ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axmulcl Unicode version

Theorem axmulcl 7034
Description: Closure law for multiplication of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcl 7074 be used later. Instead, in most cases use mulcl 7100. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axmulcl  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )

Proof of Theorem axmulcl
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4379 . . . . 5  |-  ( A  e.  ( R.  X.  R. )  ->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  R.  /\  y  e.  R. )
) )
2 df-c 6987 . . . . 5  |-  CC  =  ( R.  X.  R. )
31, 2eleq2s 2173 . . . 4  |-  ( A  e.  CC  ->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  R.  /\  y  e.  R. )
) )
4 elxpi 4379 . . . . 5  |-  ( B  e.  ( R.  X.  R. )  ->  E. z E. w ( B  = 
<. z ,  w >.  /\  ( z  e.  R.  /\  w  e.  R. )
) )
54, 2eleq2s 2173 . . . 4  |-  ( B  e.  CC  ->  E. z E. w ( B  = 
<. z ,  w >.  /\  ( z  e.  R.  /\  w  e.  R. )
) )
63, 5anim12i 331 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  R.  /\  y  e.  R. )
)  /\  E. z E. w ( B  = 
<. z ,  w >.  /\  ( z  e.  R.  /\  w  e.  R. )
) ) )
7 ee4anv 1850 . . 3  |-  ( E. x E. y E. z E. w ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  <->  ( E. x E. y ( A  =  <. x ,  y
>.  /\  ( x  e. 
R.  /\  y  e.  R. ) )  /\  E. z E. w ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) ) )
86, 7sylibr 132 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  E. x E. y E. z E. w ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) ) )
9 simpll 495 . . . . . . 7  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  ->  A  =  <. x ,  y >. )
10 simprl 497 . . . . . . 7  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  ->  B  =  <. z ,  w >. )
119, 10oveq12d 5550 . . . . . 6  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  x.  B
)  =  ( <.
x ,  y >.  x.  <. z ,  w >. ) )
12 mulcnsr 7003 . . . . . . 7  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( <. x ,  y >.  x.  <. z ,  w >. )  =  <. ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) ) ,  ( ( y  .R  z
)  +R  ( x  .R  w ) )
>. )
1312ad2ant2l 491 . . . . . 6  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( <. x ,  y
>.  x.  <. z ,  w >. )  =  <. (
( x  .R  z
)  +R  ( -1R 
.R  ( y  .R  w ) ) ) ,  ( ( y  .R  z )  +R  ( x  .R  w
) ) >. )
1411, 13eqtrd 2113 . . . . 5  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  x.  B
)  =  <. (
( x  .R  z
)  +R  ( -1R 
.R  ( y  .R  w ) ) ) ,  ( ( y  .R  z )  +R  ( x  .R  w
) ) >. )
15 simplrl 501 . . . . . . . . 9  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  ->  x  e.  R. )
16 simprrl 505 . . . . . . . . 9  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
z  e.  R. )
17 mulclsr 6931 . . . . . . . . 9  |-  ( ( x  e.  R.  /\  z  e.  R. )  ->  ( x  .R  z
)  e.  R. )
1815, 16, 17syl2anc 403 . . . . . . . 8  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( x  .R  z
)  e.  R. )
19 m1r 6929 . . . . . . . . . 10  |-  -1R  e.  R.
2019a1i 9 . . . . . . . . 9  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  ->  -1R  e.  R. )
21 simplrr 502 . . . . . . . . . 10  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
y  e.  R. )
22 simprrr 506 . . . . . . . . . 10  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  ->  w  e.  R. )
23 mulclsr 6931 . . . . . . . . . 10  |-  ( ( y  e.  R.  /\  w  e.  R. )  ->  ( y  .R  w
)  e.  R. )
2421, 22, 23syl2anc 403 . . . . . . . . 9  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( y  .R  w
)  e.  R. )
25 mulclsr 6931 . . . . . . . . 9  |-  ( ( -1R  e.  R.  /\  ( y  .R  w
)  e.  R. )  ->  ( -1R  .R  (
y  .R  w )
)  e.  R. )
2620, 24, 25syl2anc 403 . . . . . . . 8  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( -1R  .R  (
y  .R  w )
)  e.  R. )
27 addclsr 6930 . . . . . . . 8  |-  ( ( ( x  .R  z
)  e.  R.  /\  ( -1R  .R  ( y  .R  w ) )  e.  R. )  -> 
( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) )  e.  R. )
2818, 26, 27syl2anc 403 . . . . . . 7  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) )  e.  R. )
29 mulclsr 6931 . . . . . . . . 9  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( y  .R  z
)  e.  R. )
3021, 16, 29syl2anc 403 . . . . . . . 8  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( y  .R  z
)  e.  R. )
31 mulclsr 6931 . . . . . . . . 9  |-  ( ( x  e.  R.  /\  w  e.  R. )  ->  ( x  .R  w
)  e.  R. )
3215, 22, 31syl2anc 403 . . . . . . . 8  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( x  .R  w
)  e.  R. )
33 addclsr 6930 . . . . . . . 8  |-  ( ( ( y  .R  z
)  e.  R.  /\  ( x  .R  w
)  e.  R. )  ->  ( ( y  .R  z )  +R  (
x  .R  w )
)  e.  R. )
3430, 32, 33syl2anc 403 . . . . . . 7  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( ( y  .R  z )  +R  (
x  .R  w )
)  e.  R. )
35 opelxpi 4394 . . . . . . 7  |-  ( ( ( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) )  e.  R.  /\  (
( y  .R  z
)  +R  ( x  .R  w ) )  e.  R. )  ->  <. ( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) ) ,  ( ( y  .R  z )  +R  ( x  .R  w
) ) >.  e.  ( R.  X.  R. )
)
3628, 34, 35syl2anc 403 . . . . . 6  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  ->  <. ( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) ) ,  ( ( y  .R  z )  +R  ( x  .R  w
) ) >.  e.  ( R.  X.  R. )
)
3736, 2syl6eleqr 2172 . . . . 5  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  ->  <. ( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) ) ,  ( ( y  .R  z )  +R  ( x  .R  w
) ) >.  e.  CC )
3814, 37eqeltrd 2155 . . . 4  |-  ( ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  x.  B
)  e.  CC )
3938exlimivv 1817 . . 3  |-  ( E. z E. w ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  x.  B
)  e.  CC )
4039exlimivv 1817 . 2  |-  ( E. x E. y E. z E. w ( ( A  =  <. x ,  y >.  /\  (
x  e.  R.  /\  y  e.  R. )
)  /\  ( B  =  <. z ,  w >.  /\  ( z  e. 
R.  /\  w  e.  R. ) ) )  -> 
( A  x.  B
)  e.  CC )
418, 40syl 14 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284   E.wex 1421    e. wcel 1433   <.cop 3401    X. cxp 4361  (class class class)co 5532   R.cnr 6487   -1Rcm1r 6490    +R cplr 6491    .R cmr 6492   CCcc 6979    x. cmul 6986
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-i1p 6657  df-iplp 6658  df-imp 6659  df-enr 6903  df-nr 6904  df-plr 6905  df-mr 6906  df-m1r 6910  df-c 6987  df-mul 6993
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator