleExclusive || strongest == LockTupleNoKeyExclusive) bits |= HEAP_XMAX_EXCL_LOCK; else if (strongest == LockTupleShare) bits |= HEAP_XMAX_SHR_LOCK; else if (strongest == LockTupleKeyShare) bits |= HEAP_XMAX_KEYSHR_LOCK; if (!has_update) bits |= HEAP_XMAX_LOCK_ONLY; if (nmembers > 0) pfree(members); *new_infomask = bits; *new_infomask2 = bits2; }
void heap2_redo | ( | XLogRecPtr | lsn, | |
XLogRecord * | record | |||
) |
Definition at line 7104 of file heapam.c.
References elog, heap_xlog_clean(), heap_xlog_cleanup_info(), heap_xlog_freeze(), heap_xlog_lock_updated(), heap_xlog_multi_insert(), heap_xlog_visible(), PANIC, XLogRecord::xl_info, XLOG_HEAP2_CLEAN, XLOG_HEAP2_CLEANUP_INFO, XLOG_HEAP2_FREEZE, XLOG_HEAP2_LOCK_UPDATED, XLOG_HEAP2_MULTI_INSERT, XLOG_HEAP2_VISIBLE, and XLOG_HEAP_OPMASK.
{ uint8 info = record->xl_info & ~XLR_INFO_MASK; switch (info & XLOG_HEAP_OPMASK) { case XLOG_HEAP2_FREEZE: heap_xlog_freeze(lsn, record); break; case XLOG_HEAP2_CLEAN: heap_xlog_clean(lsn, record); break; case XLOG_HEAP2_CLEANUP_INFO: heap_xlog_cleanup_info(lsn, record); break; case XLOG_HEAP2_VISIBLE: heap_xlog_visible(lsn, record); break; case XLOG_HEAP2_MULTI_INSERT: heap_xlog_multi_insert(lsn, record); break; case XLOG_HEAP2_LOCK_UPDATED: heap_xlog_lock_updated(lsn, record); break; default: elog(PANIC, "heap2_redo: unknown op code %u", info); } }
HeapScanDesc heap_beginscan | ( | Relation | relation, | |
Snapshot | snapshot, | |||
int | nkeys, | |||
ScanKey | key | |||
) |
Definition at line 1280 of file heapam.c.
References heap_beginscan_internal().
Referenced by AlterDomainNotNull(), AlterTableSpaceOptions(), ATRewriteTable(), boot_openrel(), check_db_file_conflict(), copy_heap_data(), CopyTo(), createdb(), DefineQueryRewrite(), do_autovacuum(), DropSetting(), DropTableSpace(), find_typed_table_dependencies(), get_database_list(), get_rel_oids(), get_rewrite_oid_without_relid(), get_tables_to_cluster(), get_tablespace_name(), get_tablespace_oid(), getRelationsInNamespace(), gettype(), index_update_stats(), InitScanRelation(), objectsInSchemaToOids(), pgrowlocks(), pgstat_collect_oids(), ReindexDatabase(), remove_dbtablespaces(), RemoveConversionById(), RenameTableSpace(), ThereIsAtLeastOneRole(), vac_truncate_clog(), validateCheckConstraint(), validateDomainConstraint(), and validateForeignKeyConstraint().
{ return heap_beginscan_internal(relation, snapshot, nkeys, key, true, true, false); }
HeapScanDesc heap_beginscan_bm | ( | Relation | relation, | |
Snapshot | snapshot, | |||
int | nkeys, | |||
ScanKey | key | |||
) |
Definition at line 1297 of file heapam.c.
References heap_beginscan_internal().
Referenced by ExecInitBitmapHeapScan().
{ return heap_beginscan_internal(relation, snapshot, nkeys, key, false, false, true); }
static HeapScanDesc heap_beginscan_internal | ( | Relation | relation, | |
Snapshot | snapshot, | |||
int | nkeys, | |||
ScanKey | key, | |||
bool | allow_strat, | |||
bool | allow_sync, | |||
bool | is_bitmapscan | |||
) | [static] |
Definition at line 1305 of file heapam.c.
References initscan(), IsMVCCSnapshot, palloc(), PredicateLockRelation(), RelationGetRelid, RelationIncrementReferenceCount(), HeapScanDescData::rs_allow_strat, HeapScanDescData::rs_allow_sync, HeapScanDescData::rs_bitmapscan, HeapScanDescData::rs_ctup, HeapScanDescData::rs_key, HeapScanDescData::rs_nkeys, HeapScanDescData::rs_pageatatime, HeapScanDescData::rs_rd, HeapScanDescData::rs_snapshot, HeapScanDescData::rs_strategy, and HeapTupleData::t_tableOid.
Referenced by heap_beginscan(), heap_beginscan_bm(), and heap_beginscan_strat().
{ HeapScanDesc scan; /* * increment relation ref count while scanning relation * * This is just to make really sure the relcache entry won't go away while * the scan has a pointer to it. Caller should be holding the rel open * anyway, so this is redundant in all normal scenarios... */ RelationIncrementReferenceCount(relation); /* * allocate and initialize scan descriptor */ scan = (HeapScanDesc) palloc(sizeof(HeapScanDescData)); scan->rs_rd = relation; scan->rs_snapshot = snapshot; scan->rs_nkeys = nkeys; scan->rs_bitmapscan = is_bitmapscan; scan->rs_strategy = NULL; /* set in initscan */ scan->rs_allow_strat = allow_strat; scan->rs_allow_sync = allow_sync; /* * we can use page-at-a-time mode if it's an MVCC-safe snapshot */ scan->rs_pageatatime = IsMVCCSnapshot(snapshot); /* * For a seqscan in a serializable transaction, acquire a predicate lock * on the entire relation. This is required not only to lock all the * matching tuples, but also to conflict with new insertions into the * table. In an indexscan, we take page locks on the index pages covering * the range specified in the scan qual, but in a heap scan there is * nothing more fine-grained to lock. A bitmap scan is a different story, * there we have already scanned the index and locked the index pages * covering the predicate. But in that case we still have to lock any * matching heap tuples. */ if (!is_bitmapscan) PredicateLockRelation(relation, snapshot); /* we only need to set this up once */ scan->rs_ctup.t_tableOid = RelationGetRelid(relation); /* * we do this here instead of in initscan() because heap_rescan also calls * initscan() and we don't want to allocate memory again */ if (nkeys > 0) scan->rs_key = (ScanKey) palloc(sizeof(ScanKeyData) * nkeys); else scan->rs_key = NULL; initscan(scan, key, false); return scan; }
HeapScanDesc heap_beginscan_strat | ( | Relation | relation, | |
Snapshot | snapshot, | |||
int | nkeys, | |||
ScanKey | key, | |||
bool | allow_strat, | |||
bool | allow_sync | |||
) |
Definition at line 1288 of file heapam.c.
References heap_beginscan_internal().
Referenced by IndexBuildHeapScan(), IndexCheckExclusion(), pgstat_heap(), systable_beginscan(), and validate_index_heapscan().
{ return heap_beginscan_internal(relation, snapshot, nkeys, key, allow_strat, allow_sync, false); }
HTSU_Result heap_delete | ( | Relation | relation, | |
ItemPointer | tid, | |||
CommandId | cid, | |||
Snapshot | crosscheck, | |||
bool | wait, | |||
HeapUpdateFailureData * | hufd | |||
) |
Definition at line 2523 of file heapam.c.
References xl_heap_delete::all_visible_cleared, Assert, XLogRecData::buffer, BUFFER_LOCK_EXCLUSIVE, BUFFER_LOCK_UNLOCK, XLogRecData::buffer_std, BufferGetBlockNumber(), BufferGetPage, CacheInvalidateHeapTuple(), CheckForSerializableConflictIn(), HeapUpdateFailureData::cmax, compute_infobits(), compute_new_xmax_infomask(), HeapUpdateFailureData::ctid, XLogRecData::data, elog, END_CRIT_SECTION, ERROR, GetCurrentTransactionId(), HEAP_XMAX_BITS, HEAP_XMAX_INVALID, HEAP_XMAX_IS_LOCKED_ONLY, HEAP_XMAX_IS_MULTI, HeapTupleBeingUpdated, HeapTupleHasExternal, HeapTupleHeaderAdjustCmax(), HeapTupleHeaderClearHotUpdated, HeapTupleHeaderGetCmax(), HeapTupleHeaderGetRawXmax, HeapTupleHeaderGetUpdateXid, HeapTupleHeaderIsOnlyLocked(), HeapTupleHeaderSetCmax, HeapTupleHeaderSetXmax, HeapTupleInvisible, HeapTupleMayBeUpdated, HeapTupleSatisfiesUpdate(), HeapTupleSatisfiesVisibility, HeapTupleSelfUpdated, HeapTupleUpdated, xl_heap_delete::infobits_set, InvalidBuffer, InvalidSnapshot, ItemIdGetLength, ItemIdIsNormal, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, ItemPointerIsValid, XLogRecData::len, LockBuffer(), LockTupleExclusive, LockTupleTuplock, MarkBufferDirty(), MultiXactIdSetOldestMember(), MultiXactIdWait(), MultiXactStatusUpdate, XLogRecData::next, xl_heaptid::node, PageClearAllVisible, PageGetItem, PageGetItemId, PageIsAllVisible, PageSetLSN, PageSetPrunable, pgstat_count_heap_delete(), RelationData::rd_node, RelationData::rd_rel, ReadBuffer(), RelationNeedsWAL, ReleaseBuffer(), RELKIND_MATVIEW, RELKIND_RELATION, START_CRIT_SECTION, HeapTupleHeaderData::t_ctid, HeapTupleData::t_data, HeapTupleHeaderData::t_infomask, HeapTupleHeaderData::t_infomask2, HeapTupleData::t_len, HeapTupleData::t_self, xl_heap_delete::target, xl_heaptid::tid, toast_delete(), TransactionIdEquals, UnlockReleaseBuffer(), UnlockTupleTuplock, UpdateXmaxHintBits(), visibilitymap_clear(), visibilitymap_pin(), XactLockTableWait(), XLOG_HEAP_DELETE, XLogInsert(), xl_heap_delete::xmax, and HeapUpdateFailureData::xmax.
Referenced by ExecDelete(), and simple_heap_delete().
{ HTSU_Result result; TransactionId xid = GetCurrentTransactionId(); ItemId lp; HeapTupleData tp; Page page; BlockNumber block; Buffer buffer; Buffer vmbuffer = InvalidBuffer; TransactionId new_xmax; uint16 new_infomask, new_infomask2; bool have_tuple_lock = false; bool iscombo; bool all_visible_cleared = false; Assert(ItemPointerIsValid(tid)); block = ItemPointerGetBlockNumber(tid); buffer = ReadBuffer(relation, block); page = BufferGetPage(buffer); /* * Before locking the buffer, pin the visibility map page if it appears to * be necessary. Since we haven't got the lock yet, someone else might be * in the middle of changing this, so we'll need to recheck after we have * the lock. */ if (PageIsAllVisible(page)) visibilitymap_pin(relation, block, &vmbuffer); LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); /* * If we didn't pin the visibility map page and the page has become all * visible while we were busy locking the buffer, we'll have to unlock and * re-lock, to avoid holding the buffer lock across an I/O. That's a bit * unfortunate, but hopefully shouldn't happen often. */ if (vmbuffer == InvalidBuffer && PageIsAllVisible(page)) { LockBuffer(buffer, BUFFER_LOCK_UNLOCK); visibilitymap_pin(relation, block, &vmbuffer); LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); } lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid)); Assert(ItemIdIsNormal(lp)); tp.t_data = (HeapTupleHeader) PageGetItem(page, lp); tp.t_len = ItemIdGetLength(lp); tp.t_self = *tid; l1: result = HeapTupleSatisfiesUpdate(tp.t_data, cid, buffer); if (result == HeapTupleInvisible) { UnlockReleaseBuffer(buffer); elog(ERROR, "attempted to delete invisible tuple"); } else if (result == HeapTupleBeingUpdated && wait) { TransactionId xwait; uint16 infomask; /* must copy state data before unlocking buffer */ xwait = HeapTupleHeaderGetRawXmax(tp.t_data); infomask = tp.t_data->t_infomask; LockBuffer(buffer, BUFFER_LOCK_UNLOCK); /* * Acquire tuple lock to establish our priority for the tuple (see * heap_lock_tuple). LockTuple will release us when we are * next-in-line for the tuple. * * If we are forced to "start over" below, we keep the tuple lock; * this arranges that we stay at the head of the line while rechecking * tuple state. */ if (!have_tuple_lock) { LockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive); have_tuple_lock = true; } /* * Sleep until concurrent transaction ends. Note that we don't care * which lock mode the locker has, because we need the strongest one. */ if (infomask & HEAP_XMAX_IS_MULTI) { /* wait for multixact */ MultiXactIdWait((MultiXactId) xwait, MultiXactStatusUpdate, NULL, infomask); LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); /* * If xwait had just locked the tuple then some other xact could * update this tuple before we get to this point. Check for xmax * change, and start over if so. */ if (!(tp.t_data->t_infomask & HEAP_XMAX_IS_MULTI) || !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tp.t_data), xwait)) goto l1; /* * You might think the multixact is necessarily done here, but not * so: it could have surviving members, namely our own xact or * other subxacts of this backend. It is legal for us to delete * the tuple in either case, however (the latter case is * essentially a situation of upgrading our former shared lock to * exclusive). We don't bother changing the on-disk hint bits * since we are about to overwrite the xmax altogether. */ } else { /* wait for regular transaction to end */ XactLockTableWait(xwait); LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); /* * xwait is done, but if xwait had just locked the tuple then some * other xact could update this tuple before we get to this point. * Check for xmax change, and start over if so. */ if ((tp.t_data->t_infomask & HEAP_XMAX_IS_MULTI) || !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tp.t_data), xwait)) goto l1; /* Otherwise check if it committed or aborted */ UpdateXmaxHintBits(tp.t_data, buffer, xwait); } /* * We may overwrite if previous xmax aborted, or if it committed but * only locked the tuple without updating it. */ if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) || HEAP_XMAX_IS_LOCKED_ONLY(tp.t_data->t_infomask) || HeapTupleHeaderIsOnlyLocked(tp.t_data)) result = HeapTupleMayBeUpdated; else result = HeapTupleUpdated; } if (crosscheck != InvalidSnapshot && result == HeapTupleMayBeUpdated) { /* Perform additional check for transaction-snapshot mode RI updates */ if (!HeapTupleSatisfiesVisibility(&tp, crosscheck, buffer)) result = HeapTupleUpdated; } if (result != HeapTupleMayBeUpdated) { Assert(result == HeapTupleSelfUpdated || result == HeapTupleUpdated || result == HeapTupleBeingUpdated); Assert(!(tp.t_data->t_infomask & HEAP_XMAX_INVALID)); hufd->ctid = tp.t_data->t_ctid; hufd->xmax = HeapTupleHeaderGetUpdateXid(tp.t_data); if (result == HeapTupleSelfUpdated) hufd->cmax = HeapTupleHeaderGetCmax(tp.t_data); else hufd->cmax = 0; /* for lack of an InvalidCommandId value */ UnlockReleaseBuffer(buffer); if (have_tuple_lock) UnlockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive); if (vmbuffer != InvalidBuffer) ReleaseBuffer(vmbuffer); return result; } /* * We're about to do the actual delete -- check for conflict first, to * avoid possibly having to roll back work we've just done. */ CheckForSerializableConflictIn(relation, &tp, buffer); /* replace cid with a combo cid if necessary */ HeapTupleHeaderAdjustCmax(tp.t_data, &cid, &iscombo); START_CRIT_SECTION(); /* * If this transaction commits, the tuple will become DEAD sooner or * later. Set flag that this page is a candidate for pruning once our xid * falls below the OldestXmin horizon. If the transaction finally aborts, * the subsequent page pruning will be a no-op and the hint will be * cleared. */ PageSetPrunable(page, xid); if (PageIsAllVisible(page)) { all_visible_cleared = true; PageClearAllVisible(page); visibilitymap_clear(relation, BufferGetBlockNumber(buffer), vmbuffer); } /* * If this is the first possibly-multixact-able operation in the * current transaction, set my per-backend OldestMemberMXactId setting. * We can be certain that the transaction will never become a member of * any older MultiXactIds than that. (We have to do this even if we * end up just using our own TransactionId below, since some other * backend could incorporate our XID into a MultiXact immediately * afterwards.) */ MultiXactIdSetOldestMember(); compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(tp.t_data), tp.t_data->t_infomask, tp.t_data->t_infomask2, xid, LockTupleExclusive, true, &new_xmax, &new_infomask, &new_infomask2); /* store transaction information of xact deleting the tuple */ tp.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); tp.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED; tp.t_data->t_infomask |= new_infomask; tp.t_data->t_infomask2 |= new_infomask2; HeapTupleHeaderClearHotUpdated(tp.t_data); HeapTupleHeaderSetXmax(tp.t_data, new_xmax); HeapTupleHeaderSetCmax(tp.t_data, cid, iscombo); /* Make sure there is no forward chain link in t_ctid */ tp.t_data->t_ctid = tp.t_self; MarkBufferDirty(buffer); /* XLOG stuff */ if (RelationNeedsWAL(relation)) { xl_heap_delete xlrec; XLogRecPtr recptr; XLogRecData rdata[2]; xlrec.all_visible_cleared = all_visible_cleared; xlrec.infobits_set = compute_infobits(tp.t_data->t_infomask, tp.t_data->t_infomask2); xlrec.target.node = relation->rd_node; xlrec.target.tid = tp.t_self; xlrec.xmax = new_xmax; rdata[0].data = (char *) &xlrec; rdata[0].len = SizeOfHeapDelete; rdata[0].buffer = InvalidBuffer; rdata[0].next = &(rdata[1]); rdata[1].data = NULL; rdata[1].len = 0; rdata[1].buffer = buffer; rdata[1].buffer_std = true; rdata[1].next = NULL; recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE, rdata); PageSetLSN(page, recptr); } END_CRIT_SECTION(); LockBuffer(buffer, BUFFER_LOCK_UNLOCK); if (vmbuffer != InvalidBuffer) ReleaseBuffer(vmbuffer); /* * If the tuple has toasted out-of-line attributes, we need to delete * those items too. We have to do this before releasing the buffer * because we need to look at the contents of the tuple, but it's OK to * release the content lock on the buffer first. */ if (relation->rd_rel->relkind != RELKIND_RELATION && relation->rd_rel->relkind != RELKIND_MATVIEW) { /* toast table entries should never be recursively toasted */ Assert(!HeapTupleHasExternal(&tp)); } else if (HeapTupleHasExternal(&tp)) toast_delete(relation, &tp); /* * Mark tuple for invalidation from system caches at next command * boundary. We have to do this before releasing the buffer because we * need to look at the contents of the tuple. */ CacheInvalidateHeapTuple(relation, &tp, NULL); /* Now we can release the buffer */ ReleaseBuffer(buffer); /* * Release the lmgr tuple lock, if we had it. */ if (have_tuple_lock) UnlockTupleTuplock(relation, &(tp.t_self), LockTupleExclusive); pgstat_count_heap_delete(relation); return HeapTupleMayBeUpdated; }
void heap_endscan | ( | HeapScanDesc | scan | ) |
Definition at line 1398 of file heapam.c.
References BufferIsValid, FreeAccessStrategy(), pfree(), RelationDecrementReferenceCount(), ReleaseBuffer(), HeapScanDescData::rs_cbuf, HeapScanDescData::rs_key, HeapScanDescData::rs_rd, and HeapScanDescData::rs_strategy.
Referenced by AlterDomainNotNull(), AlterTableSpaceOptions(), ATRewriteTable(), boot_openrel(), check_db_file_conflict(), copy_heap_data(), CopyTo(), createdb(), DefineQueryRewrite(), do_autovacuum(), DropSetting(), DropTableSpace(), ExecEndBitmapHeapScan(), ExecEndSeqScan(), find_typed_table_dependencies(), get_database_list(), get_rel_oids(), get_rewrite_oid_without_relid(), get_tables_to_cluster(), get_tablespace_name(), get_tablespace_oid(), getRelationsInNamespace(), gettype(), index_update_stats(), IndexBuildHeapScan(), IndexCheckExclusion(), objectsInSchemaToOids(), pgrowlocks(), pgstat_collect_oids(), pgstat_heap(), ReindexDatabase(), remove_dbtablespaces(), RemoveConversionById(), RenameTableSpace(), systable_endscan(), ThereIsAtLeastOneRole(), vac_truncate_clog(), validate_index_heapscan(), validateCheckConstraint(), validateDomainConstraint(), and validateForeignKeyConstraint().
{ /* Note: no locking manipulations needed */ /* * unpin scan buffers */ if (BufferIsValid(scan->rs_cbuf)) ReleaseBuffer(scan->rs_cbuf); /* * decrement relation reference count and free scan descriptor storage */ RelationDecrementReferenceCount(scan->rs_rd); if (scan->rs_key) pfree(scan->rs_key); if (scan->rs_strategy != NULL) FreeAccessStrategy(scan->rs_strategy); pfree(scan); }
bool heap_fetch | ( | Relation | relation, | |
Snapshot | snapshot, | |||
HeapTuple | tuple, | |||
Buffer * | userbuf, | |||
bool | keep_buf, | |||
Relation | stats_relation | |||
) |
Definition at line 1515 of file heapam.c.
References BUFFER_LOCK_SHARE, BUFFER_LOCK_UNLOCK, BufferGetPage, CheckForSerializableConflictOut(), HeapTupleSatisfiesVisibility, ItemIdGetLength, ItemIdIsNormal, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, LockBuffer(), PageGetItem, PageGetItemId, PageGetMaxOffsetNumber, pgstat_count_heap_fetch, PredicateLockTuple(), ReadBuffer(), RelationGetRelid, ReleaseBuffer(), HeapTupleData::t_data, HeapTupleData::t_len, HeapTupleData::t_self, and HeapTupleData::t_tableOid.
Referenced by AfterTriggerExecute(), EvalPlanQualFetch(), EvalPlanQualFetchRowMarks(), ExecDelete(), ExecLockRows(), heap_lock_updated_tuple_rec(), and TidNext().
{ ItemPointer tid = &(tuple->t_self); ItemId lp; Buffer buffer; Page page; OffsetNumber offnum; bool valid; /* * Fetch and pin the appropriate page of the relation. */ buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid)); /* * Need share lock on buffer to examine tuple commit status. */ LockBuffer(buffer, BUFFER_LOCK_SHARE); page = BufferGetPage(buffer); /* * We'd better check for out-of-range offnum in case of VACUUM since the * TID was obtained. */ offnum = ItemPointerGetOffsetNumber(tid); if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page)) { LockBuffer(buffer, BUFFER_LOCK_UNLOCK); if (keep_buf) *userbuf = buffer; else { ReleaseBuffer(buffer); *userbuf = InvalidBuffer; } tuple->t_data = NULL; return false; } /* * get the item line pointer corresponding to the requested tid */ lp = PageGetItemId(page, offnum); /* * Must check for deleted tuple. */ if (!ItemIdIsNormal(lp)) { LockBuffer(buffer, BUFFER_LOCK_UNLOCK); if (keep_buf) *userbuf = buffer; else { ReleaseBuffer(buffer); *userbuf = InvalidBuffer; } tuple->t_data = NULL; return false; } /* * fill in *tuple fields */ tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp); tuple->t_len = ItemIdGetLength(lp); tuple->t_tableOid = RelationGetRelid(relation); /* * check time qualification of tuple, then release lock */ valid = HeapTupleSatisfiesVisibility(tuple, snapshot, buffer); if (valid) PredicateLockTuple(relation, tuple, snapshot); CheckForSerializableConflictOut(valid, relation, tuple, buffer, snapshot); LockBuffer(buffer, BUFFER_LOCK_UNLOCK); if (valid) { /* * All checks passed, so return the tuple as valid. Caller is now * responsible for releasing the buffer. */ *userbuf = buffer; /* Count the successful fetch against appropriate rel, if any */ if (stats_relation != NULL) pgstat_count_heap_fetch(stats_relation); return true; } /* Tuple failed time qual, but maybe caller wants to see it anyway. */ if (keep_buf) *userbuf = buffer; else { ReleaseBuffer(buffer); *userbuf = InvalidBuffer; } return false; }
bool heap_freeze_tuple | ( | HeapTupleHeader | tuple, | |
TransactionId | cutoff_xid, | |||
MultiXactId | cutoff_multi | |||
) |
Definition at line 5084 of file heapam.c.
References Assert, FrozenTransactionId, HEAP_MOVED, HEAP_MOVED_OFF, HEAP_XMAX_IS_MULTI, HEAP_XMIN_INVALID, HeapTupleHeaderClearHotUpdated, HeapTupleHeaderGetRawXmax, HeapTupleHeaderGetXmin, HeapTupleHeaderGetXvac, HeapTupleHeaderSetXmax, HeapTupleHeaderSetXmin, HeapTupleHeaderSetXvac, InvalidTransactionId, MultiXactIdIsValid, MultiXactIdPrecedes(), HeapTupleHeaderData::t_infomask, HeapTupleHeaderData::t_infomask2, TransactionIdIsNormal, and TransactionIdPrecedes().
Referenced by heap_xlog_freeze(), lazy_scan_heap(), and rewrite_heap_tuple().
{ bool changed = false; TransactionId xid; xid = HeapTupleHeaderGetXmin(tuple); if (TransactionIdIsNormal(xid) && TransactionIdPrecedes(xid, cutoff_xid)) { HeapTupleHeaderSetXmin(tuple, FrozenTransactionId); /* * Might as well fix the hint bits too; usually XMIN_COMMITTED will * already be set here, but there's a small chance not. */ Assert(!(tuple->t_infomask & HEAP_XMIN_INVALID)); tuple->t_infomask |= HEAP_XMIN_COMMITTED; changed = true; } /* * Note that this code handles IS_MULTI Xmax values, too, but only to mark * the tuple frozen if the updating Xid in the mxact is below the freeze * cutoff; it doesn't remove dead members of a very old multixact. */ xid = HeapTupleHeaderGetRawXmax(tuple); if ((tuple->t_infomask & HEAP_XMAX_IS_MULTI) ? (MultiXactIdIsValid(xid) && MultiXactIdPrecedes(xid, cutoff_multi)) : (TransactionIdIsNormal(xid) && TransactionIdPrecedes(xid, cutoff_xid))) { HeapTupleHeaderSetXmax(tuple, InvalidTransactionId); /* * The tuple might be marked either XMAX_INVALID or XMAX_COMMITTED * + LOCKED. Normalize to INVALID just to be sure no one gets * confused. Also get rid of the HEAP_KEYS_UPDATED bit. */ tuple->t_infomask &= ~HEAP_XMAX_BITS; tuple->t_infomask |= HEAP_XMAX_INVALID; HeapTupleHeaderClearHotUpdated(tuple); tuple->t_infomask2 &= ~HEAP_KEYS_UPDATED; changed = true; } /* * Old-style VACUUM FULL is gone, but we have to keep this code as long as * we support having MOVED_OFF/MOVED_IN tuples in the database. */ if (tuple->t_infomask & HEAP_MOVED) { xid = HeapTupleHeaderGetXvac(tuple); if (TransactionIdIsNormal(xid) && TransactionIdPrecedes(xid, cutoff_xid)) { /* * If a MOVED_OFF tuple is not dead, the xvac transaction must * have failed; whereas a non-dead MOVED_IN tuple must mean the * xvac transaction succeeded. */ if (tuple->t_infomask & HEAP_MOVED_OFF) HeapTupleHeaderSetXvac(tuple, InvalidTransactionId); else HeapTupleHeaderSetXvac(tuple, FrozenTransactionId); /* * Might as well fix the hint bits too; usually XMIN_COMMITTED * will already be set here, but there's a small chance not. */ Assert(!(tuple->t_infomask & HEAP_XMIN_INVALID)); tuple->t_infomask |= HEAP_XMIN_COMMITTED; changed = true; } } return changed; }
void heap_get_latest_tid | ( | Relation | relation, | |
Snapshot | snapshot, | |||
ItemPointer | tid | |||
) |
Definition at line 1805 of file heapam.c.
References BUFFER_LOCK_SHARE, BufferGetPage, CheckForSerializableConflictOut(), elog, ERROR, HEAP_XMAX_INVALID, HeapTupleHeaderGetUpdateXid, HeapTupleHeaderGetXmin, HeapTupleHeaderIsOnlyLocked(), HeapTupleSatisfiesVisibility, ItemIdGetLength, ItemIdIsNormal, ItemPointerEquals(), ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, ItemPointerIsValid, LockBuffer(), PageGetItem, PageGetItemId, PageGetMaxOffsetNumber, ReadBuffer(), RelationGetNumberOfBlocks, RelationGetRelationName, HeapTupleHeaderData::t_ctid, HeapTupleData::t_data, HeapTupleHeaderData::t_infomask, HeapTupleData::t_len, HeapTupleData::t_self, TransactionIdEquals, TransactionIdIsValid, and UnlockReleaseBuffer().
Referenced by currtid_byrelname(), currtid_byreloid(), and TidNext().
{ BlockNumber blk; ItemPointerData ctid; TransactionId priorXmax; /* this is to avoid Assert failures on bad input */ if (!ItemPointerIsValid(tid)) return; /* * Since this can be called with user-supplied TID, don't trust the input * too much. (RelationGetNumberOfBlocks is an expensive check, so we * don't check t_ctid links again this way. Note that it would not do to * call it just once and save the result, either.) */ blk = ItemPointerGetBlockNumber(tid); if (blk >= RelationGetNumberOfBlocks(relation)) elog(ERROR, "block number %u is out of range for relation \"%s\"", blk, RelationGetRelationName(relation)); /* * Loop to chase down t_ctid links. At top of loop, ctid is the tuple we * need to examine, and *tid is the TID we will return if ctid turns out * to be bogus. * * Note that we will loop until we reach the end of the t_ctid chain. * Depending on the snapshot passed, there might be at most one visible * version of the row, but we don't try to optimize for that. */ ctid = *tid; priorXmax = InvalidTransactionId; /* cannot check first XMIN */ for (;;) { Buffer buffer; Page page; OffsetNumber offnum; ItemId lp; HeapTupleData tp; bool valid; /* * Read, pin, and lock the page. */ buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(&ctid)); LockBuffer(buffer, BUFFER_LOCK_SHARE); page = BufferGetPage(buffer); /* * Check for bogus item number. This is not treated as an error * condition because it can happen while following a t_ctid link. We * just assume that the prior tid is OK and return it unchanged. */ offnum = ItemPointerGetOffsetNumber(&ctid); if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page)) { UnlockReleaseBuffer(buffer); break; } lp = PageGetItemId(page, offnum); if (!ItemIdIsNormal(lp)) { UnlockReleaseBuffer(buffer); break; } /* OK to access the tuple */ tp.t_self = ctid; tp.t_data = (HeapTupleHeader) PageGetItem(page, lp); tp.t_len = ItemIdGetLength(lp); /* * After following a t_ctid link, we might arrive at an unrelated * tuple. Check for XMIN match. */ if (TransactionIdIsValid(priorXmax) && !TransactionIdEquals(priorXmax, HeapTupleHeaderGetXmin(tp.t_data))) { UnlockReleaseBuffer(buffer); break; } /* * Check time qualification of tuple; if visible, set it as the new * result candidate. */ valid = HeapTupleSatisfiesVisibility(&tp, snapshot, buffer); CheckForSerializableConflictOut(valid, relation, &tp, buffer, snapshot); if (valid) *tid = ctid; /* * If there's a valid t_ctid link, follow it, else we're done. */ if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) || HeapTupleHeaderIsOnlyLocked(tp.t_data) || ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid)) { UnlockReleaseBuffer(buffer); break; } ctid = tp.t_data->t_ctid; priorXmax = HeapTupleHeaderGetUpdateXid(tp.t_data); UnlockReleaseBuffer(buffer); } /* end of loop */ }
HeapTuple heap_getnext | ( | HeapScanDesc | scan, | |
ScanDirection | direction | |||
) |
Definition at line 1447 of file heapam.c.
References heapgettup(), heapgettup_pagemode(), pgstat_count_heap_getnext, HeapScanDescData::rs_ctup, HeapScanDescData::rs_key, HeapScanDescData::rs_nkeys, HeapScanDescData::rs_pageatatime, HeapScanDescData::rs_rd, and HeapTupleData::t_data.
Referenced by AlterDomainNotNull(), AlterTableSpaceOptions(), ATRewriteTable(), boot_openrel(), check_db_file_conflict(), copy_heap_data(), CopyTo(), createdb(), DefineQueryRewrite(), do_autovacuum(), DropSetting(), DropTableSpace(), find_typed_table_dependencies(), get_database_list(), get_rel_oids(), get_rewrite_oid_without_relid(), get_tables_to_cluster(), get_tablespace_name(), get_tablespace_oid(), getRelationsInNamespace(), gettype(), index_update_stats(), IndexBuildHeapScan(), IndexCheckExclusion(), objectsInSchemaToOids(), pgrowlocks(), pgstat_collect_oids(), pgstat_heap(), ReindexDatabase(), remove_dbtablespaces(), RemoveConversionById(), RenameTableSpace(), SeqNext(), systable_getnext(), ThereIsAtLeastOneRole(), vac_truncate_clog(), validate_index_heapscan(), validateCheckConstraint(), validateDomainConstraint(), and validateForeignKeyConstraint().
{ /* Note: no locking manipulations needed */ HEAPDEBUG_1; /* heap_getnext( info ) */ if (scan->rs_pageatatime) heapgettup_pagemode(scan, direction, scan->rs_nkeys, scan->rs_key); else heapgettup(scan, direction, scan->rs_nkeys, scan->rs_key); if (scan->rs_ctup.t_data == NULL) { HEAPDEBUG_2; /* heap_getnext returning EOS */ return NULL; } /* * if we get here it means we have a new current scan tuple, so point to * the proper return buffer and return the tuple. */ HEAPDEBUG_3; /* heap_getnext returning tuple */ pgstat_count_heap_getnext(scan->rs_rd); return &(scan->rs_ctup); }
bool heap_hot_search | ( | ItemPointer | tid, | |
Relation | relation, | |||
Snapshot | snapshot, | |||
bool * | all_dead | |||
) |
Definition at line 1777 of file heapam.c.
References BUFFER_LOCK_SHARE, BUFFER_LOCK_UNLOCK, heap_hot_search_buffer(), ItemPointerGetBlockNumber, LockBuffer(), ReadBuffer(), and ReleaseBuffer().
Referenced by _bt_check_unique().
{ bool result; Buffer buffer; HeapTupleData heapTuple; buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid)); LockBuffer(buffer, BUFFER_LOCK_SHARE); result = heap_hot_search_buffer(tid, relation, buffer, snapshot, &heapTuple, all_dead, true); LockBuffer(buffer, BUFFER_LOCK_UNLOCK); ReleaseBuffer(buffer); return result; }
bool heap_hot_search_buffer | ( | ItemPointer | tid, | |
Relation | relation, | |||
Buffer | buffer, | |||
Snapshot | snapshot, | |||
HeapTuple | heapTuple, | |||
bool * | all_dead, | |||
bool | first_call | |||
) |
Definition at line 1649 of file heapam.c.
References Assert, BufferGetBlockNumber(), BufferGetPage, CheckForSerializableConflictOut(), HeapTupleHeaderGetUpdateXid, HeapTupleHeaderGetXmin, HeapTupleIsHeapOnly, HeapTupleIsHotUpdated, HeapTupleIsSurelyDead(), HeapTupleSatisfiesVisibility, ItemIdGetLength, ItemIdGetRedirect, ItemIdIsNormal, ItemIdIsRedirected, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, ItemPointerSetOffsetNumber, PageGetItem, PageGetItemId, PageGetMaxOffsetNumber, PredicateLockTuple(), RelationData::rd_id, RecentGlobalXmin, HeapTupleHeaderData::t_ctid, HeapTupleData::t_data, HeapTupleData::t_len, HeapTupleData::t_self, HeapTupleData::t_tableOid, TransactionIdEquals, and TransactionIdIsValid.
Referenced by bitgetpage(), heap_hot_search(), and index_fetch_heap().
{ Page dp = (Page) BufferGetPage(buffer); TransactionId prev_xmax = InvalidTransactionId; OffsetNumber offnum; bool at_chain_start; bool valid; bool skip; /* If this is not the first call, previous call returned a (live!) tuple */ if (all_dead) *all_dead = first_call; Assert(TransactionIdIsValid(RecentGlobalXmin)); Assert(ItemPointerGetBlockNumber(tid) == BufferGetBlockNumber(buffer)); offnum = ItemPointerGetOffsetNumber(tid); at_chain_start = first_call; skip = !first_call; /* Scan through possible multiple members of HOT-chain */ for (;;) { ItemId lp; /* check for bogus TID */ if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(dp)) break; lp = PageGetItemId(dp, offnum); /* check for unused, dead, or redirected items */ if (!ItemIdIsNormal(lp)) { /* We should only see a redirect at start of chain */ if (ItemIdIsRedirected(lp) && at_chain_start) { /* Follow the redirect */ offnum = ItemIdGetRedirect(lp); at_chain_start = false; continue; } /* else must be end of chain */ break; } heapTuple->t_data = (HeapTupleHeader) PageGetItem(dp, lp); heapTuple->t_len = ItemIdGetLength(lp); heapTuple->t_tableOid = relation->rd_id; heapTuple->t_self = *tid; /* * Shouldn't see a HEAP_ONLY tuple at chain start. */ if (at_chain_start && HeapTupleIsHeapOnly(heapTuple)) break; /* * The xmin should match the previous xmax value, else chain is * broken. */ if (TransactionIdIsValid(prev_xmax) && !TransactionIdEquals(prev_xmax, HeapTupleHeaderGetXmin(heapTuple->t_data))) break; /* * When first_call is true (and thus, skip is initially false) we'll * return the first tuple we find. But on later passes, heapTuple * will initially be pointing to the tuple we returned last time. * Returning it again would be incorrect (and would loop forever), so * we skip it and return the next match we find. */ if (!skip) { /* If it's visible per the snapshot, we must return it */ valid = HeapTupleSatisfiesVisibility(heapTuple, snapshot, buffer); CheckForSerializableConflictOut(valid, relation, heapTuple, buffer, snapshot); if (valid) { ItemPointerSetOffsetNumber(tid, offnum); PredicateLockTuple(relation, heapTuple, snapshot); if (all_dead) *all_dead = false; return true; } } skip = false; /* * If we can't see it, maybe no one else can either. At caller * request, check whether all chain members are dead to all * transactions. */ if (all_dead && *all_dead && !HeapTupleIsSurelyDead(heapTuple->t_data, RecentGlobalXmin)) *all_dead = false; /* * Check to see if HOT chain continues past this tuple; if so fetch * the next offnum and loop around. */ if (HeapTupleIsHotUpdated(heapTuple)) { Assert(ItemPointerGetBlockNumber(&heapTuple->t_data->t_ctid) == ItemPointerGetBlockNumber(tid)); offnum = ItemPointerGetOffsetNumber(&heapTuple->t_data->t_ctid); at_chain_start = false; prev_xmax = HeapTupleHeaderGetUpdateXid(heapTuple->t_data); } else break; /* end of chain */ } return false; }
Definition at line 4968 of file heapam.c.
References XLogRecData::buffer, BUFFER_LOCK_EXCLUSIVE, XLogRecData::buffer_std, BufferGetPage, CacheInvalidateHeapTuple(), XLogRecData::data, elog, END_CRIT_SECTION, ERROR, IsBootstrapProcessingMode, ItemIdGetLength, ItemIdIsNormal, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, XLogRecData::len, LockBuffer(), MarkBufferDirty(), XLogRecData::next, xl_heaptid::node, PageGetItem, PageGetItemId, PageGetMaxOffsetNumber, PageSetLSN, RelationData::rd_node, ReadBuffer(), RelationNeedsWAL, START_CRIT_SECTION, HeapTupleData::t_data, HeapTupleHeaderData::t_hoff, HeapTupleData::t_len, HeapTupleData::t_self, xl_heap_inplace::target, xl_heaptid::tid, UnlockReleaseBuffer(), XLOG_HEAP_INPLACE, and XLogInsert().
Referenced by create_toast_table(), index_set_state_flags(), index_update_stats(), vac_update_datfrozenxid(), and vac_update_relstats().
{ Buffer buffer; Page page; OffsetNumber offnum; ItemId lp = NULL; HeapTupleHeader htup; uint32 oldlen; uint32 newlen; buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(&(tuple->t_self))); LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); page = (Page) BufferGetPage(buffer); offnum = ItemPointerGetOffsetNumber(&(tuple->t_self)); if (PageGetMaxOffsetNumber(page) >= offnum) lp = PageGetItemId(page, offnum); if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp)) elog(ERROR, "heap_inplace_update: invalid lp"); htup = (HeapTupleHeader) PageGetItem(page, lp); oldlen = ItemIdGetLength(lp) - htup->t_hoff; newlen = tuple->t_len - tuple->t_data->t_hoff; if (oldlen != newlen || htup->t_hoff != tuple->t_data->t_hoff) elog(ERROR, "heap_inplace_update: wrong tuple length"); /* NO EREPORT(ERROR) from here till changes are logged */ START_CRIT_SECTION(); memcpy((char *) htup + htup->t_hoff, (char *) tuple->t_data + tuple->t_data->t_hoff, newlen); MarkBufferDirty(buffer); /* XLOG stuff */ if (RelationNeedsWAL(relation)) { xl_heap_inplace xlrec; XLogRecPtr recptr; XLogRecData rdata[2]; xlrec.target.node = relation->rd_node; xlrec.target.tid = tuple->t_self; rdata[0].data = (char *) &xlrec; rdata[0].len = SizeOfHeapInplace; rdata[0].buffer = InvalidBuffer; rdata[0].next = &(rdata[1]); rdata[1].data = (char *) htup + htup->t_hoff; rdata[1].len = newlen; rdata[1].buffer = buffer; rdata[1].buffer_std = true; rdata[1].next = NULL; recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_INPLACE, rdata); PageSetLSN(page, recptr); } END_CRIT_SECTION(); UnlockReleaseBuffer(buffer); /* * Send out shared cache inval if necessary. Note that because we only * pass the new version of the tuple, this mustn't be used for any * operations that could change catcache lookup keys. But we aren't * bothering with index updates either, so that's true a fortiori. */ if (!IsBootstrapProcessingMode()) CacheInvalidateHeapTuple(relation, tuple, NULL); }
Oid heap_insert | ( | Relation | relation, | |
HeapTuple | tup, | |||
CommandId | cid, | |||
int | options, | |||
BulkInsertState | bistate | |||
) |
Definition at line 2012 of file heapam.c.
References xl_heap_insert::all_visible_cleared, XLogRecData::buffer, XLogRecData::buffer_std, BufferGetPage, CacheInvalidateHeapTuple(), CheckForSerializableConflictIn(), XLogRecData::data, END_CRIT_SECTION, FirstOffsetNumber, GetCurrentTransactionId(), heap_freetuple(), HEAP_INSERT_SKIP_WAL, heap_prepare_insert(), HeapTupleGetOid, InvalidBuffer, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, XLogRecData::len, MarkBufferDirty(), XLogRecData::next, xl_heaptid::node, offsetof, PageClearAllVisible, PageGetMaxOffsetNumber, PageIsAllVisible, PageSetLSN, pgstat_count_heap_insert(), RelationData::rd_node, RelationGetBufferForTuple(), RelationNeedsWAL, RelationPutHeapTuple(), ReleaseBuffer(), START_CRIT_SECTION, HeapTupleData::t_data, HeapTupleHeaderData::t_hoff, xl_heap_header::t_hoff, HeapTupleHeaderData::t_infomask, xl_heap_header::t_infomask, HeapTupleHeaderData::t_infomask2, xl_heap_header::t_infomask2, HeapTupleData::t_len, HeapTupleData::t_self, xl_heap_insert::target, xl_heaptid::tid, UnlockReleaseBuffer(), visibilitymap_clear(), and XLogInsert().
Referenced by ATRewriteTable(), CopyFrom(), ExecInsert(), intorel_receive(), simple_heap_insert(), toast_save_datum(), and transientrel_receive().
{ TransactionId xid = GetCurrentTransactionId(); HeapTuple heaptup; Buffer buffer; Buffer vmbuffer = InvalidBuffer; bool all_visible_cleared = false; /* * Fill in tuple header fields, assign an OID, and toast the tuple if * necessary. * * Note: below this point, heaptup is the data we actually intend to store * into the relation; tup is the caller's original untoasted data. */ heaptup = heap_prepare_insert(relation, tup, xid, cid, options); /* * We're about to do the actual insert -- but check for conflict first, to * avoid possibly having to roll back work we've just done. * * For a heap insert, we only need to check for table-level SSI locks. Our * new tuple can't possibly conflict with existing tuple locks, and heap * page locks are only consolidated versions of tuple locks; they do not * lock "gaps" as index page locks do. So we don't need to identify a * buffer before making the call. */ CheckForSerializableConflictIn(relation, NULL, InvalidBuffer); /* * Find buffer to insert this tuple into. If the page is all visible, * this will also pin the requisite visibility map page. */ buffer = RelationGetBufferForTuple(relation, heaptup->t_len, InvalidBuffer, options, bistate, &vmbuffer, NULL); /* NO EREPORT(ERROR) from here till changes are logged */ START_CRIT_SECTION(); RelationPutHeapTuple(relation, buffer, heaptup); if (PageIsAllVisible(BufferGetPage(buffer))) { all_visible_cleared = true; PageClearAllVisible(BufferGetPage(buffer)); visibilitymap_clear(relation, ItemPointerGetBlockNumber(&(heaptup->t_self)), vmbuffer); } /* * XXX Should we set PageSetPrunable on this page ? * * The inserting transaction may eventually abort thus making this tuple * DEAD and hence available for pruning. Though we don't want to optimize * for aborts, if no other tuple in this page is UPDATEd/DELETEd, the * aborted tuple will never be pruned until next vacuum is triggered. * * If you do add PageSetPrunable here, add it in heap_xlog_insert too. */ MarkBufferDirty(buffer); /* XLOG stuff */ if (!(options & HEAP_INSERT_SKIP_WAL) && RelationNeedsWAL(relation)) { xl_heap_insert xlrec; xl_heap_header xlhdr; XLogRecPtr recptr; XLogRecData rdata[3]; Page page = BufferGetPage(buffer); uint8 info = XLOG_HEAP_INSERT; xlrec.all_visible_cleared = all_visible_cleared; xlrec.target.node = relation->rd_node; xlrec.target.tid = heaptup->t_self; rdata[0].data = (char *) &xlrec; rdata[0].len = SizeOfHeapInsert; rdata[0].buffer = InvalidBuffer; rdata[0].next = &(rdata[1]); xlhdr.t_infomask2 = heaptup->t_data->t_infomask2; xlhdr.t_infomask = heaptup->t_data->t_infomask; xlhdr.t_hoff = heaptup->t_data->t_hoff; /* * note we mark rdata[1] as belonging to buffer; if XLogInsert decides * to write the whole page to the xlog, we don't need to store * xl_heap_header in the xlog. */ rdata[1].data = (char *) &xlhdr; rdata[1].len = SizeOfHeapHeader; rdata[1].buffer = buffer; rdata[1].buffer_std = true; rdata[1].next = &(rdata[2]); /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */ rdata[2].data = (char *) heaptup->t_data + offsetof(HeapTupleHeaderData, t_bits); rdata[2].len = heaptup->t_len - offsetof(HeapTupleHeaderData, t_bits); rdata[2].buffer = buffer; rdata[2].buffer_std = true; rdata[2].next = NULL; /* * If this is the single and first tuple on page, we can reinit the * page instead of restoring the whole thing. Set flag, and hide * buffer references from XLogInsert. */ if (ItemPointerGetOffsetNumber(&(heaptup->t_self)) == FirstOffsetNumber && PageGetMaxOffsetNumber(page) == FirstOffsetNumber) { info |= XLOG_HEAP_INIT_PAGE; rdata[1].buffer = rdata[2].buffer = InvalidBuffer; } recptr = XLogInsert(RM_HEAP_ID, info, rdata); PageSetLSN(page, recptr); } END_CRIT_SECTION(); UnlockReleaseBuffer(buffer); if (vmbuffer != InvalidBuffer) ReleaseBuffer(vmbuffer); /* * If tuple is cachable, mark it for invalidation from the caches in case * we abort. Note it is OK to do this after releasing the buffer, because * the heaptup data structure is all in local memory, not in the shared * buffer. */ CacheInvalidateHeapTuple(relation, heaptup, NULL); pgstat_count_heap_insert(relation, 1); /* * If heaptup is a private copy, release it. Don't forget to copy t_self * back to the caller's image, too. */ if (heaptup != tup) { tup->t_self = heaptup->t_self; heap_freetuple(heaptup); } return HeapTupleGetOid(tup); }
HTSU_Result heap_lock_tuple | ( | Relation | relation, | |
HeapTuple | tuple, | |||
CommandId | cid, | |||
LockTupleMode | mode, | |||
bool | nowait, | |||
bool | follow_updates, | |||
Buffer * | buffer, | |||
HeapUpdateFailureData * | hufd | |||
) |
Definition at line 3895 of file heapam.c.
References Assert, XLogRecData::buffer, BUFFER_LOCK_EXCLUSIVE, BUFFER_LOCK_UNLOCK, XLogRecData::buffer_std, BufferGetPage, HeapUpdateFailureData::cmax, compute_infobits(), compute_new_xmax_infomask(), ConditionalLockTupleTuplock, ConditionalMultiXactIdWait(), ConditionalXactLockTableWait(), HeapUpdateFailureData::ctid, XLogRecData::data, elog, END_CRIT_SECTION, ereport, errcode(), errmsg(), ERROR, get_mxact_status_for_lock(), GetCurrentTransactionId(), GetMultiXactIdMembers(), HEAP_KEYS_UPDATED, heap_lock_updated_tuple(), HEAP_XMAX_COMMITTED, HEAP_XMAX_INVALID, HEAP_XMAX_IS_EXCL_LOCKED, HEAP_XMAX_IS_KEYSHR_LOCKED, HEAP_XMAX_IS_LOCKED_ONLY, HEAP_XMAX_IS_MULTI, HEAP_XMAX_IS_SHR_LOCKED, HeapTupleBeingUpdated, HeapTupleHeaderClearHotUpdated, HeapTupleHeaderGetCmax(), HeapTupleHeaderGetRawXmax, HeapTupleHeaderGetUpdateXid, HeapTupleHeaderIsOnlyLocked(), HeapTupleHeaderSetXmax, HeapTupleInvisible, HeapTupleMayBeUpdated, HeapTupleSatisfiesUpdate(), HeapTupleSelfUpdated, HeapTupleUpdated, i, xl_heap_lock::infobits_set, ItemIdGetLength, ItemIdIsNormal, ItemPointerCopy, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, XLogRecData::len, LockBuffer(), xl_heap_lock::locking_xid, LockTupleKeyShare, LockTupleNoKeyExclusive, LockTupleShare, LockTupleTuplock, MarkBufferDirty(), MultiXactIdSetOldestMember(), MultiXactIdWait(), MultiXactStatusForKeyShare, MultiXactStatusNoKeyUpdate, XLogRecData::next, xl_heaptid::node, PageGetItem, PageGetItemId, PageSetLSN, pfree(), RelationData::rd_node, ReadBuffer(), RelationGetRelationName, RelationGetRelid, RelationNeedsWAL, START_CRIT_SECTION, status(), HeapTupleHeaderData::t_ctid, HeapTupleData::t_data, HeapTupleHeaderData::t_infomask, HeapTupleHeaderData::t_infomask2, HeapTupleData::t_len, HeapTupleData::t_self, HeapTupleData::t_tableOid, xl_heap_lock::target, xl_heaptid::tid, TransactionIdEquals, TransactionIdIsCurrentTransactionId(), TUPLOCK_from_mxstatus, UnlockReleaseBuffer(), UnlockTupleTuplock, UpdateXmaxHintBits(), XactLockTableWait(), XLOG_HEAP_LOCK, XLogInsert(), and HeapUpdateFailureData::xmax.
Referenced by EvalPlanQualFetch(), ExecLockRows(), and GetTupleForTrigger().
{ HTSU_Result result; ItemPointer tid = &(tuple->t_self); ItemId lp; Page page; TransactionId xid, xmax; uint16 old_infomask, new_infomask, new_infomask2; bool have_tuple_lock = false; *buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid)); LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); page = BufferGetPage(*buffer); lp = PageGetItemId(page, ItemPointerGetOffsetNumber(tid)); Assert(ItemIdIsNormal(lp)); tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp); tuple->t_len = ItemIdGetLength(lp); tuple->t_tableOid = RelationGetRelid(relation); l3: result = HeapTupleSatisfiesUpdate(tuple->t_data, cid, *buffer); if (result == HeapTupleInvisible) { UnlockReleaseBuffer(*buffer); elog(ERROR, "attempted to lock invisible tuple"); } else if (result == HeapTupleBeingUpdated) { TransactionId xwait; uint16 infomask; uint16 infomask2; bool require_sleep; ItemPointerData t_ctid; /* must copy state data before unlocking buffer */ xwait = HeapTupleHeaderGetRawXmax(tuple->t_data); infomask = tuple->t_data->t_infomask; infomask2 = tuple->t_data->t_infomask2; ItemPointerCopy(&tuple->t_data->t_ctid, &t_ctid); LockBuffer(*buffer, BUFFER_LOCK_UNLOCK); /* * If any subtransaction of the current top transaction already holds a * lock as strong or stronger than what we're requesting, we * effectively hold the desired lock already. We *must* succeed * without trying to take the tuple lock, else we will deadlock against * anyone wanting to acquire a stronger lock. */ if (infomask & HEAP_XMAX_IS_MULTI) { int i; int nmembers; MultiXactMember *members; /* * We don't need to allow old multixacts here; if that had been the * case, HeapTupleSatisfiesUpdate would have returned MayBeUpdated * and we wouldn't be here. */ nmembers = GetMultiXactIdMembers(xwait, &members, false); for (i = 0; i < nmembers; i++) { if (TransactionIdIsCurrentTransactionId(members[i].xid)) { LockTupleMode membermode; membermode = TUPLOCK_from_mxstatus(members[i].status); if (membermode >= mode) { if (have_tuple_lock) UnlockTupleTuplock(relation, tid, mode); pfree(members); return HeapTupleMayBeUpdated; } } } pfree(members); } /* * Acquire tuple lock to establish our priority for the tuple. * LockTuple will release us when we are next-in-line for the tuple. * We must do this even if we are share-locking. * * If we are forced to "start over" below, we keep the tuple lock; * this arranges that we stay at the head of the line while rechecking * tuple state. */ if (!have_tuple_lock) { if (nowait) { if (!ConditionalLockTupleTuplock(relation, tid, mode)) ereport(ERROR, (errcode(ERRCODE_LOCK_NOT_AVAILABLE), errmsg("could not obtain lock on row in relation \"%s\"", RelationGetRelationName(relation)))); } else LockTupleTuplock(relation, tid, mode); have_tuple_lock = true; } /* * Initially assume that we will have to wait for the locking * transaction(s) to finish. We check various cases below in which * this can be turned off. */ require_sleep = true; if (mode == LockTupleKeyShare) { /* * If we're requesting KeyShare, and there's no update present, we * don't need to wait. Even if there is an update, we can still * continue if the key hasn't been modified. * * However, if there are updates, we need to walk the update chain * to mark future versions of the row as locked, too. That way, if * somebody deletes that future version, we're protected against * the key going away. This locking of future versions could block * momentarily, if a concurrent transaction is deleting a key; or * it could return a value to the effect that the transaction * deleting the key has already committed. So we do this before * re-locking the buffer; otherwise this would be prone to * deadlocks. * * Note that the TID we're locking was grabbed before we unlocked * the buffer. For it to change while we're not looking, the other * properties we're testing for below after re-locking the buffer * would also change, in which case we would restart this loop * above. */ if (!(infomask2 & HEAP_KEYS_UPDATED)) { bool updated; updated = !HEAP_XMAX_IS_LOCKED_ONLY(infomask); /* * If there are updates, follow the update chain; bail out * if that cannot be done. */ if (follow_updates && updated) { HTSU_Result res; res = heap_lock_updated_tuple(relation, tuple, &t_ctid, GetCurrentTransactionId(), mode); if (res != HeapTupleMayBeUpdated) { result = res; /* recovery code expects to have buffer lock held */ LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); goto failed; } } LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); /* * Make sure it's still an appropriate lock, else start over. * Also, if it wasn't updated before we released the lock, but * is updated now, we start over too; the reason is that we now * need to follow the update chain to lock the new versions. */ if (!HeapTupleHeaderIsOnlyLocked(tuple->t_data) && ((tuple->t_data->t_infomask2 & HEAP_KEYS_UPDATED) || !updated)) goto l3; /* Things look okay, so we can skip sleeping */ require_sleep = false; /* * Note we allow Xmax to change here; other updaters/lockers * could have modified it before we grabbed the buffer lock. * However, this is not a problem, because with the recheck we * just did we ensure that they still don't conflict with the * lock we want. */ } } else if (mode == LockTupleShare) { /* * If we're requesting Share, we can similarly avoid sleeping if * there's no update and no exclusive lock present. */ if (HEAP_XMAX_IS_LOCKED_ONLY(infomask) && !HEAP_XMAX_IS_EXCL_LOCKED(infomask)) { LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); /* * Make sure it's still an appropriate lock, else start over. * See above about allowing xmax to change. */ if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask) || HEAP_XMAX_IS_EXCL_LOCKED(tuple->t_data->t_infomask)) goto l3; require_sleep = false; } } else if (mode == LockTupleNoKeyExclusive) { /* * If we're requesting NoKeyExclusive, we might also be able to * avoid sleeping; just ensure that there's no other lock type than * KeyShare. Note that this is a bit more involved than just * checking hint bits -- we need to expand the multixact to figure * out lock modes for each one (unless there was only one such * locker). */ if (infomask & HEAP_XMAX_IS_MULTI) { int nmembers; MultiXactMember *members; /* * We don't need to allow old multixacts here; if that had been * the case, HeapTupleSatisfiesUpdate would have returned * MayBeUpdated and we wouldn't be here. */ nmembers = GetMultiXactIdMembers(xwait, &members, false); if (nmembers <= 0) { /* * No need to keep the previous xmax here. This is unlikely * to happen. */ require_sleep = false; } else { int i; bool allowed = true; for (i = 0; i < nmembers; i++) { if (members[i].status != MultiXactStatusForKeyShare) { allowed = false; break; } } if (allowed) { /* * if the xmax changed under us in the meantime, start * over. */ LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); if (!(tuple->t_data->t_infomask & HEAP_XMAX_IS_MULTI) || !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data), xwait)) { pfree(members); goto l3; } /* otherwise, we're good */ require_sleep = false; } pfree(members); } } else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask)) { LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); /* if the xmax changed in the meantime, start over */ if ((tuple->t_data->t_infomask & HEAP_XMAX_IS_MULTI) || !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data), xwait)) goto l3; /* otherwise, we're good */ require_sleep = false; } } /* * By here, we either have already acquired the buffer exclusive lock, * or we must wait for the locking transaction or multixact; so below * we ensure that we grab buffer lock after the sleep. */ if (require_sleep) { if (infomask & HEAP_XMAX_IS_MULTI) { MultiXactStatus status = get_mxact_status_for_lock(mode, false); /* We only ever lock tuples, never update them */ if (status >= MultiXactStatusNoKeyUpdate) elog(ERROR, "invalid lock mode in heap_lock_tuple"); /* wait for multixact to end */ if (nowait) { if (!ConditionalMultiXactIdWait((MultiXactId) xwait, status, NULL, infomask)) ereport(ERROR, (errcode(ERRCODE_LOCK_NOT_AVAILABLE), errmsg("could not obtain lock on row in relation \"%s\"", RelationGetRelationName(relation)))); } else MultiXactIdWait((MultiXactId) xwait, status, NULL, infomask); /* if there are updates, follow the update chain */ if (follow_updates && !HEAP_XMAX_IS_LOCKED_ONLY(infomask)) { HTSU_Result res; res = heap_lock_updated_tuple(relation, tuple, &t_ctid, GetCurrentTransactionId(), mode); if (res != HeapTupleMayBeUpdated) { result = res; /* recovery code expects to have buffer lock held */ LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); goto failed; } } LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); /* * If xwait had just locked the tuple then some other xact * could update this tuple before we get to this point. Check * for xmax change, and start over if so. */ if (!(tuple->t_data->t_infomask & HEAP_XMAX_IS_MULTI) || !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data), xwait)) goto l3; /* * Of course, the multixact might not be done here: if we're * requesting a light lock mode, other transactions with light * locks could still be alive, as well as locks owned by our * own xact or other subxacts of this backend. We need to * preserve the surviving MultiXact members. Note that it * isn't absolutely necessary in the latter case, but doing so * is simpler. */ } else { /* wait for regular transaction to end */ if (nowait) { if (!ConditionalXactLockTableWait(xwait)) ereport(ERROR, (errcode(ERRCODE_LOCK_NOT_AVAILABLE), errmsg("could not obtain lock on row in relation \"%s\"", RelationGetRelationName(relation)))); } else XactLockTableWait(xwait); /* if there are updates, follow the update chain */ if (follow_updates && !HEAP_XMAX_IS_LOCKED_ONLY(infomask)) { HTSU_Result res; res = heap_lock_updated_tuple(relation, tuple, &t_ctid, GetCurrentTransactionId(), mode); if (res != HeapTupleMayBeUpdated) { result = res; /* recovery code expects to have buffer lock held */ LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); goto failed; } } LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE); /* * xwait is done, but if xwait had just locked the tuple then * some other xact could update this tuple before we get to * this point. Check for xmax change, and start over if so. */ if ((tuple->t_data->t_infomask & HEAP_XMAX_IS_MULTI) || !TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple->t_data), xwait)) goto l3; /* * Otherwise check if it committed or aborted. Note we cannot * be here if the tuple was only locked by somebody who didn't * conflict with us; that should have been handled above. So * that transaction must necessarily be gone by now. */ UpdateXmaxHintBits(tuple->t_data, *buffer, xwait); } } /* By here, we're certain that we hold buffer exclusive lock again */ /* * We may lock if previous xmax aborted, or if it committed but only * locked the tuple without updating it; or if we didn't have to wait * at all for whatever reason. */ if (!require_sleep || (tuple->t_data->t_infomask & HEAP_XMAX_INVALID) || HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_data->t_infomask) || HeapTupleHeaderIsOnlyLocked(tuple->t_data)) result = HeapTupleMayBeUpdated; else result = HeapTupleUpdated; } failed: if (result != HeapTupleMayBeUpdated) { Assert(result == HeapTupleSelfUpdated || result == HeapTupleUpdated); Assert(!(tuple->t_data->t_infomask & HEAP_XMAX_INVALID)); hufd->ctid = tuple->t_data->t_ctid; hufd->xmax = HeapTupleHeaderGetUpdateXid(tuple->t_data); if (result == HeapTupleSelfUpdated) hufd->cmax = HeapTupleHeaderGetCmax(tuple->t_data); else hufd->cmax = 0; /* for lack of an InvalidCommandId value */ LockBuffer(*buffer, BUFFER_LOCK_UNLOCK); if (have_tuple_lock) UnlockTupleTuplock(relation, tid, mode); return result; } xmax = HeapTupleHeaderGetRawXmax(tuple->t_data); old_infomask = tuple->t_data->t_infomask; /* * We might already hold the desired lock (or stronger), possibly under a * different subtransaction of the current top transaction. If so, there * is no need to change state or issue a WAL record. We already handled * the case where this is true for xmax being a MultiXactId, so now check * for cases where it is a plain TransactionId. * * Note in particular that this covers the case where we already hold * exclusive lock on the tuple and the caller only wants key share or share * lock. It would certainly not do to give up the exclusive lock. */ if (!(old_infomask & (HEAP_XMAX_INVALID | HEAP_XMAX_COMMITTED | HEAP_XMAX_IS_MULTI)) && (mode == LockTupleKeyShare ? (HEAP_XMAX_IS_KEYSHR_LOCKED(old_infomask) || HEAP_XMAX_IS_SHR_LOCKED(old_infomask) || HEAP_XMAX_IS_EXCL_LOCKED(old_infomask)) : mode == LockTupleShare ? (HEAP_XMAX_IS_SHR_LOCKED(old_infomask) || HEAP_XMAX_IS_EXCL_LOCKED(old_infomask)) : (HEAP_XMAX_IS_EXCL_LOCKED(old_infomask))) && TransactionIdIsCurrentTransactionId(xmax)) { LockBuffer(*buffer, BUFFER_LOCK_UNLOCK); /* Probably can't hold tuple lock here, but may as well check */ if (have_tuple_lock) UnlockTupleTuplock(relation, tid, mode); return HeapTupleMayBeUpdated; } /* * If this is the first possibly-multixact-able operation in the * current transaction, set my per-backend OldestMemberMXactId setting. * We can be certain that the transaction will never become a member of * any older MultiXactIds than that. (We have to do this even if we * end up just using our own TransactionId below, since some other * backend could incorporate our XID into a MultiXact immediately * afterwards.) */ MultiXactIdSetOldestMember(); /* * Compute the new xmax and infomask to store into the tuple. Note we do * not modify the tuple just yet, because that would leave it in the wrong * state if multixact.c elogs. */ compute_new_xmax_infomask(xmax, old_infomask, tuple->t_data->t_infomask2, GetCurrentTransactionId(), mode, false, &xid, &new_infomask, &new_infomask2); START_CRIT_SECTION(); /* * Store transaction information of xact locking the tuple. * * Note: Cmax is meaningless in this context, so don't set it; this avoids * possibly generating a useless combo CID. Moreover, if we're locking a * previously updated tuple, it's important to preserve the Cmax. * * Also reset the HOT UPDATE bit, but only if there's no update; otherwise * we would break the HOT chain. */ tuple->t_data->t_infomask &= ~HEAP_XMAX_BITS; tuple->t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED; tuple->t_data->t_infomask |= new_infomask; tuple->t_data->t_infomask2 |= new_infomask2; if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask)) HeapTupleHeaderClearHotUpdated(tuple->t_data); HeapTupleHeaderSetXmax(tuple->t_data, xid); /* * Make sure there is no forward chain link in t_ctid. Note that in the * cases where the tuple has been updated, we must not overwrite t_ctid, * because it was set by the updater. Moreover, if the tuple has been * updated, we need to follow the update chain to lock the new versions * of the tuple as well. */ if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask)) tuple->t_data->t_ctid = *tid; MarkBufferDirty(*buffer); /* * XLOG stuff. You might think that we don't need an XLOG record because * there is no state change worth restoring after a crash. You would be * wrong however: we have just written either a TransactionId or a * MultiXactId that may never have been seen on disk before, and we need * to make sure that there are XLOG entries covering those ID numbers. * Else the same IDs might be re-used after a crash, which would be * disastrous if this page made it to disk before the crash. Essentially * we have to enforce the WAL log-before-data rule even in this case. * (Also, in a PITR log-shipping or 2PC environment, we have to have XLOG * entries for everything anyway.) */ if (RelationNeedsWAL(relation)) { xl_heap_lock xlrec; XLogRecPtr recptr; XLogRecData rdata[2]; xlrec.target.node = relation->rd_node; xlrec.target.tid = tuple->t_self; xlrec.locking_xid = xid; xlrec.infobits_set = compute_infobits(new_infomask, tuple->t_data->t_infomask2); rdata[0].data = (char *) &xlrec; rdata[0].len = SizeOfHeapLock; rdata[0].buffer = InvalidBuffer; rdata[0].next = &(rdata[1]); rdata[1].data = NULL; rdata[1].len = 0; rdata[1].buffer = *buffer; rdata[1].buffer_std = true; rdata[1].next = NULL; recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK, rdata); PageSetLSN(page, recptr); } END_CRIT_SECTION(); LockBuffer(*buffer, BUFFER_LOCK_UNLOCK); /* * Don't update the visibility map here. Locking a tuple doesn't change * visibility info. */ /* * Now that we have successfully marked the tuple as locked, we can * release the lmgr tuple lock, if we had it. */ if (have_tuple_lock) UnlockTupleTuplock(relation, tid, mode); return HeapTupleMayBeUpdated; }
static HTSU_Result heap_lock_updated_tuple | ( | Relation | rel, | |
HeapTuple | tuple, | |||
ItemPointer | ctid, | |||
TransactionId | xid, | |||
LockTupleMode | mode | |||
) | [static] |
Definition at line 4928 of file heapam.c.
References heap_lock_updated_tuple_rec(), ItemPointerEquals(), MultiXactIdSetOldestMember(), and HeapTupleData::t_self.
Referenced by heap_lock_tuple().
{ if (!ItemPointerEquals(&tuple->t_self, ctid)) { /* * If this is the first possibly-multixact-able operation in the * current transaction, set my per-backend OldestMemberMXactId setting. * We can be certain that the transaction will never become a member of * any older MultiXactIds than that. (We have to do this even if we * end up just using our own TransactionId below, since some other * backend could incorporate our XID into a MultiXact immediately * afterwards.) */ MultiXactIdSetOldestMember(); return heap_lock_updated_tuple_rec(rel, ctid, xid, mode); } /* nothing to lock */ return HeapTupleMayBeUpdated; }
static HTSU_Result heap_lock_updated_tuple_rec | ( | Relation | rel, | |
ItemPointer | tid, | |||
TransactionId | xid, | |||
LockTupleMode | mode | |||
) | [static] |
Definition at line 4774 of file heapam.c.
References buf, XLogRecData::buffer, BUFFER_LOCK_EXCLUSIVE, BUFFER_LOCK_UNLOCK, XLogRecData::buffer_std, BufferGetPage, CHECK_FOR_INTERRUPTS, compute_infobits(), compute_new_xmax_infomask(), XLogRecData::data, elog, END_CRIT_SECTION, ERROR, heap_fetch(), HEAP_KEYS_UPDATED, HEAP_XMAX_INVALID, HeapTupleHeaderGetRawXmax, HeapTupleHeaderGetUpdateXid, HeapTupleHeaderIsOnlyLocked(), HeapTupleHeaderSetXmax, xl_heap_lock_updated::infobits_set, ItemPointerCopy, ItemPointerEquals(), XLogRecData::len, LockBuffer(), MarkBufferDirty(), XLogRecData::next, xl_heaptid::node, PageSetLSN, RelationData::rd_node, RelationNeedsWAL, SnapshotAny, START_CRIT_SECTION, HeapTupleHeaderData::t_ctid, HeapTupleData::t_data, HeapTupleHeaderData::t_infomask, HeapTupleHeaderData::t_infomask2, HeapTupleData::t_self, xl_heap_lock_updated::target, xl_heaptid::tid, TransactionIdDidAbort(), TransactionIdDidCommit(), TransactionIdIsCurrentTransactionId(), TransactionIdIsInProgress(), UnlockReleaseBuffer(), XactLockTableWait(), XLOG_HEAP2_LOCK_UPDATED, XLogInsert(), and xl_heap_lock_updated::xmax.
Referenced by heap_lock_updated_tuple().
{ ItemPointerData tupid; HeapTupleData mytup; Buffer buf; uint16 new_infomask, new_infomask2, old_infomask; TransactionId xmax, new_xmax; ItemPointerCopy(tid, &tupid); for (;;) { new_infomask = 0; new_xmax = InvalidTransactionId; ItemPointerCopy(&tupid, &(mytup.t_self)); if (!heap_fetch(rel, SnapshotAny, &mytup, &buf, false, NULL)) elog(ERROR, "unable to fetch updated version of tuple"); l4: CHECK_FOR_INTERRUPTS(); LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE); old_infomask = mytup.t_data->t_infomask; xmax = HeapTupleHeaderGetRawXmax(mytup.t_data); /* * If this tuple is updated and the key has been modified (or deleted), * what we do depends on the status of the updating transaction: if * it's live, we sleep until it finishes; if it has committed, we have * to fail (i.e. return HeapTupleUpdated); if it aborted, we ignore it. * For updates that didn't touch the key, we can just plough ahead. */ if (!(old_infomask & HEAP_XMAX_INVALID) && (mytup.t_data->t_infomask2 & HEAP_KEYS_UPDATED)) { TransactionId update_xid; /* * Note: we *must* check TransactionIdIsInProgress before * TransactionIdDidAbort/Commit; see comment at top of tqual.c for * an explanation. */ update_xid = HeapTupleHeaderGetUpdateXid(mytup.t_data); if (TransactionIdIsCurrentTransactionId(update_xid)) { UnlockReleaseBuffer(buf); return HeapTupleSelfUpdated; } else if (TransactionIdIsInProgress(update_xid)) { LockBuffer(buf, BUFFER_LOCK_UNLOCK); /* No LockTupleTuplock here -- see heap_lock_updated_tuple */ XactLockTableWait(update_xid); goto l4; } else if (TransactionIdDidAbort(update_xid)) ; /* okay to proceed */ else if (TransactionIdDidCommit(update_xid)) { UnlockReleaseBuffer(buf); return HeapTupleUpdated; } } /* compute the new Xmax and infomask values for the tuple ... */ compute_new_xmax_infomask(xmax, old_infomask, mytup.t_data->t_infomask2, xid, mode, false, &new_xmax, &new_infomask, &new_infomask2); START_CRIT_SECTION(); /* ... and set them */ HeapTupleHeaderSetXmax(mytup.t_data, new_xmax); mytup.t_data->t_infomask &= ~HEAP_XMAX_BITS; mytup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED; mytup.t_data->t_infomask |= new_infomask; mytup.t_data->t_infomask2 |= new_infomask2; MarkBufferDirty(buf); /* XLOG stuff */ if (RelationNeedsWAL(rel)) { xl_heap_lock_updated xlrec; XLogRecPtr recptr; XLogRecData rdata[2]; Page page = BufferGetPage(buf); xlrec.target.node = rel->rd_node; xlrec.target.tid = mytup.t_self; xlrec.xmax = new_xmax; xlrec.infobits_set = compute_infobits(new_infomask, new_infomask2); rdata[0].data = (char *) &xlrec; rdata[0].len = SizeOfHeapLockUpdated; rdata[0].buffer = InvalidBuffer; rdata[0].next = &(rdata[1]); rdata[1].data = NULL; rdata[1].len = 0; rdata[1].buffer = buf; rdata[1].buffer_std = true; rdata[1].next = NULL; recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_LOCK_UPDATED, rdata); PageSetLSN(page, recptr); } END_CRIT_SECTION(); /* if we find the end of update chain, we're done. */ if (mytup.t_data->t_infomask & HEAP_XMAX_INVALID || ItemPointerEquals(&mytup.t_self, &mytup.t_data->t_ctid) || HeapTupleHeaderIsOnlyLocked(mytup.t_data)) { UnlockReleaseBuffer(buf); return HeapTupleMayBeUpdated; } /* tail recursion */ ItemPointerCopy(&(mytup.t_data->t_ctid), &tupid); UnlockReleaseBuffer(buf); } }
void heap_markpos | ( | HeapScanDesc | scan | ) |
Definition at line 5486 of file heapam.c.
References ItemPointerSetInvalid, HeapScanDescData::rs_cindex, HeapScanDescData::rs_ctup, HeapScanDescData::rs_mctid, HeapScanDescData::rs_mindex, HeapScanDescData::rs_pageatatime, HeapTupleData::t_data, and HeapTupleData::t_self.
Referenced by ExecSeqMarkPos().
void heap_multi_insert | ( | Relation | relation, | |
HeapTuple * | tuples, | |||
int | ntuples, | |||
CommandId | cid, | |||
int | options, | |||
BulkInsertState | bistate | |||
) |
Definition at line 2241 of file heapam.c.
References xl_heap_multi_insert::all_visible_cleared, Assert, xl_heap_multi_insert::blkno, XLogRecData::buffer, XLogRecData::buffer_std, BufferGetBlockNumber(), BufferGetPage, CacheInvalidateHeapTuple(), CheckForSerializableConflictIn(), XLogRecData::data, xl_multi_insert_tuple::datalen, END_CRIT_SECTION, FirstOffsetNumber, GetCurrentTransactionId(), HEAP_DEFAULT_FILLFACTOR, heap_prepare_insert(), i, InvalidBuffer, IsSystemRelation(), ItemPointerGetOffsetNumber, XLogRecData::len, MarkBufferDirty(), MAXALIGN, XLogRecData::next, xl_heap_multi_insert::node, xl_heap_multi_insert::ntuples, offsetof, xl_heap_multi_insert::offsets, PageClearAllVisible, PageGetHeapFreeSpace(), PageGetMaxOffsetNumber, PageIsAllVisible, PageSetLSN, palloc(), pgstat_count_heap_insert(), RelationData::rd_node, RelationGetBufferForTuple(), RelationGetTargetPageFreeSpace, RelationNeedsWAL, RelationPutHeapTuple(), ReleaseBuffer(), SHORTALIGN, START_CRIT_SECTION, HeapTupleData::t_data, HeapTupleHeaderData::t_hoff, xl_multi_insert_tuple::t_hoff, HeapTupleHeaderData::t_infomask, xl_multi_insert_tuple::t_infomask, HeapTupleHeaderData::t_infomask2, xl_multi_insert_tuple::t_infomask2, HeapTupleData::t_len, HeapTupleData::t_self, UnlockReleaseBuffer(), visibilitymap_clear(), and XLogInsert().
Referenced by CopyFromInsertBatch().
{ TransactionId xid = GetCurrentTransactionId(); HeapTuple *heaptuples; int i; int ndone; char *scratch = NULL; Page page; bool needwal; Size saveFreeSpace; needwal = !(options & HEAP_INSERT_SKIP_WAL) && RelationNeedsWAL(relation); saveFreeSpace = RelationGetTargetPageFreeSpace(relation, HEAP_DEFAULT_FILLFACTOR); /* Toast and set header data in all the tuples */ heaptuples = palloc(ntuples * sizeof(HeapTuple)); for (i = 0; i < ntuples; i++) heaptuples[i] = heap_prepare_insert(relation, tuples[i], xid, cid, options); /* * Allocate some memory to use for constructing the WAL record. Using * palloc() within a critical section is not safe, so we allocate this * beforehand. */ if (needwal) scratch = palloc(BLCKSZ); /* * We're about to do the actual inserts -- but check for conflict first, * to avoid possibly having to roll back work we've just done. * * For a heap insert, we only need to check for table-level SSI locks. Our * new tuple can't possibly conflict with existing tuple locks, and heap * page locks are only consolidated versions of tuple locks; they do not * lock "gaps" as index page locks do. So we don't need to identify a * buffer before making the call. */ CheckForSerializableConflictIn(relation, NULL, InvalidBuffer); ndone = 0; while (ndone < ntuples) { Buffer buffer; Buffer vmbuffer = InvalidBuffer; bool all_visible_cleared = false; int nthispage; /* * Find buffer where at least the next tuple will fit. If the page is * all-visible, this will also pin the requisite visibility map page. */ buffer = RelationGetBufferForTuple(relation, heaptuples[ndone]->t_len, InvalidBuffer, options, bistate, &vmbuffer, NULL); page = BufferGetPage(buffer); /* NO EREPORT(ERROR) from here till changes are logged */ START_CRIT_SECTION(); /* * RelationGetBufferForTuple has ensured that the first tuple fits. * Put that on the page, and then as many other tuples as fit. */ RelationPutHeapTuple(relation, buffer, heaptuples[ndone]); for (nthispage = 1; ndone + nthispage < ntuples; nthispage++) { HeapTuple heaptup = heaptuples[ndone + nthispage]; if (PageGetHeapFreeSpace(page) < MAXALIGN(heaptup->t_len) + saveFreeSpace) break; RelationPutHeapTuple(relation, buffer, heaptup); } if (PageIsAllVisible(page)) { all_visible_cleared = true; PageClearAllVisible(page); visibilitymap_clear(relation, BufferGetBlockNumber(buffer), vmbuffer); } /* * XXX Should we set PageSetPrunable on this page ? See heap_insert() */ MarkBufferDirty(buffer); /* XLOG stuff */ if (needwal) { XLogRecPtr recptr; xl_heap_multi_insert *xlrec; XLogRecData rdata[2]; uint8 info = XLOG_HEAP2_MULTI_INSERT; char *tupledata; int totaldatalen; char *scratchptr = scratch; bool init; /* * If the page was previously empty, we can reinit the page * instead of restoring the whole thing. */ init = (ItemPointerGetOffsetNumber(&(heaptuples[ndone]->t_self)) == FirstOffsetNumber && PageGetMaxOffsetNumber(page) == FirstOffsetNumber + nthispage - 1); /* allocate xl_heap_multi_insert struct from the scratch area */ xlrec = (xl_heap_multi_insert *) scratchptr; scratchptr += SizeOfHeapMultiInsert; /* * Allocate offsets array. Unless we're reinitializing the page, * in that case the tuples are stored in order starting at * FirstOffsetNumber and we don't need to store the offsets * explicitly. */ if (!init) scratchptr += nthispage * sizeof(OffsetNumber); /* the rest of the scratch space is used for tuple data */ tupledata = scratchptr; xlrec->all_visible_cleared = all_visible_cleared; xlrec->node = relation->rd_node; xlrec->blkno = BufferGetBlockNumber(buffer); xlrec->ntuples = nthispage; /* * Write out an xl_multi_insert_tuple and the tuple data itself * for each tuple. */ for (i = 0; i < nthispage; i++) { HeapTuple heaptup = heaptuples[ndone + i]; xl_multi_insert_tuple *tuphdr; int datalen; if (!init) xlrec->offsets[i] = ItemPointerGetOffsetNumber(&heaptup->t_self); /* xl_multi_insert_tuple needs two-byte alignment. */ tuphdr = (xl_multi_insert_tuple *) SHORTALIGN(scratchptr); scratchptr = ((char *) tuphdr) + SizeOfMultiInsertTuple; tuphdr->t_infomask2 = heaptup->t_data->t_infomask2; tuphdr->t_infomask = heaptup->t_data->t_infomask; tuphdr->t_hoff = heaptup->t_data->t_hoff; /* write bitmap [+ padding] [+ oid] + data */ datalen = heaptup->t_len - offsetof(HeapTupleHeaderData, t_bits); memcpy(scratchptr, (char *) heaptup->t_data + offsetof(HeapTupleHeaderData, t_bits), datalen); tuphdr->datalen = datalen; scratchptr += datalen; } totaldatalen = scratchptr - tupledata; Assert((scratchptr - scratch) < BLCKSZ); rdata[0].data = (char *) xlrec; rdata[0].len = tupledata - scratch; rdata[0].buffer = InvalidBuffer; rdata[0].next = &rdata[1]; rdata[1].data = tupledata; rdata[1].len = totaldatalen; rdata[1].buffer = buffer; rdata[1].buffer_std = true; rdata[1].next = NULL; /* * If we're going to reinitialize the whole page using the WAL * record, hide buffer reference from XLogInsert. */ if (init) { rdata[1].buffer = InvalidBuffer; info |= XLOG_HEAP_INIT_PAGE; } recptr = XLogInsert(RM_HEAP2_ID, info, rdata); PageSetLSN(page, recptr); } END_CRIT_SECTION(); UnlockReleaseBuffer(buffer); if (vmbuffer != InvalidBuffer) ReleaseBuffer(vmbuffer); ndone += nthispage; } /* * If tuples are cachable, mark them for invalidation from the caches in * case we abort. Note it is OK to do this after releasing the buffer, * because the heaptuples data structure is all in local memory, not in * the shared buffer. */ if (IsSystemRelation(relation)) { for (i = 0; i < ntuples; i++) CacheInvalidateHeapTuple(relation, heaptuples[i], NULL); } /* * Copy t_self fields back to the caller's original tuples. This does * nothing for untoasted tuples (tuples[i] == heaptuples[i)], but it's * probably faster to always copy than check. */ for (i = 0; i < ntuples; i++) tuples[i]->t_self = heaptuples[i]->t_self; pgstat_count_heap_insert(relation, ntuples); }
Definition at line 1183 of file heapam.c.
References ereport, errcode(), errmsg(), ERROR, RelationData::rd_rel, relation_open(), RelationGetRelationName, RELKIND_COMPOSITE_TYPE, and RELKIND_INDEX.
Referenced by acquire_inherited_sample_rows(), AcquireRewriteLocks(), AddEnumLabel(), AddNewAttributeTuples(), AddRoleMems(), AfterTriggerSetState(), AggregateCreate(), AlterConstraintNamespaces(), AlterDatabase(), AlterDatabaseOwner(), AlterDomainAddConstraint(), AlterDomainDefault(), AlterDomainDropConstraint(), AlterDomainNotNull(), AlterDomainValidateConstraint(), AlterEventTrigger(), AlterEventTriggerOwner(), AlterEventTriggerOwner_oid(), AlterExtensionNamespace(), AlterForeignDataWrapper(), AlterForeignDataWrapperOwner(), AlterForeignDataWrapperOwner_oid(), AlterForeignServer(), AlterForeignServerOwner(), AlterForeignServerOwner_oid(), AlterFunction(), AlterObjectNamespace_oid(), AlterRole(), AlterSchemaOwner(), AlterSchemaOwner_oid(), AlterSeqNamespaces(), AlterSetting(), AlterTableCreateToastTable(), AlterTableNamespaceInternal(), AlterTableSpaceOptions(), AlterTSConfiguration(), AlterTSDictionary(), AlterTypeNamespaceInternal(), AlterTypeOwner(), AlterTypeOwnerInternal(), AlterUserMapping(), AppendAttributeTuples(), ApplyExtensionUpdates(), AssignTypeArrayOid(), ATAddCheckConstraint(), ATExecAddColumn(), ATExecAddInherit(), ATExecAddOf(), ATExecAlterColumnGenericOptions(), ATExecAlterColumnType(), ATExecChangeOwner(), ATExecDropColumn(), ATExecDropConstraint(), ATExecDropInherit(), ATExecDropNotNull(), ATExecDropOf(), ATExecGenericOptions(), ATExecSetNotNull(), ATExecSetOptions(), ATExecSetRelOptions(), ATExecSetStatistics(), ATExecSetStorage(), ATExecSetTableSpace(), ATExecValidateConstraint(), ATRewriteTable(), ATRewriteTables(), AttrDefaultFetch(), boot_openrel(), build_indices(), build_physical_tlist(), CatalogCacheInitializeCache(), change_owner_fix_column_acls(), change_owner_recurse_to_sequences(), changeDependencyFor(), changeDependencyOnOwner(), check_db_file_conflict(), check_functional_grouping(), check_selective_binary_conversion(), CheckConstraintFetch(), checkSharedDependencies(), ChooseConstraintName(), cluster(), CollationCreate(), ConstraintNameIsUsed(), ConversionCreate(), copy_heap_data(), copyTemplateDependencies(), create_proc_lang(), create_toast_table(), CreateCast(), CreateComments(), CreateConstraintEntry(), createdb(), CreateForeignDataWrapper(), CreateForeignServer(), CreateForeignTable(), CreateOpFamily(), CreateRole(), CreateSharedComments(), CreateTableSpace(), CreateTrigger(), CreateUserMapping(), currtid_byreloid(), database_to_xmlschema_internal(), DefineOpClass(), DefineQueryRewrite(), DefineSequence(), DefineTSConfiguration(), DefineTSDictionary(), DefineTSParser(), DefineTSTemplate(), DeleteAttributeTuples(), DeleteComments(), deleteDependencyRecordsFor(), deleteDependencyRecordsForClass(), deleteOneObject(), DeleteRelationTuple(), DeleteSecurityLabel(), DeleteSharedComments(), deleteSharedDependencyRecordsFor(), DeleteSharedSecurityLabel(), DeleteSystemAttributeTuples(), deleteWhatDependsOn(), DelRoleMems(), deparseSelectSql(), do_autovacuum(), drop_parent_dependency(), DropCastById(), dropDatabaseDependencies(), dropdb(), DropProceduralLanguageById(), DropRole(), DropSetting(), DropTableSpace(), EnableDisableRule(), EnableDisableTrigger(), enum_endpoint(), enum_range_internal(), EnumValuesCreate(), EnumValuesDelete(), EventTriggerSQLDropAddObject(), exec_object_restorecon(), ExecAlterExtensionStmt(), ExecAlterObjectSchemaStmt(), ExecAlterOwnerStmt(), ExecGetTriggerResultRel(), ExecGrant_Database(), ExecGrant_Fdw(), ExecGrant_ForeignServer(), ExecGrant_Function(), ExecGrant_Language(), ExecGrant_Largeobject(), ExecGrant_Namespace(), ExecGrant_Relation(), ExecGrant_Tablespace(), ExecGrant_Type(), ExecOpenScanRelation(), ExecRefreshMatView(), ExecRenameStmt(), ExecuteTruncate(), expand_inherited_rtentry(), expand_targetlist(), extension_config_remove(), find_composite_type_dependencies(), find_inheritance_children(), find_language_template(), find_typed_table_dependencies(), finish_heap_swap(), fireRIRrules(), get_actual_variable_range(), get_constraint_index(), get_database_list(), get_database_oid(), get_db_info(), get_domain_constraint_oid(), get_extension_name(), get_extension_oid(), get_extension_schema(), get_file_fdw_attribute_options(), get_index_constraint(), get_object_address_relobject(), get_pkey_attnames(), get_rel_oids(), get_relation_constraint_oid(), get_relation_constraints(), get_relation_data_width(), get_relation_info(), get_rels_with_domain(), get_rewrite_oid_without_relid(), get_tables_to_cluster(), get_tablespace_name(), get_tablespace_oid(), get_trigger_oid(), GetComment(), getConstraintTypeDescription(), GetDatabaseTuple(), GetDatabaseTupleByOid(), GetDefaultOpClass(), GetDomainConstraints(), getExtensionOfObject(), getObjectDescription(), getObjectIdentity(), getOwnedSequences(), getRelationsInNamespace(), GetSecurityLabel(), GetSharedSecurityLabel(), gettype(), GrantRole(), heap_create_with_catalog(), heap_drop_with_catalog(), heap_sync(), heap_truncate(), heap_truncate_find_FKs(), heap_truncate_one_rel(), index_build(), index_constraint_create(), index_create(), index_drop(), index_set_state_flags(), index_update_stats(), InitPlan(), insert_event_trigger_tuple(), InsertExtensionTuple(), InsertRule(), intorel_startup(), isQueryUsingTempRelation_walker(), LargeObjectCreate(), LargeObjectDrop(), LargeObjectExists(), load_enum_cache_data(), lookup_ts_config_cache(), LookupOpclassInfo(), make_new_heap(), make_viewdef(), makeArrayTypeName(), mark_index_clustered(), MergeAttributesIntoExisting(), MergeConstraintsIntoExisting(), MergeWithExistingConstraint(), movedb(), myLargeObjectExists(), NamespaceCreate(), objectsInSchemaToOids(), open_lo_relation(), OperatorCreate(), OperatorShellMake(), OperatorUpd(), performDeletion(), performMultipleDeletions(), pg_extension_config_dump(), pg_extension_ownercheck(), pg_get_serial_sequence(), pg_get_triggerdef_worker(), pg_identify_object(), pg_largeobject_aclmask_snapshot(), pg_largeobject_ownercheck(), pgstat_collect_oids(), postgresPlanForeignModify(), ProcedureCreate(), process_settings(), RangeCreate(), RangeDelete(), recordMultipleDependencies(), recordSharedDependencyOn(), regclassin(), regoperin(), regprocin(), regtypein(), reindex_index(), reindex_relation(), ReindexDatabase(), RelationBuildRuleLock(), RelationBuildTriggers(), RelationBuildTupleDesc(), RelationGetExclusionInfo(), RelationGetIndexList(), RelationRemoveInheritance(), RelationSetNewRelfilenode(), remove_dbtablespaces(), RemoveAmOpEntryById(), RemoveAmProcEntryById(), RemoveAttrDefault(), RemoveAttrDefaultById(), RemoveAttributeById(), RemoveCollationById(), RemoveConstraintById(), RemoveConversionById(), RemoveDefaultACLById(), RemoveEventTriggerById(), RemoveExtensionById(), RemoveForeignDataWrapperById(), RemoveForeignServerById(), RemoveFunctionById(), RemoveOpClassById(), RemoveOperatorById(), RemoveOpFamilyById(), RemoveRewriteRuleById(), RemoveRoleFromObjectACL(), RemoveSchemaById(), RemoveStatistics(), RemoveTriggerById(), RemoveTSConfigurationById(), RemoveTSDictionaryById(), RemoveTSParserById(), RemoveTSTemplateById(), RemoveTypeById(), RemoveUserMappingById(), renameatt_internal(), RenameConstraint(), RenameConstraintById(), RenameDatabase(), RenameRelationInternal(), RenameRewriteRule(), RenameRole(), RenameSchema(), RenameTableSpace(), renametrig(), RenameType(), RenameTypeInternal(), RewriteQuery(), rewriteTargetView(), RI_FKey_cascade_del(), RI_FKey_cascade_upd(), RI_FKey_check(), RI_FKey_setdefault_del(), RI_FKey_setdefault_upd(), RI_FKey_setnull_del(), RI_FKey_setnull_upd(), ri_restrict_del(), ri_restrict_upd(), ScanPgRelation(), schema_to_xmlschema_internal(), SearchCatCache(), SearchCatCacheList(), sepgsql_attribute_post_create(), sepgsql_database_post_create(), sepgsql_index_modify(), sepgsql_proc_post_create(), sepgsql_proc_setattr(), sepgsql_relation_post_create(), sepgsql_relation_setattr(), sepgsql_schema_post_create(), sequenceIsOwned(), SetDefaultACL(), SetFunctionArgType(), SetFunctionReturnType(), SetRelationHasSubclass(), SetRelationNumChecks(), SetRelationRuleStatus(), SetSecurityLabel(), SetSharedSecurityLabel(), shdepDropOwned(), shdepReassignOwned(), StoreAttrDefault(), StoreCatalogInheritance(), storeOperators(), storeProcedures(), swap_relation_files(), table_to_xml_and_xmlschema(), table_to_xmlschema(), ThereIsAtLeastOneRole(), toast_delete_datum(), toast_fetch_datum(), toast_fetch_datum_slice(), toast_save_datum(), toastid_valueid_exists(), transientrel_startup(), TypeCreate(), typeInheritsFrom(), TypeShellMake(), update_attstats(), updateAclDependencies(), UpdateIndexRelation(), vac_truncate_clog(), vac_update_datfrozenxid(), vac_update_relstats(), and validate_index().
{ Relation r; r = relation_open(relationId, lockmode); if (r->rd_rel->relkind == RELKIND_INDEX) ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("\"%s\" is an index", RelationGetRelationName(r)))); else if (r->rd_rel->relkind == RELKIND_COMPOSITE_TYPE) ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("\"%s\" is a composite type", RelationGetRelationName(r)))); return r; }
Definition at line 1211 of file heapam.c.
References ereport, errcode(), errmsg(), ERROR, RelationData::rd_rel, relation_openrv(), RelationGetRelationName, RELKIND_COMPOSITE_TYPE, and RELKIND_INDEX.
Referenced by ATAddForeignKeyConstraint(), ATExecAddInherit(), ATExecDropInherit(), boot_openrel(), BootstrapToastTable(), CreateTrigger(), currtid_byrelname(), DefineIndex(), DoCopy(), ExecuteTruncate(), get_object_address_relobject(), get_rel_from_relname(), MergeAttributes(), pgrowlocks(), transformIndexConstraint(), transformIndexStmt(), and transformRuleStmt().
{ Relation r; r = relation_openrv(relation, lockmode); if (r->rd_rel->relkind == RELKIND_INDEX) ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("\"%s\" is an index", RelationGetRelationName(r)))); else if (r->rd_rel->relkind == RELKIND_COMPOSITE_TYPE) ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("\"%s\" is a composite type", RelationGetRelationName(r)))); return r; }
Definition at line 1240 of file heapam.c.
References ereport, errcode(), errmsg(), ERROR, RelationData::rd_rel, relation_openrv_extended(), RelationGetRelationName, RELKIND_COMPOSITE_TYPE, and RELKIND_INDEX.
Referenced by parserOpenTable().
{ Relation r; r = relation_openrv_extended(relation, lockmode, missing_ok); if (r) { if (r->rd_rel->relkind == RELKIND_INDEX) ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("\"%s\" is an index", RelationGetRelationName(r)))); else if (r->rd_rel->relkind == RELKIND_COMPOSITE_TYPE) ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("\"%s\" is a composite type", RelationGetRelationName(r)))); } return r; }
static HeapTuple heap_prepare_insert | ( | Relation | relation, | |
HeapTuple | tup, | |||
TransactionId | xid, | |||
CommandId | cid, | |||
int | options | |||
) | [static] |
Definition at line 2171 of file heapam.c.
References Assert, FrozenTransactionId, GetNewOid(), HEAP_HASOID, HEAP_INSERT_FROZEN, HeapTupleGetOid, HeapTupleHasExternal, HeapTupleHeaderSetCmin, HeapTupleHeaderSetXmax, HeapTupleHeaderSetXmin, HeapTupleSetOid, OidIsValid, RelationData::rd_rel, RelationGetRelid, RELKIND_MATVIEW, RELKIND_RELATION, HeapTupleData::t_data, HeapTupleHeaderData::t_infomask, HeapTupleHeaderData::t_infomask2, HeapTupleData::t_len, HeapTupleData::t_tableOid, toast_insert_or_update(), and TOAST_TUPLE_THRESHOLD.
Referenced by heap_insert(), and heap_multi_insert().
{ if (relation->rd_rel->relhasoids) { #ifdef NOT_USED /* this is redundant with an Assert in HeapTupleSetOid */ Assert(tup->t_data->t_infomask & HEAP_HASOID); #endif /* * If the object id of this tuple has already been assigned, trust the * caller. There are a couple of ways this can happen. At initial db * creation, the backend program sets oids for tuples. When we define * an index, we set the oid. Finally, in the future, we may allow * users to set their own object ids in order to support a persistent * object store (objects need to contain pointers to one another). */ if (!OidIsValid(HeapTupleGetOid(tup))) HeapTupleSetOid(tup, GetNewOid(relation)); } else { /* check there is not space for an OID */ Assert(!(tup->t_data->t_infomask & HEAP_HASOID)); } tup->t_data->t_infomask &= ~(HEAP_XACT_MASK); tup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK); tup->t_data->t_infomask |= HEAP_XMAX_INVALID; if (options & HEAP_INSERT_FROZEN) { tup->t_data->t_infomask |= HEAP_XMIN_COMMITTED; HeapTupleHeaderSetXmin(tup->t_data, FrozenTransactionId); } else HeapTupleHeaderSetXmin(tup->t_data, xid); HeapTupleHeaderSetCmin(tup->t_data, cid); HeapTupleHeaderSetXmax(tup->t_data, 0); /* for cleanliness */ tup->t_tableOid = RelationGetRelid(relation); /* * If the new tuple is too big for storage or contains already toasted * out-of-line attributes from some other relation, invoke the toaster. */ if (relation->rd_rel->relkind != RELKIND_RELATION && relation->rd_rel->relkind != RELKIND_MATVIEW) { /* toast table entries should never be recursively toasted */ Assert(!HeapTupleHasExternal(tup)); return tup; } else if (HeapTupleHasExternal(tup) || tup->t_len > TOAST_TUPLE_THRESHOLD) return toast_insert_or_update(relation, tup, NULL, options); else return tup; }
void heap_redo | ( | XLogRecPtr | lsn, | |
XLogRecord * | record | |||
) |
Definition at line 7066 of file heapam.c.
References elog, heap_xlog_delete(), heap_xlog_inplace(), heap_xlog_insert(), heap_xlog_lock(), heap_xlog_newpage(), heap_xlog_update(), PANIC, XLogRecord::xl_info, XLOG_HEAP_DELETE, XLOG_HEAP_HOT_UPDATE, XLOG_HEAP_INPLACE, XLOG_HEAP_INSERT, XLOG_HEAP_LOCK, XLOG_HEAP_NEWPAGE, XLOG_HEAP_OPMASK, and XLOG_HEAP_UPDATE.
{ uint8 info = record->xl_info & ~XLR_INFO_MASK; /* * These operations don't overwrite MVCC data so no conflict processing is * required. The ones in heap2 rmgr do. */ switch (info & XLOG_HEAP_OPMASK) { case XLOG_HEAP_INSERT: heap_xlog_insert(lsn, record); break; case XLOG_HEAP_DELETE: heap_xlog_delete(lsn, record); break; case XLOG_HEAP_UPDATE: heap_xlog_update(lsn, record, false); break; case XLOG_HEAP_HOT_UPDATE: heap_xlog_update(lsn, record, true); break; case XLOG_HEAP_NEWPAGE: heap_xlog_newpage(lsn, record); break; case XLOG_HEAP_LOCK: heap_xlog_lock(lsn, record); break; case XLOG_HEAP_INPLACE: heap_xlog_inplace(lsn, record); break; default: elog(PANIC, "heap_redo: unknown op code %u", info); } }
void heap_rescan | ( | HeapScanDesc | scan, | |
ScanKey | key | |||
) |
Definition at line 1375 of file heapam.c.
References BufferIsValid, initscan(), ReleaseBuffer(), and HeapScanDescData::rs_cbuf.
Referenced by ExecReScanBitmapHeapScan(), and ExecReScanSeqScan().
{ /* * unpin scan buffers */ if (BufferIsValid(scan->rs_cbuf)) ReleaseBuffer(scan->rs_cbuf); /* * reinitialize scan descriptor */ initscan(scan, key, true); }
void heap_restrpos | ( | HeapScanDesc | scan | ) |
Definition at line 5505 of file heapam.c.
References BufferIsValid, heapgettup(), heapgettup_pagemode(), ItemPointerIsValid, NoMovementScanDirection, ReleaseBuffer(), HeapScanDescData::rs_cblock, HeapScanDescData::rs_cbuf, HeapScanDescData::rs_cindex, HeapScanDescData::rs_ctup, HeapScanDescData::rs_inited, HeapScanDescData::rs_mctid, HeapScanDescData::rs_mindex, HeapScanDescData::rs_pageatatime, HeapTupleData::t_data, and HeapTupleData::t_self.
Referenced by ExecSeqRestrPos().
{ /* XXX no amrestrpos checking that ammarkpos called */ if (!ItemPointerIsValid(&scan->rs_mctid)) { scan->rs_ctup.t_data = NULL; /* * unpin scan buffers */ if (BufferIsValid(scan->rs_cbuf)) ReleaseBuffer(scan->rs_cbuf); scan->rs_cbuf = InvalidBuffer; scan->rs_cblock = InvalidBlockNumber; scan->rs_inited = false; } else { /* * If we reached end of scan, rs_inited will now be false. We must * reset it to true to keep heapgettup from doing the wrong thing. */ scan->rs_inited = true; scan->rs_ctup.t_self = scan->rs_mctid; if (scan->rs_pageatatime) { scan->rs_cindex = scan->rs_mindex; heapgettup_pagemode(scan, NoMovementScanDirection, 0, /* needn't recheck scan keys */ NULL); } else heapgettup(scan, NoMovementScanDirection, 0, /* needn't recheck scan keys */ NULL); } }
void heap_sync | ( | Relation | rel | ) |
Definition at line 7148 of file heapam.c.
References AccessShareLock, FlushRelationBuffers(), heap_close, heap_open(), MAIN_FORKNUM, OidIsValid, RelationData::rd_rel, RelationData::rd_smgr, RelationNeedsWAL, and smgrimmedsync().
Referenced by ATRewriteTable(), CopyFrom(), end_heap_rewrite(), intorel_shutdown(), and transientrel_shutdown().
{ /* non-WAL-logged tables never need fsync */ if (!RelationNeedsWAL(rel)) return; /* main heap */ FlushRelationBuffers(rel); /* FlushRelationBuffers will have opened rd_smgr */ smgrimmedsync(rel->rd_smgr, MAIN_FORKNUM); /* FSM is not critical, don't bother syncing it */ /* toast heap, if any */ if (OidIsValid(rel->rd_rel->reltoastrelid)) { Relation toastrel; toastrel = heap_open(rel->rd_rel->reltoastrelid, AccessShareLock); FlushRelationBuffers(toastrel); smgrimmedsync(toastrel->rd_smgr, MAIN_FORKNUM); heap_close(toastrel, AccessShareLock); } }
static bool heap_tuple_attr_equals | ( | TupleDesc | tupdesc, | |
int | attrnum, | |||
HeapTuple | tup1, | |||
HeapTuple | tup2 | |||
) | [static] |
Definition at line 3628 of file heapam.c.
References Assert, tupleDesc::attrs, DatumGetObjectId, datumIsEqual(), heap_getattr, ObjectIdAttributeNumber, and TableOidAttributeNumber.
Referenced by HeapSatisfiesHOTandKeyUpdate().
{ Datum value1, value2; bool isnull1, isnull2; Form_pg_attribute att; /* * If it's a whole-tuple reference, say "not equal". It's not really * worth supporting this case, since it could only succeed after a no-op * update, which is hardly a case worth optimizing for. */ if (attrnum == 0) return false; /* * Likewise, automatically say "not equal" for any system attribute other * than OID and tableOID; we cannot expect these to be consistent in a HOT * chain, or even to be set correctly yet in the new tuple. */ if (attrnum < 0) { if (attrnum != ObjectIdAttributeNumber && attrnum != TableOidAttributeNumber) return false; } /* * Extract the corresponding values. XXX this is pretty inefficient if * there are many indexed columns. Should HeapSatisfiesHOTandKeyUpdate do a * single heap_deform_tuple call on each tuple, instead? But that doesn't * work for system columns ... */ value1 = heap_getattr(tup1, attrnum, tupdesc, &isnull1); value2 = heap_getattr(tup2, attrnum, tupdesc, &isnull2); /* * If one value is NULL and other is not, then they are certainly not * equal */ if (isnull1 != isnull2) return false; /* * If both are NULL, they can be considered equal. */ if (isnull1) return true; /* * We do simple binary comparison of the two datums. This may be overly * strict because there can be multiple binary representations for the * same logical value. But we should be OK as long as there are no false * positives. Using a type-specific equality operator is messy because * there could be multiple notions of equality in different operator * classes; furthermore, we cannot safely invoke user-defined functions * while holding exclusive buffer lock. */ if (attrnum <= 0) { /* The only allowed system columns are OIDs, so do this */ return (DatumGetObjectId(value1) == DatumGetObjectId(value2)); } else { Assert(attrnum <= tupdesc->natts); att = tupdesc->attrs[attrnum - 1]; return datumIsEqual(value1, value2, att->attbyval, att->attlen); } }
bool heap_tuple_needs_freeze | ( | HeapTupleHeader | tuple, | |
TransactionId | cutoff_xid, | |||
MultiXactId | cutoff_multi, | |||
Buffer | buf | |||
) |
Definition at line 5441 of file heapam.c.
References HEAP_MOVED, HEAP_XMAX_INVALID, HEAP_XMAX_IS_MULTI, HeapTupleHeaderGetRawXmax, HeapTupleHeaderGetXmin, HeapTupleHeaderGetXvac, MultiXactIdPrecedes(), HeapTupleHeaderData::t_infomask, TransactionIdIsNormal, and TransactionIdPrecedes().
Referenced by lazy_check_needs_freeze().
{ TransactionId xid; xid = HeapTupleHeaderGetXmin(tuple); if (TransactionIdIsNormal(xid) && TransactionIdPrecedes(xid, cutoff_xid)) return true; if (!(tuple->t_infomask & HEAP_XMAX_INVALID)) { if (!(tuple->t_infomask & HEAP_XMAX_IS_MULTI)) { xid = HeapTupleHeaderGetRawXmax(tuple); if (TransactionIdIsNormal(xid) && TransactionIdPrecedes(xid, cutoff_xid)) return true; } else { MultiXactId multi; multi = HeapTupleHeaderGetRawXmax(tuple); if (MultiXactIdPrecedes(multi, cutoff_multi)) return true; } } if (tuple->t_infomask & HEAP_MOVED) { xid = HeapTupleHeaderGetXvac(tuple); if (TransactionIdIsNormal(xid) && TransactionIdPrecedes(xid, cutoff_xid)) return true; } return false; }
HTSU_Result heap_update | ( | Relation | relation, | |
ItemPointer | otid, | |||
HeapTuple | newtup, | |||
CommandId | cid, | |||
Snapshot | crosscheck, | |||
bool | wait, | |||
HeapUpdateFailureData * | hufd, | |||
LockTupleMode * | lockmode | |||
) |
Definition at line 2906 of file heapam.c.
References Assert, bms_free(), BUFFER_LOCK_EXCLUSIVE, BUFFER_LOCK_UNLOCK, BufferGetBlockNumber(), BufferGetPage, BufferIsValid, CacheInvalidateHeapTuple(), CheckForSerializableConflictIn(), HeapUpdateFailureData::cmax, compute_new_xmax_infomask(), HeapUpdateFailureData::ctid, elog, END_CRIT_SECTION, ERROR, GetCurrentTransactionId(), GetMultiXactIdHintBits(), heap_freetuple(), HEAP_HASOID, HEAP_UPDATED, HEAP_XMAX_BITS, HEAP_XMAX_INVALID, HEAP_XMAX_IS_KEYSHR_LOCKED, HEAP_XMAX_IS_LOCKED_ONLY, HEAP_XMAX_IS_MULTI, HEAP_XMAX_KEYSHR_LOCK, HeapSatisfiesHOTandKeyUpdate(), HeapTupleBeingUpdated, HeapTupleClearHeapOnly, HeapTupleClearHotUpdated, HeapTupleGetOid, HeapTupleGetUpdateXid(), HeapTupleHasExternal, HeapTupleHeaderAdjustCmax(), HeapTupleHeaderGetCmax(), HeapTupleHeaderGetRawXmax, HeapTupleHeaderGetUpdateXid, HeapTupleHeaderSetCmax, HeapTupleHeaderSetCmin, HeapTupleHeaderSetXmax, HeapTupleHeaderSetXmin, HeapTupleInvisible, HeapTupleMayBeUpdated, HeapTupleSatisfiesUpdate(), HeapTupleSatisfiesVisibility, HeapTupleSelfUpdated, HeapTupleSetHeapOnly, HeapTupleSetHotUpdated, HeapTupleSetOid, HeapTupleUpdated, InvalidBuffer, InvalidSnapshot, ItemIdGetLength, ItemIdIsNormal, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, ItemPointerIsValid, LockBuffer(), LockTupleTuplock, log_heap_update(), MarkBufferDirty(), MAXALIGN, MultiXactIdSetOldestMember(), MultiXactIdWait(), PageClearAllVisible, PageGetHeapFreeSpace(), PageGetItem, PageGetItemId, PageIsAllVisible, PageSetFull, PageSetLSN, PageSetPrunable, pgstat_count_heap_update(), RelationData::rd_rel, ReadBuffer(), RelationGetBufferForTuple(), RelationGetIndexAttrBitmap(), RelationGetRelid, RelationNeedsWAL, RelationPutHeapTuple(), ReleaseBuffer(), RELKIND_MATVIEW, RELKIND_RELATION, START_CRIT_SECTION, HeapTupleHeaderData::t_ctid, HeapTupleData::t_data, HeapTupleHeaderData::t_infomask, HeapTupleHeaderData::t_infomask2, HeapTupleData::t_len, HeapTupleData::t_self, HeapTupleData::t_tableOid, toast_insert_or_update(), TransactionIdDidAbort(), TransactionIdEquals, TransactionIdIsValid, UnlockReleaseBuffer(), UnlockTupleTuplock, UpdateXmaxHintBits(), visibilitymap_clear(), visibilitymap_pin(), XactLockTableWait(), and HeapUpdateFailureData::xmax.
Referenced by ExecUpdate(), and simple_heap_update().
{ HTSU_Result result; TransactionId xid = GetCurrentTransactionId(); Bitmapset *hot_attrs; Bitmapset *key_attrs; ItemId lp; HeapTupleData oldtup; HeapTuple heaptup; Page page; BlockNumber block; MultiXactStatus mxact_status; Buffer buffer, newbuf, vmbuffer = InvalidBuffer, vmbuffer_new = InvalidBuffer; bool need_toast, already_marked; Size newtupsize, pagefree; bool have_tuple_lock = false; bool iscombo; bool satisfies_hot; bool satisfies_key; bool use_hot_update = false; bool key_intact; bool all_visible_cleared = false; bool all_visible_cleared_new = false; bool checked_lockers; bool locker_remains; TransactionId xmax_new_tuple, xmax_old_tuple; uint16 infomask_old_tuple, infomask2_old_tuple, infomask_new_tuple, infomask2_new_tuple; Assert(ItemPointerIsValid(otid)); /* * Fetch the list of attributes to be checked for HOT update. This is * wasted effort if we fail to update or have to put the new tuple on a * different page. But we must compute the list before obtaining buffer * lock --- in the worst case, if we are doing an update on one of the * relevant system catalogs, we could deadlock if we try to fetch the list * later. In any case, the relcache caches the data so this is usually * pretty cheap. * * Note that we get a copy here, so we need not worry about relcache flush * happening midway through. */ hot_attrs = RelationGetIndexAttrBitmap(relation, false); key_attrs = RelationGetIndexAttrBitmap(relation, true); block = ItemPointerGetBlockNumber(otid); buffer = ReadBuffer(relation, block); page = BufferGetPage(buffer); /* * Before locking the buffer, pin the visibility map page if it appears to * be necessary. Since we haven't got the lock yet, someone else might be * in the middle of changing this, so we'll need to recheck after we have * the lock. */ if (PageIsAllVisible(page)) visibilitymap_pin(relation, block, &vmbuffer); LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); lp = PageGetItemId(page, ItemPointerGetOffsetNumber(otid)); Assert(ItemIdIsNormal(lp)); /* * Fill in enough data in oldtup for HeapSatisfiesHOTandKeyUpdate to work * properly. */ oldtup.t_tableOid = RelationGetRelid(relation); oldtup.t_data = (HeapTupleHeader) PageGetItem(page, lp); oldtup.t_len = ItemIdGetLength(lp); oldtup.t_self = *otid; /* the new tuple is ready, except for this: */ newtup->t_tableOid = RelationGetRelid(relation); /* Fill in OID for newtup */ if (relation->rd_rel->relhasoids) { #ifdef NOT_USED /* this is redundant with an Assert in HeapTupleSetOid */ Assert(newtup->t_data->t_infomask & HEAP_HASOID); #endif HeapTupleSetOid(newtup, HeapTupleGetOid(&oldtup)); } else { /* check there is not space for an OID */ Assert(!(newtup->t_data->t_infomask & HEAP_HASOID)); } /* * If we're not updating any "key" column, we can grab a weaker lock type. * This allows for more concurrency when we are running simultaneously with * foreign key checks. * * Note that if a column gets detoasted while executing the update, but the * value ends up being the same, this test will fail and we will use the * stronger lock. This is acceptable; the important case to optimize is * updates that don't manipulate key columns, not those that * serendipitiously arrive at the same key values. */ HeapSatisfiesHOTandKeyUpdate(relation, hot_attrs, key_attrs, &satisfies_hot, &satisfies_key, &oldtup, newtup); if (satisfies_key) { *lockmode = LockTupleNoKeyExclusive; mxact_status = MultiXactStatusNoKeyUpdate; key_intact = true; /* * If this is the first possibly-multixact-able operation in the * current transaction, set my per-backend OldestMemberMXactId setting. * We can be certain that the transaction will never become a member of * any older MultiXactIds than that. (We have to do this even if we * end up just using our own TransactionId below, since some other * backend could incorporate our XID into a MultiXact immediately * afterwards.) */ MultiXactIdSetOldestMember(); } else { *lockmode = LockTupleExclusive; mxact_status = MultiXactStatusUpdate; key_intact = false; } /* * Note: beyond this point, use oldtup not otid to refer to old tuple. * otid may very well point at newtup->t_self, which we will overwrite * with the new tuple's location, so there's great risk of confusion if we * use otid anymore. */ l2: checked_lockers = false; locker_remains = false; result = HeapTupleSatisfiesUpdate(oldtup.t_data, cid, buffer); /* see below about the "no wait" case */ Assert(result != HeapTupleBeingUpdated || wait); if (result == HeapTupleInvisible) { UnlockReleaseBuffer(buffer); elog(ERROR, "attempted to update invisible tuple"); } else if (result == HeapTupleBeingUpdated && wait) { TransactionId xwait; uint16 infomask; bool can_continue = false; checked_lockers = true; /* * XXX note that we don't consider the "no wait" case here. This * isn't a problem currently because no caller uses that case, but it * should be fixed if such a caller is introduced. It wasn't a problem * previously because this code would always wait, but now that some * tuple locks do not conflict with one of the lock modes we use, it is * possible that this case is interesting to handle specially. * * This may cause failures with third-party code that calls heap_update * directly. */ /* must copy state data before unlocking buffer */ xwait = HeapTupleHeaderGetRawXmax(oldtup.t_data); infomask = oldtup.t_data->t_infomask; LockBuffer(buffer, BUFFER_LOCK_UNLOCK); /* * Acquire tuple lock to establish our priority for the tuple (see * heap_lock_tuple). LockTuple will release us when we are * next-in-line for the tuple. * * If we are forced to "start over" below, we keep the tuple lock; * this arranges that we stay at the head of the line while rechecking * tuple state. */ if (!have_tuple_lock) { LockTupleTuplock(relation, &(oldtup.t_self), *lockmode); have_tuple_lock = true; } /* * Now we have to do something about the existing locker. If it's a * multi, sleep on it; we might be awakened before it is completely * gone (or even not sleep at all in some cases); we need to preserve * it as locker, unless it is gone completely. * * If it's not a multi, we need to check for sleeping conditions before * actually going to sleep. If the update doesn't conflict with the * locks, we just continue without sleeping (but making sure it is * preserved). */ if (infomask & HEAP_XMAX_IS_MULTI) { TransactionId update_xact; int remain; /* wait for multixact */ MultiXactIdWait((MultiXactId) xwait, mxact_status, &remain, infomask); LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); /* * If xwait had just locked the tuple then some other xact could * update this tuple before we get to this point. Check for xmax * change, and start over if so. */ if (!(oldtup.t_data->t_infomask & HEAP_XMAX_IS_MULTI) || !TransactionIdEquals(HeapTupleHeaderGetRawXmax(oldtup.t_data), xwait)) goto l2; /* * Note that the multixact may not be done by now. It could have * surviving members; our own xact or other subxacts of this * backend, and also any other concurrent transaction that locked * the tuple with KeyShare if we only got TupleLockUpdate. If this * is the case, we have to be careful to mark the updated tuple * with the surviving members in Xmax. * * Note that there could have been another update in the MultiXact. * In that case, we need to check whether it committed or aborted. * If it aborted we are safe to update it again; otherwise there is * an update conflict, and we have to return HeapTupleUpdated * below. * * In the LockTupleExclusive case, we still need to preserve the * surviving members: those would include the tuple locks we had * before this one, which are important to keep in case this * subxact aborts. */ update_xact = InvalidTransactionId; if (!HEAP_XMAX_IS_LOCKED_ONLY(oldtup.t_data->t_infomask)) update_xact = HeapTupleGetUpdateXid(oldtup.t_data); /* there was no UPDATE in the MultiXact; or it aborted. */ if (!TransactionIdIsValid(update_xact) || TransactionIdDidAbort(update_xact)) can_continue = true; locker_remains = remain != 0; } else { /* * If it's just a key-share locker, and we're not changing the * key columns, we don't need to wait for it to end; but we * need to preserve it as locker. */ if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) && key_intact) { LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); /* * recheck the locker; if someone else changed the tuple while we * weren't looking, start over. */ if ((oldtup.t_data->t_infomask & HEAP_XMAX_IS_MULTI) || !TransactionIdEquals(HeapTupleHeaderGetRawXmax(oldtup.t_data), xwait)) goto l2; can_continue = true; locker_remains = true; } else { /* wait for regular transaction to end */ XactLockTableWait(xwait); LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); /* * xwait is done, but if xwait had just locked the tuple then some * other xact could update this tuple before we get to this point. * Check for xmax change, and start over if so. */ if ((oldtup.t_data->t_infomask & HEAP_XMAX_IS_MULTI) || !TransactionIdEquals(HeapTupleHeaderGetRawXmax(oldtup.t_data), xwait)) goto l2; /* Otherwise check if it committed or aborted */ UpdateXmaxHintBits(oldtup.t_data, buffer, xwait); if (oldtup.t_data->t_infomask & HEAP_XMAX_INVALID) can_continue = true; } } result = can_continue ? HeapTupleMayBeUpdated : HeapTupleUpdated; } if (crosscheck != InvalidSnapshot && result == HeapTupleMayBeUpdated) { /* Perform additional check for transaction-snapshot mode RI updates */ if (!HeapTupleSatisfiesVisibility(&oldtup, crosscheck, buffer)) result = HeapTupleUpdated; } if (result != HeapTupleMayBeUpdated) { Assert(result == HeapTupleSelfUpdated || result == HeapTupleUpdated || result == HeapTupleBeingUpdated); Assert(!(oldtup.t_data->t_infomask & HEAP_XMAX_INVALID)); hufd->ctid = oldtup.t_data->t_ctid; hufd->xmax = HeapTupleHeaderGetUpdateXid(oldtup.t_data); if (result == HeapTupleSelfUpdated) hufd->cmax = HeapTupleHeaderGetCmax(oldtup.t_data); else hufd->cmax = 0; /* for lack of an InvalidCommandId value */ UnlockReleaseBuffer(buffer); if (have_tuple_lock) UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode); if (vmbuffer != InvalidBuffer) ReleaseBuffer(vmbuffer); bms_free(hot_attrs); bms_free(key_attrs); return result; } /* * If we didn't pin the visibility map page and the page has become all * visible while we were busy locking the buffer, or during some * subsequent window during which we had it unlocked, we'll have to unlock * and re-lock, to avoid holding the buffer lock across an I/O. That's a * bit unfortunate, especially since we'll now have to recheck whether * the tuple has been locked or updated under us, but hopefully it won't * happen very often. */ if (vmbuffer == InvalidBuffer && PageIsAllVisible(page)) { LockBuffer(buffer, BUFFER_LOCK_UNLOCK); visibilitymap_pin(relation, block, &vmbuffer); LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); goto l2; } /* * We're about to do the actual update -- check for conflict first, to * avoid possibly having to roll back work we've just done. */ CheckForSerializableConflictIn(relation, &oldtup, buffer); /* Fill in transaction status data */ /* * If the tuple we're updating is locked, we need to preserve the locking * info in the old tuple's Xmax. Prepare a new Xmax value for this. */ compute_new_xmax_infomask(HeapTupleHeaderGetRawXmax(oldtup.t_data), oldtup.t_data->t_infomask, oldtup.t_data->t_infomask2, xid, *lockmode, true, &xmax_old_tuple, &infomask_old_tuple, &infomask2_old_tuple); /* * And also prepare an Xmax value for the new copy of the tuple. If there * was no xmax previously, or there was one but all lockers are now gone, * then use InvalidXid; otherwise, get the xmax from the old tuple. (In * rare cases that might also be InvalidXid and yet not have the * HEAP_XMAX_INVALID bit set; that's fine.) */ if ((oldtup.t_data->t_infomask & HEAP_XMAX_INVALID) || (checked_lockers && !locker_remains)) xmax_new_tuple = InvalidTransactionId; else xmax_new_tuple = HeapTupleHeaderGetRawXmax(oldtup.t_data); if (!TransactionIdIsValid(xmax_new_tuple)) { infomask_new_tuple = HEAP_XMAX_INVALID; infomask2_new_tuple = 0; } else { /* * If we found a valid Xmax for the new tuple, then the infomask bits * to use on the new tuple depend on what was there on the old one. * Note that since we're doing an update, the only possibility is that * the lockers had FOR KEY SHARE lock. */ if (oldtup.t_data->t_infomask & HEAP_XMAX_IS_MULTI) { GetMultiXactIdHintBits(xmax_new_tuple, &infomask_new_tuple, &infomask2_new_tuple); } else { infomask_new_tuple = HEAP_XMAX_KEYSHR_LOCK | HEAP_XMAX_LOCK_ONLY; infomask2_new_tuple = 0; } } /* * Prepare the new tuple with the appropriate initial values of Xmin and * Xmax, as well as initial infomask bits as computed above. */ newtup->t_data->t_infomask &= ~(HEAP_XACT_MASK); newtup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK); HeapTupleHeaderSetXmin(newtup->t_data, xid); HeapTupleHeaderSetCmin(newtup->t_data, cid); newtup->t_data->t_infomask |= HEAP_UPDATED | infomask_new_tuple; newtup->t_data->t_infomask2 |= infomask2_new_tuple; HeapTupleHeaderSetXmax(newtup->t_data, xmax_new_tuple); /* * Replace cid with a combo cid if necessary. Note that we already put * the plain cid into the new tuple. */ HeapTupleHeaderAdjustCmax(oldtup.t_data, &cid, &iscombo); /* * If the toaster needs to be activated, OR if the new tuple will not fit * on the same page as the old, then we need to release the content lock * (but not the pin!) on the old tuple's buffer while we are off doing * TOAST and/or table-file-extension work. We must mark the old tuple to * show that it's already being updated, else other processes may try to * update it themselves. * * We need to invoke the toaster if there are already any out-of-line * toasted values present, or if the new tuple is over-threshold. */ if (relation->rd_rel->relkind != RELKIND_RELATION && relation->rd_rel->relkind != RELKIND_MATVIEW) { /* toast table entries should never be recursively toasted */ Assert(!HeapTupleHasExternal(&oldtup)); Assert(!HeapTupleHasExternal(newtup)); need_toast = false; } else need_toast = (HeapTupleHasExternal(&oldtup) || HeapTupleHasExternal(newtup) || newtup->t_len > TOAST_TUPLE_THRESHOLD); pagefree = PageGetHeapFreeSpace(page); newtupsize = MAXALIGN(newtup->t_len); if (need_toast || newtupsize > pagefree) { /* Clear obsolete visibility flags ... */ oldtup.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED; HeapTupleClearHotUpdated(&oldtup); /* ... and store info about transaction updating this tuple */ Assert(TransactionIdIsValid(xmax_old_tuple)); HeapTupleHeaderSetXmax(oldtup.t_data, xmax_old_tuple); oldtup.t_data->t_infomask |= infomask_old_tuple; oldtup.t_data->t_infomask2 |= infomask2_old_tuple; HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo); /* temporarily make it look not-updated */ oldtup.t_data->t_ctid = oldtup.t_self; already_marked = true; LockBuffer(buffer, BUFFER_LOCK_UNLOCK); /* * Let the toaster do its thing, if needed. * * Note: below this point, heaptup is the data we actually intend to * store into the relation; newtup is the caller's original untoasted * data. */ if (need_toast) { /* Note we always use WAL and FSM during updates */ heaptup = toast_insert_or_update(relation, newtup, &oldtup, 0); newtupsize = MAXALIGN(heaptup->t_len); } else heaptup = newtup; /* * Now, do we need a new page for the tuple, or not? This is a bit * tricky since someone else could have added tuples to the page while * we weren't looking. We have to recheck the available space after * reacquiring the buffer lock. But don't bother to do that if the * former amount of free space is still not enough; it's unlikely * there's more free now than before. * * What's more, if we need to get a new page, we will need to acquire * buffer locks on both old and new pages. To avoid deadlock against * some other backend trying to get the same two locks in the other * order, we must be consistent about the order we get the locks in. * We use the rule "lock the lower-numbered page of the relation * first". To implement this, we must do RelationGetBufferForTuple * while not holding the lock on the old page, and we must rely on it * to get the locks on both pages in the correct order. */ if (newtupsize > pagefree) { /* Assume there's no chance to put heaptup on same page. */ newbuf = RelationGetBufferForTuple(relation, heaptup->t_len, buffer, 0, NULL, &vmbuffer_new, &vmbuffer); } else { /* Re-acquire the lock on the old tuple's page. */ LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); /* Re-check using the up-to-date free space */ pagefree = PageGetHeapFreeSpace(page); if (newtupsize > pagefree) { /* * Rats, it doesn't fit anymore. We must now unlock and * relock to avoid deadlock. Fortunately, this path should * seldom be taken. */ LockBuffer(buffer, BUFFER_LOCK_UNLOCK); newbuf = RelationGetBufferForTuple(relation, heaptup->t_len, buffer, 0, NULL, &vmbuffer_new, &vmbuffer); } else { /* OK, it fits here, so we're done. */ newbuf = buffer; } } } else { /* No TOAST work needed, and it'll fit on same page */ already_marked = false; newbuf = buffer; heaptup = newtup; } /* * We're about to create the new tuple -- check for conflict first, to * avoid possibly having to roll back work we've just done. * * NOTE: For a tuple insert, we only need to check for table locks, since * predicate locking at the index level will cover ranges for anything * except a table scan. Therefore, only provide the relation. */ CheckForSerializableConflictIn(relation, NULL, InvalidBuffer); /* * At this point newbuf and buffer are both pinned and locked, and newbuf * has enough space for the new tuple. If they are the same buffer, only * one pin is held. */ if (newbuf == buffer) { /* * Since the new tuple is going into the same page, we might be able * to do a HOT update. Check if any of the index columns have been * changed. If not, then HOT update is possible. */ if (satisfies_hot) use_hot_update = true; } else { /* Set a hint that the old page could use prune/defrag */ PageSetFull(page); } /* NO EREPORT(ERROR) from here till changes are logged */ START_CRIT_SECTION(); /* * If this transaction commits, the old tuple will become DEAD sooner or * later. Set flag that this page is a candidate for pruning once our xid * falls below the OldestXmin horizon. If the transaction finally aborts, * the subsequent page pruning will be a no-op and the hint will be * cleared. * * XXX Should we set hint on newbuf as well? If the transaction aborts, * there would be a prunable tuple in the newbuf; but for now we choose * not to optimize for aborts. Note that heap_xlog_update must be kept in * sync if this decision changes. */ PageSetPrunable(page, xid); if (use_hot_update) { /* Mark the old tuple as HOT-updated */ HeapTupleSetHotUpdated(&oldtup); /* And mark the new tuple as heap-only */ HeapTupleSetHeapOnly(heaptup); /* Mark the caller's copy too, in case different from heaptup */ HeapTupleSetHeapOnly(newtup); } else { /* Make sure tuples are correctly marked as not-HOT */ HeapTupleClearHotUpdated(&oldtup); HeapTupleClearHeapOnly(heaptup); HeapTupleClearHeapOnly(newtup); } RelationPutHeapTuple(relation, newbuf, heaptup); /* insert new tuple */ if (!already_marked) { /* Clear obsolete visibility flags ... */ oldtup.t_data->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED; /* ... and store info about transaction updating this tuple */ Assert(TransactionIdIsValid(xmax_old_tuple)); HeapTupleHeaderSetXmax(oldtup.t_data, xmax_old_tuple); oldtup.t_data->t_infomask |= infomask_old_tuple; oldtup.t_data->t_infomask2 |= infomask2_old_tuple; HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo); } /* record address of new tuple in t_ctid of old one */ oldtup.t_data->t_ctid = heaptup->t_self; /* clear PD_ALL_VISIBLE flags */ if (PageIsAllVisible(BufferGetPage(buffer))) { all_visible_cleared = true; PageClearAllVisible(BufferGetPage(buffer)); visibilitymap_clear(relation, BufferGetBlockNumber(buffer), vmbuffer); } if (newbuf != buffer && PageIsAllVisible(BufferGetPage(newbuf))) { all_visible_cleared_new = true; PageClearAllVisible(BufferGetPage(newbuf)); visibilitymap_clear(relation, BufferGetBlockNumber(newbuf), vmbuffer_new); } if (newbuf != buffer) MarkBufferDirty(newbuf); MarkBufferDirty(buffer); /* XLOG stuff */ if (RelationNeedsWAL(relation)) { XLogRecPtr recptr = log_heap_update(relation, buffer, newbuf, &oldtup, heaptup, all_visible_cleared, all_visible_cleared_new); if (newbuf != buffer) { PageSetLSN(BufferGetPage(newbuf), recptr); } PageSetLSN(BufferGetPage(buffer), recptr); } END_CRIT_SECTION(); if (newbuf != buffer) LockBuffer(newbuf, BUFFER_LOCK_UNLOCK); LockBuffer(buffer, BUFFER_LOCK_UNLOCK); /* * Mark old tuple for invalidation from system caches at next command * boundary, and mark the new tuple for invalidation in case we abort. We * have to do this before releasing the buffer because oldtup is in the * buffer. (heaptup is all in local memory, but it's necessary to process * both tuple versions in one call to inval.c so we can avoid redundant * sinval messages.) */ CacheInvalidateHeapTuple(relation, &oldtup, heaptup); /* Now we can release the buffer(s) */ if (newbuf != buffer) ReleaseBuffer(newbuf); ReleaseBuffer(buffer); if (BufferIsValid(vmbuffer_new)) ReleaseBuffer(vmbuffer_new); if (BufferIsValid(vmbuffer)) ReleaseBuffer(vmbuffer); /* * Release the lmgr tuple lock, if we had it. */ if (have_tuple_lock) UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode); pgstat_count_heap_update(relation, use_hot_update); /* * If heaptup is a private copy, release it. Don't forget to copy t_self * back to the caller's image, too. */ if (heaptup != newtup) { newtup->t_self = heaptup->t_self; heap_freetuple(heaptup); } bms_free(hot_attrs); bms_free(key_attrs); return HeapTupleMayBeUpdated; }
static void heap_xlog_clean | ( | XLogRecPtr | lsn, | |
XLogRecord * | record | |||
) | [static] |
Definition at line 6005 of file heapam.c.
References Assert, xl_heap_clean::block, BufferGetPage, BufferIsValid, heap_page_prune_execute(), InHotStandby, xl_heap_clean::latestRemovedXid, LockBufferForCleanup(), MAIN_FORKNUM, MarkBufferDirty(), xl_heap_clean::ndead, xl_heap_clean::node, xl_heap_clean::nredirected, PageGetHeapFreeSpace(), PageGetLSN, PageSetLSN, RBM_NORMAL, ResolveRecoveryConflictWithSnapshot(), RestoreBackupBlock(), TransactionIdIsValid, UnlockReleaseBuffer(), XLogRecord::xl_info, XLogRecord::xl_len, XLogReadBufferExtended(), XLogRecGetData, XLogRecordPageWithFreeSpace(), and XLR_BKP_BLOCK.
Referenced by heap2_redo().
{ xl_heap_clean *xlrec = (xl_heap_clean *) XLogRecGetData(record); Buffer buffer; Page page; OffsetNumber *end; OffsetNumber *redirected; OffsetNumber *nowdead; OffsetNumber *nowunused; int nredirected; int ndead; int nunused; Size freespace; /* * We're about to remove tuples. In Hot Standby mode, ensure that there's * no queries running for which the removed tuples are still visible. * * Not all HEAP2_CLEAN records remove tuples with xids, so we only want to * conflict on the records that cause MVCC failures for user queries. If * latestRemovedXid is invalid, skip conflict processing. */ if (InHotStandby && TransactionIdIsValid(xlrec->latestRemovedXid)) ResolveRecoveryConflictWithSnapshot(xlrec->latestRemovedXid, xlrec->node); /* * If we have a full-page image, restore it (using a cleanup lock) and * we're done. */ if (record->xl_info & XLR_BKP_BLOCK(0)) { (void) RestoreBackupBlock(lsn, record, 0, true, false); return; } buffer = XLogReadBufferExtended(xlrec->node, MAIN_FORKNUM, xlrec->block, RBM_NORMAL); if (!BufferIsValid(buffer)) return; LockBufferForCleanup(buffer); page = (Page) BufferGetPage(buffer); if (lsn <= PageGetLSN(page)) { UnlockReleaseBuffer(buffer); return; } nredirected = xlrec->nredirected; ndead = xlrec->ndead; end = (OffsetNumber *) ((char *) xlrec + record->xl_len); redirected = (OffsetNumber *) ((char *) xlrec + SizeOfHeapClean); nowdead = redirected + (nredirected * 2); nowunused = nowdead + ndead; nunused = (end - nowunused); Assert(nunused >= 0); /* Update all item pointers per the record, and repair fragmentation */ heap_page_prune_execute(buffer, redirected, nredirected, nowdead, ndead, nowunused, nunused); freespace = PageGetHeapFreeSpace(page); /* needed to update FSM below */ /* * Note: we don't worry about updating the page's prunability hints. At * worst this will cause an extra prune cycle to occur soon. */ PageSetLSN(page, lsn); MarkBufferDirty(buffer); UnlockReleaseBuffer(buffer); /* * Update the FSM as well. * * XXX: We don't get here if the page was restored from full page image. * We don't bother to update the FSM in that case, it doesn't need to be * totally accurate anyway. */ XLogRecordPageWithFreeSpace(xlrec->node, xlrec->block, freespace); }
static void heap_xlog_cleanup_info | ( | XLogRecPtr | lsn, | |
XLogRecord * | record | |||
) | [static] |
Definition at line 5984 of file heapam.c.
References Assert, InHotStandby, xl_heap_cleanup_info::latestRemovedXid, xl_heap_cleanup_info::node, ResolveRecoveryConflictWithSnapshot(), XLogRecord::xl_info, XLogRecGetData, and XLR_BKP_BLOCK_MASK.
Referenced by heap2_redo().
{ xl_heap_cleanup_info *xlrec = (xl_heap_cleanup_info *) XLogRecGetData(record); if (InHotStandby) ResolveRecoveryConflictWithSnapshot(xlrec->latestRemovedXid, xlrec->node); /* * Actual operation is a no-op. Record type exists to provide a means for * conflict processing to occur before we begin index vacuum actions. see * vacuumlazy.c and also comments in btvacuumpage() */ /* Backup blocks are not used in cleanup_info records */ Assert(!(record->xl_info & XLR_BKP_BLOCK_MASK)); }
static void heap_xlog_delete | ( | XLogRecPtr | lsn, | |
XLogRecord * | record | |||
) | [static] |
Definition at line 6325 of file heapam.c.
References xl_heap_delete::all_visible_cleared, BufferGetPage, BufferIsValid, CreateFakeRelcacheEntry(), elog, FirstCommandId, fix_infomask_from_infobits(), FreeFakeRelcacheEntry(), HEAP_XMAX_BITS, HeapTupleHeaderClearHotUpdated, HeapTupleHeaderSetCmax, HeapTupleHeaderSetXmax, xl_heap_delete::infobits_set, ItemIdIsNormal, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, MarkBufferDirty(), xl_heaptid::node, PageClearAllVisible, PageGetItem, PageGetItemId, PageGetLSN, PageGetMaxOffsetNumber, PageSetLSN, PageSetPrunable, PANIC, ReleaseBuffer(), RestoreBackupBlock(), HeapTupleHeaderData::t_ctid, HeapTupleHeaderData::t_infomask, HeapTupleHeaderData::t_infomask2, xl_heap_delete::target, xl_heaptid::tid, UnlockReleaseBuffer(), visibilitymap_clear(), visibilitymap_pin(), XLogRecord::xl_info, XLogRecord::xl_xid, XLogReadBuffer(), XLogRecGetData, XLR_BKP_BLOCK, and xl_heap_delete::xmax.
Referenced by heap_redo().
{ xl_heap_delete *xlrec = (xl_heap_delete *) XLogRecGetData(record); Buffer buffer; Page page; OffsetNumber offnum; ItemId lp = NULL; HeapTupleHeader htup; BlockNumber blkno; blkno = ItemPointerGetBlockNumber(&(xlrec->target.tid)); /* * The visibility map may need to be fixed even if the heap page is * already up-to-date. */ if (xlrec->all_visible_cleared) { Relation reln = CreateFakeRelcacheEntry(xlrec->target.node); Buffer vmbuffer = InvalidBuffer; visibilitymap_pin(reln, blkno, &vmbuffer); visibilitymap_clear(reln, blkno, vmbuffer); ReleaseBuffer(vmbuffer); FreeFakeRelcacheEntry(reln); } /* If we have a full-page image, restore it and we're done */ if (record->xl_info & XLR_BKP_BLOCK(0)) { (void) RestoreBackupBlock(lsn, record, 0, false, false); return; } buffer = XLogReadBuffer(xlrec->target.node, blkno, false); if (!BufferIsValid(buffer)) return; page = (Page) BufferGetPage(buffer); if (lsn <= PageGetLSN(page)) /* changes are applied */ { UnlockReleaseBuffer(buffer); return; } offnum = ItemPointerGetOffsetNumber(&(xlrec->target.tid)); if (PageGetMaxOffsetNumber(page) >= offnum) lp = PageGetItemId(page, offnum); if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp)) elog(PANIC, "heap_delete_redo: invalid lp"); htup = (HeapTupleHeader) PageGetItem(page, lp); htup->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); htup->t_infomask2 &= ~HEAP_KEYS_UPDATED; HeapTupleHeaderClearHotUpdated(htup); fix_infomask_from_infobits(xlrec->infobits_set, &htup->t_infomask, &htup->t_infomask2); HeapTupleHeaderSetXmax(htup, xlrec->xmax); HeapTupleHeaderSetCmax(htup, FirstCommandId, false); /* Mark the page as a candidate for pruning */ PageSetPrunable(page, record->xl_xid); if (xlrec->all_visible_cleared) PageClearAllVisible(page); /* Make sure there is no forward chain link in t_ctid */ htup->t_ctid = xlrec->target.tid; PageSetLSN(page, lsn); MarkBufferDirty(buffer); UnlockReleaseBuffer(buffer); }
static void heap_xlog_freeze | ( | XLogRecPtr | lsn, | |
XLogRecord * | record | |||
) | [static] |
Definition at line 6090 of file heapam.c.
References xl_heap_freeze::block, BufferGetPage, BufferIsValid, xl_heap_freeze::cutoff_multi, xl_heap_freeze::cutoff_xid, heap_freeze_tuple(), InHotStandby, MarkBufferDirty(), xl_heap_freeze::node, PageGetItem, PageGetItemId, PageGetLSN, PageSetLSN, ResolveRecoveryConflictWithSnapshot(), RestoreBackupBlock(), SizeOfHeapFreeze, UnlockReleaseBuffer(), XLogRecord::xl_info, XLogRecord::xl_len, XLogReadBuffer(), XLogRecGetData, and XLR_BKP_BLOCK.
Referenced by heap2_redo().
{ xl_heap_freeze *xlrec = (xl_heap_freeze *) XLogRecGetData(record); TransactionId cutoff_xid = xlrec->cutoff_xid; MultiXactId cutoff_multi = xlrec->cutoff_multi; Buffer buffer; Page page; /* * In Hot Standby mode, ensure that there's no queries running which still * consider the frozen xids as running. */ if (InHotStandby) ResolveRecoveryConflictWithSnapshot(cutoff_xid, xlrec->node); /* If we have a full-page image, restore it and we're done */ if (record->xl_info & XLR_BKP_BLOCK(0)) { (void) RestoreBackupBlock(lsn, record, 0, false, false); return; } buffer = XLogReadBuffer(xlrec->node, xlrec->block, false); if (!BufferIsValid(buffer)) return; page = (Page) BufferGetPage(buffer); if (lsn <= PageGetLSN(page)) { UnlockReleaseBuffer(buffer); return; } if (record->xl_len > SizeOfHeapFreeze) { OffsetNumber *offsets; OffsetNumber *offsets_end; offsets = (OffsetNumber *) ((char *) xlrec + SizeOfHeapFreeze); offsets_end = (OffsetNumber *) ((char *) xlrec + record->xl_len); while (offsets < offsets_end) { /* offsets[] entries are one-based */ ItemId lp = PageGetItemId(page, *offsets); HeapTupleHeader tuple = (HeapTupleHeader) PageGetItem(page, lp); (void) heap_freeze_tuple(tuple, cutoff_xid, cutoff_multi); offsets++; } } PageSetLSN(page, lsn); MarkBufferDirty(buffer); UnlockReleaseBuffer(buffer); }
static void heap_xlog_inplace | ( | XLogRecPtr | lsn, | |
XLogRecord * | record | |||
) | [static] |
Definition at line 7011 of file heapam.c.
References BufferGetPage, BufferIsValid, elog, ItemIdGetLength, ItemIdIsNormal, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, MarkBufferDirty(), xl_heaptid::node, PageGetItem, PageGetItemId, PageGetLSN, PageGetMaxOffsetNumber, PageSetLSN, PANIC, RestoreBackupBlock(), SizeOfHeapInplace, HeapTupleHeaderData::t_hoff, xl_heap_inplace::target, xl_heaptid::tid, UnlockReleaseBuffer(), XLogRecord::xl_info, XLogRecord::xl_len, XLogReadBuffer(), XLogRecGetData, and XLR_BKP_BLOCK.
Referenced by heap_redo().
{ xl_heap_inplace *xlrec = (xl_heap_inplace *) XLogRecGetData(record); Buffer buffer; Page page; OffsetNumber offnum; ItemId lp = NULL; HeapTupleHeader htup; uint32 oldlen; uint32 newlen; /* If we have a full-page image, restore it and we're done */ if (record->xl_info & XLR_BKP_BLOCK(0)) { (void) RestoreBackupBlock(lsn, record, 0, false, false); return; } buffer = XLogReadBuffer(xlrec->target.node, ItemPointerGetBlockNumber(&(xlrec->target.tid)), false); if (!BufferIsValid(buffer)) return; page = (Page) BufferGetPage(buffer); if (lsn <= PageGetLSN(page)) /* changes are applied */ { UnlockReleaseBuffer(buffer); return; } offnum = ItemPointerGetOffsetNumber(&(xlrec->target.tid)); if (PageGetMaxOffsetNumber(page) >= offnum) lp = PageGetItemId(page, offnum); if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp)) elog(PANIC, "heap_inplace_redo: invalid lp"); htup = (HeapTupleHeader) PageGetItem(page, lp); oldlen = ItemIdGetLength(lp) - htup->t_hoff; newlen = record->xl_len - SizeOfHeapInplace; if (oldlen != newlen) elog(PANIC, "heap_inplace_redo: wrong tuple length"); memcpy((char *) htup + htup->t_hoff, (char *) xlrec + SizeOfHeapInplace, newlen); PageSetLSN(page, lsn); MarkBufferDirty(buffer); UnlockReleaseBuffer(buffer); }
static void heap_xlog_insert | ( | XLogRecPtr | lsn, | |
XLogRecord * | record | |||
) | [static] |
Definition at line 6401 of file heapam.c.
References xl_heap_insert::all_visible_cleared, Assert, BufferGetPage, BufferGetPageSize, BufferIsValid, CreateFakeRelcacheEntry(), elog, FirstCommandId, FreeFakeRelcacheEntry(), HeapTupleHeaderSetCmin, HeapTupleHeaderSetXmin, InvalidOffsetNumber, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, MarkBufferDirty(), MaxHeapTupleSize, MemSet, xl_heaptid::node, offsetof, PageAddItem(), PageClearAllVisible, PageGetHeapFreeSpace(), PageGetLSN, PageGetMaxOffsetNumber, PageInit(), PageSetLSN, PANIC, ReleaseBuffer(), RestoreBackupBlock(), SizeOfHeapInsert, xl_heap_insert::target, xl_heaptid::tid, UnlockReleaseBuffer(), visibilitymap_clear(), visibilitymap_pin(), XLogRecord::xl_info, XLogRecord::xl_len, XLogRecord::xl_xid, XLOG_HEAP_INIT_PAGE, XLogReadBuffer(), XLogRecGetData, XLogRecordPageWithFreeSpace(), and XLR_BKP_BLOCK.
Referenced by heap_redo().
{ xl_heap_insert *xlrec = (xl_heap_insert *) XLogRecGetData(record); Buffer buffer; Page page; OffsetNumber offnum; struct { HeapTupleHeaderData hdr; char data[MaxHeapTupleSize]; } tbuf; HeapTupleHeader htup; xl_heap_header xlhdr; uint32 newlen; Size freespace; BlockNumber blkno; blkno = ItemPointerGetBlockNumber(&(xlrec->target.tid)); /* * The visibility map may need to be fixed even if the heap page is * already up-to-date. */ if (xlrec->all_visible_cleared) { Relation reln = CreateFakeRelcacheEntry(xlrec->target.node); Buffer vmbuffer = InvalidBuffer; visibilitymap_pin(reln, blkno, &vmbuffer); visibilitymap_clear(reln, blkno, vmbuffer); ReleaseBuffer(vmbuffer); FreeFakeRelcacheEntry(reln); } /* If we have a full-page image, restore it and we're done */ if (record->xl_info & XLR_BKP_BLOCK(0)) { (void) RestoreBackupBlock(lsn, record, 0, false, false); return; } if (record->xl_info & XLOG_HEAP_INIT_PAGE) { buffer = XLogReadBuffer(xlrec->target.node, blkno, true); Assert(BufferIsValid(buffer)); page = (Page) BufferGetPage(buffer); PageInit(page, BufferGetPageSize(buffer), 0); } else { buffer = XLogReadBuffer(xlrec->target.node, blkno, false); if (!BufferIsValid(buffer)) return; page = (Page) BufferGetPage(buffer); if (lsn <= PageGetLSN(page)) /* changes are applied */ { UnlockReleaseBuffer(buffer); return; } } offnum = ItemPointerGetOffsetNumber(&(xlrec->target.tid)); if (PageGetMaxOffsetNumber(page) + 1 < offnum) elog(PANIC, "heap_insert_redo: invalid max offset number"); newlen = record->xl_len - SizeOfHeapInsert - SizeOfHeapHeader; Assert(newlen <= MaxHeapTupleSize); memcpy((char *) &xlhdr, (char *) xlrec + SizeOfHeapInsert, SizeOfHeapHeader); htup = &tbuf.hdr; MemSet((char *) htup, 0, sizeof(HeapTupleHeaderData)); /* PG73FORMAT: get bitmap [+ padding] [+ oid] + data */ memcpy((char *) htup + offsetof(HeapTupleHeaderData, t_bits), (char *) xlrec + SizeOfHeapInsert + SizeOfHeapHeader, newlen); newlen += offsetof(HeapTupleHeaderData, t_bits); htup->t_infomask2 = xlhdr.t_infomask2; htup->t_infomask = xlhdr.t_infomask; htup->t_hoff = xlhdr.t_hoff; HeapTupleHeaderSetXmin(htup, record->xl_xid); HeapTupleHeaderSetCmin(htup, FirstCommandId); htup->t_ctid = xlrec->target.tid; offnum = PageAddItem(page, (Item) htup, newlen, offnum, true, true); if (offnum == InvalidOffsetNumber) elog(PANIC, "heap_insert_redo: failed to add tuple"); freespace = PageGetHeapFreeSpace(page); /* needed to update FSM below */ PageSetLSN(page, lsn); if (xlrec->all_visible_cleared) PageClearAllVisible(page); MarkBufferDirty(buffer); UnlockReleaseBuffer(buffer); /* * If the page is running low on free space, update the FSM as well. * Arbitrarily, our definition of "low" is less than 20%. We can't do much * better than that without knowing the fill-factor for the table. * * XXX: We don't get here if the page was restored from full page image. * We don't bother to update the FSM in that case, it doesn't need to be * totally accurate anyway. */ if (freespace < BLCKSZ / 5) XLogRecordPageWithFreeSpace(xlrec->target.node, blkno, freespace); }
static void heap_xlog_lock | ( | XLogRecPtr | lsn, | |
XLogRecord * | record | |||
) | [static] |
Definition at line 6911 of file heapam.c.
References BufferGetPage, BufferIsValid, elog, FirstCommandId, fix_infomask_from_infobits(), HeapTupleHeaderClearHotUpdated, HeapTupleHeaderSetCmax, HeapTupleHeaderSetXmax, xl_heap_lock::infobits_set, ItemIdIsNormal, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, xl_heap_lock::locking_xid, MarkBufferDirty(), xl_heaptid::node, PageGetItem, PageGetItemId, PageGetLSN, PageGetMaxOffsetNumber, PageSetLSN, PANIC, RestoreBackupBlock(), HeapTupleHeaderData::t_ctid, HeapTupleHeaderData::t_infomask, HeapTupleHeaderData::t_infomask2, xl_heap_lock::target, xl_heaptid::tid, UnlockReleaseBuffer(), XLogRecord::xl_info, XLogReadBuffer(), XLogRecGetData, and XLR_BKP_BLOCK.
Referenced by heap_redo().
{ xl_heap_lock *xlrec = (xl_heap_lock *) XLogRecGetData(record); Buffer buffer; Page page; OffsetNumber offnum; ItemId lp = NULL; HeapTupleHeader htup; /* If we have a full-page image, restore it and we're done */ if (record->xl_info & XLR_BKP_BLOCK(0)) { (void) RestoreBackupBlock(lsn, record, 0, false, false); return; } buffer = XLogReadBuffer(xlrec->target.node, ItemPointerGetBlockNumber(&(xlrec->target.tid)), false); if (!BufferIsValid(buffer)) return; page = (Page) BufferGetPage(buffer); if (lsn <= PageGetLSN(page)) /* changes are applied */ { UnlockReleaseBuffer(buffer); return; } offnum = ItemPointerGetOffsetNumber(&(xlrec->target.tid)); if (PageGetMaxOffsetNumber(page) >= offnum) lp = PageGetItemId(page, offnum); if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp)) elog(PANIC, "heap_lock_redo: invalid lp"); htup = (HeapTupleHeader) PageGetItem(page, lp); fix_infomask_from_infobits(xlrec->infobits_set, &htup->t_infomask, &htup->t_infomask2); HeapTupleHeaderClearHotUpdated(htup); HeapTupleHeaderSetXmax(htup, xlrec->locking_xid); HeapTupleHeaderSetCmax(htup, FirstCommandId, false); /* Make sure there is no forward chain link in t_ctid */ htup->t_ctid = xlrec->target.tid; PageSetLSN(page, lsn); MarkBufferDirty(buffer); UnlockReleaseBuffer(buffer); }
static void heap_xlog_lock_updated | ( | XLogRecPtr | lsn, | |
XLogRecord * | record | |||
) | [static] |
Definition at line 6962 of file heapam.c.
References BufferGetPage, BufferIsValid, elog, fix_infomask_from_infobits(), HeapTupleHeaderSetXmax, xl_heap_lock_updated::infobits_set, ItemIdIsNormal, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, MarkBufferDirty(), xl_heaptid::node, PageGetItem, PageGetItemId, PageGetLSN, PageGetMaxOffsetNumber, PageSetLSN, PANIC, RestoreBackupBlock(), HeapTupleHeaderData::t_infomask, HeapTupleHeaderData::t_infomask2, xl_heap_lock_updated::target, xl_heaptid::tid, UnlockReleaseBuffer(), XLogRecord::xl_info, XLogReadBuffer(), XLogRecGetData, XLR_BKP_BLOCK, and xl_heap_lock_updated::xmax.
Referenced by heap2_redo().
{ xl_heap_lock_updated *xlrec = (xl_heap_lock_updated *) XLogRecGetData(record); Buffer buffer; Page page; OffsetNumber offnum; ItemId lp = NULL; HeapTupleHeader htup; /* If we have a full-page image, restore it and we're done */ if (record->xl_info & XLR_BKP_BLOCK(0)) { (void) RestoreBackupBlock(lsn, record, 0, false, false); return; } buffer = XLogReadBuffer(xlrec->target.node, ItemPointerGetBlockNumber(&(xlrec->target.tid)), false); if (!BufferIsValid(buffer)) return; page = (Page) BufferGetPage(buffer); if (lsn <= PageGetLSN(page)) /* changes are applied */ { UnlockReleaseBuffer(buffer); return; } offnum = ItemPointerGetOffsetNumber(&(xlrec->target.tid)); if (PageGetMaxOffsetNumber(page) >= offnum) lp = PageGetItemId(page, offnum); if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp)) elog(PANIC, "heap_xlog_lock_updated: invalid lp"); htup = (HeapTupleHeader) PageGetItem(page, lp); fix_infomask_from_infobits(xlrec->infobits_set, &htup->t_infomask, &htup->t_infomask2); HeapTupleHeaderSetXmax(htup, xlrec->xmax); PageSetLSN(page, lsn); MarkBufferDirty(buffer); UnlockReleaseBuffer(buffer); }
static void heap_xlog_multi_insert | ( | XLogRecPtr | lsn, | |
XLogRecord * | record | |||
) | [static] |
Definition at line 6518 of file heapam.c.
References xl_heap_multi_insert::all_visible_cleared, Assert, xl_heap_multi_insert::blkno, BufferGetPage, BufferGetPageSize, BufferIsValid, CreateFakeRelcacheEntry(), xl_multi_insert_tuple::datalen, elog, FirstCommandId, FirstOffsetNumber, FreeFakeRelcacheEntry(), HeapTupleHeaderSetCmin, HeapTupleHeaderSetXmin, i, InvalidOffsetNumber, ItemPointerSetBlockNumber, ItemPointerSetOffsetNumber, MarkBufferDirty(), MaxHeapTupleSize, MemSet, xl_heap_multi_insert::node, xl_heap_multi_insert::ntuples, offsetof, xl_heap_multi_insert::offsets, PageAddItem(), PageClearAllVisible, PageGetHeapFreeSpace(), PageGetLSN, PageGetMaxOffsetNumber, PageInit(), PageSetLSN, PANIC, ReleaseBuffer(), RestoreBackupBlock(), SHORTALIGN, xl_multi_insert_tuple::t_hoff, xl_multi_insert_tuple::t_infomask, xl_multi_insert_tuple::t_infomask2, UnlockReleaseBuffer(), visibilitymap_clear(), visibilitymap_pin(), XLogRecord::xl_info, XLogRecord::xl_xid, XLogReadBuffer(), XLogRecGetData, XLogRecordPageWithFreeSpace(), and XLR_BKP_BLOCK.
Referenced by heap2_redo().
{ char *recdata = XLogRecGetData(record); xl_heap_multi_insert *xlrec; Buffer buffer; Page page; struct { HeapTupleHeaderData hdr; char data[MaxHeapTupleSize]; } tbuf; HeapTupleHeader htup; uint32 newlen; Size freespace; BlockNumber blkno; int i; bool isinit = (record->xl_info & XLOG_HEAP_INIT_PAGE) != 0; /* * Insertion doesn't overwrite MVCC data, so no conflict processing is * required. */ xlrec = (xl_heap_multi_insert *) recdata; recdata += SizeOfHeapMultiInsert; /* * If we're reinitializing the page, the tuples are stored in order from * FirstOffsetNumber. Otherwise there's an array of offsets in the WAL * record. */ if (!isinit) recdata += sizeof(OffsetNumber) * xlrec->ntuples; blkno = xlrec->blkno; /* * The visibility map may need to be fixed even if the heap page is * already up-to-date. */ if (xlrec->all_visible_cleared) { Relation reln = CreateFakeRelcacheEntry(xlrec->node); Buffer vmbuffer = InvalidBuffer; visibilitymap_pin(reln, blkno, &vmbuffer); visibilitymap_clear(reln, blkno, vmbuffer); ReleaseBuffer(vmbuffer); FreeFakeRelcacheEntry(reln); } /* If we have a full-page image, restore it and we're done */ if (record->xl_info & XLR_BKP_BLOCK(0)) { (void) RestoreBackupBlock(lsn, record, 0, false, false); return; } if (isinit) { buffer = XLogReadBuffer(xlrec->node, blkno, true); Assert(BufferIsValid(buffer)); page = (Page) BufferGetPage(buffer); PageInit(page, BufferGetPageSize(buffer), 0); } else { buffer = XLogReadBuffer(xlrec->node, blkno, false); if (!BufferIsValid(buffer)) return; page = (Page) BufferGetPage(buffer); if (lsn <= PageGetLSN(page)) /* changes are applied */ { UnlockReleaseBuffer(buffer); return; } } for (i = 0; i < xlrec->ntuples; i++) { OffsetNumber offnum; xl_multi_insert_tuple *xlhdr; if (isinit) offnum = FirstOffsetNumber + i; else offnum = xlrec->offsets[i]; if (PageGetMaxOffsetNumber(page) + 1 < offnum) elog(PANIC, "heap_multi_insert_redo: invalid max offset number"); xlhdr = (xl_multi_insert_tuple *) SHORTALIGN(recdata); recdata = ((char *) xlhdr) + SizeOfMultiInsertTuple; newlen = xlhdr->datalen; Assert(newlen <= MaxHeapTupleSize); htup = &tbuf.hdr; MemSet((char *) htup, 0, sizeof(HeapTupleHeaderData)); /* PG73FORMAT: get bitmap [+ padding] [+ oid] + data */ memcpy((char *) htup + offsetof(HeapTupleHeaderData, t_bits), (char *) recdata, newlen); recdata += newlen; newlen += offsetof(HeapTupleHeaderData, t_bits); htup->t_infomask2 = xlhdr->t_infomask2; htup->t_infomask = xlhdr->t_infomask; htup->t_hoff = xlhdr->t_hoff; HeapTupleHeaderSetXmin(htup, record->xl_xid); HeapTupleHeaderSetCmin(htup, FirstCommandId); ItemPointerSetBlockNumber(&htup->t_ctid, blkno); ItemPointerSetOffsetNumber(&htup->t_ctid, offnum); offnum = PageAddItem(page, (Item) htup, newlen, offnum, true, true); if (offnum == InvalidOffsetNumber) elog(PANIC, "heap_multi_insert_redo: failed to add tuple"); } freespace = PageGetHeapFreeSpace(page); /* needed to update FSM below */ PageSetLSN(page, lsn); if (xlrec->all_visible_cleared) PageClearAllVisible(page); MarkBufferDirty(buffer); UnlockReleaseBuffer(buffer); /* * If the page is running low on free space, update the FSM as well. * Arbitrarily, our definition of "low" is less than 20%. We can't do much * better than that without knowing the fill-factor for the table. * * XXX: We don't get here if the page was restored from full page image. * We don't bother to update the FSM in that case, it doesn't need to be * totally accurate anyway. */ if (freespace < BLCKSZ / 5) XLogRecordPageWithFreeSpace(xlrec->node, blkno, freespace); }
static void heap_xlog_newpage | ( | XLogRecPtr | lsn, | |
XLogRecord * | record | |||
) | [static] |
Definition at line 6262 of file heapam.c.
References Assert, xl_heap_newpage::blkno, BUFFER_LOCK_EXCLUSIVE, BufferGetPage, BufferIsValid, xl_heap_newpage::forknum, LockBuffer(), MarkBufferDirty(), xl_heap_newpage::node, PageIsNew, PageSetLSN, RBM_ZERO, SizeOfHeapNewpage, UnlockReleaseBuffer(), XLogRecord::xl_info, XLogRecord::xl_len, XLogReadBufferExtended(), XLogRecGetData, and XLR_BKP_BLOCK_MASK.
Referenced by heap_redo().
{ xl_heap_newpage *xlrec = (xl_heap_newpage *) XLogRecGetData(record); Buffer buffer; Page page; /* Backup blocks are not used in newpage records */ Assert(!(record->xl_info & XLR_BKP_BLOCK_MASK)); /* * Note: the NEWPAGE log record is used for both heaps and indexes, so do * not do anything that assumes we are touching a heap. */ buffer = XLogReadBufferExtended(xlrec->node, xlrec->forknum, xlrec->blkno, RBM_ZERO); Assert(BufferIsValid(buffer)); LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); page = (Page) BufferGetPage(buffer); Assert(record->xl_len == SizeOfHeapNewpage + BLCKSZ); memcpy(page, (char *) xlrec + SizeOfHeapNewpage, BLCKSZ); /* * The page may be uninitialized. If so, we can't set the LSN because that * would corrupt the page. */ if (!PageIsNew(page)) { PageSetLSN(page, lsn); } MarkBufferDirty(buffer); UnlockReleaseBuffer(buffer); }
static void heap_xlog_update | ( | XLogRecPtr | lsn, | |
XLogRecord * | record, | |||
bool | hot_update | |||
) | [static] |
Definition at line 6664 of file heapam.c.
References xl_heap_update::all_visible_cleared, Assert, BufferGetPage, BufferGetPageSize, BufferIsValid, CreateFakeRelcacheEntry(), elog, FirstCommandId, fix_infomask_from_infobits(), FreeFakeRelcacheEntry(), HEAP_XMAX_BITS, HeapTupleHeaderClearHotUpdated, HeapTupleHeaderSetCmax, HeapTupleHeaderSetCmin, HeapTupleHeaderSetHotUpdated, HeapTupleHeaderSetXmax, HeapTupleHeaderSetXmin, InvalidOffsetNumber, ItemIdIsNormal, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, MarkBufferDirty(), MaxHeapTupleSize, MemSet, xl_heap_update::new_all_visible_cleared, xl_heap_update::new_xmax, xl_heap_update::newtid, xl_heaptid::node, offsetof, xl_heap_update::old_infobits_set, xl_heap_update::old_xmax, PageAddItem(), PageClearAllVisible, PageGetHeapFreeSpace(), PageGetItem, PageGetItemId, PageGetLSN, PageGetMaxOffsetNumber, PageInit(), PageSetLSN, PageSetPrunable, PANIC, ReleaseBuffer(), RestoreBackupBlock(), SizeOfHeapUpdate, HeapTupleHeaderData::t_ctid, HeapTupleHeaderData::t_infomask, HeapTupleHeaderData::t_infomask2, xl_heap_update::target, xl_heaptid::tid, UnlockReleaseBuffer(), visibilitymap_clear(), visibilitymap_pin(), XLogRecord::xl_info, XLogRecord::xl_len, XLogRecord::xl_xid, XLOG_HEAP_INIT_PAGE, XLogReadBuffer(), XLogRecGetData, XLogRecordPageWithFreeSpace(), and XLR_BKP_BLOCK.
Referenced by heap_redo().
{ xl_heap_update *xlrec = (xl_heap_update *) XLogRecGetData(record); bool samepage = (ItemPointerGetBlockNumber(&(xlrec->newtid)) == ItemPointerGetBlockNumber(&(xlrec->target.tid))); Buffer obuffer, nbuffer; Page page; OffsetNumber offnum; ItemId lp = NULL; HeapTupleHeader htup; struct { HeapTupleHeaderData hdr; char data[MaxHeapTupleSize]; } tbuf; xl_heap_header xlhdr; int hsize; uint32 newlen; Size freespace; /* * The visibility map may need to be fixed even if the heap page is * already up-to-date. */ if (xlrec->all_visible_cleared) { Relation reln = CreateFakeRelcacheEntry(xlrec->target.node); BlockNumber block = ItemPointerGetBlockNumber(&xlrec->target.tid); Buffer vmbuffer = InvalidBuffer; visibilitymap_pin(reln, block, &vmbuffer); visibilitymap_clear(reln, block, vmbuffer); ReleaseBuffer(vmbuffer); FreeFakeRelcacheEntry(reln); } /* * In normal operation, it is important to lock the two pages in * page-number order, to avoid possible deadlocks against other update * operations going the other way. However, during WAL replay there can * be no other update happening, so we don't need to worry about that. But * we *do* need to worry that we don't expose an inconsistent state to Hot * Standby queries --- so the original page can't be unlocked before we've * added the new tuple to the new page. */ if (record->xl_info & XLR_BKP_BLOCK(0)) { obuffer = RestoreBackupBlock(lsn, record, 0, false, true); if (samepage) { /* backup block covered both changes, so we're done */ UnlockReleaseBuffer(obuffer); return; } goto newt; } /* Deal with old tuple version */ obuffer = XLogReadBuffer(xlrec->target.node, ItemPointerGetBlockNumber(&(xlrec->target.tid)), false); if (!BufferIsValid(obuffer)) goto newt; page = (Page) BufferGetPage(obuffer); if (lsn <= PageGetLSN(page)) /* changes are applied */ { if (samepage) { UnlockReleaseBuffer(obuffer); return; } goto newt; } offnum = ItemPointerGetOffsetNumber(&(xlrec->target.tid)); if (PageGetMaxOffsetNumber(page) >= offnum) lp = PageGetItemId(page, offnum); if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp)) elog(PANIC, "heap_update_redo: invalid lp"); htup = (HeapTupleHeader) PageGetItem(page, lp); htup->t_infomask &= ~(HEAP_XMAX_BITS | HEAP_MOVED); htup->t_infomask2 &= ~HEAP_KEYS_UPDATED; if (hot_update) HeapTupleHeaderSetHotUpdated(htup); else HeapTupleHeaderClearHotUpdated(htup); fix_infomask_from_infobits(xlrec->old_infobits_set, &htup->t_infomask, &htup->t_infomask2); HeapTupleHeaderSetXmax(htup, xlrec->old_xmax); HeapTupleHeaderSetCmax(htup, FirstCommandId, false); /* Set forward chain link in t_ctid */ htup->t_ctid = xlrec->newtid; /* Mark the page as a candidate for pruning */ PageSetPrunable(page, record->xl_xid); if (xlrec->all_visible_cleared) PageClearAllVisible(page); /* * this test is ugly, but necessary to avoid thinking that insert change * is already applied */ if (samepage) { nbuffer = obuffer; goto newsame; } PageSetLSN(page, lsn); MarkBufferDirty(obuffer); /* Deal with new tuple */ newt:; /* * The visibility map may need to be fixed even if the heap page is * already up-to-date. */ if (xlrec->new_all_visible_cleared) { Relation reln = CreateFakeRelcacheEntry(xlrec->target.node); BlockNumber block = ItemPointerGetBlockNumber(&xlrec->newtid); Buffer vmbuffer = InvalidBuffer; visibilitymap_pin(reln, block, &vmbuffer); visibilitymap_clear(reln, block, vmbuffer); ReleaseBuffer(vmbuffer); FreeFakeRelcacheEntry(reln); } if (record->xl_info & XLR_BKP_BLOCK(1)) { (void) RestoreBackupBlock(lsn, record, 1, false, false); if (BufferIsValid(obuffer)) UnlockReleaseBuffer(obuffer); return; } if (record->xl_info & XLOG_HEAP_INIT_PAGE) { nbuffer = XLogReadBuffer(xlrec->target.node, ItemPointerGetBlockNumber(&(xlrec->newtid)), true); Assert(BufferIsValid(nbuffer)); page = (Page) BufferGetPage(nbuffer); PageInit(page, BufferGetPageSize(nbuffer), 0); } else { nbuffer = XLogReadBuffer(xlrec->target.node, ItemPointerGetBlockNumber(&(xlrec->newtid)), false); if (!BufferIsValid(nbuffer)) { if (BufferIsValid(obuffer)) UnlockReleaseBuffer(obuffer); return; } page = (Page) BufferGetPage(nbuffer); if (lsn <= PageGetLSN(page)) /* changes are applied */ { UnlockReleaseBuffer(nbuffer); if (BufferIsValid(obuffer)) UnlockReleaseBuffer(obuffer); return; } } newsame:; offnum = ItemPointerGetOffsetNumber(&(xlrec->newtid)); if (PageGetMaxOffsetNumber(page) + 1 < offnum) elog(PANIC, "heap_update_redo: invalid max offset number"); hsize = SizeOfHeapUpdate + SizeOfHeapHeader; newlen = record->xl_len - hsize; Assert(newlen <= MaxHeapTupleSize); memcpy((char *) &xlhdr, (char *) xlrec + SizeOfHeapUpdate, SizeOfHeapHeader); htup = &tbuf.hdr; MemSet((char *) htup, 0, sizeof(HeapTupleHeaderData)); /* PG73FORMAT: get bitmap [+ padding] [+ oid] + data */ memcpy((char *) htup + offsetof(HeapTupleHeaderData, t_bits), (char *) xlrec + hsize, newlen); newlen += offsetof(HeapTupleHeaderData, t_bits); htup->t_infomask2 = xlhdr.t_infomask2; htup->t_infomask = xlhdr.t_infomask; htup->t_hoff = xlhdr.t_hoff; HeapTupleHeaderSetXmin(htup, record->xl_xid); HeapTupleHeaderSetCmin(htup, FirstCommandId); HeapTupleHeaderSetXmax(htup, xlrec->new_xmax); /* Make sure there is no forward chain link in t_ctid */ htup->t_ctid = xlrec->newtid; offnum = PageAddItem(page, (Item) htup, newlen, offnum, true, true); if (offnum == InvalidOffsetNumber) elog(PANIC, "heap_update_redo: failed to add tuple"); if (xlrec->new_all_visible_cleared) PageClearAllVisible(page); freespace = PageGetHeapFreeSpace(page); /* needed to update FSM below */ PageSetLSN(page, lsn); MarkBufferDirty(nbuffer); UnlockReleaseBuffer(nbuffer); if (BufferIsValid(obuffer) && obuffer != nbuffer) UnlockReleaseBuffer(obuffer); /* * If the new page is running low on free space, update the FSM as well. * Arbitrarily, our definition of "low" is less than 20%. We can't do much * better than that without knowing the fill-factor for the table. * * However, don't update the FSM on HOT updates, because after crash * recovery, either the old or the new tuple will certainly be dead and * prunable. After pruning, the page will have roughly as much free space * as it did before the update, assuming the new tuple is about the same * size as the old one. * * XXX: We don't get here if the page was restored from full page image. * We don't bother to update the FSM in that case, it doesn't need to be * totally accurate anyway. */ if (!hot_update && freespace < BLCKSZ / 5) XLogRecordPageWithFreeSpace(xlrec->target.node, ItemPointerGetBlockNumber(&(xlrec->newtid)), freespace); }
static void heap_xlog_visible | ( | XLogRecPtr | lsn, | |
XLogRecord * | record | |||
) | [static] |
Definition at line 6156 of file heapam.c.
References Assert, xl_heap_visible::block, BUFFER_LOCK_EXCLUSIVE, BufferGetPage, BufferIsValid, CreateFakeRelcacheEntry(), xl_heap_visible::cutoff_xid, DataChecksumsEnabled(), FreeFakeRelcacheEntry(), InHotStandby, InvalidBuffer, LockBuffer(), MAIN_FORKNUM, MarkBufferDirty(), xl_heap_visible::node, PageGetLSN, PageSetAllVisible, RBM_NORMAL, ReleaseBuffer(), ResolveRecoveryConflictWithSnapshot(), RestoreBackupBlock(), UnlockReleaseBuffer(), visibilitymap_pin(), visibilitymap_set(), XLogRecord::xl_info, XLogReadBufferExtended(), XLogRecGetData, and XLR_BKP_BLOCK.
Referenced by heap2_redo().
{ xl_heap_visible *xlrec = (xl_heap_visible *) XLogRecGetData(record); /* * If there are any Hot Standby transactions running that have an xmin * horizon old enough that this page isn't all-visible for them, they * might incorrectly decide that an index-only scan can skip a heap fetch. * * NB: It might be better to throw some kind of "soft" conflict here that * forces any index-only scan that is in flight to perform heap fetches, * rather than killing the transaction outright. */ if (InHotStandby) ResolveRecoveryConflictWithSnapshot(xlrec->cutoff_xid, xlrec->node); /* * If heap block was backed up, restore it. This can only happen with * checksums enabled. */ if (record->xl_info & XLR_BKP_BLOCK(1)) { Assert(DataChecksumsEnabled()); (void) RestoreBackupBlock(lsn, record, 1, false, false); } else { Buffer buffer; Page page; /* * Read the heap page, if it still exists. If the heap file has been * dropped or truncated later in recovery, we don't need to update the * page, but we'd better still update the visibility map. */ buffer = XLogReadBufferExtended(xlrec->node, MAIN_FORKNUM, xlrec->block, RBM_NORMAL); if (BufferIsValid(buffer)) { LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE); page = (Page) BufferGetPage(buffer); /* * We don't bump the LSN of the heap page when setting the * visibility map bit (unless checksums are enabled, in which case * we must), because that would generate an unworkable volume of * full-page writes. This exposes us to torn page hazards, but * since we're not inspecting the existing page contents in any * way, we don't care. * * However, all operations that clear the visibility map bit *do* * bump the LSN, and those operations will only be replayed if the * XLOG LSN follows the page LSN. Thus, if the page LSN has * advanced past our XLOG record's LSN, we mustn't mark the page * all-visible, because the subsequent update won't be replayed to * clear the flag. */ if (lsn > PageGetLSN(page)) { PageSetAllVisible(page); MarkBufferDirty(buffer); } /* Done with heap page. */ UnlockReleaseBuffer(buffer); } } /* * Even if we skipped the heap page update due to the LSN interlock, it's * still safe to update the visibility map. Any WAL record that clears * the visibility map bit does so before checking the page LSN, so any * bits that need to be cleared will still be cleared. */ if (record->xl_info & XLR_BKP_BLOCK(0)) (void) RestoreBackupBlock(lsn, record, 0, false, false); else { Relation reln; Buffer vmbuffer = InvalidBuffer; reln = CreateFakeRelcacheEntry(xlrec->node); visibilitymap_pin(reln, xlrec->block, &vmbuffer); /* * Don't set the bit if replay has already passed this point. * * It might be safe to do this unconditionally; if replay has passed * this point, we'll replay at least as far this time as we did * before, and if this bit needs to be cleared, the record responsible * for doing so should be again replayed, and clear it. For right * now, out of an abundance of conservatism, we use the same test here * we did for the heap page. If this results in a dropped bit, no * real harm is done; and the next VACUUM will fix it. */ if (lsn > PageGetLSN(BufferGetPage(vmbuffer))) visibilitymap_set(reln, xlrec->block, InvalidBuffer, lsn, vmbuffer, xlrec->cutoff_xid); ReleaseBuffer(vmbuffer); FreeFakeRelcacheEntry(reln); } }
static void heapgetpage | ( | HeapScanDesc | scan, | |
BlockNumber | page | |||
) | [static] |
Definition at line 299 of file heapam.c.
References Assert, BUFFER_LOCK_SHARE, BUFFER_LOCK_UNLOCK, BufferGetPage, BufferIsValid, CHECK_FOR_INTERRUPTS, CheckForSerializableConflictOut(), FirstOffsetNumber, heap_page_prune_opt(), HeapTupleSatisfiesVisibility, ItemIdGetLength, ItemIdIsNormal, ItemPointerSet, LockBuffer(), MAIN_FORKNUM, MaxHeapTuplesPerPage, PageGetItem, PageGetItemId, PageGetMaxOffsetNumber, PageIsAllVisible, RBM_NORMAL, ReadBufferExtended(), RecentGlobalXmin, ReleaseBuffer(), HeapScanDescData::rs_cblock, HeapScanDescData::rs_cbuf, HeapScanDescData::rs_ntuples, HeapScanDescData::rs_pageatatime, HeapScanDescData::rs_rd, HeapScanDescData::rs_snapshot, HeapScanDescData::rs_strategy, HeapScanDescData::rs_vistuples, HeapTupleData::t_data, HeapTupleData::t_len, HeapTupleData::t_self, SnapshotData::takenDuringRecovery, and TransactionIdIsValid.
Referenced by heapgettup(), and heapgettup_pagemode().
{ Buffer buffer; Snapshot snapshot; Page dp; int lines; int ntup; OffsetNumber lineoff; ItemId lpp; bool all_visible; Assert(page < scan->rs_nblocks); /* release previous scan buffer, if any */ if (BufferIsValid(scan->rs_cbuf)) { ReleaseBuffer(scan->rs_cbuf); scan->rs_cbuf = InvalidBuffer; } /* * Be sure to check for interrupts at least once per page. Checks at * higher code levels won't be able to stop a seqscan that encounters many * pages' worth of consecutive dead tuples. */ CHECK_FOR_INTERRUPTS(); /* read page using selected strategy */ scan->rs_cbuf = ReadBufferExtended(scan->rs_rd, MAIN_FORKNUM, page, RBM_NORMAL, scan->rs_strategy); scan->rs_cblock = page; if (!scan->rs_pageatatime) return; buffer = scan->rs_cbuf; snapshot = scan->rs_snapshot; /* * Prune and repair fragmentation for the whole page, if possible. */ Assert(TransactionIdIsValid(RecentGlobalXmin)); heap_page_prune_opt(scan->rs_rd, buffer, RecentGlobalXmin); /* * We must hold share lock on the buffer content while examining tuple * visibility. Afterwards, however, the tuples we have found to be * visible are guaranteed good as long as we hold the buffer pin. */ LockBuffer(buffer, BUFFER_LOCK_SHARE); dp = (Page) BufferGetPage(buffer); lines = PageGetMaxOffsetNumber(dp); ntup = 0; /* * If the all-visible flag indicates that all tuples on the page are * visible to everyone, we can skip the per-tuple visibility tests. * * Note: In hot standby, a tuple that's already visible to all * transactions in the master might still be invisible to a read-only * transaction in the standby. We partly handle this problem by tracking * the minimum xmin of visible tuples as the cut-off XID while marking a * page all-visible on master and WAL log that along with the visibility * map SET operation. In hot standby, we wait for (or abort) all * transactions that can potentially may not see one or more tuples on the * page. That's how index-only scans work fine in hot standby. A crucial * difference between index-only scans and heap scans is that the * index-only scan completely relies on the visibility map where as heap * scan looks at the page-level PD_ALL_VISIBLE flag. We are not sure if the * page-level flag can be trusted in the same way, because it might get * propagated somehow without being explicitly WAL-logged, e.g. via a full * page write. Until we can prove that beyond doubt, let's check each * tuple for visibility the hard way. */ all_visible = PageIsAllVisible(dp) && !snapshot->takenDuringRecovery; for (lineoff = FirstOffsetNumber, lpp = PageGetItemId(dp, lineoff); lineoff <= lines; lineoff++, lpp++) { if (ItemIdIsNormal(lpp)) { HeapTupleData loctup; bool valid; loctup.t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp); loctup.t_len = ItemIdGetLength(lpp); ItemPointerSet(&(loctup.t_self), page, lineoff); if (all_visible) valid = true; else valid = HeapTupleSatisfiesVisibility(&loctup, snapshot, buffer); CheckForSerializableConflictOut(valid, scan->rs_rd, &loctup, buffer, snapshot); if (valid) scan->rs_vistuples[ntup++] = lineoff; } } LockBuffer(buffer, BUFFER_LOCK_UNLOCK); Assert(ntup <= MaxHeapTuplesPerPage); scan->rs_ntuples = ntup; }
static void heapgettup | ( | HeapScanDesc | scan, | |
ScanDirection | dir, | |||
int | nkeys, | |||
ScanKey | key | |||
) | [static] |
Definition at line 432 of file heapam.c.
References Assert, BUFFER_LOCK_SHARE, BUFFER_LOCK_UNLOCK, BufferGetPage, BufferIsValid, CheckForSerializableConflictOut(), FirstOffsetNumber, heapgetpage(), HeapKeyTest, HeapTupleSatisfiesVisibility, ItemIdGetLength, ItemIdIsNormal, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, ItemPointerSet, LockBuffer(), NULL, OffsetNumberNext, OffsetNumberPrev, PageGetItem, PageGetItemId, PageGetMaxOffsetNumber, RelationGetDescr, ReleaseBuffer(), HeapScanDescData::rs_cblock, HeapScanDescData::rs_cbuf, HeapScanDescData::rs_ctup, HeapScanDescData::rs_inited, HeapScanDescData::rs_nblocks, HeapScanDescData::rs_rd, HeapScanDescData::rs_snapshot, HeapScanDescData::rs_startblock, HeapScanDescData::rs_syncscan, ScanDirectionIsBackward, ScanDirectionIsForward, ss_report_location(), HeapTupleData::t_data, HeapTupleData::t_len, and HeapTupleData::t_self.
Referenced by heap_getnext(), and heap_restrpos().
{ HeapTuple tuple = &(scan->rs_ctup); Snapshot snapshot = scan->rs_snapshot; bool backward = ScanDirectionIsBackward(dir); BlockNumber page; bool finished; Page dp; int lines; OffsetNumber lineoff; int linesleft; ItemId lpp; /* * calculate next starting lineoff, given scan direction */ if (ScanDirectionIsForward(dir)) { if (!scan->rs_inited) { /* * return null immediately if relation is empty */ if (scan->rs_nblocks == 0) { Assert(!BufferIsValid(scan->rs_cbuf)); tuple->t_data = NULL; return; } page = scan->rs_startblock; /* first page */ heapgetpage(scan, page); lineoff = FirstOffsetNumber; /* first offnum */ scan->rs_inited = true; } else { /* continue from previously returned page/tuple */ page = scan->rs_cblock; /* current page */ lineoff = /* next offnum */ OffsetNumberNext(ItemPointerGetOffsetNumber(&(tuple->t_self))); } LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE); dp = (Page) BufferGetPage(scan->rs_cbuf); lines = PageGetMaxOffsetNumber(dp); /* page and lineoff now reference the physically next tid */ linesleft = lines - lineoff + 1; } else if (backward) { if (!scan->rs_inited) { /* * return null immediately if relation is empty */ if (scan->rs_nblocks == 0) { Assert(!BufferIsValid(scan->rs_cbuf)); tuple->t_data = NULL; return; } /* * Disable reporting to syncscan logic in a backwards scan; it's * not very likely anyone else is doing the same thing at the same * time, and much more likely that we'll just bollix things for * forward scanners. */ scan->rs_syncscan = false; /* start from last page of the scan */ if (scan->rs_startblock > 0) page = scan->rs_startblock - 1; else page = scan->rs_nblocks - 1; heapgetpage(scan, page); } else { /* continue from previously returned page/tuple */ page = scan->rs_cblock; /* current page */ } LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE); dp = (Page) BufferGetPage(scan->rs_cbuf); lines = PageGetMaxOffsetNumber(dp); if (!scan->rs_inited) { lineoff = lines; /* final offnum */ scan->rs_inited = true; } else { lineoff = /* previous offnum */ OffsetNumberPrev(ItemPointerGetOffsetNumber(&(tuple->t_self))); } /* page and lineoff now reference the physically previous tid */ linesleft = lineoff; } else { /* * ``no movement'' scan direction: refetch prior tuple */ if (!scan->rs_inited) { Assert(!BufferIsValid(scan->rs_cbuf)); tuple->t_data = NULL; return; } page = ItemPointerGetBlockNumber(&(tuple->t_self)); if (page != scan->rs_cblock) heapgetpage(scan, page); /* Since the tuple was previously fetched, needn't lock page here */ dp = (Page) BufferGetPage(scan->rs_cbuf); lineoff = ItemPointerGetOffsetNumber(&(tuple->t_self)); lpp = PageGetItemId(dp, lineoff); Assert(ItemIdIsNormal(lpp)); tuple->t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp); tuple->t_len = ItemIdGetLength(lpp); return; } /* * advance the scan until we find a qualifying tuple or run out of stuff * to scan */ lpp = PageGetItemId(dp, lineoff); for (;;) { while (linesleft > 0) { if (ItemIdIsNormal(lpp)) { bool valid; tuple->t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp); tuple->t_len = ItemIdGetLength(lpp); ItemPointerSet(&(tuple->t_self), page, lineoff); /* * if current tuple qualifies, return it. */ valid = HeapTupleSatisfiesVisibility(tuple, snapshot, scan->rs_cbuf); CheckForSerializableConflictOut(valid, scan->rs_rd, tuple, scan->rs_cbuf, snapshot); if (valid && key != NULL) HeapKeyTest(tuple, RelationGetDescr(scan->rs_rd), nkeys, key, valid); if (valid) { LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK); return; } } /* * otherwise move to the next item on the page */ --linesleft; if (backward) { --lpp; /* move back in this page's ItemId array */ --lineoff; } else { ++lpp; /* move forward in this page's ItemId array */ ++lineoff; } } /* * if we get here, it means we've exhausted the items on this page and * it's time to move to the next. */ LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK); /* * advance to next/prior page and detect end of scan */ if (backward) { finished = (page == scan->rs_startblock); if (page == 0) page = scan->rs_nblocks; page--; } else { page++; if (page >= scan->rs_nblocks) page = 0; finished = (page == scan->rs_startblock); /* * Report our new scan position for synchronization purposes. We * don't do that when moving backwards, however. That would just * mess up any other forward-moving scanners. * * Note: we do this before checking for end of scan so that the * final state of the position hint is back at the start of the * rel. That's not strictly necessary, but otherwise when you run * the same query multiple times the starting position would shift * a little bit backwards on every invocation, which is confusing. * We don't guarantee any specific ordering in general, though. */ if (scan->rs_syncscan) ss_report_location(scan->rs_rd, page); } /* * return NULL if we've exhausted all the pages */ if (finished) { if (BufferIsValid(scan->rs_cbuf)) ReleaseBuffer(scan->rs_cbuf); scan->rs_cbuf = InvalidBuffer; scan->rs_cblock = InvalidBlockNumber; tuple->t_data = NULL; scan->rs_inited = false; return; } heapgetpage(scan, page); LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE); dp = (Page) BufferGetPage(scan->rs_cbuf); lines = PageGetMaxOffsetNumber((Page) dp); linesleft = lines; if (backward) { lineoff = lines; lpp = PageGetItemId(dp, lines); } else { lineoff = FirstOffsetNumber; lpp = PageGetItemId(dp, FirstOffsetNumber); } } }
static void heapgettup_pagemode | ( | HeapScanDesc | scan, | |
ScanDirection | dir, | |||
int | nkeys, | |||
ScanKey | key | |||
) | [static] |
Definition at line 707 of file heapam.c.
References Assert, BufferGetPage, BufferIsValid, heapgetpage(), HeapKeyTest, ItemIdGetLength, ItemIdIsNormal, ItemPointerGetBlockNumber, ItemPointerGetOffsetNumber, ItemPointerSet, NULL, PageGetItem, PageGetItemId, RelationGetDescr, ReleaseBuffer(), HeapScanDescData::rs_cblock, HeapScanDescData::rs_cbuf, HeapScanDescData::rs_cindex, HeapScanDescData::rs_ctup, HeapScanDescData::rs_inited, HeapScanDescData::rs_nblocks, HeapScanDescData::rs_ntuples, HeapScanDescData::rs_rd, HeapScanDescData::rs_startblock, HeapScanDescData::rs_syncscan, HeapScanDescData::rs_vistuples, ScanDirectionIsBackward, ScanDirectionIsForward, ss_report_location(), HeapTupleData::t_data, HeapTupleData::t_len, and HeapTupleData::t_self.
Referenced by heap_getnext(), and heap_restrpos().
{ HeapTuple tuple = &(scan->rs_ctup); bool backward = ScanDirectionIsBackward(dir); BlockNumber page; bool finished; Page dp; int lines; int lineindex; OffsetNumber lineoff; int linesleft; ItemId lpp; /* * calculate next starting lineindex, given scan direction */ if (ScanDirectionIsForward(dir)) { if (!scan->rs_inited) { /* * return null immediately if relation is empty */ if (scan->rs_nblocks == 0) { Assert(!BufferIsValid(scan->rs_cbuf)); tuple->t_data = NULL; return; } page = scan->rs_startblock; /* first page */ heapgetpage(scan, page); lineindex = 0; scan->rs_inited = true; } else { /* continue from previously returned page/tuple */ page = scan->rs_cblock; /* current page */ lineindex = scan->rs_cindex + 1; } dp = (Page) BufferGetPage(scan->rs_cbuf); lines = scan->rs_ntuples; /* page and lineindex now reference the next visible tid */ linesleft = lines - lineindex; } else if (backward) { if (!scan->rs_inited) { /* * return null immediately if relation is empty */ if (scan->rs_nblocks == 0) { Assert(!BufferIsValid(scan->rs_cbuf)); tuple->t_data = NULL; return; } /* * Disable reporting to syncscan logic in a backwards scan; it's * not very likely anyone else is doing the same thing at the same * time, and much more likely that we'll just bollix things for * forward scanners. */ scan->rs_syncscan = false; /* start from last page of the scan */ if (scan->rs_startblock > 0) page = scan->rs_startblock - 1; else page = scan->rs_nblocks - 1; heapgetpage(scan, page); } else { /* continue from previously returned page/tuple */ page = scan->rs_cblock; /* current page */ } dp = (Page) BufferGetPage(scan->rs_cbuf); lines = scan->rs_ntuples; if (!scan->rs_inited) { lineindex = lines - 1; scan->rs_inited = true; } else { lineindex = scan->rs_cindex - 1; } /* page and lineindex now reference the previous visible tid */ linesleft = lineindex + 1; } else { /* * ``no movement'' scan direction: refetch prior tuple */ if (!scan->rs_inited) { Assert(!BufferIsValid(scan->rs_cbuf)); tuple->t_data = NULL; return; } page = ItemPointerGetBlockNumber(&(tuple->t_self)); if (page != scan->rs_cblock) heapgetpage(scan, page); /* Since the tuple was previously fetched, needn't lock page here */ dp = (Page) BufferGetPage(scan->rs_cbuf); lineoff = ItemPointerGetOffsetNumber(&(tuple->t_self)); lpp = PageGetItemId(dp, lineoff); Assert(ItemIdIsNormal(lpp)); tuple->t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp); tuple->t_len = ItemIdGetLength(lpp); /* check that rs_cindex is in sync */ Assert(scan->rs_cindex < scan->rs_ntuples); Assert(lineoff == scan->rs_vistuples[scan->rs_cindex]); return; } /* * advance the scan until we find a qualifying tuple or run out of stuff * to scan */ for (;;) { while (linesleft > 0) { lineoff = scan->rs_vistuples[lineindex]; lpp = PageGetItemId(dp, lineoff); Assert(ItemIdIsNormal(lpp)); tuple->t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp); tuple->t_len = ItemIdGetLength(lpp); ItemPointerSet(&(tuple->t_self), page, lineoff); /* * if current tuple qualifies, return it. */ if (key != NULL) { bool valid; HeapKeyTest(tuple, RelationGetDescr(scan->rs_rd), nkeys, key, valid); if (valid) { scan->rs_cindex = lineindex; return; } } else { scan->rs_cindex = lineindex; return; } /* * otherwise move to the next item on the page */ --linesleft; if (backward) --lineindex; else ++lineindex; } /* * if we get here, it means we've exhausted the items on this page and * it's time to move to the next. */ if (backward) { finished = (page == scan->rs_startblock); if (page == 0) page = scan->rs_nblocks; page--; } else { page++; if (page >= scan->rs_nblocks) page = 0; finished = (page == scan->rs_startblock); /* * Report our new scan position for synchronization purposes. We * don't do that when moving backwards, however. That would just * mess up any other forward-moving scanners. * * Note: we do this before checking for end of scan so that the * final state of the position hint is back at the start of the * rel. That's not strictly necessary, but otherwise when you run * the same query multiple times the starting position would shift * a little bit backwards on every invocation, which is confusing. * We don't guarantee any specific ordering in general, though. */ if (scan->rs_syncscan) ss_report_location(scan->rs_rd, page); } /* * return NULL if we've exhausted all the pages */ if (finished) { if (BufferIsValid(scan->rs_cbuf)) ReleaseBuffer(scan->rs_cbuf); scan->rs_cbuf = InvalidBuffer; scan->rs_cblock = InvalidBlockNumber; tuple->t_data = NULL; scan->rs_inited = false; return; } heapgetpage(scan, page); dp = (Page) BufferGetPage(scan->rs_cbuf); lines = scan->rs_ntuples; linesleft = lines; if (backward) lineindex = lines - 1; else lineindex = 0; } }
static void HeapSatisfiesHOTandKeyUpdate | ( | Relation | relation, | |
Bitmapset * | hot_attrs, | |||
Bitmapset * | key_attrs, | |||
bool * | satisfies_hot, | |||
bool * | satisfies_key, | |||
HeapTuple | oldtup, | |||
HeapTuple | newtup | |||
) | [static] |
Definition at line 3718 of file heapam.c.
References bms_first_member(), heap_tuple_attr_equals(), Min, and RelationGetDescr.
Referenced by heap_update().
{ int next_hot_attnum; int next_key_attnum; bool hot_result = true; bool key_result = true; bool key_done = false; bool hot_done = false; next_hot_attnum = bms_first_member(hot_attrs); if (next_hot_attnum == -1) hot_done = true; else /* Adjust for system attributes */ next_hot_attnum += FirstLowInvalidHeapAttributeNumber; next_key_attnum = bms_first_member(key_attrs); if (next_key_attnum == -1) key_done = true; else /* Adjust for system attributes */ next_key_attnum += FirstLowInvalidHeapAttributeNumber; for (;;) { int check_now; bool changed; /* both bitmapsets are now empty */ if (key_done && hot_done) break; /* XXX there's probably an easier way ... */ if (hot_done) check_now = next_key_attnum; if (key_done) check_now = next_hot_attnum; else check_now = Min(next_hot_attnum, next_key_attnum); changed = !heap_tuple_attr_equals(RelationGetDescr(relation), check_now, oldtup, newtup); if (changed) { if (check_now == next_hot_attnum) hot_result = false; if (check_now == next_key_attnum) key_result = false; } /* if both are false now, we can stop checking */ if (!hot_result && !key_result) break; if (check_now == next_hot_attnum) { next_hot_attnum = bms_first_member(hot_attrs); if (next_hot_attnum == -1) hot_done = true; else /* Adjust for system attributes */ next_hot_attnum += FirstLowInvalidHeapAttributeNumber; } if (check_now == next_key_attnum) { next_key_attnum = bms_first_member(key_attrs); if (next_key_attnum == -1) key_done = true; else /* Adjust for system attributes */ next_key_attnum += FirstLowInvalidHeapAttributeNumber; } } *satisfies_hot = hot_result; *satisfies_key = key_result; }
TransactionId HeapTupleGetUpdateXid | ( | HeapTupleHeader | tuple | ) |
Definition at line 5309 of file heapam.c.
References HeapTupleHeaderGetRawXmax, MultiXactIdGetUpdateXid(), and HeapTupleHeaderData::t_infomask.
Referenced by heap_update(), HeapTupleHeaderIsOnlyLocked(), HeapTupleSatisfiesDirty(), HeapTupleSatisfiesMVCC(), HeapTupleSatisfiesNow(), HeapTupleSatisfiesSelf(), HeapTupleSatisfiesUpdate(), and HeapTupleSatisfiesVacuum().
{ return MultiXactIdGetUpdateXid(HeapTupleHeaderGetRawXmax(tuple), tuple->t_infomask); }
void HeapTupleHeaderAdvanceLatestRemovedXid | ( | HeapTupleHeader | tuple, | |
TransactionId * | latestRemovedXid | |||
) |
Definition at line 5554 of file heapam.c.
References HEAP_MOVED, HEAP_XMIN_COMMITTED, HEAP_XMIN_INVALID, HeapTupleHeaderGetUpdateXid, HeapTupleHeaderGetXmin, HeapTupleHeaderGetXvac, HeapTupleHeaderData::t_infomask, TransactionIdDidCommit(), TransactionIdFollows(), and TransactionIdPrecedes().
Referenced by btree_xlog_delete_get_latestRemovedXid(), heap_prune_chain(), and lazy_scan_heap().
{ TransactionId xmin = HeapTupleHeaderGetXmin(tuple); TransactionId xmax = HeapTupleHeaderGetUpdateXid(tuple); TransactionId xvac = HeapTupleHeaderGetXvac(tuple); if (tuple->t_infomask & HEAP_MOVED) { if (TransactionIdPrecedes(*latestRemovedXid, xvac)) *latestRemovedXid = xvac; } /* * Ignore tuples inserted by an aborted transaction or if the tuple was * updated/deleted by the inserting transaction. * * Look for a committed hint bit, or if no xmin bit is set, check clog. * This needs to work on both master and standby, where it is used to * assess btree delete records. */ if ((tuple->t_infomask & HEAP_XMIN_COMMITTED) || (!(tuple->t_infomask & HEAP_XMIN_COMMITTED) && !(tuple->t_infomask & HEAP_XMIN_INVALID) && TransactionIdDidCommit(xmin))) { if (xmax != xmin && TransactionIdFollows(xmax, *latestRemovedXid)) *latestRemovedXid = xmax; } /* *latestRemovedXid may still be invalid at end */ }
static void initscan | ( | HeapScanDesc | scan, | |
ScanKey | key, | |||
bool | is_rescan | |||
) | [static] |
Definition at line 196 of file heapam.c.
References BAS_BULKREAD, FreeAccessStrategy(), GetAccessStrategy(), ItemPointerSetInvalid, NBuffers, NULL, pgstat_count_heap_scan, RelationGetNumberOfBlocks, RelationUsesLocalBuffers, HeapScanDescData::rs_allow_strat, HeapScanDescData::rs_allow_sync, HeapScanDescData::rs_bitmapscan, HeapScanDescData::rs_cblock, HeapScanDescData::rs_cbuf, HeapScanDescData::rs_ctup, HeapScanDescData::rs_inited, HeapScanDescData::rs_key, HeapScanDescData::rs_mctid, HeapScanDescData::rs_nblocks, HeapScanDescData::rs_nkeys, HeapScanDescData::rs_rd, HeapScanDescData::rs_startblock, HeapScanDescData::rs_strategy, HeapScanDescData::rs_syncscan, ss_get_location(), synchronize_seqscans, HeapTupleData::t_data, and HeapTupleData::t_self.
Referenced by heap_beginscan_internal(), and heap_rescan().
{ bool allow_strat; bool allow_sync; /* * Determine the number of blocks we have to scan. * * It is sufficient to do this once at scan start, since any tuples added * while the scan is in progress will be invisible to my snapshot anyway. * (That is not true when using a non-MVCC snapshot. However, we couldn't * guarantee to return tuples added after scan start anyway, since they * might go into pages we already scanned. To guarantee consistent * results for a non-MVCC snapshot, the caller must hold some higher-level * lock that ensures the interesting tuple(s) won't change.) */ scan->rs_nblocks = RelationGetNumberOfBlocks(scan->rs_rd); /* * If the table is large relative to NBuffers, use a bulk-read access * strategy and enable synchronized scanning (see syncscan.c). Although * the thresholds for these features could be different, we make them the * same so that there are only two behaviors to tune rather than four. * (However, some callers need to be able to disable one or both of these * behaviors, independently of the size of the table; also there is a GUC * variable that can disable synchronized scanning.) * * During a rescan, don't make a new strategy object if we don't have to. */ if (!RelationUsesLocalBuffers(scan->rs_rd) && scan->rs_nblocks > NBuffers / 4) { allow_strat = scan->rs_allow_strat; allow_sync = scan->rs_allow_sync; } else allow_strat = allow_sync = false; if (allow_strat) { if (scan->rs_strategy == NULL) scan->rs_strategy = GetAccessStrategy(BAS_BULKREAD); } else { if (scan->rs_strategy != NULL) FreeAccessStrategy(scan->rs_strategy); scan->rs_strategy = NULL; } if (is_rescan) { /* * If rescan, keep the previous startblock setting so that rewinding a * cursor doesn't generate surprising results. Reset the syncscan * setting, though. */ scan->rs_syncscan = (allow_sync && synchronize_seqscans); } else if (allow_sync && synchronize_seqscans) { scan->rs_syncscan = true; scan->rs_startblock = ss_get_location(scan->rs_rd, scan->rs_nblocks); } else { scan->rs_syncscan = false; scan->rs_startblock = 0; } scan->rs_inited = false; scan->rs_ctup.t_data = NULL; ItemPointerSetInvalid(&scan->rs_ctup.t_self); scan->rs_cbuf = InvalidBuffer; scan->rs_cblock = InvalidBlockNumber; /* we don't have a marked position... */ ItemPointerSetInvalid(&(scan->rs_mctid)); /* page-at-a-time fields are always invalid when not rs_inited */ /* * copy the scan key, if appropriate */ if (key != NULL) memcpy(scan->rs_key, key, scan->rs_nkeys * sizeof(ScanKeyData)); /* * Currently, we don't have a stats counter for bitmap heap scans (but the * underlying bitmap index scans will be counted). */ if (!scan->rs_bitmapscan) pgstat_count_heap_scan(scan->rs_rd); }
XLogRecPtr log_heap_clean | ( | Relation | reln, | |
Buffer | buffer, | |||
OffsetNumber * | redirected, | |||
int | nredirected, | |||
OffsetNumber * | nowdead, | |||
int | ndead, | |||
OffsetNumber * | nowunused, | |||
int | nunused, | |||
TransactionId | latestRemovedXid | |||
) |
Definition at line 5627 of file heapam.c.
References Assert, xl_heap_clean::block, XLogRecData::buffer, XLogRecData::buffer_std, BufferGetBlockNumber(), XLogRecData::data, xl_heap_clean::latestRemovedXid, XLogRecData::len, xl_heap_clean::ndead, XLogRecData::next, xl_heap_clean::node, xl_heap_clean::nredirected, RelationData::rd_node, RelationNeedsWAL, and XLogInsert().
Referenced by heap_page_prune(), and lazy_vacuum_page().
{ xl_heap_clean xlrec; uint8 info; XLogRecPtr recptr; XLogRecData rdata[4]; /* Caller should not call me on a non-WAL-logged relation */ Assert(RelationNeedsWAL(reln)); xlrec.node = reln->rd_node; xlrec.block = BufferGetBlockNumber(buffer); xlrec.latestRemovedXid = latestRemovedXid; xlrec.nredirected = nredirected; xlrec.ndead = ndead; rdata[0].data = (char *) &xlrec; rdata[0].len = SizeOfHeapClean; rdata[0].buffer = InvalidBuffer; rdata[0].next = &(rdata[1]); /* * The OffsetNumber arrays are not actually in the buffer, but we pretend * that they are. When XLogInsert stores the whole buffer, the offset * arrays need not be stored too. Note that even if all three arrays are * empty, we want to expose the buffer as a candidate for whole-page * storage, since this record type implies a defragmentation operation * even if no item pointers changed state. */ if (nredirected > 0) { rdata[1].data = (char *) redirected; rdata[1].len = nredirected * sizeof(OffsetNumber) * 2; } else { rdata[1].data = NULL; rdata[1].len = 0; } rdata[1].buffer = buffer; rdata[1].buffer_std = true; rdata[1].next = &(rdata[2]); if (ndead > 0) { rdata[2].data = (char *) nowdead; rdata[2].len = ndead * sizeof(OffsetNumber); } else { rdata[2].data = NULL; rdata[2].len = 0; } rdata[2].buffer = buffer; rdata[2].buffer_std = true; rdata[2].next = &(rdata[3]); if (nunused > 0) { rdata[3].data = (char *) nowunused; rdata[3].len = nunused * sizeof(OffsetNumber); } else { rdata[3].data = NULL; rdata[3].len = 0; } rdata[3].buffer = buffer; rdata[3].buffer_std = true; rdata[3].next = NULL; info = XLOG_HEAP2_CLEAN; recptr = XLogInsert(RM_HEAP2_ID, info, rdata); return recptr; }
XLogRecPtr log_heap_cleanup_info | ( | RelFileNode | rnode, | |
TransactionId | latestRemovedXid | |||
) |
Definition at line 5595 of file heapam.c.
References XLogRecData::buffer, XLogRecData::data, xl_heap_cleanup_info::latestRemovedXid, XLogRecData::len, XLogRecData::next, xl_heap_cleanup_info::node, XLOG_HEAP2_CLEANUP_INFO, and XLogInsert().
Referenced by vacuum_log_cleanup_info().
{ xl_heap_cleanup_info xlrec; XLogRecPtr recptr; XLogRecData rdata; xlrec.node = rnode; xlrec.latestRemovedXid = latestRemovedXid; rdata.data = (char *) &xlrec; rdata.len = SizeOfHeapCleanupInfo; rdata.buffer = InvalidBuffer; rdata.next = NULL; recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_CLEANUP_INFO, &rdata); return recptr; }
XLogRecPtr log_heap_freeze | ( | Relation | reln, | |
Buffer | buffer, | |||
TransactionId | cutoff_xid, | |||
MultiXactId | cutoff_multi, | |||
OffsetNumber * | offsets, | |||
int | offcnt | |||
) |
Definition at line 5713 of file heapam.c.
References Assert, xl_heap_freeze::block, XLogRecData::buffer, XLogRecData::buffer_std, BufferGetBlockNumber(), xl_heap_freeze::cutoff_multi, xl_heap_freeze::cutoff_xid, XLogRecData::data, XLogRecData::len, XLogRecData::next, xl_heap_freeze::node, RelationData::rd_node, RelationNeedsWAL, XLOG_HEAP2_FREEZE, and XLogInsert().
Referenced by lazy_scan_heap().
{ xl_heap_freeze xlrec; XLogRecPtr recptr; XLogRecData rdata[2]; /* Caller should not call me on a non-WAL-logged relation */ Assert(RelationNeedsWAL(reln)); /* nor when there are no tuples to freeze */ Assert(offcnt > 0); xlrec.node = reln->rd_node; xlrec.block = BufferGetBlockNumber(buffer); xlrec.cutoff_xid = cutoff_xid; xlrec.cutoff_multi = cutoff_multi; rdata[0].data = (char *) &xlrec; rdata[0].len = SizeOfHeapFreeze; rdata[0].buffer = InvalidBuffer; rdata[0].next = &(rdata[1]); /* * The tuple-offsets array is not actually in the buffer, but pretend that * it is. When XLogInsert stores the whole buffer, the offsets array need * not be stored too. */ rdata[1].data = (char *) offsets; rdata[1].len = offcnt * sizeof(OffsetNumber); rdata[1].buffer = buffer; rdata[1].buffer_std = true; rdata[1].next = NULL; recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_FREEZE, rdata); return recptr; }
static XLogRecPtr log_heap_update | ( | Relation | reln, | |
Buffer | oldbuf, | |||
Buffer | newbuf, | |||
HeapTuple | oldtup, | |||
HeapTuple | newtup, | |||
bool | all_visible_cleared, | |||
bool | new_all_visible_cleared | |||
) | [static] |
Definition at line 5808 of file heapam.c.
References xl_heap_update::all_visible_cleared, Assert, XLogRecData::buffer, XLogRecData::buffer_std, BufferGetPage, compute_infobits(), XLogRecData::data, FirstOffsetNumber, HeapTupleHeaderGetRawXmax, HeapTupleIsHeapOnly, ItemPointerGetOffsetNumber, XLogRecData::len, xl_heap_update::new_all_visible_cleared, xl_heap_update::new_xmax, xl_heap_update::newtid, XLogRecData::next, xl_heaptid::node, offsetof, xl_heap_update::old_infobits_set, xl_heap_update::old_xmax, PageGetMaxOffsetNumber, RelationData::rd_node, RelationNeedsWAL, HeapTupleData::t_data, HeapTupleHeaderData::t_hoff, xl_heap_header::t_hoff, xl_heap_header::t_infomask, HeapTupleHeaderData::t_infomask, xl_heap_header::t_infomask2, HeapTupleHeaderData::t_infomask2, HeapTupleData::t_len, HeapTupleData::t_self, xl_heap_update::target, xl_heaptid::tid, and XLogInsert().
Referenced by heap_update().
{ xl_heap_update xlrec; xl_heap_header xlhdr; uint8 info; XLogRecPtr recptr; XLogRecData rdata[4]; Page page = BufferGetPage(newbuf); /* Caller should not call me on a non-WAL-logged relation */ Assert(RelationNeedsWAL(reln)); if (HeapTupleIsHeapOnly(newtup)) info = XLOG_HEAP_HOT_UPDATE; else info = XLOG_HEAP_UPDATE; xlrec.target.node = reln->rd_node; xlrec.target.tid = oldtup->t_self; xlrec.old_xmax = HeapTupleHeaderGetRawXmax(oldtup->t_data); xlrec.old_infobits_set = compute_infobits(oldtup->t_data->t_infomask, oldtup->t_data->t_infomask2); xlrec.new_xmax = HeapTupleHeaderGetRawXmax(newtup->t_data); xlrec.all_visible_cleared = all_visible_cleared; xlrec.newtid = newtup->t_self; xlrec.new_all_visible_cleared = new_all_visible_cleared; rdata[0].data = (char *) &xlrec; rdata[0].len = SizeOfHeapUpdate; rdata[0].buffer = InvalidBuffer; rdata[0].next = &(rdata[1]); rdata[1].data = NULL; rdata[1].len = 0; rdata[1].buffer = oldbuf; rdata[1].buffer_std = true; rdata[1].next = &(rdata[2]); xlhdr.t_infomask2 = newtup->t_data->t_infomask2; xlhdr.t_infomask = newtup->t_data->t_infomask; xlhdr.t_hoff = newtup->t_data->t_hoff; /* * As with insert records, we need not store the rdata[2] segment if we * decide to store the whole buffer instead. */ rdata[2].data = (char *) &xlhdr; rdata[2].len = SizeOfHeapHeader; rdata[2].buffer = newbuf; rdata[2].buffer_std = true; rdata[2].next = &(rdata[3]); /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */ rdata[3].data = (char *) newtup->t_data + offsetof(HeapTupleHeaderData, t_bits); rdata[3].len = newtup->t_len - offsetof(HeapTupleHeaderData, t_bits); rdata[3].buffer = newbuf; rdata[3].buffer_std = true; rdata[3].next = NULL; /* If new tuple is the single and first tuple on page... */ if (ItemPointerGetOffsetNumber(&(newtup->t_self)) == FirstOffsetNumber && PageGetMaxOffsetNumber(page) == FirstOffsetNumber) { info |= XLOG_HEAP_INIT_PAGE; rdata[2].buffer = rdata[3].buffer = InvalidBuffer; } recptr = XLogInsert(RM_HEAP_ID, info, rdata); return recptr; }
XLogRecPtr log_heap_visible | ( | RelFileNode | rnode, | |
Buffer | heap_buffer, | |||
Buffer | vm_buffer, | |||
TransactionId | cutoff_xid | |||
) |
Definition at line 5762 of file heapam.c.
References Assert, xl_heap_visible::block, XLogRecData::buffer, XLogRecData::buffer_std, BufferGetBlockNumber(), BufferIsValid, xl_heap_visible::cutoff_xid, XLogRecData::data, DataChecksumsEnabled(), XLogRecData::len, XLogRecData::next, xl_heap_visible::node, XLOG_HEAP2_VISIBLE, and XLogInsert().
Referenced by visibilitymap_set().
{ xl_heap_visible xlrec; XLogRecPtr recptr; XLogRecData rdata[3]; Assert(BufferIsValid(heap_buffer)); Assert(BufferIsValid(vm_buffer)); xlrec.node = rnode; xlrec.block = BufferGetBlockNumber(heap_buffer); xlrec.cutoff_xid = cutoff_xid; rdata[0].data = (char *) &xlrec; rdata[0].len = SizeOfHeapVisible; rdata[0].buffer = InvalidBuffer; rdata[0].next = &(rdata[1]); rdata[1].data = NULL; rdata[1].len = 0; rdata[1].buffer = vm_buffer; rdata[1].buffer_std = false; rdata[1].next = NULL; if (DataChecksumsEnabled()) { rdata[1].next = &(rdata[2]); rdata[2].data = NULL; rdata[2].len = 0; rdata[2].buffer = heap_buffer; rdata[2].buffer_std = true; rdata[2].next = NULL; } recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_VISIBLE, rdata); return recptr; }
XLogRecPtr log_newpage | ( | RelFileNode * | rnode, | |
ForkNumber | forkNum, | |||
BlockNumber | blkno, | |||
Page | page | |||
) |
Definition at line 5894 of file heapam.c.
References xl_heap_newpage::blkno, XLogRecData::buffer, XLogRecData::data, END_CRIT_SECTION, xl_heap_newpage::forknum, XLogRecData::len, XLogRecData::next, xl_heap_newpage::node, PageIsNew, PageSetLSN, START_CRIT_SECTION, XLOG_HEAP_NEWPAGE, and XLogInsert().
Referenced by _bt_blwritepage(), btbuildempty(), copy_relation_data(), end_heap_rewrite(), raw_heap_insert(), SetMatViewToPopulated(), and spgbuildempty().
{ xl_heap_newpage xlrec; XLogRecPtr recptr; XLogRecData rdata[2]; /* NO ELOG(ERROR) from here till newpage op is logged */ START_CRIT_SECTION(); xlrec.node = *rnode; xlrec.forknum = forkNum; xlrec.blkno = blkno; rdata[0].data = (char *) &xlrec; rdata[0].len = SizeOfHeapNewpage; rdata[0].buffer = InvalidBuffer; rdata[0].next = &(rdata[1]); rdata[1].data = (char *) page; rdata[1].len = BLCKSZ; rdata[1].buffer = InvalidBuffer; rdata[1].next = NULL; recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_NEWPAGE, rdata); /* * The page may be uninitialized. If so, we can't set the LSN and TLI * because that would corrupt the page. */ if (!PageIsNew(page)) { PageSetLSN(page, recptr); } END_CRIT_SECTION(); return recptr; }
XLogRecPtr log_newpage_buffer | ( | Buffer | buffer | ) |
Definition at line 5944 of file heapam.c.
References Assert, xl_heap_newpage::blkno, XLogRecData::buffer, BufferGetPage, BufferGetTag(), CritSectionCount, XLogRecData::data, xl_heap_newpage::forknum, XLogRecData::len, XLogRecData::next, xl_heap_newpage::node, PageIsNew, PageSetLSN, XLOG_HEAP_NEWPAGE, and XLogInsert().
Referenced by ginbuildempty(), and gistbuildempty().
{ xl_heap_newpage xlrec; XLogRecPtr recptr; XLogRecData rdata[2]; Page page = BufferGetPage(buffer); /* We should be in a critical section. */ Assert(CritSectionCount > 0); BufferGetTag(buffer, &xlrec.node, &xlrec.forknum, &xlrec.blkno); rdata[0].data = (char *) &xlrec; rdata[0].len = SizeOfHeapNewpage; rdata[0].buffer = InvalidBuffer; rdata[0].next = &(rdata[1]); rdata[1].data = page; rdata[1].len = BLCKSZ; rdata[1].buffer = InvalidBuffer; rdata[1].next = NULL; recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_NEWPAGE, rdata); /* * The page may be uninitialized. If so, we can't set the LSN and TLI * because that would corrupt the page. */ if (!PageIsNew(page)) { PageSetLSN(page, recptr); } return recptr; }
static TransactionId MultiXactIdGetUpdateXid | ( | TransactionId | xmax, | |
uint16 | t_infomask | |||
) | [static] |
Definition at line 5250 of file heapam.c.
References Assert, GetMultiXactIdMembers(), HEAP_XMAX_IS_MULTI, HEAP_XMAX_LOCK_ONLY, i, InvalidTransactionId, MultiXactStatusForKeyShare, MultiXactStatusForNoKeyUpdate, MultiXactStatusForShare, MultiXactStatusForUpdate, MultiXactStatusNoKeyUpdate, MultiXactStatusUpdate, pfree(), status(), TransactionIdDidAbort(), and MultiXactMember::xid.
Referenced by compute_new_xmax_infomask(), and HeapTupleGetUpdateXid().
{ TransactionId update_xact = InvalidTransactionId; MultiXactMember *members; int nmembers; Assert(!(t_infomask & HEAP_XMAX_LOCK_ONLY)); Assert(t_infomask & HEAP_XMAX_IS_MULTI); /* * Since we know the LOCK_ONLY bit is not set, this cannot be a * multi from pre-pg_upgrade. */ nmembers = GetMultiXactIdMembers(xmax, &members, false); if (nmembers > 0) { int i; for (i = 0; i < nmembers; i++) { /* Ignore lockers */ if (members[i].status == MultiXactStatusForKeyShare || members[i].status == MultiXactStatusForShare || members[i].status == MultiXactStatusForNoKeyUpdate || members[i].status == MultiXactStatusForUpdate) continue; /* ignore aborted transactions */ if (TransactionIdDidAbort(members[i].xid)) continue; /* there should be at most one non-aborted updater */ Assert(update_xact == InvalidTransactionId); Assert(members[i].status == MultiXactStatusNoKeyUpdate || members[i].status == MultiXactStatusUpdate); update_xact = members[i].xid; #ifndef USE_ASSERT_CHECKING /* * in an assert-enabled build, walk the whole array to ensure * there's no other updater. */ break; #endif } pfree(members); } return update_xact; }
static void MultiXactIdWait | ( | MultiXactId | multi, | |
MultiXactStatus | status, | |||
int * | remaining, | |||
uint16 | infomask | |||
) | [static] |
Definition at line 5405 of file heapam.c.
References Do_MultiXactIdWait().
Referenced by heap_delete(), heap_lock_tuple(), and heap_update().
{ Do_MultiXactIdWait(multi, status, remaining, infomask, false); }
Definition at line 1159 of file heapam.c.
References Assert, LockInfoData::lockRelId, MAX_LOCKMODES, NoLock, RelationData::rd_lockInfo, RelationClose(), and UnlockRelationId().
Referenced by AlterExtensionNamespace(), AlterObjectNamespace_oid(), AlterSeqNamespaces(), AlterSequence(), AlterTableNamespace(), analyze_rel(), ATController(), ATExecChangeOwner(), ATExecSetTableSpace(), ATPostAlterTypeParse(), ATRewriteCatalogs(), ATSimpleRecursion(), ATTypedTableRecursion(), bt_metap(), bt_page_items(), bt_page_stats(), build_row_from_class(), BuildEventTriggerCache(), calculate_indexes_size(), calculate_toast_table_size(), change_owner_recurse_to_sequences(), check_of_type(), CheckAttributeType(), cluster_rel(), CommentObject(), currval_oid(), dblink_build_sql_delete(), dblink_build_sql_insert(), dblink_build_sql_update(), dblink_get_pkey(), DefineRelation(), DefineVirtualRelation(), do_setval(), ExecAlterExtensionContentsStmt(), ExecSecLabelStmt(), ExecuteTruncate(), expandRelation(), find_composite_type_dependencies(), finish_heap_swap(), get_raw_page_internal(), get_rels_with_domain(), get_tables_to_cluster(), heap_drop_with_catalog(), lastval(), load_typcache_tupdesc(), nextval_internal(), pg_freespace(), pg_indexes_size(), pg_relation_is_scannable(), pg_relation_size(), pg_relpages(), pg_sequence_parameters(), pg_table_size(), pg_total_relation_size(), pgstat_heap(), pgstat_index(), pgstatginindex(), pgstatindex(), pltcl_init_load_unknown(), process_owned_by(), relation_is_updatable(), RelationNameGetTupleDesc(), RemoveAttrDefaultById(), RemoveAttributeById(), rename_constraint_internal(), renameatt_internal(), RenameRelationInternal(), RenameRewriteRule(), renametrig(), ResetSequence(), set_relation_column_names(), transformAlterTableStmt(), transformIndexConstraint(), UpdateRangeTableOfViewParse(), and vacuum_rel().
{ LockRelId relid = relation->rd_lockInfo.lockRelId; Assert(lockmode >= NoLock && lockmode < MAX_LOCKMODES); /* The relcache does the real work... */ RelationClose(relation); if (lockmode != NoLock) UnlockRelationId(&relid, lockmode); }
Definition at line 1013 of file heapam.c.
References Assert, elog, ERROR, LockRelationOid(), MAX_LOCKMODES, MyXactAccessedTempRel, NoLock, pgstat_initstats(), RelationIdGetRelation(), RelationIsValid, and RelationUsesLocalBuffers.
Referenced by AlterObjectNamespace_oid(), AlterSeqNamespaces(), AlterTable(), AlterTableInternal(), AlterTableNamespace(), ATExecChangeOwner(), ATExecSetTableSpace(), ATRewriteCatalogs(), ATSimpleRecursion(), ATTypedTableRecursion(), build_row_from_class(), BuildEventTriggerCache(), calculate_indexes_size(), calculate_toast_table_size(), change_owner_recurse_to_sequences(), check_of_type(), CheckAttributeType(), DefineRelation(), DefineVirtualRelation(), ExecuteTruncate(), expandRelation(), find_composite_type_dependencies(), finish_heap_swap(), get_rels_with_domain(), heap_drop_with_catalog(), heap_open(), index_open(), load_typcache_tupdesc(), open_share_lock(), pg_freespace(), pgstatginindex(), pgstattuplebyid(), relation_openrv(), relation_openrv_extended(), RemoveAttrDefaultById(), RemoveAttributeById(), rename_constraint_internal(), renameatt_internal(), RenameRelationInternal(), RenameRewriteRule(), renametrig(), set_relation_column_names(), and UpdateRangeTableOfViewParse().
{ Relation r; Assert(lockmode >= NoLock && lockmode < MAX_LOCKMODES); /* Get the lock before trying to open the relcache entry */ if (lockmode != NoLock) LockRelationOid(relationId, lockmode); /* The relcache does all the real work... */ r = RelationIdGetRelation(relationId); if (!RelationIsValid(r)) elog(ERROR, "could not open relation with OID %u", relationId); /* Make note that we've accessed a temporary relation */ if (RelationUsesLocalBuffers(r)) MyXactAccessedTempRel = true; pgstat_initstats(r); return r; }
Definition at line 1091 of file heapam.c.
References AcceptInvalidationMessages(), NoLock, RangeVarGetRelid, and relation_open().
Referenced by ATPostAlterTypeParse(), bt_metap(), bt_page_items(), bt_page_stats(), get_object_address_attribute(), get_raw_page_internal(), heap_openrv(), pg_relpages(), pgstatindex(), pgstattuple(), process_owned_by(), RelationNameGetTupleDesc(), and transformTableLikeClause().
{ Oid relOid; /* * Check for shared-cache-inval messages before trying to open the * relation. This is needed even if we already hold a lock on the * relation, because GRANT/REVOKE are executed without taking any lock on * the target relation, and we want to be sure we see current ACL * information. We can skip this if asked for NoLock, on the assumption * that such a call is not the first one in the current command, and so we * should be reasonably up-to-date already. (XXX this all could stand to * be redesigned, but for the moment we'll keep doing this like it's been * done historically.) */ if (lockmode != NoLock) AcceptInvalidationMessages(); /* Look up and lock the appropriate relation using namespace search */ relOid = RangeVarGetRelid(relation, lockmode, false); /* Let relation_open do the rest */ return relation_open(relOid, NoLock); }
Definition at line 1126 of file heapam.c.
References AcceptInvalidationMessages(), NoLock, OidIsValid, RangeVarGetRelid, and relation_open().
Referenced by get_relation_by_qualified_name(), heap_openrv_extended(), pltcl_init_load_unknown(), and transformAlterTableStmt().
{ Oid relOid; /* * Check for shared-cache-inval messages before trying to open the * relation. See comments in relation_openrv(). */ if (lockmode != NoLock) AcceptInvalidationMessages(); /* Look up and lock the appropriate relation using namespace search */ relOid = RangeVarGetRelid(relation, lockmode, missing_ok); /* Return NULL on not-found */ if (!OidIsValid(relOid)) return NULL; /* Let relation_open do the rest */ return relation_open(relOid, NoLock); }
void simple_heap_delete | ( | Relation | relation, | |
ItemPointer | tid | |||
) |
Definition at line 2842 of file heapam.c.
References elog, ERROR, GetCurrentCommandId(), heap_delete(), HeapTupleMayBeUpdated, HeapTupleSelfUpdated, HeapTupleUpdated, and InvalidSnapshot.
Referenced by AlterSetting(), ATExecAlterColumnType(), ATExecDropInherit(), changeDependencyFor(), CreateComments(), CreateSharedComments(), DeleteAttributeTuples(), DeleteComments(), deleteDependencyRecordsFor(), deleteDependencyRecordsForClass(), deleteOneObject(), DeleteRelationTuple(), DeleteSecurityLabel(), DeleteSharedComments(), DeleteSharedSecurityLabel(), DeleteSystemAttributeTuples(), DelRoleMems(), drop_parent_dependency(), DropCastById(), DropConfigurationMapping(), dropDatabaseDependencies(), dropdb(), DropProceduralLanguageById(), DropRole(), DropSetting(), DropTableSpace(), EnumValuesDelete(), heap_drop_with_catalog(), index_drop(), inv_truncate(), LargeObjectDrop(), MakeConfigurationMapping(), RangeDelete(), RelationRemoveInheritance(), RemoveAmOpEntryById(), RemoveAmProcEntryById(), RemoveAttrDefaultById(), RemoveAttributeById(), RemoveCollationById(), RemoveConstraintById(), RemoveConversionById(), RemoveDefaultACLById(), RemoveEventTriggerById(), RemoveExtensionById(), RemoveForeignDataWrapperById(), RemoveForeignServerById(), RemoveFunctionById(), RemoveOpClassById(), RemoveOperatorById(), RemoveOpFamilyById(), RemoveRewriteRuleById(), RemoveSchemaById(), RemoveStatistics(), RemoveTriggerById(), RemoveTSConfigurationById(), RemoveTSDictionaryById(), RemoveTSParserById(), RemoveTSTemplateById(), RemoveTypeById(), RemoveUserMappingById(), SetSecurityLabel(), SetSharedSecurityLabel(), shdepChangeDep(), shdepDropDependency(), and toast_delete_datum().
{ HTSU_Result result; HeapUpdateFailureData hufd; result = heap_delete(relation, tid, GetCurrentCommandId(true), InvalidSnapshot, true /* wait for commit */, &hufd); switch (result) { case HeapTupleSelfUpdated: /* Tuple was already updated in current command? */ elog(ERROR, "tuple already updated by self"); break; case HeapTupleMayBeUpdated: /* done successfully */ break; case HeapTupleUpdated: elog(ERROR, "tuple concurrently updated"); break; default: elog(ERROR, "unrecognized heap_delete status: %u", result); break; } }
Definition at line 2472 of file heapam.c.
References GetCurrentCommandId(), and heap_insert().
Referenced by AddEnumLabel(), AddRoleMems(), AggregateCreate(), AlterSetting(), CollationCreate(), ConversionCreate(), copyTemplateDependencies(), create_proc_lang(), CreateCast(), CreateComments(), CreateConstraintEntry(), createdb(), CreateForeignDataWrapper(), CreateForeignServer(), CreateForeignTable(), CreateOpFamily(), CreateRole(), CreateSharedComments(), CreateTableSpace(), CreateTrigger(), CreateUserMapping(), DefineOpClass(), DefineTSConfiguration(), DefineTSDictionary(), DefineTSParser(), DefineTSTemplate(), EnumValuesCreate(), fill_seq_with_data(), insert_event_trigger_tuple(), InsertExtensionTuple(), InsertOneTuple(), InsertPgAttributeTuple(), InsertPgClassTuple(), InsertRule(), inv_truncate(), inv_write(), LargeObjectCreate(), MakeConfigurationMapping(), NamespaceCreate(), ProcedureCreate(), RangeCreate(), recordMultipleDependencies(), SetDefaultACL(), SetSecurityLabel(), SetSharedSecurityLabel(), shdepAddDependency(), shdepChangeDep(), StoreAttrDefault(), StoreCatalogInheritance1(), storeOperators(), storeProcedures(), TypeCreate(), TypeShellMake(), update_attstats(), and UpdateIndexRelation().
{ return heap_insert(relation, tup, GetCurrentCommandId(true), 0, NULL); }
void simple_heap_update | ( | Relation | relation, | |
ItemPointer | otid, | |||
HeapTuple | tup | |||
) |
Definition at line 3808 of file heapam.c.
References elog, ERROR, GetCurrentCommandId(), heap_update(), HeapTupleMayBeUpdated, HeapTupleSelfUpdated, HeapTupleUpdated, and InvalidSnapshot.
Referenced by AddRoleMems(), AlterConstraintNamespaces(), AlterDatabase(), AlterDatabaseOwner(), AlterDomainDefault(), AlterDomainNotNull(), AlterDomainValidateConstraint(), AlterEventTrigger(), AlterEventTriggerOwner_internal(), AlterExtensionNamespace(), AlterForeignDataWrapper(), AlterForeignDataWrapperOwner_internal(), AlterForeignServer(), AlterForeignServerOwner_internal(), AlterFunction(), AlterObjectNamespace_internal(), AlterObjectOwner_internal(), AlterObjectRename_internal(), AlterRelationNamespaceInternal(), AlterRole(), AlterSchemaOwner_internal(), AlterSetting(), AlterTableSpaceOptions(), AlterTSDictionary(), AlterTypeNamespaceInternal(), AlterTypeOwner(), AlterTypeOwnerInternal(), AlterUserMapping(), ApplyExtensionUpdates(), ATExecAddColumn(), ATExecAddOf(), ATExecAlterColumnGenericOptions(), ATExecAlterColumnType(), ATExecChangeOwner(), ATExecDropColumn(), ATExecDropConstraint(), ATExecDropInherit(), ATExecDropNotNull(), ATExecDropOf(), ATExecGenericOptions(), ATExecSetNotNull(), ATExecSetOptions(), ATExecSetRelOptions(), ATExecSetStatistics(), ATExecSetStorage(), ATExecSetTableSpace(), ATExecValidateConstraint(), change_owner_fix_column_acls(), changeDependencyFor(), create_proc_lang(), create_toast_table(), CreateComments(), CreateSharedComments(), CreateTrigger(), DefineQueryRewrite(), DelRoleMems(), EnableDisableRule(), EnableDisableTrigger(), ExecGrant_Attribute(), ExecGrant_Database(), ExecGrant_Fdw(), ExecGrant_ForeignServer(), ExecGrant_Function(), ExecGrant_Language(), ExecGrant_Largeobject(), ExecGrant_Namespace(), ExecGrant_Relation(), ExecGrant_Tablespace(), ExecGrant_Type(), extension_config_remove(), index_build(), index_constraint_create(), InsertRule(), inv_truncate(), inv_write(), MakeConfigurationMapping(), mark_index_clustered(), MergeAttributesIntoExisting(), MergeConstraintsIntoExisting(), MergeWithExistingConstraint(), movedb(), OperatorCreate(), OperatorUpd(), pg_extension_config_dump(), ProcedureCreate(), reindex_index(), RelationSetNewRelfilenode(), RemoveAttrDefaultById(), RemoveAttributeById(), RemoveConstraintById(), renameatt_internal(), RenameConstraintById(), RenameDatabase(), RenameRelationInternal(), RenameRewriteRule(), RenameRole(), RenameSchema(), RenameTableSpace(), renametrig(), RenameTypeInternal(), RenumberEnumType(), SetDefaultACL(), SetFunctionArgType(), SetFunctionReturnType(), SetRelationHasSubclass(), SetRelationNumChecks(), SetRelationRuleStatus(), SetSecurityLabel(), SetSharedSecurityLabel(), shdepChangeDep(), StoreAttrDefault(), swap_relation_files(), TypeCreate(), and update_attstats().
{ HTSU_Result result; HeapUpdateFailureData hufd; LockTupleMode lockmode; result = heap_update(relation, otid, tup, GetCurrentCommandId(true), InvalidSnapshot, true /* wait for commit */, &hufd, &lockmode); switch (result) { case HeapTupleSelfUpdated: /* Tuple was already updated in current command? */ elog(ERROR, "tuple already updated by self"); break; case HeapTupleMayBeUpdated: /* done successfully */ break; case HeapTupleUpdated: elog(ERROR, "tuple concurrently updated"); break; default: elog(ERROR, "unrecognized heap_update status: %u", result); break; } }
Definition at line 1046 of file heapam.c.
References Assert, elog, ERROR, LockRelationOid(), MAX_LOCKMODES, MyXactAccessedTempRel, NoLock, ObjectIdGetDatum, pgstat_initstats(), RelationIdGetRelation(), RelationIsValid, RelationUsesLocalBuffers, RELOID, SearchSysCacheExists1, and UnlockRelationOid().
Referenced by analyze_rel(), cluster_rel(), pg_indexes_size(), pg_relation_is_scannable(), pg_relation_size(), pg_table_size(), pg_total_relation_size(), relation_is_updatable(), and vacuum_rel().
{ Relation r; Assert(lockmode >= NoLock && lockmode < MAX_LOCKMODES); /* Get the lock first */ if (lockmode != NoLock) LockRelationOid(relationId, lockmode); /* * Now that we have the lock, probe to see if the relation really exists * or not. */ if (!SearchSysCacheExists1(RELOID, ObjectIdGetDatum(relationId))) { /* Release useless lock */ if (lockmode != NoLock) UnlockRelationOid(relationId, lockmode); return NULL; } /* Should be safe to do a relcache load */ r = RelationIdGetRelation(relationId); if (!RelationIsValid(r)) elog(ERROR, "could not open relation with OID %u", relationId); /* Make note that we've accessed a temporary relation */ if (RelationUsesLocalBuffers(r)) MyXactAccessedTempRel = true; pgstat_initstats(r); return r; }
static void UpdateXmaxHintBits | ( | HeapTupleHeader | tuple, | |
Buffer | buffer, | |||
TransactionId | xid | |||
) | [static] |
Definition at line 1933 of file heapam.c.
References Assert, HEAP_XMAX_COMMITTED, HEAP_XMAX_INVALID, HEAP_XMAX_IS_LOCKED_ONLY, HEAP_XMAX_IS_MULTI, HeapTupleHeaderGetRawXmax, HeapTupleSetHintBits(), InvalidTransactionId, HeapTupleHeaderData::t_infomask, TransactionIdDidCommit(), and TransactionIdEquals.
Referenced by heap_delete(), heap_lock_tuple(), and heap_update().
{ Assert(TransactionIdEquals(HeapTupleHeaderGetRawXmax(tuple), xid)); Assert(!(tuple->t_infomask & HEAP_XMAX_IS_MULTI)); if (!(tuple->t_infomask & (HEAP_XMAX_COMMITTED | HEAP_XMAX_INVALID))) { if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask) && TransactionIdDidCommit(xid)) HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_COMMITTED, xid); else HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_INVALID, InvalidTransactionId); } }
const int MultiXactStatusLock[MaxMultiXactStatus+1] [static] |
bool synchronize_seqscans = true |
Definition at line 76 of file heapam.c.
Referenced by initscan().
struct { ... }
tupleLockExtraInfo[MaxLockTupleMode + 1] [static] |
Referenced by get_mxact_status_for_lock().