| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4fvwrd4 | Unicode version | ||
| Description: The first four function values of a word of length at least 4. (Contributed by Alexander van der Vekens, 18-Nov-2017.) |
| Ref | Expression |
|---|---|
| 4fvwrd4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 108 |
. . . . . 6
| |
| 2 | 0nn0 8303 |
. . . . . . . . 9
| |
| 3 | elnn0uz 8656 |
. . . . . . . . 9
| |
| 4 | 2, 3 | mpbi 143 |
. . . . . . . 8
|
| 5 | 3nn0 8306 |
. . . . . . . . . . 11
| |
| 6 | elnn0uz 8656 |
. . . . . . . . . . 11
| |
| 7 | 5, 6 | mpbi 143 |
. . . . . . . . . 10
|
| 8 | uzss 8639 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | ax-mp 7 |
. . . . . . . . 9
|
| 10 | 9 | sseli 2995 |
. . . . . . . 8
|
| 11 | eluzfz 9040 |
. . . . . . . 8
| |
| 12 | 4, 10, 11 | sylancr 405 |
. . . . . . 7
|
| 13 | 12 | adantr 270 |
. . . . . 6
|
| 14 | 1, 13 | ffvelrnd 5324 |
. . . . 5
|
| 15 | risset 2394 |
. . . . . 6
| |
| 16 | eqcom 2083 |
. . . . . . 7
| |
| 17 | 16 | rexbii 2373 |
. . . . . 6
|
| 18 | 15, 17 | bitri 182 |
. . . . 5
|
| 19 | 14, 18 | sylib 120 |
. . . 4
|
| 20 | 1eluzge0 8662 |
. . . . . . . 8
| |
| 21 | 1z 8377 |
. . . . . . . . . . 11
| |
| 22 | 3z 8380 |
. . . . . . . . . . 11
| |
| 23 | 1le3 8242 |
. . . . . . . . . . 11
| |
| 24 | eluz2 8625 |
. . . . . . . . . . 11
| |
| 25 | 21, 22, 23, 24 | mpbir3an 1120 |
. . . . . . . . . 10
|
| 26 | uzss 8639 |
. . . . . . . . . 10
| |
| 27 | 25, 26 | ax-mp 7 |
. . . . . . . . 9
|
| 28 | 27 | sseli 2995 |
. . . . . . . 8
|
| 29 | eluzfz 9040 |
. . . . . . . 8
| |
| 30 | 20, 28, 29 | sylancr 405 |
. . . . . . 7
|
| 31 | 30 | adantr 270 |
. . . . . 6
|
| 32 | 1, 31 | ffvelrnd 5324 |
. . . . 5
|
| 33 | risset 2394 |
. . . . . 6
| |
| 34 | eqcom 2083 |
. . . . . . 7
| |
| 35 | 34 | rexbii 2373 |
. . . . . 6
|
| 36 | 33, 35 | bitri 182 |
. . . . 5
|
| 37 | 32, 36 | sylib 120 |
. . . 4
|
| 38 | 19, 37 | jca 300 |
. . 3
|
| 39 | 2eluzge0 8663 |
. . . . . . 7
| |
| 40 | uzuzle23 8659 |
. . . . . . 7
| |
| 41 | eluzfz 9040 |
. . . . . . 7
| |
| 42 | 39, 40, 41 | sylancr 405 |
. . . . . 6
|
| 43 | 42 | adantr 270 |
. . . . 5
|
| 44 | 1, 43 | ffvelrnd 5324 |
. . . 4
|
| 45 | risset 2394 |
. . . . 5
| |
| 46 | eqcom 2083 |
. . . . . 6
| |
| 47 | 46 | rexbii 2373 |
. . . . 5
|
| 48 | 45, 47 | bitri 182 |
. . . 4
|
| 49 | 44, 48 | sylib 120 |
. . 3
|
| 50 | eluzfz 9040 |
. . . . . . 7
| |
| 51 | 7, 50 | mpan 414 |
. . . . . 6
|
| 52 | 51 | adantr 270 |
. . . . 5
|
| 53 | 1, 52 | ffvelrnd 5324 |
. . . 4
|
| 54 | risset 2394 |
. . . . 5
| |
| 55 | eqcom 2083 |
. . . . . 6
| |
| 56 | 55 | rexbii 2373 |
. . . . 5
|
| 57 | 54, 56 | bitri 182 |
. . . 4
|
| 58 | 53, 57 | sylib 120 |
. . 3
|
| 59 | 38, 49, 58 | jca32 303 |
. 2
|
| 60 | r19.42v 2511 |
. . . . . 6
| |
| 61 | r19.42v 2511 |
. . . . . . 7
| |
| 62 | 61 | anbi2i 444 |
. . . . . 6
|
| 63 | 60, 62 | bitri 182 |
. . . . 5
|
| 64 | 63 | rexbii 2373 |
. . . 4
|
| 65 | 64 | 2rexbii 2375 |
. . 3
|
| 66 | r19.42v 2511 |
. . . . 5
| |
| 67 | r19.41v 2510 |
. . . . . 6
| |
| 68 | 67 | anbi2i 444 |
. . . . 5
|
| 69 | 66, 68 | bitri 182 |
. . . 4
|
| 70 | 69 | 2rexbii 2375 |
. . 3
|
| 71 | r19.41v 2510 |
. . . . . 6
| |
| 72 | r19.42v 2511 |
. . . . . . 7
| |
| 73 | 72 | anbi1i 445 |
. . . . . 6
|
| 74 | 71, 73 | bitri 182 |
. . . . 5
|
| 75 | 74 | rexbii 2373 |
. . . 4
|
| 76 | r19.41v 2510 |
. . . 4
| |
| 77 | r19.41v 2510 |
. . . . 5
| |
| 78 | 77 | anbi1i 445 |
. . . 4
|
| 79 | 75, 76, 78 | 3bitri 204 |
. . 3
|
| 80 | 65, 70, 79 | 3bitri 204 |
. 2
|
| 81 | 59, 80 | sylibr 132 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-2 8098 df-3 8099 df-n0 8289 df-z 8352 df-uz 8620 df-fz 9030 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |