![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1z | Unicode version |
Description: One is an integer. (Contributed by NM, 10-May-2004.) |
Ref | Expression |
---|---|
1z |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8050 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nnzi 8372 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-z 8352 |
This theorem is referenced by: 1zzd 8378 znnnlt1 8399 nn0n0n1ge2b 8427 nn0lt2 8429 3halfnz 8444 prime 8446 nnuz 8654 eluz2nn 8657 eluzge3nn 8660 1eluzge0 8662 2eluzge1 8664 eluz2b1 8688 uz2m1nn 8692 elnn1uz2 8694 nn01to3 8702 nnrecq 8730 fz1n 9063 fz10 9065 fz01en 9072 fzpreddisj 9088 fznatpl1 9093 fzprval 9099 fztpval 9100 fseq1p1m1 9111 elfzp1b 9114 elfzm1b 9115 4fvwrd4 9150 ige2m2fzo 9207 fzo12sn 9226 fzofzp1 9236 fzostep1 9246 rebtwn2zlemstep 9261 qbtwnxr 9266 flqge1nn 9296 fldiv4p1lem1div2 9307 modqfrac 9339 modqid0 9352 q1mod 9358 mulp1mod1 9367 m1modnnsub1 9372 modqm1p1mod0 9377 modqltm1p1mod 9378 frecfzennn 9419 frecfzen2 9420 zexpcl 9491 qexpcl 9492 qexpclz 9497 m1expcl 9499 expp1zap 9525 expm1ap 9526 bcn1 9685 bcpasc 9693 bcnm1 9699 climuni 10132 iddvds 10208 1dvds 10209 dvds1 10253 nn0o1gt2 10305 n2dvds1 10312 gcdadd 10376 gcdid 10377 gcd1 10378 1gcd 10383 bezoutlema 10388 bezoutlemb 10389 gcdmultiple 10409 lcmgcdlem 10459 lcm1 10463 3lcm2e6woprm 10468 isprm3 10500 prmgt1 10513 ex-fl 10563 |
Copyright terms: Public domain | W3C validator |