ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcnsr Unicode version

Theorem mulcnsr 7003
Description: Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.)
Assertion
Ref Expression
mulcnsr  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( <. A ,  B >.  x.  <. C ,  D >. )  =  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D ) ) >.
)

Proof of Theorem mulcnsr
Dummy variables  x  y  z  w  v  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclsr 6931 . . . . 5  |-  ( ( A  e.  R.  /\  C  e.  R. )  ->  ( A  .R  C
)  e.  R. )
21ad2ant2r 492 . . . 4  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( A  .R  C )  e.  R. )
3 m1r 6929 . . . . 5  |-  -1R  e.  R.
4 mulclsr 6931 . . . . . 6  |-  ( ( B  e.  R.  /\  D  e.  R. )  ->  ( B  .R  D
)  e.  R. )
54ad2ant2l 491 . . . . 5  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( B  .R  D )  e.  R. )
6 mulclsr 6931 . . . . 5  |-  ( ( -1R  e.  R.  /\  ( B  .R  D )  e.  R. )  -> 
( -1R  .R  ( B  .R  D ) )  e.  R. )
73, 5, 6sylancr 405 . . . 4  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( -1R  .R  ( B  .R  D
) )  e.  R. )
8 addclsr 6930 . . . 4  |-  ( ( ( A  .R  C
)  e.  R.  /\  ( -1R  .R  ( B  .R  D ) )  e.  R. )  -> 
( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) )  e.  R. )
92, 7, 8syl2anc 403 . . 3  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) )  e.  R. )
10 mulclsr 6931 . . . . 5  |-  ( ( B  e.  R.  /\  C  e.  R. )  ->  ( B  .R  C
)  e.  R. )
1110ad2ant2lr 493 . . . 4  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( B  .R  C )  e.  R. )
12 mulclsr 6931 . . . . 5  |-  ( ( A  e.  R.  /\  D  e.  R. )  ->  ( A  .R  D
)  e.  R. )
1312ad2ant2rl 494 . . . 4  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( A  .R  D )  e.  R. )
14 addclsr 6930 . . . 4  |-  ( ( ( B  .R  C
)  e.  R.  /\  ( A  .R  D )  e.  R. )  -> 
( ( B  .R  C )  +R  ( A  .R  D ) )  e.  R. )
1511, 13, 14syl2anc 403 . . 3  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( ( B  .R  C )  +R  ( A  .R  D
) )  e.  R. )
16 opelxpi 4394 . . 3  |-  ( ( ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) )  e.  R.  /\  (
( B  .R  C
)  +R  ( A  .R  D ) )  e.  R. )  ->  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >.  e.  ( R.  X.  R. )
)
179, 15, 16syl2anc 403 . 2  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C
)  +R  ( A  .R  D ) )
>.  e.  ( R.  X.  R. ) )
18 simpll 495 . . . . 5  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  w  =  A )
19 simprl 497 . . . . 5  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  u  =  C )
2018, 19oveq12d 5550 . . . 4  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
( w  .R  u
)  =  ( A  .R  C ) )
21 simplr 496 . . . . . 6  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
v  =  B )
22 simprr 498 . . . . . 6  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
f  =  D )
2321, 22oveq12d 5550 . . . . 5  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
( v  .R  f
)  =  ( B  .R  D ) )
2423oveq2d 5548 . . . 4  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
( -1R  .R  (
v  .R  f )
)  =  ( -1R 
.R  ( B  .R  D ) ) )
2520, 24oveq12d 5550 . . 3  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
( ( w  .R  u )  +R  ( -1R  .R  ( v  .R  f ) ) )  =  ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) )
2621, 19oveq12d 5550 . . . 4  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
( v  .R  u
)  =  ( B  .R  C ) )
2718, 22oveq12d 5550 . . . 4  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
( w  .R  f
)  =  ( A  .R  D ) )
2826, 27oveq12d 5550 . . 3  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  -> 
( ( v  .R  u )  +R  (
w  .R  f )
)  =  ( ( B  .R  C )  +R  ( A  .R  D ) ) )
2925, 28opeq12d 3578 . 2  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  <. ( ( w  .R  u )  +R  ( -1R  .R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >.  =  <. ( ( A  .R  C
)  +R  ( -1R 
.R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >. )
30 df-mul 6993 . . 3  |-  x.  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
31 df-c 6987 . . . . . . 7  |-  CC  =  ( R.  X.  R. )
3231eleq2i 2145 . . . . . 6  |-  ( x  e.  CC  <->  x  e.  ( R.  X.  R. )
)
3331eleq2i 2145 . . . . . 6  |-  ( y  e.  CC  <->  y  e.  ( R.  X.  R. )
)
3432, 33anbi12i 447 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  <->  ( x  e.  ( R. 
X.  R. )  /\  y  e.  ( R.  X.  R. ) ) )
3534anbi1i 445 . . . 4  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
)  <->  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. ) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) )
3635oprabbii 5580 . . 3  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
3730, 36eqtri 2101 . 2  |-  x.  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
3817, 29, 37ovi3 5657 1  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( <. A ,  B >.  x.  <. C ,  D >. )  =  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D ) ) >.
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284   E.wex 1421    e. wcel 1433   <.cop 3401    X. cxp 4361  (class class class)co 5532   {coprab 5533   R.cnr 6487   -1Rcm1r 6490    +R cplr 6491    .R cmr 6492   CCcc 6979    x. cmul 6986
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-i1p 6657  df-iplp 6658  df-imp 6659  df-enr 6903  df-nr 6904  df-plr 6905  df-mr 6906  df-m1r 6910  df-c 6987  df-mul 6993
This theorem is referenced by:  mulresr  7006  mulcnsrec  7011  axmulcl  7034  axi2m1  7041  axcnre  7047
  Copyright terms: Public domain W3C validator