| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axprecex | Unicode version | ||
| Description: Existence of positive
reciprocal of positive real number. Axiom for
real and complex numbers, derived from set theory. This
construction-dependent theorem should not be referenced directly;
instead, use ax-precex 7086.
In treatments which assume excluded middle, the |
| Ref | Expression |
|---|---|
| axprecex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal 6997 |
. . . 4
| |
| 2 | df-rex 2354 |
. . . 4
| |
| 3 | 1, 2 | bitri 182 |
. . 3
|
| 4 | breq2 3789 |
. . . 4
| |
| 5 | oveq1 5539 |
. . . . . . 7
| |
| 6 | 5 | eqeq1d 2089 |
. . . . . 6
|
| 7 | 6 | anbi2d 451 |
. . . . 5
|
| 8 | 7 | rexbidv 2369 |
. . . 4
|
| 9 | 4, 8 | imbi12d 232 |
. . 3
|
| 10 | df-0 6988 |
. . . . . 6
| |
| 11 | 10 | breq1i 3792 |
. . . . 5
|
| 12 | ltresr 7007 |
. . . . 5
| |
| 13 | 11, 12 | bitri 182 |
. . . 4
|
| 14 | recexgt0sr 6950 |
. . . . 5
| |
| 15 | opelreal 6996 |
. . . . . . . . . 10
| |
| 16 | 15 | anbi1i 445 |
. . . . . . . . 9
|
| 17 | 10 | breq1i 3792 |
. . . . . . . . . . . . 13
|
| 18 | ltresr 7007 |
. . . . . . . . . . . . 13
| |
| 19 | 17, 18 | bitri 182 |
. . . . . . . . . . . 12
|
| 20 | 19 | a1i 9 |
. . . . . . . . . . 11
|
| 21 | mulresr 7006 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | eqeq1d 2089 |
. . . . . . . . . . . 12
|
| 23 | df-1 6989 |
. . . . . . . . . . . . . 14
| |
| 24 | 23 | eqeq2i 2091 |
. . . . . . . . . . . . 13
|
| 25 | eqid 2081 |
. . . . . . . . . . . . . 14
| |
| 26 | 1sr 6928 |
. . . . . . . . . . . . . . 15
| |
| 27 | 0r 6927 |
. . . . . . . . . . . . . . 15
| |
| 28 | opthg2 3994 |
. . . . . . . . . . . . . . 15
| |
| 29 | 26, 27, 28 | mp2an 416 |
. . . . . . . . . . . . . 14
|
| 30 | 25, 29 | mpbiran2 882 |
. . . . . . . . . . . . 13
|
| 31 | 24, 30 | bitri 182 |
. . . . . . . . . . . 12
|
| 32 | 22, 31 | syl6bb 194 |
. . . . . . . . . . 11
|
| 33 | 20, 32 | anbi12d 456 |
. . . . . . . . . 10
|
| 34 | 33 | pm5.32da 439 |
. . . . . . . . 9
|
| 35 | 16, 34 | syl5bb 190 |
. . . . . . . 8
|
| 36 | breq2 3789 |
. . . . . . . . . 10
| |
| 37 | oveq2 5540 |
. . . . . . . . . . 11
| |
| 38 | 37 | eqeq1d 2089 |
. . . . . . . . . 10
|
| 39 | 36, 38 | anbi12d 456 |
. . . . . . . . 9
|
| 40 | 39 | rspcev 2701 |
. . . . . . . 8
|
| 41 | 35, 40 | syl6bir 162 |
. . . . . . 7
|
| 42 | 41 | expd 254 |
. . . . . 6
|
| 43 | 42 | rexlimdv 2476 |
. . . . 5
|
| 44 | 14, 43 | syl5 32 |
. . . 4
|
| 45 | 13, 44 | syl5bi 150 |
. . 3
|
| 46 | 3, 9, 45 | gencl 2631 |
. 2
|
| 47 | 46 | imp 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-eprel 4044 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-1o 6024 df-2o 6025 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-pli 6495 df-mi 6496 df-lti 6497 df-plpq 6534 df-mpq 6535 df-enq 6537 df-nqqs 6538 df-plqqs 6539 df-mqqs 6540 df-1nqqs 6541 df-rq 6542 df-ltnqqs 6543 df-enq0 6614 df-nq0 6615 df-0nq0 6616 df-plq0 6617 df-mq0 6618 df-inp 6656 df-i1p 6657 df-iplp 6658 df-imp 6659 df-iltp 6660 df-enr 6903 df-nr 6904 df-plr 6905 df-mr 6906 df-ltr 6907 df-0r 6908 df-1r 6909 df-m1r 6910 df-c 6987 df-0 6988 df-1 6989 df-r 6991 df-mul 6993 df-lt 6994 |
| This theorem is referenced by: rereceu 7055 recriota 7056 |
| Copyright terms: Public domain | W3C validator |