ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1r Unicode version

Theorem m1r 6929
Description: The constant  -1R is a signed real. (Contributed by NM, 9-Aug-1995.)
Assertion
Ref Expression
m1r  |-  -1R  e.  R.

Proof of Theorem m1r
StepHypRef Expression
1 1pr 6744 . . . 4  |-  1P  e.  P.
2 addclpr 6727 . . . . 5  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
31, 1, 2mp2an 416 . . . 4  |-  ( 1P 
+P.  1P )  e.  P.
4 opelxpi 4394 . . . 4  |-  ( ( 1P  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  ->  <. 1P ,  ( 1P 
+P.  1P ) >.  e.  ( P.  X.  P. )
)
51, 3, 4mp2an 416 . . 3  |-  <. 1P , 
( 1P  +P.  1P ) >.  e.  ( P. 
X.  P. )
6 enrex 6914 . . . 4  |-  ~R  e.  _V
76ecelqsi 6183 . . 3  |-  ( <. 1P ,  ( 1P  +P.  1P ) >.  e.  ( P.  X.  P. )  ->  [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )
85, 7ax-mp 7 . 2  |-  [ <. 1P ,  ( 1P  +P.  1P ) >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
9 df-m1r 6910 . 2  |-  -1R  =  [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R
10 df-nr 6904 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
118, 9, 103eltr4i 2160 1  |-  -1R  e.  R.
Colors of variables: wff set class
Syntax hints:    e. wcel 1433   <.cop 3401    X. cxp 4361  (class class class)co 5532   [cec 6127   /.cqs 6128   P.cnp 6481   1Pc1p 6482    +P. cpp 6483    ~R cer 6486   R.cnr 6487   -1Rcm1r 6490
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-i1p 6657  df-iplp 6658  df-enr 6903  df-nr 6904  df-m1r 6910
This theorem is referenced by:  pn0sr  6948  negexsr  6949  caucvgsrlemoffval  6972  caucvgsrlemofff  6973  caucvgsrlemoffres  6976  caucvgsr  6978  mulcnsr  7003  mulresr  7006  mulcnsrec  7011  axmulcl  7034  axmulass  7039  axdistr  7040  axi2m1  7041  axrnegex  7045  axcnre  7047
  Copyright terms: Public domain W3C validator