ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzlt2d Unicode version

Theorem frec2uzlt2d 9406
Description: The mapping  G (see frec2uz0d 9401) preserves order. (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frec2uzzd.a  |-  ( ph  ->  A  e.  om )
frec2uzltd.b  |-  ( ph  ->  B  e.  om )
Assertion
Ref Expression
frec2uzlt2d  |-  ( ph  ->  ( A  e.  B  <->  ( G `  A )  <  ( G `  B ) ) )
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    A( x)    B( x)    G( x)

Proof of Theorem frec2uzlt2d
StepHypRef Expression
1 frec2uz.1 . . 3  |-  ( ph  ->  C  e.  ZZ )
2 frec2uz.2 . . 3  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
3 frec2uzzd.a . . 3  |-  ( ph  ->  A  e.  om )
4 frec2uzltd.b . . 3  |-  ( ph  ->  B  e.  om )
51, 2, 3, 4frec2uzltd 9405 . 2  |-  ( ph  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) )
6 nntri3or 6095 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
73, 4, 6syl2anc 403 . . 3  |-  ( ph  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
8 ax-1 5 . . . . 5  |-  ( A  e.  B  ->  (
( G `  A
)  <  ( G `  B )  ->  A  e.  B ) )
98a1i 9 . . . 4  |-  ( ph  ->  ( A  e.  B  ->  ( ( G `  A )  <  ( G `  B )  ->  A  e.  B ) ) )
10 fveq2 5198 . . . . . . . . . 10  |-  ( A  =  B  ->  ( G `  A )  =  ( G `  B ) )
1110adantl 271 . . . . . . . . 9  |-  ( (
ph  /\  A  =  B )  ->  ( G `  A )  =  ( G `  B ) )
1211breq2d 3797 . . . . . . . 8  |-  ( (
ph  /\  A  =  B )  ->  (
( G `  A
)  <  ( G `  A )  <->  ( G `  A )  <  ( G `  B )
) )
1312biimpar 291 . . . . . . 7  |-  ( ( ( ph  /\  A  =  B )  /\  ( G `  A )  <  ( G `  B
) )  ->  ( G `  A )  <  ( G `  A
) )
141, 2, 3frec2uzzd 9402 . . . . . . . . . . 11  |-  ( ph  ->  ( G `  A
)  e.  ZZ )
1514adantr 270 . . . . . . . . . 10  |-  ( (
ph  /\  A  =  B )  ->  ( G `  A )  e.  ZZ )
1615adantr 270 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =  B )  /\  ( G `  A )  <  ( G `  B
) )  ->  ( G `  A )  e.  ZZ )
1716zred 8469 . . . . . . . 8  |-  ( ( ( ph  /\  A  =  B )  /\  ( G `  A )  <  ( G `  B
) )  ->  ( G `  A )  e.  RR )
1817ltnrd 7222 . . . . . . 7  |-  ( ( ( ph  /\  A  =  B )  /\  ( G `  A )  <  ( G `  B
) )  ->  -.  ( G `  A )  <  ( G `  A ) )
1913, 18pm2.21dd 582 . . . . . 6  |-  ( ( ( ph  /\  A  =  B )  /\  ( G `  A )  <  ( G `  B
) )  ->  A  e.  B )
2019ex 113 . . . . 5  |-  ( (
ph  /\  A  =  B )  ->  (
( G `  A
)  <  ( G `  B )  ->  A  e.  B ) )
2120ex 113 . . . 4  |-  ( ph  ->  ( A  =  B  ->  ( ( G `
 A )  < 
( G `  B
)  ->  A  e.  B ) ) )
221, 2, 4frec2uzzd 9402 . . . . . . . . 9  |-  ( ph  ->  ( G `  B
)  e.  ZZ )
2322adantr 270 . . . . . . . 8  |-  ( (
ph  /\  B  e.  A )  ->  ( G `  B )  e.  ZZ )
2423zred 8469 . . . . . . 7  |-  ( (
ph  /\  B  e.  A )  ->  ( G `  B )  e.  RR )
2514adantr 270 . . . . . . . 8  |-  ( (
ph  /\  B  e.  A )  ->  ( G `  A )  e.  ZZ )
2625zred 8469 . . . . . . 7  |-  ( (
ph  /\  B  e.  A )  ->  ( G `  A )  e.  RR )
271, 2, 4, 3frec2uzltd 9405 . . . . . . . 8  |-  ( ph  ->  ( B  e.  A  ->  ( G `  B
)  <  ( G `  A ) ) )
2827imp 122 . . . . . . 7  |-  ( (
ph  /\  B  e.  A )  ->  ( G `  B )  <  ( G `  A
) )
2924, 26, 28ltnsymd 7229 . . . . . 6  |-  ( (
ph  /\  B  e.  A )  ->  -.  ( G `  A )  <  ( G `  B ) )
3029pm2.21d 581 . . . . 5  |-  ( (
ph  /\  B  e.  A )  ->  (
( G `  A
)  <  ( G `  B )  ->  A  e.  B ) )
3130ex 113 . . . 4  |-  ( ph  ->  ( B  e.  A  ->  ( ( G `  A )  <  ( G `  B )  ->  A  e.  B ) ) )
329, 21, 313jaod 1235 . . 3  |-  ( ph  ->  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  ->  (
( G `  A
)  <  ( G `  B )  ->  A  e.  B ) ) )
337, 32mpd 13 . 2  |-  ( ph  ->  ( ( G `  A )  <  ( G `  B )  ->  A  e.  B ) )
345, 33impbid 127 1  |-  ( ph  ->  ( A  e.  B  <->  ( G `  A )  <  ( G `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ w3o 918    = wceq 1284    e. wcel 1433   class class class wbr 3785    |-> cmpt 3839   omcom 4331   ` cfv 4922  (class class class)co 5532  freccfrec 6000   1c1 6982    + caddc 6984    < clt 7153   ZZcz 8351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620
This theorem is referenced by:  frec2uzisod  9409
  Copyright terms: Public domain W3C validator